51
|
Silva JC, Jones JG. Improving Metabolic Control Through Functional Foods. Curr Med Chem 2019; 26:3424-3438. [DOI: 10.2174/0929867324666170523130123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Abstract
Background:
Functional foods are designed to have physiological benefits and reduce the
risk of chronic disease beyond basic nutritional functions. Conditions related to overnutrition such as
Metabolic Syndrome and Type 2 diabetes are increasingly serious concerns in Western societies. Several
nutrient classes are considered to protect against these conditions and this review focuses on the latest
clinical and preclinical evidence supporting their efficacy and the molecular mechanisms by which they
act.
Methods:
The review searched the literature for information and data on the following functional food
components and their protective effects against Metabolic Syndrome and Type 2 Diabetes: Dietary fiber;
Medium-chain triglycerides and Ketone esters; ω3 Polyunsaturated fatty acids and Antioxidants.
Results:
Data from a hundred and four studies were reviewed and summarized. They indicate that dietary
fiber results in the production of beneficial short chain fatty acids via intestinal microbiota, as well
as increasing intestinal secretion of incretins and satiety peptides. Medium chain triglycerides and ketone
esters promote thermogenesis, inhibit lipolysis and reduce inflammation. They also decrease endogenous
synthesis of triglycerides and fatty acids. ω3-PUFA’s act to soften inflammation through an
increase in adiponectin secretion. Antioxidants are involved in the protection of insulin sensitivity by
PTP1B suppression and SIRT1 activation.
Conclusion:
Functional foods have actions that complement and/or potentiate other lifestyle interventions
for reversing Metabolic Syndrome and Type 2 Diabetes. Functional foods contribute to reduced
food intake by promoting satiety, less weight gain via metabolic uncoupling and improved insulin sensitivity
via several distinct mechanisms.
Collapse
Affiliation(s)
- João C.P. Silva
- Center for Neurosciences and Cell Biology, UC Biotech, Cantanhede, Portugal
| | - John G. Jones
- Center for Neurosciences and Cell Biology, UC Biotech, Cantanhede, Portugal
| |
Collapse
|
52
|
Use of Grape Pomace Phenolics to Counteract Endogenous and Exogenous Formation of Advanced Glycation End-Products. Nutrients 2019; 11:nu11081917. [PMID: 31443235 PMCID: PMC6723612 DOI: 10.3390/nu11081917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
The increase in consumption of "ultra-processed" foods has raised attention because of the possible adverse effects deriving from the Maillard reaction leading to the formation of toxic advanced glycation end-products (AGEs) during food processing. Additionally, the increasing trend and consumption of sugar-added foods and sweetened beverages is related to the endogenous formation of the same toxic compounds. However, ultra-processing in the context of food technology can bring challenges as well as a wealth of opportunities. Indeed, re-processing of grape pomace, a by-product of winemaking, can yield phenolic-rich fractions that efficiently counteract the effects of AGEs. In this review, the process of endogenous and exogenous AGE formation is illustrated. Then, the ability of grape phenolics to act as inhibitors of AGE formation is presented, including the efficacy ranking of various individual compounds measured in vitro and the outcome of in vivo double-blinded randomized crossover trials designed to prove the efficacy of grape phenolics as inhibitors of protein carbonylation. Finally, a survey of model functional foods added with grape phenolics, either to lower the dietary load of AGEs or to deliver antiglycation agents in vivo is listed in order to highlight the opportunity to develop safe and tailor-made "anti-AGEs" food applications.
Collapse
|
53
|
Anhê FF, Choi BSY, Dyck JRB, Schertzer JD, Marette A. Host-Microbe Interplay in the Cardiometabolic Benefits of Dietary Polyphenols. Trends Endocrinol Metab 2019; 30:384-395. [PMID: 31076221 DOI: 10.1016/j.tem.2019.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Polyphenols are nonessential phytonutrients abundantly found in fruits and vegetables. A wealth of data from preclinical models and clinical trials consistently supports cardiometabolic benefits associated with dietary polyphenols in murine models and humans. Furthermore, a growing number of studies have shown that specific classes of polyphenols, such as proanthocyanidins (PACs) and ellagitannins, as well as the stilbenoid resveratrol, can alleviate several features of the metabolic syndrome. Moreover, mounting evidence points to the gut microbiota as a key mediator of the health benefits of polyphenols. In this review we summarize recent findings supporting the beneficial potential of polyphenols against cardiometabolic diseases, with a focus on the role of host-microbe interactions.
Collapse
Affiliation(s)
- F F Anhê
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - B S Y Choi
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute and Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada
| | - J R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - J D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - A Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute and Institute of Nutrition and Functional Foods, Laval University, Québec City, QC, Canada.
| |
Collapse
|
54
|
Hegazy AM, El-Sayed EM, Ibrahim KS, Abdel-Azeem AS. Dietary antioxidant for disease prevention corroborated by the Nrf2 pathway. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 16:/j/jcim.ahead-of-print/jcim-2018-0161/jcim-2018-0161.xml. [PMID: 30726190 DOI: 10.1515/jcim-2018-0161] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Abstract
Dietary antioxidants are widely distributed in various types of our food. They are strongly associated with reduced risk of many chronic diseases such as atherosclerosis, cancer, and Alzheimer's diseases. They include vitamins such as vitamins A, E, C, and carotenoids. Also, some minerals like; zinc, manganese, copper, iron, and selenium are essential for the activity of antioxidant enzymes. Furthermore, dietary polyphenols and flavonoids are considered as potent antioxidant compounds. Vegetables, fruits, and edible herbs are the richest sources of such antioxidants. Antioxidants reduce oxidative stress, either directly by reducing reactive species or indirectly by enhancing the body antioxidant defense mechanisms in different ways. These may include upregulating gene expression of some antioxidant enzymes via a nuclear factor erythroid 2 related factor2 pathway. Administration of a mixture of antioxidants is beneficial since they act synergistically in various phases. The aims of this review are to summarize the different antioxidants from dietary sources and their role in the prevention of different diseases.
Collapse
Affiliation(s)
- Amany M Hegazy
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Eman M El-Sayed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Khadiga S Ibrahim
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Giza, Egypt
| | - Amal S Abdel-Azeem
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
55
|
Ghaedi E, Moradi S, Aslani Z, Kord-Varkaneh H, Miraghajani M, Mohammadi H. Effects of grape products on blood lipids: a systematic review and dose–response meta-analysis of randomized controlled trials. Food Funct 2019; 10:6399-6416. [DOI: 10.1039/c9fo01248f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape products through several plausible mechanisms-of-action are reported to improve lipid profile. The present systematic review revealed that grape product supplementation might have a positive effect on achieving a lipid profile target.
Collapse
Affiliation(s)
- Ehsan Ghaedi
- Students’ Scientific Research Center (SSRC)
- Tehran University of Medical Sciences (TUMS)
- Tehran
- Iran
- Department of Cellular and Molecular Nutrition
| | - Sajjad Moradi
- Halal Research Centre of IRI
- FDA
- Tehran
- Iran
- Nutritional Sciences Department
| | - Zahra Aslani
- Department of Community Nutrition
- School of Nutritional Sciences and Dietetics
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Hamed Kord-Varkaneh
- Student Research Committee
- Department of Clinical Nutrition and Dietetics
- Faculty of Nutrition and Food Technology
- Shahid Beheshti University of Medical Sciences
- Tehran
| | - Maryam Miraghajani
- National Nutrition and Food Technology Research Institute
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
- The Early Life Research Unit
| | - Hamed Mohammadi
- Student Research Committee
- Department of Clinical Nutrition
- School of Nutrition and Food Science
- Isfahan University of Medical Sciences
- Isfahan
| |
Collapse
|
56
|
Mężyńska M, Brzóska MM. Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. J Appl Toxicol 2018; 39:117-145. [PMID: 30216481 DOI: 10.1002/jat.3709] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
Recently, the growing attention of the scientific community has been focused on the threat to health created by environmental pollutants, including toxic metals such as cadmium (Cd), and on the need of finding effective ways to prevent and treat the unfavorable health effects of exposure to them. Particularly promising for Cd, and thus arousing the greatest interest, is the possibility of using various ingredients present in plants, including mainly polyphenolic compounds. As the liver is one of the target organs for this toxic metal and disturbances in the proper functioning of this organ have serious consequences for health, the aim of the present review was to discuss the possibility of using polyphenol-rich food products (e.g., chokeberry, black and green tea, blueberry, olive oil, rosemary and ginger) as the strategy in protection from this xenobiotic hepatotoxicity and treatment of this heavy metal-induced liver damage. Owing to the ability of polyphenols to bind ions of Cd and the strong antioxidative potential of these compounds, as well as their abundance in dietary products, it seems to be of high importance to consider the possibility of using polyphenols as potential preventive and therapeutic agents against Cd hepatotoxicity, determined by its strong pro-oxidative properties. Although most of the data on the effectiveness of polyphenols comes from studies in animals, the fact that some of them are derived from experimental models that reflect human exposure to this metal allows us to assume that some polyphenol-rich food products may be promising protective agents against Cd hepatotoxicity in humans.
Collapse
Affiliation(s)
- Magdalena Mężyńska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222, Bialystok, Poland
| | - Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222, Bialystok, Poland
| |
Collapse
|
57
|
Wiciński M, Leis K, Szyperski P, Węclewicz M, Mazur E, Pawlak-Osińska K. Impact of resveratrol on exercise performance: A review. Sci Sports 2018. [DOI: 10.1016/j.scispo.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Zilio AM, Zielinsky P, Vian I, Lampert K, Raupp D, Weschenfelder C, Brum C, Arnt A, Piccoli A, Nicoloso LH, Schaun MI, Markoski M. Polyphenol supplementation inhibits physiological increase of prostaglandin E2 during reproductive period - A randomized clinical trial. Prostaglandins Leukot Essent Fatty Acids 2018; 136:77-83. [PMID: 28408067 DOI: 10.1016/j.plefa.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023]
Abstract
Anti-inflammatory property of polyphenols and their effect on the metabolism of prostaglandins is not established in healthy humans. This study aimed to evaluate the effect of polyphenol supplementation in plasma levels of prostaglandin E2 and other markers of inflammation and oxidative stress in women using contraceptives. In this randomized double-blind clinical trial, women aged 25-35 years were selected. Participants received capsules containing polyphenols or placebo, to be consumed for fifteen days. From 40 women randomized, 28 completed the study. Control group showed a significant increase in the levels of PGE2 (p=0.01) while the polyphenols group showed no change in these levels (p=0.79). There was an increase in hs-CRP (p<0.01) and F2-isoprostane (p=0.04) in the control group. The GSSG to GSH ratio significantly reduced in the polyphenols group (p=0.02). Supplementation with polyphenol capsules inhibited the increase in markers of inflammation and oxidative stress in women of childbearing age using combined hormonal contraceptives.
Collapse
Affiliation(s)
- A M Zilio
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil.
| | - P Zielinsky
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil; Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul - Brazil
| | - I Vian
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - K Lampert
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - D Raupp
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - C Weschenfelder
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - C Brum
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - A Arnt
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - A Piccoli
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - L H Nicoloso
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - M I Schaun
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| | - M Markoski
- Fetal Cardiology Unit, Institute of Cardiology, Porto Alegre, Rio Grande do Sul - Brazil
| |
Collapse
|
59
|
French Recommendations for Sugar Intake in Adults: A Novel Approach Chosen by ANSES. Nutrients 2018; 10:nu10080989. [PMID: 30060614 PMCID: PMC6115815 DOI: 10.3390/nu10080989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023] Open
Abstract
This article presents a systematic review of the scientific evidence linking sugar consumption and health in the adult population performed by a group of experts, mandated by the French Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement, et du travail (ANSES). A literature search was performed by crossing search terms for overweight/obesity, diabetes/insulin resistance, dyslipidemia/cardiovascular diseases, non-alcoholic fatty liver diseases (NAFLD), and uric acid concentrations on one hand and for intake of sugars on the other. Controlled mechanistic studies, prospective cohort studies, and randomized clinical trials were extracted and assessed. A literature analysis supported links between sugar intake and both total energy intake and body weight gain, and between sugar intake and blood triglycerides independently of total energy intake. The effects of sugar on blood triglycerides were shown to be mediated by the fructose component of sucrose and were observed with an intake of fructose >50 g/day. In addition, prospective cohort studies showed associations between sugar intake and the risk of diabetes/insulin resistance, cardiovascular diseases, NAFLD, and hyperuricemia. Based on these observations, ANSES proposed to set a maximum limit to the intake of total sugars containing fructose (sucrose, glucose–fructose syrups, honey or other syrups, and natural concentrates, etc.) of 100 g/day.
Collapse
|
60
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
61
|
No Additive Effects of Polyphenol Supplementation and Exercise Training on White Adiposity Determinants of High-Fat Diet-Induced Obese Insulin-Resistant Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7406946. [PMID: 29849911 PMCID: PMC5924968 DOI: 10.1155/2018/7406946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Abstract
One of the major insulin resistance instigators is excessive adiposity and visceral fat depots. Individually, exercise training and polyphenol intake are known to exert health benefits as improving insulin sensitivity. However, their combined curative effects on established obesity and insulin resistance need further investigation particularly on white adipose tissue alterations. Therefore, we compared the effects on different white adipose tissue depot alterations of a combination of exercise and grape polyphenol supplementation in obese insulin-resistant rats fed a high-fat diet to the effects of a high-fat diet alone or a nutritional supplementation of grape polyphenols (50 mg/kg/day) or exercise training (1 hr/day to 5 days/wk consisting of treadmill running at 32 m/min for a 10% slope), for a total duration of 8 weeks. Separately, polyphenol supplementation and exercise decreased the quantity of all adipose tissue depots and mesenteric inflammation. Exercise reduced adipocytes' size in all fat stores. Interestingly, combining exercise to polyphenol intake presents no more cumulative benefit on adipose tissue alterations than exercise alone. Insulin sensitivity was improved at systemic, epididymal, and inguinal adipose tissues levels in trained rats thus indicating that despite their effects on adipocyte morphological/metabolic changes, polyphenols at nutritional doses remain less effective than exercise in fighting insulin resistance.
Collapse
|
62
|
García-Conesa MT, Chambers K, Combet E, Pinto P, Garcia-Aloy M, Andrés-Lacueva C, de Pascual-Teresa S, Mena P, Konic Ristic A, Hollands WJ, Kroon PA, Rodríguez-Mateos A, Istas G, Kontogiorgis CA, Rai DK, Gibney ER, Morand C, Espín JC, González-Sarrías A. Meta-Analysis of the Effects of Foods and Derived Products Containing Ellagitannins and Anthocyanins on Cardiometabolic Biomarkers: Analysis of Factors Influencing Variability of the Individual Responses. Int J Mol Sci 2018; 19:ijms19030694. [PMID: 29495642 PMCID: PMC5877555 DOI: 10.3390/ijms19030694] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/15/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022] Open
Abstract
Understanding interindividual variability in response to dietary polyphenols remains essential to elucidate their effects on cardiometabolic disease development. A meta-analysis of 128 randomized clinical trials was conducted to investigate the effects of berries and red grapes/wine as sources of anthocyanins and of nuts and pomegranate as sources of ellagitannins on a range of cardiometabolic risk biomarkers. The potential influence of various demographic and lifestyle factors on the variability in the response to these products were explored. Both anthocyanin- and ellagitannin-containing products reduced total-cholesterol with nuts and berries yielding more significant effects than pomegranate and grapes. Blood pressure was significantly reduced by the two main sources of anthocyanins, berries and red grapes/wine, whereas waist circumference, LDL-cholesterol, triglycerides, and glucose were most significantly lowered by the ellagitannin-products, particularly nuts. Additionally, we found an indication of a small increase in HDL-cholesterol most significant with nuts and, in flow-mediated dilation by nuts and berries. Most of these effects were detected in obese/overweight people but we found limited or non-evidence in normoweight individuals or of the influence of sex or smoking status. The effects of other factors, i.e., habitual diet, health status or country where the study was conducted, were inconsistent and require further investigation.
Collapse
Affiliation(s)
- María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain.
| | - Karen Chambers
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Emilie Combet
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK.
| | - Paula Pinto
- Biotechnology and Nutrition, Department of Food Technology, ESA, Polytechnic Institute of Santarem, 2001-904 Santarém, Portugal.
- Molecular Nutrition Health Laboratory, iBET/ITQB, 2780-157 Oeiras, Portugal.
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciencies, University of Barcelona, 08028 Barcelona, Spain.
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain.
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciencies, University of Barcelona, 08028 Barcelona, Spain.
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 08028 Barcelona, Spain.
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain.
| | - Pedro Mena
- Human Nutrition Unit, Department of Food Drug, University of Parma, 43125 Parma, Italy.
| | - Alekxandra Konic Ristic
- Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| | - Wendy J Hollands
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Ana Rodríguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, UK.
| | - Geoffrey Istas
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London SE1 9NH, UK.
| | - Christos A Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Dilip K Rai
- Teagasc Food Research Centre Ashtown, D15 KN3K Dublin, Ireland.
| | - Eileen R Gibney
- UCD Institute of Food and Health, University College Dublin, Dublin 4, Ireland.
| | - Christine Morand
- INRA, Human Nutrition Unit, UCA, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Juan Carlos Espín
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain.
| | - Antonio González-Sarrías
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
63
|
Lambert K, Hokayem M, Thomas C, Fabre O, Cassan C, Bourret A, Bernex F, Feuillet-Coudray C, Notarnicola C, Mercier J, Avignon A, Bisbal C. Combination of nutritional polyphenols supplementation with exercise training counteracts insulin resistance and improves endurance in high-fat diet-induced obese rats. Sci Rep 2018; 8:2885. [PMID: 29440695 PMCID: PMC5811550 DOI: 10.1038/s41598-018-21287-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Separately, polyphenols and exercise are known to prevent insulin resistance (IR) but their combined curative effects on established obesity and IR require further investigation. Therefore, we compared the metabolic effects of a combination of exercise and grape polyphenols supplementation in obese IR rats with high-fat diet (EXOPP) to the effect of high-fat diet alone (HF) or with a nutritional supplementation of grape polyphenols (PP) or with endurance exercise (EXO) during 8 wks. We observed an improvement of systemic and skeletal muscle insulin sensitivity in EXO and EXOPP rats. EXOPP rats compared to HF rats presented a lower insulinemia and HOMA-IR with higher liver and muscle glycogen contents. Interestingly, EXOPP rats had a 68% enhanced endurance capacity compared to EXO rats with also a higher activation of AMPK compared to sedentary and EXO rats with increased lipid oxidation. Together, our results suggest that grape polyphenols supplementation combined with exercise has a synergistic effect by increasing muscle lipid oxidation and sparing glycogen utilization which thus enhances endurance capacity. Our data highlight that in cases of established obesity and IR, the combination of nutritional grape polyphenols supplementation and exercise heighten and intensify their individual metabolic effects.
Collapse
Affiliation(s)
- Karen Lambert
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France.
| | - Marie Hokayem
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France
| | - Claire Thomas
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France.,University d'Evry Val d'Essonne, département STAPS. François Mitterrand Boulevard, 91025, Evry, France
| | - Odile Fabre
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France
| | - Cécile Cassan
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France
| | - Annick Bourret
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France
| | - Florence Bernex
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France
| | | | - Cécile Notarnicola
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France
| | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France.,Centre Hospitalier Régional Universitaire (CHRU) Montpellier, 34295, Montpellier, France
| | - Antoine Avignon
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France.,Centre Hospitalier Régional Universitaire (CHRU) Montpellier, 34295, Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214. 34295, Montpellier, cedex 5, France
| |
Collapse
|
64
|
Mezynska M, Brzóska MM. Environmental exposure to cadmium-a risk for health of the general population in industrialized countries and preventive strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3211-3232. [PMID: 29230653 DOI: 10.1007/s11356-017-0827-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 11/23/2017] [Indexed: 05/10/2023]
Abstract
Cadmium (Cd) is a heavy metal belonging to the group of the main chemical pollutants of the natural and occupational environment in economically developed countries. The forecasts indicate that contamination of the environment with this toxic metal, and thus the exposure of the general population, will increase. Food (particularly plant products) is the main source of the general population exposure to this element. Moreover, an important, and often the main, source of intoxication with Cd is habitual tobacco smoking. Recent epidemiological studies have provided numerous evidence that even low-level environmental exposure to this toxic metal, nowadays occurring in numerous economically developed countries, creates a risk for health of the general population. The low-level lifetime exposure to this metal may lead to the damage to the kidneys, liver, skeletal system, and cardiovascular system, as well as to the deterioration of the sight and hearing. Moreover, it has been suggested that environmental exposure to this xenobiotic may contribute to the development of cancer of the lung, breast, prostate, pancreas, urinary bladder, and nasopharynx. Taking the above into account, the aim of this review article is to draw more attention to Cd as an environmental risk factor for the health of the general population and the need to undertake preventive actions allowing to reduce the risk of health damage due to a lifetime exposure to this toxic metal.
Collapse
Affiliation(s)
- Magdalena Mezynska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222, Bialystok, Poland.
| | - Malgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C street, 15-222, Bialystok, Poland.
| |
Collapse
|
65
|
Woerdeman J, Del Rio D, Calani L, Eringa EC, Smulders YM, Serné EH. Red wine polyphenols do not improve obesity-associated insulin resistance: A randomized controlled trial. Diabetes Obes Metab 2018. [PMID: 28643477 DOI: 10.1111/dom.13044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preclinical studies have suggested that polyphenols extracted from red wine (RWPs) favourably affect insulin sensitivity, but there is controversy over whether RWPs exert similar effects in humans. The aim of the present study was to determine whether RWPs improve insulin sensitivity in obese volunteers. Obese (body mass index >30 kg/m2 ) volunteers were randomly allocated to RWPs 600 mg/d (n = 14) or matched placebo (n = 15) in a double-blind parallel-arm study for 8 weeks. The participants were investigated at baseline and at the end of the study. Insulin sensitivity was determined using a hyperinsulinaemic-euglycaemic clamp (M-value), a mixed-meal test (Matsuda index), and homeostatic model assessment of insulin resistance (HOMA-IR). RWPs elicited no significant changes in M-value (RWP group: median [interquartile range; IQR] baseline 3.0 [2.4; 3.6]; end of study 3.3 [2.4; 4.8] vs placebo group: median [IQR] baseline 3.4 [2.8; 4.4]; end of study 2.9 [2.8; 5.9] mg/kg/min; P = .65), in Matsuda index (RWP group: median [IQR] baseline 3.3 [2.2; 4.8]; end of study 3.6 [2.4; 4.8] vs placebo group: median [IQR] baseline 4.0 [3.0; 6.0]; end of study 4.0 [3.0; 5.2]; P = .88), or in HOMA-IR. This study showed that 8 weeks of RWP supplementation did not improve insulin sensitivity in 29 obese volunteers. Our findings were not consistent with the hypothesis that RWPs ameliorate insulin resistance in human obesity.
Collapse
Affiliation(s)
- Jorn Woerdeman
- Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - Daniele Del Rio
- Department of Food Science, University of Parma, Parma, Italy
| | - Luca Calani
- Department of Food Science, University of Parma, Parma, Italy
| | - Etto C Eringa
- Department of Physiology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Yvo M Smulders
- Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - Erik H Serné
- Department of Internal Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
66
|
Sultan A. [Insulinoresistancy in Man: from mechanisms to nutritional interference]. Biol Aujourdhui 2017; 211:189-196. [PMID: 29236670 DOI: 10.1051/jbio/2017026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 11/15/2022]
Abstract
Obesity is presently regarded as the "the first non-infectious epidemic outbreak" in the history of Humanity. It is a multifactorial pathology, that contributes to the emergence of insulinoresistancy. Some obese individuals display an obesity qualified as metabolically sound, i.e., non-associated with metabolical anomalies. The present paper reviews the different possible mechanisms responsible for insulin-resistancy.
Collapse
Affiliation(s)
- Ariane Sultan
- Équipe Nutrition-Diabète, CHU Montpellier, Montpellier, France - PHYMEDEXP INSERM U1046, CNRS UMR9214, Université de Montpellier, Montpellier, France
| |
Collapse
|
67
|
Farzaei F, Morovati MR, Farjadmand F, Farzaei MH. A Mechanistic Review on Medicinal Plants Used for Diabetes Mellitus in Traditional Persian Medicine. J Evid Based Complementary Altern Med 2017; 22:944-955. [PMID: 29228789 PMCID: PMC5871259 DOI: 10.1177/2156587216686461] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/23/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is the most common endocrine disorder and a major cause of morbidity and mortality. Traditional medicines worldwide suggest a wide range of natural remedies for the prevention and treatment of chronic disorders, including diabetes mellitus. This mechanistic review aims to highlight the significance of medicinal plants traditionally used as dietary supplements in Persian medicine in adjunct with restricted conventional drugs for the prevention and treatment of diabetes mellitus. Mounting evidence suggests that these natural agents perform their protective and therapeutic effect on diabetes mellitus via several cellular mechanisms, including regeneration of pancreatic β cell, limitation of glycogen degradation and gluconeogenesis, anti-inflammatory, immunoregulatory, antiapoptosis, antioxidative stress, as well as modulation of intracellular signaling transduction pathways. In conclusion, traditional medicinal plants used in Persian medicine can be considered as dietary supplements with therapeutic potential for diabetes mellitus and maybe potential sources of new orally active agent(s).
Collapse
Affiliation(s)
- Fatemeh Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| |
Collapse
|
68
|
Guasch-Ferré M, Merino J, Sun Q, Fitó M, Salas-Salvadó J. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6723931. [PMID: 28883903 PMCID: PMC5572601 DOI: 10.1155/2017/6723931] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/19/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Dietary polyphenols come mainly from plant-based foods including fruits, vegetables, whole grains, coffee, tea, and nuts. Polyphenols may influence glycemia and type 2 diabetes (T2D) through different mechanisms, such as promoting the uptake of glucose in tissues, and therefore improving insulin sensitivity. This review aims to summarize the evidence from clinical trials and observational prospective studies linking dietary polyphenols to prediabetes and T2D, with a focus on polyphenol-rich foods characteristic of the Mediterranean diet. We aimed to describe the metabolic biomarkers related to polyphenol intake and genotype-polyphenol interactions modulating the effects on T2D. Intakes of polyphenols, especially flavan-3-ols, and their food sources have demonstrated beneficial effects on insulin resistance and other cardiometabolic risk factors. Several prospective studies have shown inverse associations between polyphenol intake and T2D. The Mediterranean diet and its key components, olive oil, nuts, and red wine, have been inversely associated with insulin resistance and T2D. To some extent, these associations may be attributed to the high amount of polyphenols and bioactive compounds in typical foods conforming this traditional dietary pattern. Few studies have suggested that genetic predisposition can modulate the relationship between polyphenols and T2D risk. In conclusion, the intake of polyphenols may be beneficial for both insulin resistance and T2D risk.
Collapse
Affiliation(s)
- Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jordi Merino
- Diabetes Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Montse Fitó
- Cardiovascular Risk and Nutrition (Regicor Study Group), Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Human Nutrition Unit, University Hospital of Sant Joan de Reus, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, IISPV, Rovira I Virgili University, Reus, Spain
| |
Collapse
|
69
|
Roy J, Galano JM, Durand T, Le Guennec JY, Lee JCY. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J 2017; 31:3729-3745. [PMID: 28592639 DOI: 10.1096/fj.201700170r] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
It has been 60 yr since the discovery of reactive oxygen species (ROS) in biology and the beginning of the scientific community's attempt to understand the impact of the unpaired electron of ROS molecules in biological pathways, which was eventually noted to be toxic. Several studies have shown that the presence of ROS is essential in triggering or acting as a secondary factor for numerous pathologies, including metabolic and genetic diseases; however, it was demonstrated that chronic treatment with antioxidants failed to show efficacy and positive effects in the prevention of diseases or health complications that result from oxidative stress. On the contrary, such treatment has been shown to sometimes even worsen the disease. Because of the permanent presence of ROS in organisms, elaborate mechanisms to adapt with these reactive molecules and to use them without necessarily blocking or preventing their actions have been studied. There is now a large body of evidence that shows that living organisms have conformed to the presence of ROS and, in retrospect, have adapted to the bioactive molecules that are generated by ROS on proteins, lipids, and DNA. In addition, ROS have undergone a shift from being molecules that invoked oxidative damage in regulating signaling pathways that impinged on normal physiological and redox responses. Working in this direction, this review unlocks a new conception about the involvement of cellular oxidants in the maintenance of redox homeostasis in redox regulation of normal physiological functions, and an explanation for its essential role in numerous pathophysiological states is noted.-Roy, J., Galano, J.-M., Durand, T., Le Guennec, J.-Y., Lee, J. C.-Y. Physiological role of reactive oxygen species as promoters of natural defenses.
Collapse
Affiliation(s)
- Jérôme Roy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal and Montreal Diabetes Research Center, Department of Nutrition, Université de Montréal, Montreal, Québec, Canada; .,Centre National de la Recherche Scientifique Unité Mixte de Recherche 9214, Inserm Unité 1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5247, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5247, École Nationale Supérieure de Chimie de Montpellier, Université de Montpellier, Montpellier, France
| | - Jean-Yves Le Guennec
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 9214, Inserm Unité 1046 Physiologie et Médecine Expérimentale du Cœur et des Muscles, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
70
|
Cioffi F, Senese R, Lasala P, Ziello A, Mazzoli A, Crescenzo R, Liverini G, Lanni A, Goglia F, Iossa S. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats. Nutrients 2017; 9:nu9040323. [PMID: 28338610 PMCID: PMC5409662 DOI: 10.3390/nu9040323] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022] Open
Abstract
Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy.
| | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Naples II, 81100 Caserta, Italy.
| | - Pasquale Lasala
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy.
| | - Angela Ziello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Naples II, 81100 Caserta, Italy.
| | - Arianna Mazzoli
- Department of Biology, University of Naples "Federico II", 80100 Napoli, Italy.
| | - Raffaella Crescenzo
- Department of Biology, University of Naples "Federico II", 80100 Napoli, Italy.
| | - Giovanna Liverini
- Department of Biology, University of Naples "Federico II", 80100 Napoli, Italy.
| | - Antonia Lanni
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Naples II, 81100 Caserta, Italy.
| | - Fernando Goglia
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy.
| | - Susanna Iossa
- Department of Biology, University of Naples "Federico II", 80100 Napoli, Italy.
| |
Collapse
|
71
|
Bernardes N, Ayyappan P, De Angelis K, Bagchi A, Akolkar G, da Silva Dias D, Belló-Klein A, Singal PK. Excessive consumption of fructose causes cardiometabolic dysfunctions through oxidative stress and inflammation. Can J Physiol Pharmacol 2017; 95:1078-1090. [PMID: 28187269 DOI: 10.1139/cjpp-2016-0663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rapid rise in obesity, as well as physical inactivity, in industrialized countries is associated with fructose-consumption-mediated metabolic syndrome having a strong association with cardiovascular disease. Although insulin resistance is thought to be at the core, visceral obesity, hypertension, and hypertriglyceridemia are also considered important components of this metabolic disorder. In addition, various other abnormalities such as inflammation, oxidative stress, and elevated levels of uric acid are also part of this syndrome. Lifestyle changes through improved physical activity, as well as nutrition, are important approaches to minimize metabolic syndrome and its deleterious effects.
Collapse
Affiliation(s)
- Nathalia Bernardes
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Prathapan Ayyappan
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Katia De Angelis
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Ashim Bagchi
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Gauri Akolkar
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Danielle da Silva Dias
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Adriane Belló-Klein
- c Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Pawan K Singal
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
72
|
Do grape polyphenols improve metabolic syndrome components? A systematic review. Eur J Clin Nutr 2017; 71:1381-1392. [PMID: 28145414 DOI: 10.1038/ejcn.2016.227] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/25/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Epidemiological, in vitro and animal studies suggest that grape polyphenols, such as those present in wine, have favorable effects on the metabolic syndrome. However, controversy remains whether treatment with grape polyphenols is effective in humans. Here, we aimed to systemically review the effects of grape polyphenols on metabolic syndrome components in humans. SUBJECTS/METHODS We systematically searched Medline, EMBASE and the Cochrane database for all clinical trials assessing the effects of grape polyphenols on insulin sensitivity, glycemia, blood pressure or lipid levels. We screened all titles and reviewed abstracts of potentially relevant studies. Full papers were assessed for eligibility and quality-rated according to the Jadad scale by two independent assessors. RESULTS Thirty-nine studies met the eligibility criteria. In individuals without component criteria of the metabolic syndrome, only low- and medium-quality studies were found with primarily neutral results. In individuals with the metabolic syndrome or related conditions, one of two high-quality studies suggested improvement in insulin sensitivity. Glycemia was improved in 2 of 11 lower-quality studies and 2 of 4 high-quality studies. Seven of 22 studies demonstrated a significant decrease in blood pressure, but only one was of high quality. Two of four high-quality studies pointed towards effects on total cholesterol while other lipidemic parameters were not affected. CONCLUSIONS No compelling data exist that grape polyphenols can positively influence glycemia, blood pressure or lipid levels in individuals with or without the metabolic syndrome. Limited evidence suggests that grape polyphenols may improve insulin sensitivity.
Collapse
|
73
|
Paquette M, Medina Larqué AS, Weisnagel SJ, Desjardins Y, Marois J, Pilon G, Dudonné S, Marette A, Jacques H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: a parallel, double-blind, controlled and randomised clinical trial. Br J Nutr 2017; 117:519-531. [PMID: 28290272 PMCID: PMC5426341 DOI: 10.1017/s0007114517000393] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/18/2022]
Abstract
Plant-derived foods rich in polyphenols are associated with several cardiometabolic health benefits, such as reduced postprandial hyperglycaemia. However, their impact on whole-body insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp technique remains under-studied. We aimed to determine the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity, glucose tolerance, insulin secretion, lipid profile, inflammation and oxidative stress markers in free-living insulin-resistant overweight or obese human subjects (n 41) in a parallel, double-blind, controlled and randomised clinical trial. The experimental group consumed an SCP beverage (333 mg SCP) daily for 6 weeks, whereas the Control group received a flavour-matched Control beverage that contained 0 mg SCP. At the beginning and at the end of the experimental period, insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, and glucose tolerance and insulin secretion by a 2-h oral glucose tolerance test (OGTT). Insulin sensitivity increased in the SCP group as compared with the Control group (+0·9 (sem 0·5)×10-3 v. -0·5 (sem 0·5)×10-3 mg/kg per min per pmol, respectively, P=0·03). Compared with the Control group, the SCP group had a lower first-phase insulin secretion response as measured by C-peptide levels during the first 30 min of the OGTT (P=0·002). No differences were detected between the two groups for lipids and markers of inflammation and oxidative stress. A 6-week dietary intervention with 333 mg of polyphenols from strawberries and cranberries improved insulin sensitivity in overweight and obese non-diabetic, insulin-resistant human subjects but was not effective in improving other cardiometabolic risk factors.
Collapse
Affiliation(s)
- Martine Paquette
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - Ana S. Medina Larqué
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - S. J. Weisnagel
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
- Diabetes Research Unit, Endocrinology and Nephrology
Axis, Research Centre, Laval University
Health Center of Quebec, Quebec, Canada, G1V
4G2
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
| | - Julie Marois
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- Quebec Heart and Lung Institute, Quebec,
Canada, G1V 4G5
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
| | - André Marette
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- Quebec Heart and Lung Institute, Quebec,
Canada, G1V 4G5
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods, Laval
University, Quebec, Canada, G1V
0A6
- School of Nutrition, Laval University,
Quebec, Canada, G1V 0A6
| |
Collapse
|
74
|
Rasines-Perea Z, Teissedre PL. Grape Polyphenols' Effects in Human Cardiovascular Diseases and Diabetes. Molecules 2017; 22:E68. [PMID: 28045444 PMCID: PMC6155751 DOI: 10.3390/molecules22010068] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023] Open
Abstract
The consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals, has increased due to consumers' interest in the relevance of food composition for human health. Considerable recent interest has focused on bioactive phenolic compounds in grape, as they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, anti-ageing and antimicrobial properties. Observational studies indicate that the intake of polyphenol-rich foods improves vascular health, thereby significantly reducing the risk of hypertension, and cardiovascular disease (CVD). Other researchers have described the benefits of a grape polyphenol-rich diet for other types of maladies such as diabetes mellitus. This is a comprehensive review on the consumption of polyphenolic grape compounds, concerning their potential benefits for human health in the treatment of cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- Zuriñe Rasines-Perea
- Université de Bordeaux, ISVV, Institut des Sciences de la Vigne et du Vin, EA 4577 Œnologie, 210 Chemin de Leysotte, Villenave d'Ornon F-33140, France.
- INRA, Instiut National de la Recherche Agronomique, ISVV, Institut des Sciences de la Vigne et du Vin, USC 1366 Œnologie, 210 Chemin de Leysotte, Villenave d'Ornon F-33140, France.
| | - Pierre-Louis Teissedre
- Université de Bordeaux, ISVV, Institut des Sciences de la Vigne et du Vin, EA 4577 Œnologie, 210 Chemin de Leysotte, Villenave d'Ornon F-33140, France.
- INRA, Instiut National de la Recherche Agronomique, ISVV, Institut des Sciences de la Vigne et du Vin, USC 1366 Œnologie, 210 Chemin de Leysotte, Villenave d'Ornon F-33140, France.
| |
Collapse
|
75
|
Chardonnay Grape Seed Flour Ameliorates Hepatic Steatosis and Insulin Resistance via Altered Hepatic Gene Expression for Oxidative Stress, Inflammation, and Lipid and Ceramide Synthesis in Diet-Induced Obese Mice. PLoS One 2016; 11:e0167680. [PMID: 27977712 PMCID: PMC5157984 DOI: 10.1371/journal.pone.0167680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/18/2016] [Indexed: 01/04/2023] Open
Abstract
To identify differentially expressed hepatic genes contributing to the improvement of high-fat (HF) diet-induced hepatic steatosis and insulin resistance following supplementation of partially defatted flavonoid-rich Chardonnay grape seed flour (ChrSd), diet-induced obese (DIO) mice were fed HF diets containing either ChrSd or microcrystalline cellulose (MCC, control) for 5 weeks. The 2-h insulin area under the curve was significantly lowered by ChrSd, indicating that ChrSd improved insulin sensitivity. ChrSd intake also significantly reduced body weight gain, liver and adipose tissue weight, hepatic lipid content, and plasma low-density lipoprotein (LDL)-cholesterol, despite a significant increase in food intake. Exon microarray analysis of hepatic gene expression revealed down-regulation of genes related to triglyceride and ceramide synthesis, immune response, oxidative stress, and inflammation and upregulation of genes related to fatty acid oxidation, cholesterol, and bile acid synthesis. In conclusion, the effects of ChrSd supplementation in a HF diet on weight gain, insulin resistance, and progression of hepatic steatosis in DIO mice were associated with modulation of hepatic genes related to oxidative stress, inflammation, ceramide synthesis, and lipid and cholesterol metabolism.
Collapse
|
76
|
Macdonald IA. A review of recent evidence relating to sugars, insulin resistance and diabetes. Eur J Nutr 2016; 55:17-23. [PMID: 27882410 PMCID: PMC5174139 DOI: 10.1007/s00394-016-1340-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/23/2016] [Indexed: 12/15/2022]
Abstract
The potential impact on health of diets rich in free sugars, and particularly fructose, is of major concern. The focus of this review is the impact of these sugars on insulin resistance and obesity, and the associated risk of developing type 2 diabetes. Much of the concern is focussed on specific metabolic effects of fructose, which are argued to lead to increased fat deposition in the liver and skeletal muscle with subsequent insulin resistance and increased risk of diabetes. However, much of the evidence underpinning these arguments is based on animal studies involving very large intakes of the free sugars. Recent human studies, in the past 5 years, provide a rather different picture, with a clear dose response link between fructose intake and metabolic changes. In particular, the most marked effects are observed when a high sugars intake is accompanied by an excess energy intake. This does not mean that a high intake of free sugars does not have any detrimental impact on health, but rather that such an effect seems more likely to be a result of the high sugars intake increasing the chances of an excessive energy intake rather than it leading to a direct detrimental effect on metabolism.
Collapse
Affiliation(s)
- I A Macdonald
- Queen's Medical Centre, School of Life Sciences, University of Nottingham Medical School, University of Nottingham, Clifton Boulevard, Nottingham, NG7 2UH, UK.
| |
Collapse
|
77
|
Lavelli V, Sri Harsha PS, Piochi M, Torri L. Sustainable recovery of grape skins for use in an apple beverage with antiglycation properties. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vera Lavelli
- DeFENS; Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; via Celoria 2 Milano 20133 Italy
| | - Pedapati S.C. Sri Harsha
- DeFENS; Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; via Celoria 2 Milano 20133 Italy
| | - Maria Piochi
- Department of Agricultural, Food and Forestry System Management; University of Florence; via Donizetti 6 Firenze 51144 Italy
| | - Luisa Torri
- University of Gastronomic Sciences; Piazza Vittorio Emanuele 9 Bra (CN) 12060 Italy
| |
Collapse
|
78
|
Seyssel K, Meugnier E, Lê KA, Durand C, Disse E, Blond E, Pays L, Nataf S, Brozek J, Vidal H, Tappy L, Laville M. Fructose overfeeding in first-degree relatives of type 2 diabetic patients impacts energy metabolism and mitochondrial functions in skeletal muscle. Mol Nutr Food Res 2016; 60:2691-2699. [PMID: 27468128 DOI: 10.1002/mnfr.201600407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
SCOPE The aim of the study was to assess the effects of a high-fructose diet (HFrD) on skeletal muscle transcriptomic response in healthy offspring of patients with type 2 diabetes, a subgroup of individuals prone to metabolic disorders. METHODS AND RESULTS Ten healthy normal weight first-degree relatives of type 2 diabetic patients were submitted to a HFrD (+3.5 g fructose/kg fat-free mass per day) during 7 days. A global transcriptomic analysis was performed on skeletal muscle biopsies combined with in vitro experiments using primary myotubes. Transcriptomic analysis highlighted profound effects on fatty acid oxidation and mitochondrial pathways supporting the whole-body metabolic shift with the preferential use of carbohydrates instead of lipids. Bioinformatics tools pointed out possible transcription factors orchestrating this genomic regulation, such as PPARα and NR4A2. In vitro experiments in human myotubes suggested an indirect action of fructose in skeletal muscle, which seemed to be independent from lactate, uric acid, or nitric oxide. CONCLUSION This study shows therefore that a large cluster of genes related to energy metabolism, mitochondrial function, and lipid oxidation was downregulated after 7 days of HFrD, thus supporting the concept that overconsumption of fructose-containing foods could contribute to metabolic deterioration in humans.
Collapse
Affiliation(s)
- Kevin Seyssel
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France
| | - Kim-Anne Lê
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Durand
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France
| | - Emmanuel Disse
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Emilie Blond
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Laurent Pays
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Serge Nataf
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,Banque de Cellules et de Tissus, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Hubert Vidal
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martine Laville
- Lyon University, Oullins, France.,CarMeN Laboratory and CENS, Claude Bernard University, INSA Lyon, Oullins, France.,CRNH Rhône-Alpes, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| |
Collapse
|
79
|
Prabhakar P, Reeta KH, Maulik SK, Dinda AK, Gupta YK. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats. Appl Physiol Nutr Metab 2016; 42:23-32. [PMID: 27911087 DOI: 10.1139/apnm-2016-0088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.
Collapse
Affiliation(s)
- Pankaj Prabhakar
- a Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - K H Reeta
- a Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Subir Kumar Maulik
- a Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Amit Kumar Dinda
- b Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Yogendra Kumar Gupta
- a Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
80
|
Asseburg H, Schäfer C, Müller M, Hagl S, Pohland M, Berressem D, Borchiellini M, Plank C, Eckert GP. Effects of Grape Skin Extract on Age-Related Mitochondrial Dysfunction, Memory and Life Span in C57BL/6J Mice. Neuromolecular Med 2016; 18:378-95. [DOI: 10.1007/s12017-016-8428-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023]
|
81
|
Molecular Approaches to Genetically Improve the Accumulation of Health-Promoting Secondary Metabolites in Staple Crops-A Case Study: The Lipoxygenase-B1 Genes and Regulation of the Carotenoid Content in Pasta Products. Int J Mol Sci 2016; 17:ijms17071177. [PMID: 27455242 PMCID: PMC4964548 DOI: 10.3390/ijms17071177] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023] Open
Abstract
Secondary metabolites, also known as phytochemicals, represent a large subset of plant molecules that include compounds with health-promoting effects. Indeed, a number of epidemiological studies have shown that, when taken regularly and in adequate amounts, these molecules can have long-term beneficial effects on human health, through reduction of the incidence of degenerative diseases, such as cardiovascular diseases, obesity, diabetes, and cancer. As the dietary intake of these phytochemicals is often inadequate, various strategies are in use to improve their content in staple crops, and the end-products thereof. One of the most effective strategies is crop improvement through genetic approaches, as this is the only way to generate new cultivars in which the high accumulation of a given phytochemical is stably fixed. Efforts to genetically improve quality traits are rapidly evolving, from classical breeding to molecular-assisted approaches; these require sound understanding of the molecular bases underlying the traits, to identify the genes/alleles that control them. This can be achieved through global analysis of the metabolic pathway responsible for phytochemical accumulation, to identify the link between phytochemical content and the activities of key enzymes that regulate the metabolic pathway, and between the key enzymes and their encoding genes/alleles. Once these have been identified, they can be used as markers for selection of new improved genotypes through biotechnological approaches. This review provides an overview of the major health-promoting properties shown to be associated with the dietary intake of phytochemicals, and describes how molecular approaches provide means for improving the health quality of edible crops. Finally, a case study is illustrated, of the identification in durum wheat of the Lipoxygenase-B1 genes that control the final carotenoid content in semolina-based foods, such as pasta products.
Collapse
|
82
|
Amouzou C, Breuker C, Fabre O, Bourret A, Lambert K, Birot O, Fédou C, Dupuy AM, Cristol JP, Sutra T, Molinari N, Maimoun L, Mariano-Goulart D, Galtier F, Avignon A, Stanke-Labesque F, Mercier J, Sultan A, Bisbal C. Skeletal Muscle Insulin Resistance and Absence of Inflammation Characterize Insulin-Resistant Grade I Obese Women. PLoS One 2016; 11:e0154119. [PMID: 27111539 PMCID: PMC4844150 DOI: 10.1371/journal.pone.0154119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/08/2016] [Indexed: 01/14/2023] Open
Abstract
CONTEXT Obesity is associated with insulin-resistance (IR), the key feature of type 2 diabetes. Although chronic low-grade inflammation has been identified as a central effector of IR development, it has never been investigated simultaneously at systemic level and locally in skeletal muscle and adipose tissue in obese humans characterized for their insulin sensitivity. OBJECTIVES We compared metabolic parameters and inflammation at systemic and tissue levels in normal-weight and obese subjects with different insulin sensitivity to better understand the mechanisms involved in IR development. METHODS 30 post-menopausal women were classified as normal-weight insulin-sensitive (controls, CT) and obese (grade I) insulin-sensitive (OIS) or insulin-resistant (OIR) according to their body mass index and homeostasis model assessment of IR index. They underwent a hyperinsulinemic-euglycemic clamp, blood sampling, skeletal muscle and subcutaneous adipose tissue biopsies, an activity questionnaire and a self-administrated dietary recall. We analyzed insulin sensitivity, inflammation and IR-related parameters at the systemic level. In tissues, insulin response was assessed by P-Akt/Akt expression and inflammation by macrophage infiltration as well as cytokines and IκBα expression. RESULTS Systemic levels of lipids, adipokines, inflammatory cytokines, and lipopolysaccharides were equivalent between OIS and OIR subjects. In subcutaneous adipose tissue, the number of anti-inflammatory macrophages was higher in OIR than in CT and OIS and was associated with higher IL-6 level. Insulin induced Akt phosphorylation to the same extent in CT, OIS and OIR. In skeletal muscle, we could not detect any inflammation even though IκBα expression was lower in OIR compared to CT. However, while P-Akt/Akt level increased following insulin stimulation in CT and OIS, it remained unchanged in OIR. CONCLUSION Our results show that systemic IR occurs without any change in systemic and tissues inflammation. We identified a muscle defect in insulin response as an early mechanism of IR development in grade I obese post-menopausal women.
Collapse
Affiliation(s)
- Cacylde Amouzou
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Cyril Breuker
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Odile Fabre
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Annick Bourret
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Karen Lambert
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Olivier Birot
- Faculty of Health, York University, York, Ontario, Canada
| | - Christine Fédou
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Anne-Marie Dupuy
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Thibault Sutra
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Nicolas Molinari
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Laurent Maimoun
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Denis Mariano-Goulart
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Florence Galtier
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Antoine Avignon
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | | | - Jacques Mercier
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Ariane Sultan
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
- Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Catherine Bisbal
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| |
Collapse
|
83
|
Akıllıoğlu HG, Gökmen V. Kinetic evaluation of the inhibition of protein glycation during heating. Food Chem 2016; 196:1117-24. [DOI: 10.1016/j.foodchem.2015.10.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 12/18/2022]
|
84
|
Madlala HP, Maarman GJ, Ojuka E. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle. Nutr Rev 2016; 74:259-66. [PMID: 26946251 PMCID: PMC4892313 DOI: 10.1093/nutrit/nuv111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge.
Collapse
Affiliation(s)
- Hlengiwe P Madlala
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa.
| | - Gerald J Maarman
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Edward Ojuka
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
85
|
Polyphenols and Glycemic Control. Nutrients 2016; 8:nu8010017. [PMID: 26742071 PMCID: PMC4728631 DOI: 10.3390/nu8010017] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Growing evidence from animal studies supports the anti-diabetic properties of some dietary polyphenols, suggesting that dietary polyphenols could be one dietary therapy for the prevention and management of Type 2 diabetes. This review aims to address the potential mechanisms of action of dietary polyphenols in the regulation of glucose homeostasis and insulin sensitivity based on in vitro and in vivo studies, and to provide a comprehensive overview of the anti-diabetic effects of commonly consumed dietary polyphenols including polyphenol-rich mixed diets, tea and coffee, chocolate and cocoa, cinnamon, grape, pomegranate, red wine, berries and olive oil, with a focus on human clinical trials. Dietary polyphenols may inhibit α-amylase and α-glucosidase, inhibit glucose absorption in the intestine by sodium-dependent glucose transporter 1 (SGLT1), stimulate insulin secretion and reduce hepatic glucose output. Polyphenols may also enhance insulin-dependent glucose uptake, activate 5' adenosine monophosphate-activated protein kinase (AMPK), modify the microbiome and have anti-inflammatory effects. However, human epidemiological and intervention studies have shown inconsistent results. Further intervention studies are essential to clarify the conflicting findings and confirm or refute the anti-diabetic effects of dietary polyphenols.
Collapse
|
86
|
Serafini M, Peluso I. Functional Foods for Health: The Interrelated Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables, Herbs, Spices and Cocoa in Humans. Curr Pharm Des 2016; 22:6701-6715. [PMID: 27881064 PMCID: PMC5427773 DOI: 10.2174/1381612823666161123094235] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 01/18/2023]
Abstract
The health benefits of plant food-based diets could be related to both integrated antioxidant and antiinflammatory mechanisms exerted by a wide array of phytochemicals present in fruit, vegetables, herbs and spices. Therefore, there is mounting interest in identifying foods, food extracts and phytochemical formulations from plant sources which are able to efficiently modulate oxidative and inflammatory stress to prevent diet-related diseases. This paper reviews available evidence about the effect of supplementation with selected fruits, vegetables, herbs, spices and their extracts or galenic formulation on combined markers of redox and inflammatory status in humans.
Collapse
Affiliation(s)
- Mauro Serafini
- Functional Foods and Metabolic Stress Prevention Laboratory, Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| | - Ilaria Peluso
- Functional Foods and Metabolic Stress Prevention Laboratory, Centre for Food and Nutrition, Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
87
|
Soto-Méndez MJ, Aguilera CM, Campaña-Martín L, Martín-Laguna V, Schümann K, Solomons NW, Gil A. Variation in hydration status within the normative range is associated with urinary biomarkers of systemic oxidative stress in Guatemalan preschool children. Am J Clin Nutr 2015; 102:865-72. [PMID: 26269363 DOI: 10.3945/ajcn.114.105429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/17/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Researchers have increasingly sought noninvasive methods to determine health and nutritional status in humans. Easy and painless to collect, human urine is a source of noninvasive biomarkers. OBJECTIVE We aimed to explore the relation between systemic oxidative stress biomarkers excreted in urine and urinary osmolality (Uosm). DESIGN The current trial was a descriptive, cross-sectional study. We collected seventy-eight samples of 24-h urine in preschoolers who were attending daycare centers in the Western Highlands province of Quetzaltenango, Guatemala. After we measured the total urine volume (Uvol), the aliquot was stored for the later determination of Uosm as a hydration biomarker and to measure 15-isoprostane F2t (F2-Iso) and 8-hydroxydeoxyguanosine (8-OHdG) as biomarkers of cellular oxidation with the use of ELISA assay kits in Spain. Descriptive statistics and linear [Spearman rank-order (rs)] and nonlinear (goodness-of-fit) correlations were performed. RESULTS Twenty-four hour Uvols ranged from 65 to 1670 mL, whereas the Uosm varied between 115 and 1102 mOsm/kg. With respect to oxidative biomarkers, the 24-h urinary output of F2-Iso and 8-OHdG had median values of 748 and 2793 ng/d, respectively. The Uvol correlated inversely and significantly with the concentrations of both oxidative biomarkers (F2-Iso rs = -0.603, P < 0.001; 8-OHdG rs = -0.433, P < 0.001), whereas the Uosm was correlated in a direct manner (F2-Iso rs = 0.541, P < 0.001; 8-OHdG rs = 0.782, P < 0.001) when analyzed as a concentration. Associations were weaker when they were analyzed as the total 24-h production. CONCLUSIONS Preschool children from the Western Highlands of Guatemala show strong correlations between hydration status measured through the use of Uosm and biomarkers of oxidative stress in urine. Thus, a relatively superior hydration status is associated with a quantitative reduction in urinary excretion of systemic oxidation products. This trial was registered at clinicaltrials.gov as NCT02203890.
Collapse
Affiliation(s)
- María J Soto-Méndez
- Center for the Studies of Sensory Impairment, Aging, and Metabolism, Guatemala City, Guatemala
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center for Biomedical Research, University of Granada, Granada, Spain; and
| | - Laura Campaña-Martín
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center for Biomedical Research, University of Granada, Granada, Spain; and
| | - Victoria Martín-Laguna
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center for Biomedical Research, University of Granada, Granada, Spain; and
| | - Klaus Schümann
- Molecular Nutrition Unit, Central Institute for Nutrition and Food Research, Research Center for Nutrition and Food Science, Technical University of Munich, Freising, Germany
| | - Noel W Solomons
- Center for the Studies of Sensory Impairment, Aging, and Metabolism, Guatemala City, Guatemala;
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center for Biomedical Research, University of Granada, Granada, Spain; and
| |
Collapse
|
88
|
Farzaei MH, Rahimi R, Farzaei F, Abdollahi M. Traditional Medicinal Herbs for the Management of Diabetes and its Complications: An Evidence-Based Review. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.874.887] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
89
|
Flavonoid-rich Chardonnay grape seed flour supplementation ameliorates diet-induced visceral adiposity, insulin resistance, and glucose intolerance via altered adipose tissue gene expression. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
90
|
Tappy L, Lê KA. Health effects of fructose and fructose-containing caloric sweeteners: where do we stand 10 years after the initial whistle blowings? Curr Diab Rep 2015; 15:54. [PMID: 26104800 PMCID: PMC4477723 DOI: 10.1007/s11892-015-0627-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Suspicion that fructose-containing caloric sweeteners (FCCS) may play a causal role in the development of metabolic diseases has elicited intense basic and clinical research over the past 10 years. Prospective cohort studies converge to indicate that FCCS, and more specifically sugar-sweetened beverages (SSBs), consumption is associated with weight gain over time. Intervention studies in which FCCS or SSB consumption is altered while food intake is otherwise left ad libitum indicate that increased FCCS generally increases total energy intake and body weight, while FCCS reduction decreases body weight gain. Clinical trials assessing the effects of SSB reduction as a sole intervention however fail to observe clinically significant weight loss. Many mechanistic studies indicate that excess FCCS can cause potential adverse metabolic effects. Whether this is associated with a long-term risk remains unknown. Scientific evidence that excess FCCS intake causes more deleterious effects to health than excess of other macronutrients is presently lacking. However, the large consumption of FCCS in the population makes it one out of several targets for the treatment and prevention of metabolic diseases.
Collapse
Affiliation(s)
- Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland,
| | | |
Collapse
|
91
|
Grape polyphenols supplementation reduces muscle atrophy in a mouse model of chronic inflammation. Nutrition 2015; 31:1275-83. [PMID: 26333892 DOI: 10.1016/j.nut.2015.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Polyphenols (PP) have demonstrated beneficial effects on low-grade inflammation and oxidative stress; however, little is known about their effect on highly inflamed muscle. The purposes of this study were (i) to evaluate muscle alteration induced by high-grade inflammation, and (ii) to test the effects of red grape PP supplementation on these alterations. METHODS We used a transgenic mice model (transforming growth factor [TGF] mice) to develop a high T cell-dependent inflammation and C57 BL/6 control (CTL) mice model. Skeletal muscles of TGF and CTL mice were investigated for inflammation, atrophy and oxidative stress markers. Isolated mitochondria from hindlimb muscles were used for respiration with pyruvate as substrate and oxidative damages were measured by Western blot. TGF mice were supplemented with a mixture of red grape polyphenols (50 mg/kg/d) for 4 wk. Data were analyzed by one-way analysis of variance (ANOVA) and post hoc Bonferroni's multiple comparison tests. RESULTS TGF mice presented skeletal muscle inflammation, oxidative stress, mitochondrial alteration and muscle atrophy. Atrophy was associated with two distinct pathways: (i) one linked to inflammation, NF-κB activation and increased ubiquitin ligase expression, and (ii) one dependent on reactive oxygen species (ROS) production leading to damaged mitochondria accumulation and activation of caspase-9 and 3. Supplementation of TGF mice with a mixture of red grape polyphenols (50 mg/kg/d) for 4 wk improved mitochondrial function and highly decreased caspases activation, which allowed muscle atrophy mitigation. CONCLUSIONS These observations suggest that nutritional dosages of red grape polyphenols might be beneficial for reducing skeletal muscle atrophy, even in a high-grade inflammation environment.
Collapse
|
92
|
Cardiac H2S Generation Is Reduced in Ageing Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:758358. [PMID: 26078817 PMCID: PMC4442299 DOI: 10.1155/2015/758358] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/18/2022]
Abstract
Aims. To examine whether hydrogen sulfide (H2S) generation changed in ageing diabetic mouse hearts. Results. Compared to mice that were fed tap water only, mice that were fed 30% fructose solution for 15 months exhibited typical characteristics of a severe diabetic phenotype with cardiac hypertrophy, fibrosis, and dysfunction. H2S levels in plasma, heart tissues, and urine were significantly reduced in these mice as compared to those in controls. The expression of the H2S-generating enzymes, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase, was significantly decreased in the hearts of fructose-fed mice, whereas cystathionine-β-synthase levels were significantly increased. Conclusion. Our results suggest that this ageing diabetic mouse model developed diabetic cardiomyopathy and that H2S levels were reduced in the diabetic heart due to alterations in three H2S-producing enzymes, which may be involved in the pathogenesis of diabetic cardiomyopathy.
Collapse
|
93
|
Dong Y, Gao G, Fan H, Li S, Li X, Liu W. Activation of the Liver X Receptor by Agonist TO901317 Improves Hepatic Insulin Resistance via Suppressing Reactive Oxygen Species and JNK Pathway. PLoS One 2015; 10:e0124778. [PMID: 25909991 PMCID: PMC4409387 DOI: 10.1371/journal.pone.0124778] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/03/2015] [Indexed: 12/19/2022] Open
Abstract
Activation of Liver X receptors (LXRs), key transcriptional regulators of glucose metabolism, normalizes glycemia and improves insulin sensitivity in rodent models with insulin resistance. However, the molecular mechanism is unclear. This study is aimed to elucidate the mechanism of LXRs-mediated liver glucose metabolic regulation in vitro and in vivo. Db/db mice were used as an in vivo model of diabetes; palmitate (PA)-stimulated HepG2 cells were used as an in vitro cell model with impairment of insulin signaling. TO901317 (TO) was chosen as the LXRs agonist. We demonstrated that TO treatment for 14 days potently improved the hepatic glucose metabolism in db/db mice, including fasting blood glucose, fasting insulin level, and HOMA-IR. TO had no effect on the glucose metabolism in normal WT mice. TO-mediated activation of hepatic LXRs led to strong inhibition of ROS production accompanied by inactivation of JNK pathway and re-activation of Akt pathway. TO also suppressed the expression of gluconeogenic genes such as PEPCK and G-6-pase in db/db mice, but not in WT mice. In HepG2 cells, TO almost completely restored PA-induced Akt inactivation, and suppressed PA-stimulated ROS production and JNK activation. Interestingly, basal level of ROS was also inhibited by TO in HepG2 cells. TO significantly inhibited PA-stimulated expressions of gluconeogenic genes. Finally, we found that anti-oxidative genes, such as Nrf2, were up-regulated after LXRs activation by TO. These results strongly support the notion that activation of LXRs is critical in suppression of liver gluconeogenesis and improvement of insulin sensitivity in diabetic individuals. At molecular levels, the mode of action appears to be as fellows: under diabetic condition, ROS production is increased, JNK is activated, and Akt activity is inhibited; TO-mediated LXR activation potently inhibits ROS production, increases anti-oxidative gene expressions, suppresses JNK activation, and restores Akt activity. Our data provide new evidence to support LXRs as promising therapeutic targets for anti-diabetic drug development.
Collapse
Affiliation(s)
- Ying Dong
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Guirong Gao
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongyan Fan
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shengxian Li
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuhang Li
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine, Baltimore, United States of America
- * E-mail: (WL); (XL)
| | - Wei Liu
- Department of Endocrinology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- * E-mail: (WL); (XL)
| |
Collapse
|
94
|
Rieusset J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles? DIABETES & METABOLISM 2015; 41:358-68. [PMID: 25797073 DOI: 10.1016/j.diabet.2015.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/07/2015] [Accepted: 02/01/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria and the endoplasmic reticulum (ER) regulate numerous cellular processes, and are critical contributors to cellular and whole-body homoeostasis. More important, mitochondrial dysfunction and ER stress are both closely associated with hepatic and skeletal muscle insulin resistance, thereby playing crucial roles in altered glucose homoeostasis in type 2 diabetes mellitus (T2DM). The accumulated evidence also suggests a potential interrelationship between alterations in both types of organelles, as mitochondrial dysfunction could participate in activation of the unfolded protein response, whereas ER stress could influence mitochondrial function. The fact that mitochondria and the ER are physically and functionally interconnected via mitochondria-associated membranes (MAMs) supports their interrelated roles in the pathophysiology of T2DM. However, the mechanisms that coordinate the interplay between mitochondrial dysfunction and ER stress, and its relevance to the control of glucose homoeostasis, are still unknown. This review evaluates the involvement of mitochondria and ER independently in the development of peripheral insulin resistance, as well as their potential roles in the disruption of organelle crosstalk at MAM interfaces in the alteration of insulin signalling.
Collapse
Affiliation(s)
- J Rieusset
- INSERM UMR-1060, CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Rockefeller and Charles-Merieux Lyon-Sud medical Universities, 69003 Lyon, France; Endocrinology, diabetology and nutrition service, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France.
| |
Collapse
|
95
|
Di Lorenzo C, Sousa LPD, Pastor RF, Colombo F, Frigerio G, Restani P. Beneficial effects of non-alcoholic grape-derived products on human health: A literature review. BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150504002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
96
|
Prabhakar P, Reeta KH, Maulik SK, Dinda AK, Gupta YK. Protective effect of thymoquinone against high-fructose diet-induced metabolic syndrome in rats. Eur J Nutr 2014; 54:1117-27. [DOI: 10.1007/s00394-014-0788-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/14/2014] [Indexed: 01/18/2023]
|
97
|
HO-1 Upregulation Attenuates Adipocyte Dysfunction, Obesity, and Isoprostane Levels in Mice Fed High Fructose Diets. J Nutr Metab 2014; 2014:980547. [PMID: 25295182 PMCID: PMC4175747 DOI: 10.1155/2014/980547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022] Open
Abstract
Background. Fructose metabolism is an unregulated metabolic pathway and excessive fructose consumption is known to activate ROS. HO-1 is a potent antioxidant gene that plays a key role in decreasing ROS and isoprostanes. We examined whether the fructose-mediated increase in adipocyte dysfunction involves an increase in isoprostanes and that pharmacological induction of HO-1 would decrease both isoprostane levels and adipogenesis. Methods and Results. We examined the effect of fructose, on adipogenesis in human MSCs in the presence and absence of CoPP, an inducer of HO-1. Fructose increased adipogenesis and the number of large lipid droplets while decreasing the number of small lipid droplets (P < 0.05). Levels of heme and isoprostane in fructose treated MSC-derived adipocytes were increased. CoPP reversed these effects and markedly increased HO-1 and the Wnt signaling pathway. The high fructose diet increased heme levels in adipose tissue and increased circulating isoprostane levels (P < 0.05 versus control). Fructose diets decreased HO-1 and adiponectin levels in adipose tissue. Induction of HO-1 by CoPP decreased isoprostane synthesis (P < 0.05 versus fructose). Conclusion. Fructose treatment resulted in increased isoprostane production and adipocyte dysfunction, which was reversed by the increased expression of HO-1.
Collapse
|
98
|
Li S, Chen G, Zhang C, Wu M, Wu S, Liu Q. Research progress of natural antioxidants in foods for the treatment of diseases. FOOD SCIENCE AND HUMAN WELLNESS 2014. [DOI: 10.1016/j.fshw.2014.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
99
|
Sloboda DM, Li M, Patel R, Clayton ZE, Yap C, Vickers MH. Early life exposure to fructose and offspring phenotype: implications for long term metabolic homeostasis. J Obes 2014; 2014:203474. [PMID: 24864200 PMCID: PMC4017842 DOI: 10.1155/2014/203474] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 03/03/2014] [Indexed: 11/17/2022] Open
Abstract
The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities-implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies.
Collapse
Affiliation(s)
- Deborah M. Sloboda
- The Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, HSC 4H30A, Hamilton, ON, Canada L8S 4K1
| | - Minglan Li
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Rachna Patel
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Zoe E. Clayton
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Cassandra Yap
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| | - Mark H. Vickers
- The Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
100
|
Sri Harsha PSC, Lavelli V, Scarafoni A. Protective ability of phenolics from white grape vinification by-products against structural damage of bovine serum albumin induced by glycation. Food Chem 2014; 156:220-6. [PMID: 24629961 DOI: 10.1016/j.foodchem.2014.01.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/17/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Grape skins recovered from white grape vinification processes were studied as possible anti-glycation agents. Total phenolics were characterised by the Folin Ciocalteu assay, proanthocyanidins by depolymerisation with n-butanol/HCl, flavonols by HPLC-DAD, reducing capacity by ferric ion reducing antioxidant power assay (FRAP) and anti-glycation activity by a bovine serum albumin (BSA)/fructose model system. Structural modifications of BSA were investigated by 2D isoelectric focusing sodium dodecyl sulfate polyacrylamide gel electrophoresis (IEF/SDS-PAGE) and fluorescence measurements. Both pI and Mr. of BSA were modified upon glycation reaction. These changes attributable to the involvement of free amino groups in Maillard-type reactions were inhibited by the white grape skin extracts. The anti-glycation activity ranged between 250 and 711mmol aminoguanidine Eq/kg. These results raise the interest in the potential health benefits of by-products of white grape vinification that could have a secondary use as an ingredient for new functional foods targeting wellbeing of diabetic and elderly people.
Collapse
Affiliation(s)
- P S C Sri Harsha
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - V Lavelli
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | - A Scarafoni
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| |
Collapse
|