51
|
Gao L, Xu S, Zhang J, Kang J, Zhong S, Shi H. Promotion of seedling germination in Arabidopsis by B-box zinc-finger protein BBX32. Curr Biol 2024; 34:3152-3164.e6. [PMID: 38971148 DOI: 10.1016/j.cub.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Seed germination represents a determinant for plants to enter ecosystems and is thus regarded as a key ecological and agronomic trait. It is tightly regulated by a variety of environmental cues to ensure that seeds germinate under favorable conditions. Here, we characterize BBX32, a B-box zinc-finger protein, as an imbibition-stimulated positive regulator of seed germination. Belonging to subgroup V of the BBX family, BBX32 exhibits distinct characteristics compared with its close counterparts within the same subgroup. BBX32 is transiently induced at both the transcriptional and post-transcriptional levels in the embryo upon water absorption. Genetic evidence indicates that BBX32 acts upstream of the master transcription factor PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) to facilitate light-induced seed germination. BBX32 directly interacts with PIF1, suppressing its protein-interacting and DNA-binding capabilities, thereby relieving PIF1's repression on seed germination. Furthermore, the imbibition-stimulated BBX32 functions in parallel with the light-induced transcription regulator HFR1 to collectively attenuate the transcriptional activities of PIF1. The BBX32-PIF1 de-repression module serves as a molecular connection that enables plants to integrate signals of water availability and light exposure, effectively coordinating the initiation of seed germination.
Collapse
Affiliation(s)
- Lulu Gao
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Sheng Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinming Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Jing Kang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, and School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China.
| |
Collapse
|
52
|
Soyano T, Akamatsu A, Takeda N, Watahiki MK, Goh T, Okuma N, Suganuma N, Kojima M, Takebayashi Y, Sakakibara H, Nakajima K, Kawaguchi M. Periodic cytokinin responses in Lotus japonicus rhizobium infection and nodule development. Science 2024; 385:288-294. [PMID: 39024445 DOI: 10.1126/science.adk5589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.
Collapse
Affiliation(s)
- Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Akamatsu
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Naoya Takeda
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Masaaki K Watahiki
- Faculty of Science, Division of Biological Sciences, Hokkaido University, Kitaku Kita 10, Nishi 8, Sapporo 060-0810, Japan
| | - Tatsuaki Goh
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nao Okuma
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi 448-8542, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Keiji Nakajima
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
53
|
Cromer L, Tiscareno-Andrade M, Lefranc S, Chambon A, Hurel A, Brogniez M, Guérin J, Le Masson I, Adam G, Charif D, Andrey P, Grelon M. Rapid meiotic prophase chromosome movements in Arabidopsis thaliana are linked to essential reorganization at the nuclear envelope. Nat Commun 2024; 15:5964. [PMID: 39013853 PMCID: PMC11252379 DOI: 10.1038/s41467-024-50169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.
Collapse
Affiliation(s)
- Laurence Cromer
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mariana Tiscareno-Andrade
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Sandrine Lefranc
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Chambon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Aurélie Hurel
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Manon Brogniez
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Julie Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Ivan Le Masson
- Université Paris-Saclay, AgroParisTech, INRAE, UMR Agronomie, 91120, Palaiseau, France
| | - Gabriele Adam
- Université Paris-Saclay, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif sur Yvette, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Mathilde Grelon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
| |
Collapse
|
54
|
Otani M, Tojo R, Regnard S, Zheng L, Hoshi T, Ohmori S, Tachibana N, Sano T, Koshimizu S, Ichimura K, Colcombet J, Kawakami N. The MKK3 MAPK cascade integrates temperature and after-ripening signals to modulate seed germination. Proc Natl Acad Sci U S A 2024; 121:e2404887121. [PMID: 38968100 PMCID: PMC11252986 DOI: 10.1073/pnas.2404887121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.
Collapse
Affiliation(s)
- Masahiko Otani
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
| | - Ryo Tojo
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
| | - Sarah Regnard
- Institute of Plant Sciences Paris Saclay, Paris-Saclay University, CNRS, National Research Institute for Agriculture, Food and the Environment (INRAE), Paris-Cité University, Evry Val d'Essonne University, Gif-sur-Yvette91190, France
| | - Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei230031, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui230027, China
| | - Takumi Hoshi
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
| | - Suzuha Ohmori
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
| | - Natsuki Tachibana
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
| | - Tomohiro Sano
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
| | - Shizuka Koshimizu
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima411-8540, Japan
| | - Kazuya Ichimura
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa761-0795, Japan
| | - Jean Colcombet
- Institute of Plant Sciences Paris Saclay, Paris-Saclay University, CNRS, National Research Institute for Agriculture, Food and the Environment (INRAE), Paris-Cité University, Evry Val d'Essonne University, Gif-sur-Yvette91190, France
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa214-8571, Japan
| |
Collapse
|
55
|
Baudry K, Monachello D, Castandet B, Majeran W, Lurin C. Dissecting the molecular puzzle of the editosome core in Arabidopsis organelles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112101. [PMID: 38640972 DOI: 10.1016/j.plantsci.2024.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Over the last decade, the composition of the C-to-U RNA editing complex in embryophyte organelles has turned out to be much more complex than first expected. While PPR proteins were initially thought to act alone, significant evidences have clearly depicted a sophisticated mechanism with numerous protein-protein interaction involving PPR and non-PPR proteins. Moreover, the identification of specific functional partnership between PPRs also suggests that, in addition to the highly specific PPRs directly involved in the RNA target recognition, non-RNA-specific ones are required. Although some of them, such as DYW1 and DYW2, were shown to be the catalytic domains of the editing complex, the molecular function of others, such as NUWA, remains elusive. It was suggested that they might stabilize the complex by acting as a scaffold. We here performed functional complementation of the crr28-2 mutant with truncated CRR28 proteins mimicking PPR without the catalytic domain and show that they exhibit a specific dependency to one of the catalytic proteins DYW1 or DYW2. Moreover, we also characterized the role of the PPR NUWA in the editing reaction and show that it likely acts as a scaffolding factor. NUWA is no longer required for efficient editing of the CLB19 editing sites once this RNA specific PPR is fused to the DYW catalytic domain of its partner DYW2. Altogether, our results strongly support a flexible, evolutive and resilient editing complex in which RNA binding activity, editing activity and stabilization/scaffolding function can be provided by one or more PPRs.
Collapse
Affiliation(s)
- Kevin Baudry
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France.
| | - Dario Monachello
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Benoît Castandet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Wojciech Majeran
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France
| | - Claire Lurin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France; Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette 91190, France.
| |
Collapse
|
56
|
Yang Z, Yang R, Bai W, Chen W, Kong X, Zhou Y, Qiao W, Zhang Y, Sun J. Q negatively regulates wheat salt tolerance through directly repressing the expression of TaSOS1 and reactive oxygen species scavenging genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:478-489. [PMID: 38659310 DOI: 10.1111/tpj.16777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
The Q transcription factor plays important roles in improving multiple wheat domestication traits such as spike architecture, threshability and rachis fragility. However, whether and how it regulates abiotic stress adaptation remain unclear. We found that the transcriptional expression of Q can be induced by NaCl and abscisic acid treatments. Using the q mutants generated by CRISPR/Cas9 and Q overexpression transgenic lines, we showed that the domesticated Q gene causes a penalty in wheat salt tolerance. Then, we demonstrated that Q directly represses the transcription of TaSOS1-3B and reactive oxygen species (ROS) scavenging genes to regulate Na+ and ROS homeostasis in wheat. Furthermore, we showed that wheat salt tolerance protein TaWD40 interacts with Q to competitively interfere with the interaction between Q and the transcriptional co-repressor TaTPL. Taken together, our findings reveal that Q directly represses the expression of TaSOS1 and some ROS scavenging genes, thus causing a harmful effect on wheat salt tolerance.
Collapse
Affiliation(s)
- Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenxi Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475001, China
| | - Weihua Qiao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
57
|
Singh S, Pal L, Rajput R, Chhatwal H, Singh N, Chattopadhyay D, Pandey A. CaLAP1 and CaLAP2 orchestrate anthocyanin biosynthesis in the seed coat of Cicer arietinum. PLANTA 2024; 260:38. [PMID: 38951258 DOI: 10.1007/s00425-024-04470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Samar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Lalita Pal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Himani Chhatwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
58
|
Lou T, Lv S, Wang J, Wang D, Lin K, Zhang X, Zhang B, Guo Z, Yi Z, Li Y. Cell size and xylem differentiation regulating genes from Salicornia europaea contribute to plant salt tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:2640-2659. [PMID: 38558078 DOI: 10.1111/pce.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.
Collapse
Affiliation(s)
- Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
59
|
Chagan Z, Nakata G, Suzuki S, Yamagami A, Tachibana R, Surina S, Fujioka S, Matsui M, Kushiro T, Miyakawa T, Asami T, Nakano T. BRZ-INSENSITIVE-LONG HYPOCOTYL8 inhibits kinase-mediated phosphorylation to regulate brassinosteroid signaling. PLANT PHYSIOLOGY 2024; 195:2389-2405. [PMID: 38635969 DOI: 10.1093/plphys/kiae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) is an evolutionarily conserved serine/threonine protein kinase in eukaryotes. In plants, the GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) functions as a central signaling node through which hormonal and environmental signals are integrated to regulate plant development and stress adaptation. BIN2 plays a major regulatory role in brassinosteroid (BR) signaling and is critical for phosphorylating/inactivating BRASSINAZOLE-RESISTANT 1 (BZR1), also known as BRZ-INSENSITIVE-LONG HYPOCOTYL 1 (BIL1), a master transcription factor of BR signaling, but the detailed regulatory mechanism of BIN2 action has not been fully revealed. In this study, we identified BIL8 as a positive regulator of BR signaling and plant growth in Arabidopsis (Arabidopsis thaliana). Genetic and biochemical analyses showed that BIL8 is downstream of the BR receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and promotes the dephosphorylation of BIL1/BZR1. BIL8 interacts with and inhibits the activity of the BIN2 kinase, leading to the accumulation of dephosphorylated BIL1/BZR1. BIL8 suppresses the cytoplasmic localization of BIL1/BZR1, which is induced via BIN2-mediated phosphorylation. Our study reveals a regulatory factor, BIL8, that positively regulates BR signaling by inhibiting BIN2 activity.
Collapse
Affiliation(s)
- Zhana Chagan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Genki Nakata
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Shin Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryo Tachibana
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Surina Surina
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shozo Fujioka
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
60
|
Malwattage NR, Wone B, Wone BWM. A CAM-Related NF-YB Transcription Factor Enhances Multiple Abiotic Stress Tolerance in Arabidopsis. Int J Mol Sci 2024; 25:7107. [PMID: 39000218 PMCID: PMC11241642 DOI: 10.3390/ijms25137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Abiotic stresses often occur simultaneously, and the tolerance mechanisms of plants to combined multiple abiotic stresses remain poorly studied. Extremophytes, adapted to abiotic stressors, might possess stress-adaptive or -responsive regulators that could enhance multiple abiotic stress resistance in crop plants. We identified an NF-YB transcription factor (TF) from the heat-tolerant obligate Crassulacean acid metabolism (CAM) plant, Kalanchoe fedtschenkoi, as a potential regulator of multiple abiotic stresses. The KfNF-YB3 gene was overexpressed in Arabidopsis to determine its role in multiple abiotic stress responses. Transgenic lines exhibited accelerated flowering time, increased biomass, larger rosette size, higher seed yield, and more leaves. Transgenic lines had higher germination rates under combined NaCl, osmotic, and water-deficit stress treatments compared to control plants. They also showed enhanced root growth and survival under simultaneous NaCl, osmotic, water-deficit, and heat stress conditions in vitro. Interestingly, potted transgenic lines had higher survival rates, yield, and biomass under simultaneous heat, water-deficit, and light stresses compared to control plants. Altogether, these results provide initial insights into the functions of a CAM-related TF and its potential roles in regulating multiple abiotic stress responses. The CAM abiotic stress-responsive TF-based approach appears to be an ideal strategy to enhance multi-stress resilience in crop plants.
Collapse
Affiliation(s)
| | | | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
61
|
Weerawanich K, Sirikantaramas S. Unveiling phenylpropanoid regulation: the role of DzMYB activator and repressor in durian (Durio zibethinus) fruit. PLANT CELL REPORTS 2024; 43:179. [PMID: 38913159 DOI: 10.1007/s00299-024-03267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
KEY MESSAGE DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.
Collapse
Affiliation(s)
- Kamonwan Weerawanich
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
62
|
Kuzuhara T, Monden K, Hachiya T, Nakagawa T. Development of pENTR-NeCo-lacZα vectors for the preparation of negative control constructs in Gateway cloning. Biosci Biotechnol Biochem 2024; 88:784-788. [PMID: 38833262 DOI: 10.1093/bbb/zbae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Gateway cloning is a useful technology for the simple and reliable preparation of various construct in many organisms. However, there is a problem regarding the negative control construct in the Gateway cloning system. In this study, we developed the pENTR-NeCo-lacZα vector system to create an empty vector that can be used as a negative control construct in Gateway cloning.
Collapse
Affiliation(s)
- Taiki Kuzuhara
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| | - Kota Monden
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| |
Collapse
|
63
|
Mosesso N, Lerner NS, Bläske T, Groh F, Maguire S, Niedermeier ML, Landwehr E, Vogel K, Meergans K, Nagel MK, Drescher M, Stengel F, Hauser K, Isono E. Arabidopsis CaLB1 undergoes phase separation with the ESCRT protein ALIX and modulates autophagosome maturation. Nat Commun 2024; 15:5188. [PMID: 38898014 PMCID: PMC11187125 DOI: 10.1038/s41467-024-49485-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Autophagy is relevant for diverse processes in eukaryotic cells, making its regulation of fundamental importance. The formation and maturation of autophagosomes require a complex choreography of numerous factors. The endosomal sorting complex required for transport (ESCRT) is implicated in the final step of autophagosomal maturation by sealing of the phagophore membrane. ESCRT-III components were shown to mediate membrane scission by forming filaments that interact with cellular membranes. However, the molecular mechanisms underlying the recruitment of ESCRTs to non-endosomal membranes remain largely unknown. Here we focus on the ESCRT-associated protein ALG2-interacting protein X (ALIX) and identify Ca2+-dependent lipid binding protein 1 (CaLB1) as its interactor. Our findings demonstrate that CaLB1 interacts with AUTOPHAGY8 (ATG8) and PI(3)P, a phospholipid found in autophagosomal membranes. Moreover, CaLB1 and ALIX localize with ATG8 on autophagosomes upon salt treatment and assemble together into condensates. The depletion of CaLB1 impacts the maturation of salt-induced autophagosomes and leads to reduced delivery of autophagosomes to the vacuole. Here, we propose a crucial role of CaLB1 in augmenting phase separation of ALIX, facilitating the recruitment of ESCRT-III to the site of phagophore closure thereby ensuring efficient maturation of autophagosomes.
Collapse
Affiliation(s)
- Niccolò Mosesso
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Niharika Savant Lerner
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Tobias Bläske
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Felix Groh
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Shane Maguire
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Marie Laura Niedermeier
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Eliane Landwehr
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Spectroscopy of Complex Systems, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Karin Vogel
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Konstanze Meergans
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Marie-Kristin Nagel
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Malte Drescher
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Spectroscopy of Complex Systems, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Karin Hauser
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Biophysical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Erika Isono
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany.
- Division of Molecular Cell Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan.
| |
Collapse
|
64
|
Ezura K, Lu Y, Suzuki Y, Mitsuda N, Ariizumi T. Class II knotted-like homeodomain protein SlKN5 with BEL1-like homeodomain proteins suppresses fruit greening in tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2037-2054. [PMID: 38577750 DOI: 10.1111/tpj.16727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Knotted1-like homeodomain (KNOX) proteins are essential in regulating plant organ differentiation. Land plants, including tomato (Solanum lycopersicum), have two classes of the KNOX protein family, namely, class I (KNOX I) and class II KNOX (KNOX II). While tomato KNOX I proteins are known to stimulate chloroplast development in fruit, affecting fruit coloration, the role of KNOX II proteins in this context remains unclear. In this study, we employ CRISPR/Cas9 to generate knockout mutants of the KNOX II member, SlKN5. These mutants display increased leaf complexity, a phenotype commonly associated with reduced KNOX II activity, as well as enhanced accumulation of chloroplasts and chlorophylls in smaller cells within young, unripe fruit. RNA-seq data analyses indicate that SlKN5 suppresses the transcriptions of genes involved in chloroplast biogenesis, chlorophyll biosynthesis, and gibberellin catabolism. Furthermore, protein-protein interaction assays reveal that SlKN5 physically interacts with three transcriptional repressors from the BLH1-clade of BEL1-like homeodomain (BLH) protein family, SlBLH4, SlBLH5, and SlBLH7, with SlBLH7 showing the strongest interaction. CRISPR/Cas9-mediated knockout of these SlBLH genes confirmed their overlapping roles in suppressing chloroplast biogenesis, chlorophyll biosynthesis, and lycopene cyclization. Transient assays further demonstrate that the SlKN5-SlBLH7 interaction enhances binding capacity to regulatory regions of key chloroplast- and chlorophyll-related genes, including SlAPRR2-like1, SlCAB-1C, and SlGUN4. Collectively, our findings elucidate that the KNOX II SlKN5-SlBLH regulatory modules serve to inhibit fruit greening and subsequently promote lycopene accumulation, thereby fine-tuning the color transition from immature green fruit to mature red fruit.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yu Lu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
65
|
Yamaji N, Yoshioka Y, Huang S, Miyaji T, Sasaki A, Ma JF. An oligo peptide transporter family member, OsOPT7, mediates xylem unloading of Fe for its preferential distribution in rice. THE NEW PHYTOLOGIST 2024; 242:2620-2634. [PMID: 38600023 DOI: 10.1111/nph.19756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Iron (Fe) needs to be delivered to different organs and tissues of above-ground parts for playing its multiple physiological functions once it is taken up by the roots. However, the mechanisms underlying Fe distribution are poorly understood. We functionally characterized OsOPT7, a member of oligo peptide transporter family in terms of expression patterns, localization, transport activity and phenotypic analysis of knockdown lines. OsOPT7 was highly expressed in the nodes, especially in the uppermost node I, and its expression was upregulated by Fe-deficiency. OsOPT7 transports ferrous iron into the cells coupled with proton. Immunostaining revealed that OsOPT7 is mainly localized in the xylem parenchyma cells of the enlarged vascular bundles in the nodes and vascular tissues in the leaves. Knockdown of OsOPT7 did not affect the Fe uptake, but altered Fe distribution; less Fe was distributed to the new leaf, upper nodes and developing panicle, but more Fe was distributed to the old leaves. Furthermore, knockdown of OsOPT7 also resulted in less Fe distribution to the leaf sheath, but more Fe to the leaf blade. Taken together, OsOPT7 is involved in the xylem unloading of Fe for both long-distance distribution to the developing organs and local distribution within the leaf in rice.
Collapse
Affiliation(s)
- Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Yuma Yoshioka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Takaaki Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
- Department of Genomics & Proteomics, Advanced Science Research Center, Okayama University, Tsushima Naka 1-1-1, Kita, Okayama, 700-8530, Japan
| | - Akimasa Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
66
|
Li S, Yan J, Chen LG, Meng G, Zhou Y, Wang CM, Jiang L, Luo J, Jiang Y, Li QF, Tang W, He JX. Brassinosteroid regulates stomatal development in etiolated Arabidopsis cotyledons via transcription factors BZR1 and BES1. PLANT PHYSIOLOGY 2024; 195:1382-1400. [PMID: 38345866 DOI: 10.1093/plphys/kiae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/19/2023] [Indexed: 06/02/2024]
Abstract
Brassinosteroids (BRs) are phytohormones that regulate stomatal development. In this study, we report that BR represses stomatal development in etiolated Arabidopsis (Arabidopsis thaliana) cotyledons via transcription factors BRASSINAZOLE RESISTANT 1 (BZR1) and bri1-EMS SUPPRESSOR1 (BES1), which directly target MITOGEN-ACTIVATED PROTEIN KINASE KINASE 9 (MKK9) and FAMA, 2 important genes for stomatal development. BZR1/BES1 bind MKK9 and FAMA promoters in vitro and in vivo, and mutation of the BZR1/BES1 binding motif in MKK9/FAMA promoters abolishes their transcription regulation by BZR1/BES1 in plants. Expression of a constitutively active MKK9 (MKK9DD) suppressed overproduction of stomata induced by BR deficiency, while expression of a constitutively inactive MKK9 (MKK9KR) induced high-density stomata in bzr1-1D. In addition, bzr-h, a sextuple mutant of the BZR1 family of proteins, produced overabundant stomata, and the dominant bzr1-1D and bes1-D mutants effectively suppressed the stomata-overproducing phenotype of brassinosteroid insensitive 1-116 (bri1-116) and brassinosteroid insensitive 2-1 (bin2-1). In conclusion, our results revealed important roles of BZR1/BES1 in stomatal development, and their transcriptional regulation of MKK9 and FAMA expression may contribute to BR-regulated stomatal development in etiolated Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Shuo Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Jin Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Lian-Ge Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Guanghua Meng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Yuling Zhou
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Chun-Ming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Lei Jiang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Juan Luo
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Qian-Feng Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR 00000, China
| |
Collapse
|
67
|
Gao F, Li M, Dubos C. bHLH121 and clade IVc bHLH transcription factors synergistically function to regulate iron homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2933-2950. [PMID: 38441949 DOI: 10.1093/jxb/erae072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
Iron is an essential micronutrient for plant growth and development. In Arabidopsis thaliana, an intricate regulatory network involving several basic helix-loop-helix (bHLH) transcription factors controls the homeostasis of iron. Among these transcription factors, bHLH121 plays a crucial role. bHLH121 interacts in vivo with clade IVc bHLH transcription factors and activates the expression of FIT and clade Ib bHLH transcription factors to stimulate the uptake of iron. How bHLH121 and clade IVc bHLH transcription factors function collectively and efficiently to maintain iron homeostasis is still unclear. Herein, we found that double loss-of-function mutants involving bhlh121 and one of the clade IVc bHLH transcription factors displayed more severe iron deficiency-associated growth defects than each of the single mutants. We also found that among the four clade IVc bHLH transcription factors, only bHLH34 and bHLH105 could partially complement the iron-associated growth defects of bhlh121 when overexpressed. These data, together with protein localization analysis, support that bHLH121 and clade IVc bHLH transcription factors act synergistically to regulate iron homeostasis and that different bHLH121/clade IVc and clade IVc/clade IVc protein complexes are involved in this process.
Collapse
Affiliation(s)
- Fei Gao
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Meijie Li
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
68
|
Maeo K, Nakaya Y, Mitsuda N, Ishiguro S. ACRE, a class of AP2/ERF transcription factors, activates the expression of sweet potato ß-amylase and sporamin genes through the sugar-responsible element CMSRE-1. PLANT MOLECULAR BIOLOGY 2024; 114:54. [PMID: 38714535 PMCID: PMC11076338 DOI: 10.1007/s11103-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/04/2024] [Indexed: 05/10/2024]
Abstract
Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and β-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.
Collapse
Affiliation(s)
- Kenichiro Maeo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
| | - Yuki Nakaya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
69
|
Deng X, Xiao Y, Tang X, Liu B, Lin H. Arabidopsis α-Aurora kinase plays a role in cytokinesis through regulating MAP65-3 association with microtubules at phragmoplast midzone. Nat Commun 2024; 15:3779. [PMID: 38710684 PMCID: PMC11074315 DOI: 10.1038/s41467-024-48238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.
Collapse
Affiliation(s)
- Xingguang Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yu Xiao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoya Tang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
70
|
Ohashi-Ito K, Iwamoto K, Fukuda H. LONESOME HIGHWAY-TARGET OF MONOPTEROS5 transcription factor complex promotes a predifferentiation state for xylem vessel differentiation in the root apical meristem by inducing the expression of VASCULAR-RELATED NAC-DOMAIN genes. THE NEW PHYTOLOGIST 2024; 242:1146-1155. [PMID: 38462819 DOI: 10.1111/nph.19670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
In Arabidopsis thaliana, heterodimers comprising two bHLH family proteins, LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5) or its homolog TMO5-LIKE 1 (T5L1) control vascular development in the root apical meristem (RAM). The LHW-TMO5/T5L1 complex regulates vascular cell proliferation, vascular pattern organization, and xylem vessel differentiation; however, the mechanism of preparation for xylem vessel differentiation in the RAM remains elusive. We examined the relationship between LHW-T5L1 and VASCULAR-RELATED NAC-DOMAIN (VND) genes, which are key regulators of vessel differentiation, using reverse genetics approaches. LHW-T5L1 upregulated the expression of VND1, VND2, VND3, VND6, and VND7 but not that of other VNDs. The expression of VND1-VND3 in the RAM was decreased in lhw. In vnd1 vnd2 vnd3 triple loss-of-function mutant roots, metaxylem differentiation was delayed, and VND6 and VND7 expression was reduced. Furthermore, transcriptome analysis of VND1-overexpressing cells revealed that VND1 upregulates genes involved in the synthesis of secondary cell wall components. These results suggest that LHW-T5L1 upregulates VND1-VND3 at the early stages of vascular development in the RAM, and VNDs promote a predifferentiation state for xylem vessels by triggering low levels of VND6 and VND7 as well as genes for the synthesis of secondary cell wall materials.
Collapse
Affiliation(s)
- Kyoko Ohashi-Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kuninori Iwamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Akita Prefectural University, Akita, 010-0195, Japan
| |
Collapse
|
71
|
Xiao T, Feng S, Liu J, Wang Y, Shangguan X, Yu X, Shen Z, Hu Z, Xia Y. OsGLP8-7 interacts with OsPRX111 to detoxify excess copper in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108564. [PMID: 38555719 DOI: 10.1016/j.plaphy.2024.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Lignin is a phenolic biopolymer generated from phenylpropanoid pathway in the secondary cell wall and is required for defense of plants against various stress. Although the fact of stress-induced lignin deposition has been clearly demonstrated, it remains largely elusive how the formation of lignin is promoted under Cu stress. The present study showed that OsGLP8-7, an extracellular glycoprotein of rice (Oryza sativa L.), plays an important function against Cu stress. The loss function of OsGLP8-7 results in Cu sensitivity whereas overexpression of OsGLP8-7 scavenges Cu-induced superoxide anion (O2•-). OsGLP8-7 interacts with apoplastic peroxidase111 (OsPRX111) and elevates OsPRX111 stability when exposed to excess Cu. In OsGLP8-7 overexpressing (OE) lines, the retention of Cu within cell wall limiting Cu uptake into cytoplasm is attributed to the enhanced lignification required for Cu tolerance. Exogenous application of a lignin inhibitor can impair the Cu tolerance of transgenic Arabidopsis lines overexpressing OsGLP8-7. In addition, co-expression of OsGLP8-7 and OsPRX111 genes in tobacco leaves leads to an improved lignin deposition compared to leaves expressing each gene individually or the empty vector. Taken together, our findings provided the convincing evidences that the interaction between OsGLP8-7 and OsPRX111 facilitates effectively lignin polymerization, thereby contributing to Cu tolerance in rice.
Collapse
Affiliation(s)
- Tengwei Xiao
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhua Feng
- Heilongjiang Vocational College of Agricultural Engineering, Harbin, 150088, China
| | - Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China
| | - Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangchao Shangguan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Yu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhubing Hu
- Center for Multi-Omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
72
|
Mentzelopoulou A, Liu C, Moschou PN. Protein Detection and Localization in Plant Cells Using Spot-Tagging. PHYSIOLOGIA PLANTARUM 2024; 176:e14351. [PMID: 38779764 DOI: 10.1111/ppl.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Fluorescent labelling of proteins enables the determination of their spatiotemporal localization but, sometimes, it can perturb their activity, native localization, and functionality. Spot-tag is a12-amino acid peptide recognized by a single-domain nanobody and could potentially resolve the issues associated with large fluorescence tags due to its small size. Here, using as an example the microtubule motor CENTROMERIC PROTEIN E-RELATED KINESIN 7.3 (KIN7.3), we introduce the spot-tag for protein labelling in fixed and living plant cells. Spot-tagging and detection by an anti-spot nanobody of ectopically expressed KIN7.3 did not interfere with its native localization. Most importantly, our spot-tagging pipeline facilitated the localization of KIN7.3 much more rapidly and likely accurately than labelling with large fluorescent proteins or even immunolocalization approaches. We should, though, note some limitations we have not resolved yet. Spot-tagging is functional only in fixed cells; it is available only as two fluorophores and may create a noisy background during imaging. However, we foresee that, besides the limitations of this method, spot-tagging will apply to many proteins, offsetting activity perturbations and low photon quantum yields of other protein-tagging approaches.
Collapse
Affiliation(s)
- Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Chen Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Panagiotis Nikolaou Moschou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
73
|
Zuo Z, Roux ME, Dagdas YF, Rodriguez E, Petersen M. PAT mRNA decapping factors are required for proper development in Arabidopsis. FEBS Lett 2024; 598:1008-1021. [PMID: 38605280 DOI: 10.1002/1873-3468.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
74
|
Rao S, Cao H, O’Hanna FJ, Zhou X, Lui A, Wrightstone E, Fish T, Yang Y, Thannhauser T, Cheng L, Dudareva N, Li L. Nudix hydrolase 23 post-translationally regulates carotenoid biosynthesis in plants. THE PLANT CELL 2024; 36:1868-1891. [PMID: 38299382 PMCID: PMC11653588 DOI: 10.1093/plcell/koae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.
Collapse
Affiliation(s)
- Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Hongbo Cao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- College of Horticulture, Hebei Agricultural University,
Baoding, Hebei 071000, China
| | - Franz Joseph O’Hanna
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell
University, Ithaca, NY 14853, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University,
West Lafayette, IN 47907-2063, USA
- Department of Horticulture and Landscape Architecture, Purdue
University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University,
West Lafayette, IN 47907, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell
University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science,
Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
75
|
Sowders JM, Jewell JB, Tanaka K. CPK28 is a modulator of purinergic signaling in plant growth and defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1086-1101. [PMID: 38308597 PMCID: PMC11096078 DOI: 10.1111/tpj.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
Extracellular ATP (eATP) is a key signaling molecule that plays a pivotal role in plant growth and defense responses. The receptor P2K1 is responsible for perceiving eATP and initiating its signaling cascade. However, the signal transduction mechanisms downstream of P2K1 activation remain incompletely understood. We conducted a comprehensive analysis of the P2K1 interactome using co-immunoprecipitation-coupled tandem mass spectrometry, leading to the identification of 121 candidate proteins interacting with P2K1. In silico analysis narrowed down the candidates to 47 proteins, including Ca2+-binding proteins, ion transport-related proteins, and receptor kinases. To investigate their involvement in eATP signaling, we employed a screening strategy based on changes in gene expression in response to eATP in mutants of the identified interactors. This screening revealed several Ca2+-dependent protein kinases (CPKs) that significantly affected the expression of eATP-responsive genes, suggesting their potential roles in eATP signaling. Notably, CPK28 and CPK6 showed physical interactions with P2K1 both in yeast and plant systems. Calcium influx and gene expression studies demonstrated that CPK28 perturbed eATP-induced Ca2+ mobilization and some early transcriptional responses. Overexpression of CPK28 resulted in an antagonistic physiological response to P2K1-mediated eATP signaling during both plant growth and defense responses to the necrotrophic pathogen Botrytis cinerea. Our findings highlight CPK28, among other CPKs, as a modulator of P2K1-mediated eATP signaling, providing valuable insights into the coordination of eATP signaling in plant growth and immunity.
Collapse
Affiliation(s)
- Joel M. Sowders
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| | - Jeremy B. Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| |
Collapse
|
76
|
Sánchez-Vicente I, Albertos P, Sanz C, Wybouw B, De Rybel B, Begara-Morales JC, Chaki M, Mata-Pérez C, Barroso JB, Lorenzo O. Reversible S-nitrosylation of bZIP67 by peroxiredoxin IIE activity and nitro-fatty acids regulates the plant lipid profile. Cell Rep 2024; 43:114091. [PMID: 38607914 PMCID: PMC11063630 DOI: 10.1016/j.celrep.2024.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain.
| | - Carlos Sanz
- Department Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa-CSIC, Campus Universidad Pablo de Olavide, Ctra Utrera km 1, 41013 Sevilla, Spain
| | - Brecht Wybouw
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Juan C Begara-Morales
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Capilla Mata-Pérez
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain
| | - Juan B Barroso
- Department of Experimental Biology, Facultad de Ciencias Experimentales, Campus Universitario "Las Lagunillas" s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto de Investigación en Agrobiotecnología (CIALE), Facultad de Biología, Universidad de Salamanca. C/ Río Duero 12, 37185 Salamanca, Spain.
| |
Collapse
|
77
|
Abdulla MF, Mostafa K, Aydin A, Kavas M, Aksoy E. GATA transcription factor in common bean: A comprehensive genome-wide functional characterization, identification, and abiotic stress response evaluation. PLANT MOLECULAR BIOLOGY 2024; 114:43. [PMID: 38630371 PMCID: PMC11024004 DOI: 10.1007/s11103-024-01443-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
The GATA transcription factors (TFs) have been extensively studied for its regulatory role in various biological processes in many plant species. The functional and molecular mechanism of GATA TFs in regulating tolerance to abiotic stress has not yet been studied in the common bean. This study analyzed the functional identity of the GATA gene family in the P. vulgaris genome under different abiotic and phytohormonal stress. The GATA gene family was systematically investigated in the P. vulgaris genome, and 31 PvGATA TFs were identified. The study found that 18 out of 31 PvGATA genes had undergone duplication events, emphasizing the role of gene duplication in GATA gene expansion. All the PvGATA genes were classified into four significant subfamilies, with 8, 3, 6, and 13 members in each subfamily (subfamilies I, II, III, and IV), respectively. All PvGATA protein sequences contained a single GATA domain, but subfamily II members had additional domains such as CCT and tify. A total of 799 promoter cis-regulatory elements (CREs) were predicted in the PvGATAs. Additionally, we used qRT-PCR to investigate the expression profiles of five PvGATA genes in the common bean roots under abiotic conditions. The results suggest that PvGATA01/10/25/28 may play crucial roles in regulating plant resistance against salt and drought stress and may be involved in phytohormone-mediated stress signaling pathways. PvGATA28 was selected for overexpression and cloned into N. benthamiana using Agrobacterium-mediated transformation. Transgenic lines were subjected to abiotic stress, and results showed a significant tolerance of transgenic lines to stress conditions compared to wild-type counterparts. The seed germination assay suggested an extended dormancy of transgenic lines compared to wild-type lines. This study provides a comprehensive analysis of the PvGATA gene family, which can serve as a foundation for future research on the function of GATA TFs in abiotic stress tolerance in common bean plants.
Collapse
Affiliation(s)
- Mohamed Farah Abdulla
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, 55200, Samsun, Türkiye
| | - Karam Mostafa
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, 55200, Samsun, Türkiye
- The Central Laboratory for Date Palm Research and Development, Agricultural Research Center (ARC), 12619, Giza, Egypt
| | - Abdullah Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, 55200, Samsun, Türkiye
| | - Musa Kavas
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, 55200, Samsun, Türkiye.
| | - Emre Aksoy
- Faculty of Arts and Sciences, Department of Biology, Middle East Technical University, 06800, Ankara, Türkiye
| |
Collapse
|
78
|
Maruyama K, Yamada H, Doi M, Ohno S. Identification of two 6'-deoxychalcone 4'-glucosyltransferase genes in dahlia (Dahlia variabilis). PLANTA 2024; 259:114. [PMID: 38587670 DOI: 10.1007/s00425-024-04395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
MAIN CONCLUSION Two glycosyltransferase genes belonging to UGT88 family were identified to have 6'-deoxychalcone 4'-glucosyltransferase activity in dahlia. 6'-Deoxychalcones (isoliquiritigenin and butein) are important pigments for yellow and orange to red flower color. 6'-Deoxychalcones are glucosylated at the 4'-position in vivo, but the genes encoding 6'-deoxychalcone 4'-glucosyltransferase have not yet been identified. In our previous study, it was indicated that snapdragon (Antirrhinum majus) chalcone 4'-O-glucosyltransferase (Am4'CGT) has isoliquiritigenin 4'-glucosylation activity. Therefore, to identify genes encoding 6'-deoxychalcone 4'-glucosyltransferase in dahlia (Dahlia variabilis), genes expressed in ray florets that shared high homology with Am4'CGT were explored. As a result, c34671_g1_i1 and c35662_g1_i1 were selected as candidate genes for 6'-deoxychalcone 4'-glucosyltransferases in dahlia. We conducted transient co-overexpression of three genes (c34671_g1_i1 or c35662_g1_i1, dahlia aldo-keto reductase1 (DvAKR1) or soybean (Glycine max) chalcone reductase5 (GmCHR5), and chili pepper (Capsicum annuum) MYB transcription factor (CaMYBA)) in Nicotiana benthamiana by agroinfiltration. Transient overexpression of c34671_g1_i1, DvAKR1, and CaMYBA resulted in increase in the accumulation of isoliquiritigenin 4'-glucosides, isoliquiritigenin 4'-O-glucoside, and isoliquiritigenin 4'-O-[6-O-(malonyl)-glucoside]. However, transient overexpression of c35662_g1_i1, DvAKR1, and CaMYBA did not increase accumulation of isoliquiritigenin 4'-glucosides. Using GmCHR5 instead of DvAKR1 showed similar results suggesting that c34671_g1_i1 has isoliquiritigenin 4'-glucosyltransferase activity. In addition, we conducted co-overexpression of four genes (c34671_g1_i1, c35662_g1_i1 or Am4'CGT, DvAKR1 or GmCHR5, CaMYBA, and chalcone 3-hydroxylase from dahlia). Accumulation of butein 4'-O-glucoside and butein 4'-O-[6-O-(malonyl)-glucoside] was detected for c35662_g1_i1, suggesting that c35662_g1_i1 has butein 4'-glucosyltransferase activity. Recombinant enzyme analysis also supported butein 4'-glucosyltransferases activity of c35662_g1_i1. Therefore, our results suggested that both c34671_g1_i1 and c35662_g1_i1 are 6'-deoxychalcone 4'-glucosyltransferases but with different substrate preference.
Collapse
Affiliation(s)
- Kei Maruyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Haruka Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
79
|
Sato Y, Minamikawa MF, Pratama BB, Koyama S, Kojima M, Takebayashi Y, Sakakibara H, Igawa T. Autonomous differentiation of transgenic cells requiring no external hormone application: the endogenous gene expression and phytohormone behaviors. FRONTIERS IN PLANT SCIENCE 2024; 15:1308417. [PMID: 38633452 PMCID: PMC11021773 DOI: 10.3389/fpls.2024.1308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The ectopic overexpression of developmental regulator (DR) genes has been reported to improve the transformation in recalcitrant plant species because of the promotion of cellular differentiation during cell culture processes. In other words, the external plant growth regulator (PGR) application during the tissue and cell culture process is still required in cases utilizing DR genes for plant regeneration. Here, the effect of Arabidopsis BABY BOOM (BBM) and WUSCHEL (WUS) on the differentiation of tobacco transgenic cells was examined. We found that the SRDX fusion to WUS, when co-expressed with the BBM-VP16 fusion gene, significantly influenced the induction of autonomous differentiation under PGR-free culture conditions, with similar effects in some other plant species. Furthermore, to understand the endogenous background underlying cell differentiation toward regeneration, phytohormone and RNA-seq analyses were performed using tobacco leaf explants in which transgenic cells were autonomously differentiating. The levels of active auxins, cytokinins, abscisic acid, and inactive gibberellins increased as cell differentiation proceeded toward organogenesis. Gene Ontology terms related to phytohormones and organogenesis were identified as differentially expressed genes, in addition to those related to polysaccharide and nitrate metabolism. The qRT-PCR four selected genes as DEGs supported the RNA-seq data. This differentiation induction system and the reported phytohormone and transcript profiles provide a foundation for the development of PGR-free tissue cultures of various plant species, facilitating future biotechnological breeding.
Collapse
Affiliation(s)
- Yuka Sato
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mai F. Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Berbudi Bintang Pratama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Shohei Koyama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Igawa
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
80
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
81
|
van Kleeff PJM, Mastop M, Sun P, Dangol S, van Doore E, Dekker HL, Kramer G, Lee S, Ryu CM, de Vos M, Schuurink RC. Discovery of Three Bemisia tabaci Effectors and Their Effect on Gene Expression in Planta. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:380-395. [PMID: 38114195 DOI: 10.1094/mpmi-04-23-0044-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Pulu Sun
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Eva van Doore
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Henk L Dekker
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | | | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
82
|
Oh EJ, Hwang IS, Kwon CT, Oh CS. A Putative Apoplastic Effector of Clavibacter capsici, ChpG Cc as Hypersensitive Response and Virulence (Hrv) Protein in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:370-379. [PMID: 38148291 DOI: 10.1094/mpmi-09-23-0145-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Clavibacter bacteria use secreted apoplastic effectors, such as putative serine proteases, for virulence in host plants and for hypersensitive response (HR) induction in nonhost plants. Previously, we have shown that Clavibacter capsici ChpGCc is important for the necrosis development in pepper (Capsicum annuum) leaves. Here, we determine the function of ChpGCc, along with three paralogous proteins, for HR induction in the apoplastic space of a nonhost plant, Nicotiana tabacum. The full-length and signal peptide-deleted (ΔSP) mature forms of all proteins fused with the tobacco PR1b signal sequence were generated. The full-length and ΔSP forms of ChpGCc and only the ΔSP forms of ChpECc and Pat-1Cc, but none of the ChpCCc, triggered HR. Based on the predicted protein structures, ChpGCc carries amino acids for a catalytic triad and a disulfide bridge in positions like Pat-1Cm. Substituting these amino acids of ChpGCc with alanine abolished or reduced HR-inducing activity. To determine whether these residues are important for necrosis development in pepper, alanine-substituted chpGCc genes were transformed into the C. capsici PF008ΔpCM1 strain, which lacks the intact chpGCc gene. The strain with any variants failed to restore the necrosis-causing ability. These results suggest that ChpGCc has a dual function as a virulence factor in host plants and an HR elicitor in nonhost plants. Based on our findings and previous results, we propose Clavibacter apoplastic effectors, such as ChpGCc, Pat-1Cm, Chp-7Cs, and ChpGCm, as hypersensitive response and virulence (Hrv) proteins that display phenotypic similarities to the hypersensitive response and pathogenicity (Hrp) proteins found in gram-negative bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Eom-Ji Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
83
|
Uflewski M, Rindfleisch T, Korkmaz K, Tietz E, Mielke S, Correa Galvis V, Dünschede B, Luzarowski M, Skirycz A, Schwarzländer M, Strand DD, Hertle AP, Schünemann D, Walther D, Thalhammer A, Wolff M, Armbruster U. The thylakoid proton antiporter KEA3 regulates photosynthesis in response to the chloroplast energy status. Nat Commun 2024; 15:2792. [PMID: 38555362 PMCID: PMC10981695 DOI: 10.1038/s41467-024-47151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.
Collapse
Affiliation(s)
- Michał Uflewski
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Tobias Rindfleisch
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
- Computational Biology Unit, Department of Chemistry, University of Bergen, Bergen, Norway
| | - Kübra Korkmaz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Enrico Tietz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Sarah Mielke
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Deserah D Strand
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Alexander P Hertle
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Martin Wolff
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany.
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
84
|
Mou B, Zhao G, Wang J, Wang S, He F, Ning Y, Li D, Zheng X, Cui F, Xue F, Zhang S, Sun W. The OsCPK17-OsPUB12-OsRLCK176 module regulates immune homeostasis in rice. THE PLANT CELL 2024; 36:987-1006. [PMID: 37831412 PMCID: PMC10980343 DOI: 10.1093/plcell/koad265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/14/2023]
Abstract
Plant immunity is fine-tuned to balance growth and defense. However, little is yet known about molecular mechanisms underlying immune homeostasis in rice (Oryza sativa). In this study, we reveal that a rice calcium-dependent protein kinase (CDPK), OsCPK17, interacts with and stabilizes the receptor-like cytoplasmic kinase (RLCK) OsRLCK176, a close homolog of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE 1 (AtBIK1). Oxidative burst and pathogenesis-related gene expression triggered by pathogen-associated molecular patterns are significantly attenuated in the oscpk17 mutant. The oscpk17 mutant and OsCPK17-silenced lines are more susceptible to bacterial diseases than the wild-type plants, indicating that OsCPK17 positively regulates rice immunity. Furthermore, the plant U-box (PUB) protein OsPUB12 ubiquitinates and degrades OsRLCK176. OsCPK17 phosphorylates OsRLCK176 at Ser83, which prevents the ubiquitination of OsRLCK176 by OsPUB12 and thereby enhances the stability and immune function of OsRLCK176. The phenotypes of the ospub12 mutant in defense responses and disease resistance show that OsPUB12 negatively regulates rice immunity. Therefore, OsCPK17 and OsPUB12 reciprocally maintain OsRLCK176 homeostasis and function as positive and negative immune regulators, respectively. This study uncovers positive cross talk between CDPK- and RLCK-mediated immune signaling in plants and reveals that OsCPK17, OsPUB12, and OsRLCK176 maintain rice immune homeostasis.
Collapse
Affiliation(s)
- Baohui Mou
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Guosheng Zhao
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Jiyang Wang
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xinhang Zheng
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Fuhao Cui
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Fang Xue
- Wetland Agriculture and Ecology Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Shiyong Zhang
- Wetland Agriculture and Ecology Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Wenxian Sun
- Department of Plant Pathology, The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|
85
|
Rzepecka N, Ito Y, Yura K, Ito E, Uemura T. Identification of a novel Golgi-localized putative glycosyltransferase protein in Arabidopsis thaliana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:35-44. [PMID: 39464868 PMCID: PMC11500582 DOI: 10.5511/plantbiotechnology.23.1214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 10/29/2024]
Abstract
SNAREs play an important role in the process of membrane trafficking. In the present research, we investigated subcellular localization of an uncharacterized Arabidopsis thaliana protein reported to interact with a trans-Golgi network-localized Qa-SNARE, SYNTAXIN OF PLANTS 43. Based on the similarity of its amino acid sequence to metazoan fucosyltransferases, we have named this novel protein AtGTLP (Arabidopsis thaliana GlycosylTransferase-Like Protein) and predicted that it should be a member of yet uncharacterized family of Arabidopsis fucosyltransferases, as it shows no significant sequence similarity to fucosyltransferases previously identified in Arabidopsis. AtGTLP is a membrane-anchored protein, which exhibits a type II-like topology, with a single transmembrane helix and a globular domain in the C-terminal part of its amino acid sequence. Colocalization data we collected suggest that AtGTLP should localize mainly to Golgi apparatus, especially to certain zones of trans-Golgi. As single atgtlp-/- mutants showed no obvious difference in phenotype (primary root length and fresh mass), AtGTLP and proteins related to AtGTLP with high similarity in amino acid sequences may have redundant functions.
Collapse
Affiliation(s)
- Natalia Rzepecka
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Yoko Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Emi Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Women’s Education in Science, Technology, Engineering, Arts and Mathematics, Ochanomizu University, Tokyo 112-8610, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Human Life Science, Ochanomizu University, Tokyo 112-8610, Japan
- Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo 112-8610, Japan
- Institute for Women’s Education in Science, Technology, Engineering, Arts and Mathematics, Ochanomizu University, Tokyo 112-8610, Japan
| |
Collapse
|
86
|
Cui B, Pan Q, Cui W, Wang Y, Loake VIP, Yuan S, Liu F, Loake GJ. S-nitrosylation of a receptor-like cytoplasmic kinase regulates plant immunity. SCIENCE ADVANCES 2024; 10:eadk3126. [PMID: 38489361 PMCID: PMC10942119 DOI: 10.1126/sciadv.adk3126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Perception of pathogen/microbial-associated molecular patterns (P/MAMPs) by plant cell surface receptors leads to a sustained burst of reactive oxygen species (ROS), a key feature of P/MAMP-triggered immunity (PTI). Here we report that P/MAMP recognition leads to a rapid nitrosative burst, initiating the accumulation of nitric oxide (NO), subsequently leading to S-nitrosylation of the receptor-like cytoplasmic kinase (RLCK), botrytis-induced kinase 1 (BIK1), at Cys80. This redox-based, posttranslational modification, promotes the phosphorylation of BIK1, subsequently resulting in BIK1 activation and stabilization. Further, BIK1 S-nitrosylation increases its physical interaction with RBOHD, the source of the apoplastic oxidative burst, promoting ROS formation. Our data identify mechanistic links between rapid NO accumulation and the expression of PTI, providing insights into plant immunity.
Collapse
Affiliation(s)
- Beimi Cui
- Department of Plant Pathology, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Qiaona Pan
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Wenqiang Cui
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yiqin Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Verity I. P. Loake
- Faculty of Medicine, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fengquan Liu
- Department of Plant Pathology, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Gary J. Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
87
|
Obrecht A, Paneque M. Unraveling the Role of AtSRT2 in Energy Metabolism, Stress Responses, and Gene Expression during Osmotic Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:711. [PMID: 38475557 DOI: 10.3390/plants13050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Sirtuins participate in chromatin remodeling and gene expression regulation during stress responses. They are the only deacetylases that couple the cellular NAD+-dependent energy metabolism with transcriptional regulation. They catalyze the production of nicotinamide, inhibiting sirtuin 2 (SIR2) activity in vivo. The SIR2 homolog, AtSRT2, deacetylates non-histone proteins associated with mitochondrial energy metabolism. To date, AtSRT2 mechanisms during stress responses in Arabidopsis thaliana remain unclear. The transduction of mitochondrial metabolic signals links the energy status to transcriptional regulation, growth, and stress responses. These signals induce changes by regulating nuclear gene expression. The present study aimed to determine the role of SRT2 and its product nicotinamide in the development of A. thaliana and the expression of osmotic stress-response genes. Leaf development was greater in srt2+ plants than in the wild type, indicating that SET2 plays a role in energy metabolism. Treatment with polyethylene glycol activated and inhibited gene expression in srt2- and srt2+ lines, respectively. Therefore, we concluded that SRT2-stimulated plant growth and repressed signaling are associated with osmotic stress.
Collapse
Affiliation(s)
- Alberto Obrecht
- Doctoral Program in Biotechnology, Universidad de Santiago de Chile, Av. Lib. Bdo. O'Higgins 3363, Estación Central, Santiago 9170022, Chile
- Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11.315, La Pintana, Santiago 8820808, Chile
| | - Manuel Paneque
- Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11.315, La Pintana, Santiago 8820808, Chile
| |
Collapse
|
88
|
Chung YH, Chen TC, Yang WJ, Chen SZ, Chang JM, Hsieh WY, Hsieh MH. Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1330-1343. [PMID: 37996996 DOI: 10.1111/tpj.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.
Collapse
Affiliation(s)
- Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ting-Chieh Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Ju Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Ming Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
89
|
Gallas N, Li X, von Roepenack‐Lahaye E, Schandry N, Jiang Y, Wu D, Lahaye T. An ancient cis-element targeted by Ralstonia solanacearum TALE-like effectors facilitates the development of a promoter trap that could confer broad-spectrum wilt resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:602-616. [PMID: 37870975 PMCID: PMC10893940 DOI: 10.1111/pbi.14208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator-like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17-nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11-EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11-EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC-dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL-binding motif Brg11-EBE mediates RipTAL-dependent transcription of the executor-type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL-delivering R. solanacearum strains. Our results suggest that cell death-inducing executor-type R genes, preceded by the RipTAL-binding motif Brg11-EBE, could be used to genetically engineer broad-spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.
Collapse
Affiliation(s)
- Niels Gallas
- Allgemeine Genetik, Zentrum für Molekularbiologie der Pflanzen (ZMBP)Eberhard‐Karls‐Universität TübingenTübingenGermany
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd.ChangshaChina
- Present address:
Beijing Life Science AcademyBeijingChina
| | - Edda von Roepenack‐Lahaye
- Analytik‐Zentrale Einheiten, Zentrum für Molekularbiologie der Pflanzen (ZMBP)Eberhard‐Karls‐Universität TübingenTübingenGermany
| | - Niklas Schandry
- Genetics, Department of BiologyLudwig‐Maximilians‐University MunichMartinsriedGermany
| | - Yuxin Jiang
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of BiologyHunan UniversityChangshaChina
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of BiologyHunan UniversityChangshaChina
| | - Thomas Lahaye
- Allgemeine Genetik, Zentrum für Molekularbiologie der Pflanzen (ZMBP)Eberhard‐Karls‐Universität TübingenTübingenGermany
| |
Collapse
|
90
|
Honari M, Ashnest JR, Sharbel TF. Sex- versus apomixis-specific polymorphisms in the 5'UTR of APOLLO from Boechera shift gene expression from somatic to reproductive tissues in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1308059. [PMID: 38476690 PMCID: PMC10929715 DOI: 10.3389/fpls.2024.1308059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Introduction Among candidate genes underlying the control components of apomixis, APOLLO is known for its strong linkage to apomeiosis in the genus Boechera. The gene has "apo alleles," which are characterized by a set of linked apomixis-specific polymorphisms, and "sex alleles." All apomictic Boechera genotypes are heterozygous for the apo/sex alleles, whereas all sexual genotypes are homozygous for sex alleles. Methods In this study, native and synthetic APOLLO promoters were characterized by detecting the expression level of the β-glucuronidase (GUS) gene in Arabidopsis. Results Comparing various flower developmental stages in transgenic lines containing different constructs with 2-kb native transgenic lines revealed that changes to the APOLLO promoter causes shifts in tissue and developmental stage specificity of GUS expression. Importantly, several apomixis-specific polymorphisms in the 5'UTR change the timing and location of GUS activity from somatic to reproductive tissues. Discussion These synthetic data simulate a plausible evolutionary process, whereby apomixis-specific gene activity can be achieved.
Collapse
Affiliation(s)
- Maryam Honari
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
91
|
Contreras E, Martinez M. The RIN4-like/NOI proteins NOI10 and NOI11 modulate the response to biotic stresses mediated by RIN4 in Arabidopsis. PLANT CELL REPORTS 2024; 43:70. [PMID: 38358510 PMCID: PMC10869442 DOI: 10.1007/s00299-024-03151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024]
Abstract
KEY MESSAGE NOI10 and NOI11 are two RIN4-like/NOI proteins that participate in the immune response of the Arabidopsis plant and affect the RIN4-regulated mechanisms involving the R-proteins RPM1 and RPS2. The immune response in plants depends on the regulation of signaling pathways triggered by pathogens and herbivores. RIN4, a protein of the RIN4-like/NOI family, is considered to be a central immune signal in the interactions of plants and pathogens. In Arabidopsis thaliana, four of the 15 members of the RIN4-like/NOI family (NOI3, NOI5, NOI10, and NOI11) were induced in response to the plant herbivore Tetranychus urticae. While overexpressing NOI10 and NOI11 plants did not affect mite performance, opposite callose accumulation patterns were observed when compared to RIN4 overexpressing plants. In vitro and in vivo analyses demonstrated the interaction of NOI10 and NOI11 with the RIN4 interactors RPM1, RPS2, and RIPK, suggesting a role in the context of the RIN4-regulated immune response. Transient expression experiments in Nicotiana benthamiana evidenced that NOI10 and NOI11 differed from RIN4 in their functionality. Furthermore, overexpressing NOI10 and NOI11 plants had significant differences in susceptibility with WT and overexpressing RIN4 plants when challenged with Pseudomonas syringae bacteria expressing the AvrRpt2 or the AvrRpm1 effectors. These results demonstrate the participation of NOI10 and NOI11 in the RIN4-mediated pathway. Whereas RIN4 is considered a guardee protein, NOI10 and NOI11 could act as decoys to modulate the concerted activity of effectors and R-proteins.
Collapse
Affiliation(s)
- Estefania Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| |
Collapse
|
92
|
Park CR, Min JH, Gong Y, Sang H, Lee KH, Kim CS. Arabidopsis thaliana ubiquitin-associated protein 2 (AtUAP2) functions as an E4 ubiquitin factor and negatively modulates dehydration stress response. PLANT MOLECULAR BIOLOGY 2024; 114:13. [PMID: 38324104 DOI: 10.1007/s11103-024-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
E4, a ubiquitin (Ub) chain assembly factor and post-translational modification protein, plays a key role in the regulation of multiple cellular functions in plants during biotic or abiotic stress. We have more recently reported that E4 factor AtUAP1 is a negative regulator of the osmotic stress response and enhances the multi-Ub chain assembly of E3 ligase Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1). To further investigate the function of other E4 Ub factors in osmotic stress, we isolated AtUAP2, an AtUAP1 homolog, which interacted with AtRZF1, using pull-down assay and bimolecular fluorescence complementation analysis. AtUAP2, a Ub-associated motif-containing protein, interacts with oligo-Ub5, -Ub6, and -Ub7 chains. The yeast functional complementation experiment revealed that AtUAP2 functions as an E4 Ub factor. In addition, AtUAP2 is localized in the cytoplasm, different from AtUAP1. The activity of AtUAP2 was relatively strongly induced in the leaf tissue of AtUAP2 promoter-β-glucuronidase transgenic plants by abscisic acid, dehydration, and oxidative stress. atuap2 RNAi lines were more insensitive to osmotic stress condition than wild-type during the early growth of seedlings, whereas the AtUAP2-overexpressing line exhibited relatively more sensitive responses. Analyses of molecular and physiological experiments showed that AtUAP2 could negatively mediate the osmotic stress-induced signaling. Genetic studies showed that AtRZF1 mutation could suppress the dehydration-induced sensitive phenotype of the AtUAP2-overexpressing line, suggesting that AtRZF1 acts genetically downstream of AtUAP2 during osmotic stress. Taken together, our findings show that the AtRZF1-AtUAP2 complex may play important roles in the ubiquitination pathway, which controls the osmotic stress response in Arabidopsis.
Collapse
Affiliation(s)
- Cho-Rong Park
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Ji-Hee Min
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, 77843-2128, College Station, TX, USA
| | - Ying Gong
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Kyeong-Hwan Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Cheol Soo Kim
- Department of Applied Biology, Chonnam National University, 61186, Gwangju, Republic of Korea.
| |
Collapse
|
93
|
Xiang Y, Zhao C, Li Q, Niu Y, Pan Y, Li G, Cheng Y, Zhang A. Pectin methylesterase 31 is transcriptionally repressed by ABI5 to negatively regulate ABA-mediated inhibition of seed germination. FRONTIERS IN PLANT SCIENCE 2024; 15:1336689. [PMID: 38371403 PMCID: PMC10869471 DOI: 10.3389/fpls.2024.1336689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Pectin methylesterase (PME), a family of enzymes that catalyze the demethylation of pectin, influences seed germination. Phytohormone abscisic acid (ABA) inhibits seed germination. However, little is known about the function of PMEs in response to ABA-mediated seed germination. In this study, we found the role of PME31 in response to ABA-mediated inhibition of seed germination. The expression of PME31 is prominent in the embryo and is repressed by ABA treatment. Phenotype analysis showed that disruption of PME31 increases ABA-mediated inhibition of seed germination, whereas overexpression of PME31 attenuates this effect. Further study found that ABI5, an ABA signaling bZIP transcription factor, is identified as an upstream regulator of PME31. Genetic analysis showed that PME31 functions downstream of ABI5 in ABA-mediated seed germination. Detailed studies showed that ABI5 directly binds to the PME31 promoter and inhibits its expression. In the plants, PME31 expression is reduced by ABI5 in ABA-mediated seed germination. Taken together, PME31 is transcriptionally inhibited by ABI5 and negatively regulates ABA-mediated seed germination inhibition. These findings shed new light on the mechanisms of PMEs in response to ABA-mediated seed germination.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chongyang Zhao
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yingxue Niu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yitian Pan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Guangdong Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yuan Cheng
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Aying Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
| |
Collapse
|
94
|
Naalden D, Dermauw W, Ilias A, Baggerman G, Mastop M, Silven JJM, van Kleeff PJM, Dangol S, Gaertner NF, Roseboom W, Kwaaitaal M, Kramer G, van den Burg HA, Vontas J, Van Leeuwen T, Kant MR, Schuurink RC. Interaction of Whitefly Effector G4 with Tomato Proteins Impacts Whitefly Performance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:98-111. [PMID: 38051229 DOI: 10.1094/mpmi-04-23-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The phloem-feeding insect Bemisia tabaci is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which B. tabaci was salivating. We subsequently studied whether these candidate effectors can play a role in plant immune suppression. Effector G4 was the most robust suppressor of an induced- reactive oxygen species (ROS) response in Nicotiana benthamiana. In addition, G4 was able to suppress ROS production in Solanum lycopersicum (tomato) and Capsicum annuum (pepper). G4 localized predominantly in the endoplasmic reticulum in N. benthamiana leaves and colocalized with two identified target proteins in tomato: REF-like stress related protein 1 (RSP1) and meloidogyne-induced giant cell protein DB141 (MIPDB141). Silencing of MIPDB141 in tomato reduced whitefly fecundity up to 40%, demonstrating that the protein is involved in susceptibility to B. tabaci. Together, our data demonstrate that effector G4 impairs tomato immunity to whiteflies by interfering with ROS production and via an interaction with tomato susceptibility protein MIPDB141. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Aris Ilias
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, 2020 Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Nicolas Frédéric Gaertner
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Winfried Roseboom
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mark Kwaaitaal
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
95
|
Wang D, Lv S, Guo Z, Lin K, Zhang X, Jiang P, Lou T, Yi Z, Zhang B, Xie W, Li Y. PHT1;5 Repressed by ANT Mediates Pi Acquisition and Distribution under Low Pi and Salinity in Salt Cress. PLANT & CELL PHYSIOLOGY 2024; 65:20-34. [PMID: 37758243 DOI: 10.1093/pcp/pcad114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Salinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity. Here, EsPHT1;5 induced by both low Pi (LP) and salinity was further characterized. Overexpression of EsPHT1;5 in salt cress enhanced plant tolerance to LP and salinity, while the knock-down lines exhibited growth retardation. The analysis of phosphorus (P) content and shoot/root ratio of total P in EsPHT1;5-overexpressing salt cress seedlings and the knock-down lines as well as arsenate uptake assays suggested the role of EsPHT1;5 in Pi acquisition and root-shoot translocation under Pi limitation. In addition, overexpression of EsPHT1;5 driven by the native promoter in salt cress enhanced Pi mobilization from rosettes to siliques upon a long-term salt treatment. Particularly, the promoter of EsPHT1;5 outperformed that of AtPHT1;5 in driving gene expression under salinity. We further identified a transcription factor EsANT, which negatively regulated EsPHT1;5 expression and plant tolerance to LP and salinity. Taken together, EsPHT1;5 plays an integral role in Pi acquisition and distribution in plant response to LP and salt stress. Further, EsANT may be involved in the cross-talk between Pi starvation and salinity signaling pathways. This work provides further insight into the mechanism underlying high P use efficiency in salt cress in its natural habitat, and evidence for a link between Pi and salt signaling.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Wenzhu Xie
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
96
|
Tachibana R, Abe S, Marugami M, Yamagami A, Akema R, Ohashi T, Nishida K, Nosaki S, Miyakawa T, Tanokura M, Kim JM, Seki M, Inaba T, Matsui M, Ifuku K, Kushiro T, Asami T, Nakano T. BPG4 regulates chloroplast development and homeostasis by suppressing GLK transcription factors and involving light and brassinosteroid signaling. Nat Commun 2024; 15:370. [PMID: 38191552 PMCID: PMC10774444 DOI: 10.1038/s41467-023-44492-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Chloroplast development adapts to the environment for performing suitable photosynthesis. Brassinosteroids (BRs), plant steroid hormones, have crucial effects on not only plant growth but also chloroplast development. However, the detailed molecular mechanisms of BR signaling in chloroplast development remain unclear. Here, we identify a regulator of chloroplast development, BPG4, involved in light and BR signaling. BPG4 interacts with GOLDEN2-LIKE (GLK) transcription factors that promote the expression of photosynthesis-associated nuclear genes (PhANGs), and suppresses their activities, thereby causing a decrease in the amounts of chlorophylls and the size of light-harvesting complexes. BPG4 expression is induced by BR deficiency and light, and is regulated by the circadian rhythm. BPG4 deficiency causes increased reactive oxygen species (ROS) generation and damage to photosynthetic activity under excessive high-light conditions. Our findings suggest that BPG4 acts as a chloroplast homeostasis factor by fine-tuning the expression of PhANGs, optimizing chloroplast development, and avoiding ROS generation.
Collapse
Affiliation(s)
- Ryo Tachibana
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Susumu Abe
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan
- School of Agriculture, Meiji University, Tama-ku, Kawasaki, 214-8571, Japan
| | - Momo Marugami
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan
- School of Agriculture, Meiji University, Tama-ku, Kawasaki, 214-8571, Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Rino Akema
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takao Ohashi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kaisei Nishida
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shohei Nosaki
- Faculty of Life and Environmental Sciences, Tsukuba University, 1-1-1 Tennoudai, Tsukuba-shi, 305-8572, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jong-Myong Kim
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Ac-Planta Inc., Bunkyo-ku, Tokyo, 113-0044, Japan
| | - Motoaki Seki
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | | | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, Tama-ku, Kawasaki, 214-8571, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
97
|
Navarro-Gómez C, León-Mediavilla J, Küpper H, Rodríguez-Simón M, Paganelli-López A, Wen J, Burén S, Mysore KS, Bokhari SNH, Imperial J, Escudero V, González-Guerrero M. Nodule-specific Cu + -chaperone NCC1 is required for symbiotic nitrogen fixation in Medicago truncatula root nodules. THE NEW PHYTOLOGIST 2024; 241:793-810. [PMID: 37915139 DOI: 10.1111/nph.19360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Hendrik Küpper
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Department of Experimental Plant Biology, Faculty of Sciences, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Mario Rodríguez-Simón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Alba Paganelli-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Syed Nadeem Hussain Bokhari
- Laboratory of Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, Madrid, 28223, Spain
- Department of Biotechnology-Plant Biology, Escuela Técnica Superior de Ingeniería Agraria, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
98
|
Zhang S, Wang B, Li Q, Hui W, Yang L, Wang Z, Zhang W, Yue F, Liu N, Li H, Lu F, Zhang K, Zeng Q, Wu AM. CRISPR/Cas9 mutated p-coumaroyl shikimate 3'-hydroxylase 3 gene in Populus tomentosa reveals lignin functioning on supporting tree upright. Int J Biol Macromol 2023; 253:126762. [PMID: 37683750 DOI: 10.1016/j.ijbiomac.2023.126762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The lignin plays one of the most important roles in plant secondary metabolism. However, it is still unclear how lignin can contribute to the impressive height of wood growth. In this study, C3'H, a rate-limiting enzyme of the lignin pathway, was used as the target gene. C3'H3 was knocked out by CRISPR/Cas9 in Populus tomentosa. Compared with wild-type popular trees, c3'h3 mutants exhibited dwarf phenotypes, collapsed xylem vessels, weakened phloem thickening, decreased hydraulic conductivity and photosynthetic efficiency, and reduced auxin content, except for reduced total lignin content and significantly increased H-subunit lignin. In the c3'h3 mutant, the flavonoid biosynthesis genes CHS, CHI, F3H, DFR, ANR, and LAR were upregulated, and flavonoid metabolite accumulations were detected, indicating that decreasing the lignin biosynthesis pathway enhanced flavonoid metabolic flux. Furthermore, flavonoid metabolites, such as naringenin and hesperetin, were largely increased, while higher hesperetin content suppressed plant cell division. Thus, studying the c3'h3 mutant allows us to deduce that lignin deficiency suppresses tree growth and leads to the dwarf phenotype due to collapsed xylem and thickened phloem, limiting material exchanges and transport.
Collapse
Affiliation(s)
- Sufang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Hui
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Linjie Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhihua Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nian Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Biochemistry and Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Kewei Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Qingyin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
99
|
Rodríguez-García DR, Rondón Guerrero YDC, Ferrero L, Rossi AH, Miglietta EA, Aptekmann AA, Marzol E, Martínez Pacheco J, Carignani M, Berdion Gabarain V, Lopez LE, Díaz Dominguez G, Borassi C, Sánchez-Serrano JJ, Xu L, Nadra AD, Rojo E, Ariel F, Estevez JM. Transcription factor NAC1 activates expression of peptidase-encoding AtCEPs in roots to limit root hair growth. PLANT PHYSIOLOGY 2023; 194:81-93. [PMID: 37801618 DOI: 10.1093/plphys/kiad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Plant genomes encode a unique group of papain-type Cysteine EndoPeptidases (CysEPs) containing a KDEL endoplasmic reticulum (ER) retention signal (KDEL-CysEPs or CEPs). CEPs process the cell-wall scaffolding EXTENSIN (EXT) proteins that regulate de novo cell-wall formation and cell expansion. Since CEPs cleave EXTs and EXT-related proteins, acting as cell-wall-weakening agents, they may play a role in cell elongation. The Arabidopsis (Arabidopsis thaliana) genome encodes 3 CEPs (AtCPE1-AtCEP3). Here, we report that the genes encoding these 3 Arabidopsis CEPs are highly expressed in root-hair (RH) cell files. Single mutants have no evident abnormal RH phenotype, but atcep1-3 atcep3-2 and atcep1-3 atcep2-2 double mutants have longer RHs than wild-type (Wt) plants, suggesting that expression of AtCEPs in root trichoblasts restrains polar elongation of the RH. We provide evidence that the transcription factor NAC1 (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) activates AtCEPs expression in roots to limit RH growth. Chromatin immunoprecipitation indicates that NAC1 binds to the promoter of AtCEP1, AtCEP2, and, to a lower extent, AtCEP3 and may directly regulate their expression. Inducible NAC1 overexpression increases AtCEP1 and AtCEP2 transcript levels in roots and leads to reduced RH growth while the loss of function nac1-2 mutation reduces AtCEP1-AtCEP3 gene expression and enhances RH growth. Likewise, expression of a dominant chimeric NAC1-SRDX repressor construct leads to increased RH length. Finally, we show that RH cell walls in the atcep1-3 atcep3-2 double mutant have reduced levels of EXT deposition, suggesting that the defects in RH elongation are linked to alterations in EXT processing and accumulation. Our results support the involvement of AtCEPs in controlling RH polar growth through EXT processing and insolubilization at the cell wall.
Collapse
Affiliation(s)
- Diana R Rodríguez-García
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | | | - Lucía Ferrero
- CONICET, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Andrés Hugo Rossi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Esteban A Miglietta
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Ariel A Aptekmann
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Javier Martínez Pacheco
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Mariana Carignani
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Victoria Berdion Gabarain
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Leonel E Lopez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Gabriela Díaz Dominguez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Cecilia Borassi
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - José Juan Sánchez-Serrano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Alejandro D Nadra
- Departamento de Fisiología, Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain
| | - Federico Ariel
- CONICET, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, 8370146 Santiago, Chile
- ANID-Millennium Institute for Integrative Biology (iBio), 7500000 Santiago, Chile
- ANID-Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150 Santiago, Chile
| |
Collapse
|
100
|
Voichek Y, Hurieva B, Michaud C, Schmücker A, Vergara Z, Desvoyes B, Gutierrez C, Nizhynska V, Jaegle B, Borg M, Berger F, Nordborg M, Ingouff M. Cell cycle status of male and female gametes during Arabidopsis reproduction. PLANT PHYSIOLOGY 2023; 194:412-421. [PMID: 37757882 PMCID: PMC10756760 DOI: 10.1093/plphys/kiad512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Fertilization in Arabidopsis (Arabidopsis thaliana) is a highly coordinated process that begins with a pollen tube delivering the 2 sperm cells into the embryo sac. Each sperm cell can then fertilize either the egg or the central cell to initiate embryo or endosperm development, respectively. The success of this double fertilization process requires a tight cell cycle synchrony between the male and female gametes to allow karyogamy (nuclei fusion). However, the cell cycle status of the male and female gametes during fertilization remains elusive as DNA quantification and DNA replication assays have given conflicting results. Here, to reconcile these results, we quantified the DNA replication state by DNA sequencing and performed microscopic analyses of fluorescent markers covering all phases of the cell cycle. We show that male and female Arabidopsis gametes are both arrested prior to DNA replication at maturity and initiate their DNA replication only during fertilization.
Collapse
Affiliation(s)
- Yoav Voichek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Bohdana Hurieva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | | | - Anna Schmücker
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Zaida Vergara
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Mathieu Ingouff
- DIADE, IRD, CIRAD, University Montpellier, Montpellier, France
| |
Collapse
|