51
|
D’Orso I, Forst CV. Mathematical Models of HIV-1 Dynamics, Transcription, and Latency. Viruses 2023; 15:2119. [PMID: 37896896 PMCID: PMC10612035 DOI: 10.3390/v15102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
HIV-1 latency is a major barrier to curing infections with antiretroviral therapy and, consequently, to eliminating the disease globally. The establishment, maintenance, and potential clearance of latent infection are complex dynamic processes and can be best described with the help of mathematical models followed by experimental validation. Here, we review the use of viral dynamics models for HIV-1, with a focus on applications to the latent reservoir. Such models have been used to explain the multi-phasic decay of viral load during antiretroviral therapy, the early seeding of the latent reservoir during acute infection and the limited inflow during treatment, the dynamics of viral blips, and the phenomenon of post-treatment control. Finally, we discuss that mathematical models have been used to predict the efficacy of potential HIV-1 cure strategies, such as latency-reversing agents, early treatment initiation, or gene therapies, and to provide guidance for designing trials of these novel interventions.
Collapse
Affiliation(s)
- Iván D’Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Christian V. Forst
- Department of Genetics and Genomic Sciences, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
52
|
Torices S, Daire L, Simon S, Naranjo O, Mendoza L, Teglas T, Fattakhov N, Adesse D, Toborek M. Occludin: a gatekeeper of brain Infection by HIV-1. Fluids Barriers CNS 2023; 20:73. [PMID: 37840143 PMCID: PMC10577960 DOI: 10.1186/s12987-023-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Compromised structure and function of the blood-brain barrier (BBB) is one of the pathological hallmarks of brain infection by HIV-1. BBB damage during HIV-1 infection has been associated with modified expression of tight junction (TJ) proteins, including occludin. Recent evidence indicated occludin as a redox-sensitive, multifunctional protein that can act as both an NADH oxidase and influence cellular metabolism through AMPK kinase. One of the newly identified functions of occludin is its involvement in regulating HIV-1 infection. Studies suggest that occludin expression levels and the rate of HIV-1 infection share a reverse, bidirectional relationship; however, the mechanisms of this relationship are unclear. In this review, we describe the pathways involved in the regulation of HIV-1 infection by occludin. We propose that occludin may serve as a potential therapeutic target to control HIV-1 infection and to improve the lives of people living with HIV-1.
Collapse
Affiliation(s)
- Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Leah Daire
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Sierra Simon
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Luisa Mendoza
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
| | - Daniel Adesse
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street Miami, Miami, FL, 11336, USA.
| |
Collapse
|
53
|
McLaurin KA, Li H, Khalili K, Mactutus CF, Booze RM. HIV-1 mRNA Knockdown with CRISPR/Cas9 Enhances Neurocognitive Function. RESEARCH SQUARE 2023:rs.3.rs-3266933. [PMID: 37886577 PMCID: PMC10602171 DOI: 10.21203/rs.3.rs-3266933/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 mRNA from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 μL) of CRISPR/Cas9 for 72 hours. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n=5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the mPFC. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1 associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 partially restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.
Collapse
|
54
|
Chow FC, Mundada NS, Abohashem S, La Joie R, Iaccarino L, Arechiga VM, Swaminathan S, Rabinovici GD, Epel ES, Tawakol A, Hsue PY. Psychological stress is associated with arterial inflammation in people living with treated HIV infection. Brain Behav Immun 2023; 113:21-28. [PMID: 37369339 DOI: 10.1016/j.bbi.2023.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Stress and depression are increasingly recognized as cerebrovascular risk factors, including among high stress populations such as people living with HIV infection (PLWH). Stress may contribute to stroke risk through activation of neural inflammatory pathways. In this cross-sectional study, we examined the relationships between stress, systemic and arterial inflammation, and metabolic activity in stress-related brain regions on 18F-fluorodeoxyglucose (FDG)-PET in PLWH. Participants were recruited from a parent trial evaluating the impact of alirocumab on radiologic markers of cardiovascular risk in people with treated HIV infection. We administered a stress battery to assess different forms of psychological stress, specifying the Perceived Stress Scale as the primary stress measure, and quantified plasma markers of inflammation and immune activation. Participants underwent FDG-PET of the brain, neck, and chest. Age- and sex-matched control participants without HIV infection were selected for brain FDG-PET comparisons. Among PLWH, we used nonparametric pairwise correlations, partial correlations, and linear regression to investigate the association between stress and 1) systemic inflammation; 2) atherosclerotic inflammation on FDG-PET; and metabolic activity in 3) brain regions in which glucose metabolism differed significantly by HIV serostatus; and 4) in a priori defined stress-responsive regions of interest (ROI) and stress-related neural network activity (i.e., ratio of amygdala to ventromedial prefrontal cortex or temporal lobe activity). We studied 37 PLWH (mean age 60 years, 97% men) and 29 control participants without HIV (mean age 62 years, 97% men). Among PLWH, stress was significantly correlated with systemic inflammation (r = 0.33, p = 0.041) and arterial inflammation in the carotid (r = 0.41, p = 0.023) independent of age, race/ethnicity, traditional vascular risk factors and health-related behaviors. In voxel-wise analyses, metabolic activity in a cluster corresponding to the anterior medial temporal lobes, including the bilateral amygdalae, was significantly lower in PLWH compared with controls. However, we did not find a significant positive relationship between stress and this cluster of decreased metabolic activity in PLWH, a priori defined stress-responsive ROI, or stress-related neural network activity. In conclusion, psychological stress was associated with systemic and carotid arterial inflammation in this group of PLWH with treated infection. These data provide preliminary evidence for a link between psychological stress, inflammation, and atherosclerosis as potential drivers of excess cerebrovascular risk among PLWH.
Collapse
Affiliation(s)
- Felicia C Chow
- Departments of Neurology and Medicine (Infectious Diseases) and Weill Institute for Neurosciences, University of California, San Francisco, USA.
| | - Nidhi S Mundada
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Victor M Arechiga
- Department of Medicine (Cardiology), University of California, San Francisco, USA
| | - Shreya Swaminathan
- Department of Medicine (Cardiology), University of California, San Francisco, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Medicine (Cardiology), Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Priscilla Y Hsue
- Department of Medicine (Cardiology), University of California, San Francisco, USA
| |
Collapse
|
55
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
56
|
Cui BC, Aksenova M, Sikirzhytskaya A, Odhiambo D, Korunova E, Sikirzhytski V, Ji H, Altomare D, Broude E, Frizzell N, Booze R, Wyatt MD, Shtutman M. Suppression of HIV and cocaine-induced neurotoxicity and inflammation by cell penetrable itaconate esters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559154. [PMID: 37808776 PMCID: PMC10557618 DOI: 10.1101/2023.09.25.559154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1β, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.
Collapse
Affiliation(s)
- B. Celia Cui
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Marina Aksenova
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Aliaksandra Sikirzhytskaya
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Diana Odhiambo
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Elizaveta Korunova
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Vitali Sikirzhytski
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Eugenia Broude
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Rosemarie Booze
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Michael D. Wyatt
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
57
|
Singh S, Thangaraj A, Chivero ET, Guo ML, Periyasamy P, Buch S. Role of Dysregulated Autophagy in HIV Tat, Cocaine, and cART Mediated NLRP3 Activation in Microglia. J Neuroimmune Pharmacol 2023; 18:327-347. [PMID: 37148425 PMCID: PMC10729649 DOI: 10.1007/s11481-023-10063-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/05/2023] [Indexed: 05/08/2023]
Abstract
Despite the ability of combination antiretroviral therapy (cART) to suppress viremia, there is persistence low levels of HIV proteins such as Transactivator of transcription (Tat) in the central nervous system (CNS), contributing to glial activation and neuroinflammation. Accumulating evidence also implicates the role of drugs of abuse in exacerbating neurological complications associated with HIV-1. The combined effects of HIV Tat, drugs of abuse, and cART can thus create a toxic milieu in the CNS. The present study investigated the combinatorial effects of HIV-Tat, cocaine, and cART on autophagy and NLRP3 inflammasome activation. We selected a combination of three commonly used cART regimens: tenofovir, emtricitabine, and dolutegravir. Our results demonstrated that exposure of mouse primary microglia (MPMs) to these agents-HIV Tat (25 ng/ml), cocaine (1 μM), and cART (1 μM each) resulted in upregulation of autophagy markers: Beclin1, LC3B-II, and SQSTM1 with impaired lysosomal functioning involving increased lysosomal pH, decreased LAMP2 and cathepsin D, ultimately leading to dysregulated autophagy. Our findings also demonstrated activation of the NLRP3 signaling in microglia exposed to these agents. We further demonstrated that gene silencing of key autophagy protein BECN1 significantly blocked NLRP3-mediated activation of microglia. Silencing of NLRP3, however, failed to block HIV Tat, cocaine, and cART-mediated dysregulation of the autophagy-lysosomal axis; these in vitro phenomena were also validated in vivo using iTat mice administered cocaine and cART. This study thus underscores the cooperative effects of HIV Tat, cocaine, and cART in exacerbating microglial activation involving dysregulated autophagy and activation of the NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Psychology, University of Nebraska Omaha, Omaha, NE, 68182-0001, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
58
|
Jamal I, Paudel A, Thompson L, Abdelmalek M, Khan IA, Singh VB. Sulforaphane prevents the reactivation of HIV-1 by suppressing NFκB signaling. J Virus Erad 2023; 9:100341. [PMID: 37663574 PMCID: PMC10469555 DOI: 10.1016/j.jve.2023.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Despite more than 20 years of combination antiretroviral therapy (cART), complete eradication of HIV remains a daunting task. While cART has been very effective in limiting new cycles of infection and keeping viral load below detectable levels with partial restoration of immune functions, it cannot provide a cure. Evidently, the interruption of cART leads to a quick rebound of the viral load within a few weeks. These consistent observations have revealed HIV ability to persist as an undetectable latent reservoir in a variety of tissues that remain insensitive to antiretroviral therapies. The 'Block-and-Lock' approach to drive latent cells into deep latency has emerged as a viable strategy to achieve a functional cure. It entails the development of latency-promoting agents with anti-HIV functions. Recent reports have suggested sulforaphane (SFN), an inducer of NRF-2 (nuclear erythroid 2-related factor 2)-mediated antioxidative signaling, to possess anti-HIV properties by restricting HIV replication at the early stages. However, the effect of SFN on the expression of integrated provirus remains unexplored. We have hypothesized that SFN may promote latency and prevent reactivation. Our results indicate that SFN can render latently infected monocytes and CD4+ T cells resistant to reactivation. SFN treatments antagonized the effects of known latency reactivating agents, tumor necrosis pactor (TNF-α), and phorbol 12-myristate 13-acetate (PMA), and caused a significant reduction in HIV transcription, viral RNA copies, and p24 levels. Furthermore, this block of reactivation was found to be mediated by SFN-induced NRF-2 signaling that specifically decreased the activation of NFκB signaling and thus restricted the HIV-1 promoter (5'LTR) activity. Overall, our study provides compelling evidence to highlight the latency-promoting potential of SFN which could be used in the 'Block-and-Lock' approach to achieve an HIV cure.
Collapse
Affiliation(s)
- Imran Jamal
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Anisha Paudel
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Landon Thompson
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Michel Abdelmalek
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Irfan A. Khan
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| | - Vir B. Singh
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, 12208, USA
| |
Collapse
|
59
|
Liu X, Tang SJ. Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain. Mol Psychiatry 2023; 28:3613-3624. [PMID: 37857809 DOI: 10.1038/s41380-023-02294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Chronic pain is a prevalent neurological complication among individuals living with human immunodeficiency virus (PLHIV) in the post-combination antiretroviral therapy (cART) era. These individuals experience malfunction in various cellular and molecular pathways involved in pain transmission and modulation, including the neuropathology of the peripheral sensory neurons and neurodegeneration and neuroinflammation in the spinal dorsal horn. However, the underlying etiologies and mechanisms leading to pain pathogenesis are complex and not fully understood. In this review, we aim to summarize recent progress in this field. Specifically, we will begin by examining neuropathology in the pain pathways identified in PLHIV and discussing potential causes, including those directly related to HIV-1 infection and comorbidities, such as antiretroviral drug use. We will also explore findings from animal models that may provide insights into the molecular and cellular processes contributing to neuropathology and chronic pain associated with HIV infection. Emerging evidence suggests that viral proteins and/or antiretroviral drugs trigger a complex pathological cascade involving neurons, glia, and potentially non-neural cells, and that interactions between these cells play a critical role in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA.
| |
Collapse
|
60
|
Sun W, Rassadkina Y, Gao C, Collens SI, Lian X, Solomon IH, Mukerji S, Yu XG, Lichterfeld M. Persistence of intact HIV-1 proviruses in the brain during antiretroviral therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546135. [PMID: 37425847 PMCID: PMC10327102 DOI: 10.1101/2023.06.26.546135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
HIV-1 reservoir cells that circulate in peripheral blood during suppressive antiretroviral therapy (ART) have been well characterized, but little is known about the dissemination of HIV-1-infected cells across multiple anatomical tissues, especially the central nervous system (CNS). Here, we performed single-genome, near full-length HIV-1 next-generation sequencing to evaluate the proviral landscape in distinct anatomical compartments, including multiple CNS tissues, from 3 ART-treated participants at autopsy. While lymph nodes and, to a lesser extent, gastrointestinal and genitourinary tissues represented tissue hotspots for the persistence of intact proviruses, we also observed intact proviruses in CNS tissue sections, particularly in the basal ganglia. Multi-compartment dissemination of clonal intact and defective proviral sequences occurred across multiple anatomical tissues, including the CNS, and evidence for the clonal proliferation of HIV-1-infected cells was found in the basal ganglia, in the frontal lobe, in the thalamus and in periventricular white matter. Deep analysis of HIV-1 reservoirs in distinct tissues will be informative for advancing HIV-1 cure strategies.
Collapse
Affiliation(s)
- Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| | | | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Shibani Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
61
|
Podgorski RM, Robinson JA, Smith MD, Mallick S, Zhao H, Veazey RS, Kolson DL, Bar KJ, Burdo TH. Transmitted/founder SHIV.D replicates in the brain, causes neuropathogenesis, and persists on combination antiretroviral therapy in rhesus macaques. Retrovirology 2023; 20:13. [PMID: 37563642 PMCID: PMC10413509 DOI: 10.1186/s12977-023-00628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
A biologically relevant non-human primate (NHP) model of HIV persistence in the central nervous system (CNS) is necessary. Most current NHP/SIV models of HIV infection fail to recapitulate viral persistence in the CNS without encephalitis or fail to employ viruses that authentically represent the ongoing HIV-1 pandemic. Here, we demonstrate viral replication in the brain and neuropathogenesis after combination antiretroviral therapy (ART) in rhesus macaques (RMs) using novel macrophage-tropic transmitted/founder (TF) simian-human immunodeficiency virus SHIV.D.191,859 (SHIV.D). Quantitative immunohistochemistry (IHC) and DNA/RNAscope in situ hybridization (ISH) were performed on three brain regions from six SHIV.D-infected RMs; two necropsied while viremic, two during analytical treatment interruptions, and two on suppressive ART. We demonstrated myeloid-mediated neuroinflammation, viral replication, and proviral DNA in the brain in all animals. These results demonstrate that TF SHIV.D models native HIV-1 CNS replication, pathogenesis, and persistence on ART in rhesus macaques.
Collapse
Affiliation(s)
- Rachel M Podgorski
- Center for NeuroVirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jake A Robinson
- Center for NeuroVirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mandy D Smith
- Center for NeuroVirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Suvadip Mallick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane School of Medicine, Covington, LA, USA
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharine J Bar
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tricia H Burdo
- Center for NeuroVirology and Gene Editing, Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
62
|
Sfera A, Rahman L, Zapata-Martín Del Campo CM, Kozlakidis Z. Long COVID as a Tauopathy: Of "Brain Fog" and "Fusogen Storms". Int J Mol Sci 2023; 24:12648. [PMID: 37628830 PMCID: PMC10454863 DOI: 10.3390/ijms241612648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Long COVID, also called post-acute sequelae of SARS-CoV-2, is characterized by a multitude of lingering symptoms, including impaired cognition, that can last for many months. This symptom, often called "brain fog", affects the life quality of numerous individuals, increasing medical complications as well as healthcare expenditures. The etiopathogenesis of SARS-CoV-2-induced cognitive deficit is unclear, but the most likely cause is chronic inflammation maintained by a viral remnant thriving in select body reservoirs. These viral sanctuaries are likely comprised of fused, senescent cells, including microglia and astrocytes, that the pathogen can convert into neurotoxic phenotypes. Moreover, as the enteric nervous system contains neurons and glia, the virus likely lingers in the gastrointestinal tract as well, accounting for the intestinal symptoms of long COVID. Fusogens are proteins that can overcome the repulsive forces between cell membranes, allowing the virus to coalesce with host cells and enter the cytoplasm. In the intracellular compartment, the pathogen hijacks the actin cytoskeleton, fusing host cells with each other and engendering pathological syncytia. Cell-cell fusion enables the virus to infect the healthy neighboring cells. We surmise that syncytia formation drives cognitive impairment by facilitating the "seeding" of hyperphosphorylated Tau, documented in COVID-19. In our previous work, we hypothesized that the SARS-CoV-2 virus induces premature endothelial senescence, increasing the permeability of the intestinal and blood-brain barrier. This enables the migration of gastrointestinal tract microbes and/or their components into the host circulation, eventually reaching the brain where they may induce cognitive dysfunction. For example, translocated lipopolysaccharides or microbial DNA can induce Tau hyperphosphorylation, likely accounting for memory problems. In this perspective article, we examine the pathogenetic mechanisms and potential biomarkers of long COVID, including microbial cell-free DNA, interleukin 22, and phosphorylated Tau, as well as the beneficial effect of transcutaneous vagal nerve stimulation.
Collapse
Affiliation(s)
- Adonis Sfera
- Paton State Hospital, 3102 Highland Ave, Patton, CA 92369, USA
- School of Behavioral Health, Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
- Department of Psychiatry, University of California, Riverside 900 University Ave, Riverside, CA 92521, USA
| | - Leah Rahman
- Department of Neuroscience, University of Oregon, 222 Huestis Hall, Eugene, OR 97401, USA
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France
| |
Collapse
|
63
|
Godse S, Zhou L, Sinha N, Kodidela S, Kumar A, Singh UP, Kumar S. Curcumin enhances elvitegravir concentration and alleviates oxidative stress and inflammatory response. RESEARCH SQUARE 2023:rs.3.rs-3225072. [PMID: 37609211 PMCID: PMC10441462 DOI: 10.21203/rs.3.rs-3225072/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this study, we investigated the potential of using curcumin (CUR) as an adjuvant to enhance the delivery of antiretroviral drug elvitegravir (EVG) across the BBB, and alleviate oxidative stress and inflammatory response, which are the major hallmark of HIV neuropathogenesis. In a mouse model, we compared the biodistribution of EVG alone and in combination with CUR using intraperitoneal (IP) and intranasal (IN) routes. IN administration showed a significantly higher accumulation of EVG in the brain, while both IP and IN routes led to increased EVG levels in the lungs and liver. The addition of CUR further enhanced EVG brain delivery, especially when administered via the IN route. The expression of neural marker proteins, synaptophysin, L1CAM, NeuN, and GFAP was not significantly altered by EVG or CUR alone or their combination, indicating preserved neural homeostasis. After establishing improved brain concentration and safety of CUR-adjuvanted EVG in mice in acute treatment, we studied the effect of this treatment in HIV-infected U1 macrophages. In U1 macrophages, we also observed that the addition of CUR enhanced the intracellular concentration of EVG. The total area under the curve (AUCtot) for EVG was significantly higher in the presence of CUR. We also evaluated the effects of CUR on oxidative stress and antioxidant capacity in EVG-treated U1 macrophages. CUR reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) levels and elevated antioxidant enzyme expression. Furthermore, the combination of CUR and EVG exhibited a significant reduction in proinflammatory cytokines (TNFα, IL-1β, IL-18) and chemokines (RANTES, MCP-1) in U1 macrophages. Additionally, western blot analysis confirmed the decreased expression of IL-1β and TNF-α in EVG + CUR-treated cells. These findings suggest the potential of CUR to enhance EVG permeability to the brain and subsequent efficacy of EVG, including HIV neuropathogenesis.
Collapse
Affiliation(s)
- Sandip Godse
- The University of Tennessee Health Science Center
| | - Lina Zhou
- The University of Tennessee Health Science Center
| | - Namita Sinha
- The University of Tennessee Health Science Center
| | | | - Asit Kumar
- The University of Tennessee Health Science Center
| | - Udai P Singh
- The University of Tennessee Health Science Center
| | | |
Collapse
|
64
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
65
|
Gao L, Sun W, Zhang D, Shang Y, Li L, Tao W, Zhang L, Liu H. HIV-1 subtype B Tat enhances NOTCH3 signaling in astrocytes to mediate oxidative stress, inflammatory response, and neuronal apoptosis. J Neurovirol 2023; 29:479-491. [PMID: 37358698 DOI: 10.1007/s13365-023-01151-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
NOTCH receptors are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of NOTCH receptors in HIV-associated neurocognitive disorder (HAND) remain largely unclear. Transactivator of transcription (Tat) induces oxidative stress and inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. We determined that NOTCH3 expression was upregulated during subtype B or C Tat expression in HEB astroglial cells. Moreover, bioinformatics analysis of the Gene Expression Omnibus (GEO) dataset revealed that NOTCH3 mRNA expression in the frontal cortex tissues of HIV encephalitis patients was higher than that of HIV control patients. Of note, subtype B Tat, rather than subtype C Tat, interacted with the extracellular domain of the NOTCH3 receptor, thus activating NOTCH3 signaling. Downregulation of NOTCH3 attenuated subtype B Tat-induced oxidative stress and reactive oxygen species generation. In addition, we demonstrated that NOTCH3 signaling facilitated subtype B Tat-activated NF-κB signaling pathway, thereby mediating pro-inflammatory cytokines IL-6 and TNF-α production. Furthermore, downregulation of NOTCH3 in HEB astroglial cells protected SH-SY5Y neuronal cells from astrocyte-mediated subtype B Tat neurotoxicity. Taken together, our study clarifies the potential role of NOTCH3 in subtype B Tat-induced oxidative stress and inflammatory response in astrocytes, which could be a novel therapeutic target for the relief of HAND.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Weixi Sun
- Disease Prevention and Control Center of Chongchuan District, Nantong, 226000, People's Republic of China
- Health Commission of Chongchuan District, Nantong, 226000, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Yanxing Shang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Li Li
- Department of Pathology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Lei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China.
| | - Hongbin Liu
- Department of Pathology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China.
| |
Collapse
|
66
|
Campbell GR, Rawat P, To RK, Spector SA. HIV-1 Tat Upregulates TREM1 Expression in Human Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:429-442. [PMID: 37326481 PMCID: PMC10352590 DOI: 10.4049/jimmunol.2300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Because microglia are a reservoir for HIV and are resistant to the cytopathic effects of HIV infection, they are a roadblock for any HIV cure strategy. We have previously identified that triggering receptor expressed on myeloid cells 1 (TREM1) plays a key role in human macrophage resistance to HIV-mediated cytopathogenesis. In this article, we show that HIV-infected human microglia express increased levels of TREM1 and are resistant to HIV-induced apoptosis. Moreover, upon genetic inhibition of TREM1, HIV-infected microglia undergo cell death in the absence of increased viral or proinflammatory cytokine expression or the targeting of uninfected cells. We also show that the expression of TREM1 is mediated by HIV Tat through a TLR4, TICAM1, PG-endoperoxide synthase 2, PGE synthase, and PGE2-dependent manner. These findings highlight the potential of TREM1 as a therapeutic target to eradicate HIV-infected microglia without inducing a proinflammatory response.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rachel K. To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| |
Collapse
|
67
|
Deshetty UM, Ray S, Singh S, Buch S, Periyasamy P. Opioid abuse and SIV infection in non-human primates. J Neurovirol 2023; 29:377-388. [PMID: 37418108 PMCID: PMC10729652 DOI: 10.1007/s13365-023-01153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Human immunodeficiency virus (HIV) and drug abuse are intertwined epidemics, leading to compromised adherence to combined antiretroviral therapy (cART) and exacerbation of NeuroHIV. As opioid abuse causes increased viral replication and load, leading to a further compromised immune system in people living with HIV (PLWH), it is paramount to address this comorbidity to reduce the NeuroHIV pathogenesis. Non-human primates are well-suited models to study mechanisms involved in HIV neuropathogenesis and provide a better understanding of the underlying mechanisms involved in the comorbidity of HIV and drug abuse, leading to the development of more effective treatments for PLWH. Additionally, using broader behavioral tests in these models can mimic mild NeuroHIV and aid in studying other neurocognitive diseases without encephalitis. The simian immunodeficiency virus (SIV)-infected rhesus macaque model is instrumental in studying the effects of opioid abuse on PLWH due to its similarity to HIV infection. The review highlights the importance of using non-human primate models to study the comorbidity of opioid abuse and HIV infection. It also emphasizes the need to consider modifiable risk factors such as gut homeostasis and pulmonary pathogenesis associated with SIV infection and opioid abuse in this model. Moreover, the review suggests that these non-human primate models can also be used in developing effective treatment strategies for NeuroHIV and opioid addiction. Therefore, non-human primate models can significantly contribute to understanding the complex interplay between HIV infection, opioid abuse, and associated comorbidities.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
68
|
Li H, McLaurin KA, Mactutus CF, Booze RM. Microglia proliferation underlies synaptic dysfunction in the prefrontal cortex: implications for the pathogenesis of HIV-1-associated neurocognitive and affective alterations. J Neurovirol 2023; 29:460-471. [PMID: 37222970 PMCID: PMC10629500 DOI: 10.1007/s13365-023-01147-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the expression of HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of immunostaining and/or RNAscope multiplex fluorescent assays revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV inoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1 + and Ki67 + relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and postsynaptic density protein 95 (PSD-95), markers of presynaptic and postsynaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounted for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.
Collapse
Affiliation(s)
- Hailong Li
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Kristen A McLaurin
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, University of South Carolina, Barnwell College, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
69
|
Li H, Ye T, Liu X, Guo R, Yang X, Li Y, Qi D, Wei Y, Zhu Y, Wen L, Cheng X. The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer's disease. J Pharm Anal 2023; 13:788-805. [PMID: 37577391 PMCID: PMC10422165 DOI: 10.1016/j.jpha.2023.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 08/15/2023] Open
Abstract
Based on single-cell sequencing of the hippocampi of 5× familiar Alzheimer's disease (5× FAD) and wild type mice at 2-, 12-, and 24-month of age, we found an increased percentage of microglia in aging and Alzheimer's disease (AD) mice. Blood brain barrier injury may also have contributed to this increase. Immune regulation by microglia plays a major role in the progression of aging and AD, according to the functions of 41 intersecting differentially expressed genes in microglia. Signaling crosstalk between C-C motif chemokine ligand (CCL) and major histocompatibility complex-1 bridges intercellular communication in the hippocampus during aging and AD. The amyloid precursor protein (APP) and colony stimulating factor (CSF) signals drive 5× FAD to deviate from aging track to AD occurrence among intercellular communication in hippocampus. Microglia are involved in the progression of aging and AD can be divided into 10 functional types. The strength of the interaction among microglial subtypes weakened with aging, and the CCL and CSF signaling pathways were the fundamental bridge of communication among microglial subtypes.
Collapse
Affiliation(s)
- He Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xingyang Liu
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Rui Guo
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiuzhao Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yangyi Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yihua Wei
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yifan Zhu
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lei Wen
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaorui Cheng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
70
|
Prasad Panda S, Kesharwani A, Prasanna Mallick S, Prasanth D, Kumar Pasala P, Bharadwaj Tatipamula V. Viral-induced neuronal necroptosis: Detrimental to brain function and regulation by necroptosis inhibitors. Biochem Pharmacol 2023; 213:115591. [PMID: 37196683 DOI: 10.1016/j.bcp.2023.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Neuronal necroptosis (programmed necrosis) in the CNS naturally occurs through a caspase-independent way and, especially in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parknson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and viral infections. Understanding necroptosis pathways (death receptor-dependent and independent), and its connections with other cell death pathways could lead to new insights into treatment. Receptor-interacting protein kinase (RIPK) mediates necroptosis via mixed-lineage kinase-like (MLKL) proteins. RIPK/MLKL necrosome contains FADD, procaspase-8-cellular FLICE-inhibitory proteins (cFLIPs), RIPK1/RIPK3, and MLKL. The necrotic stimuli cause phosphorylation of MLKL and translocate to the plasma membrane, causing an influx of Ca2+ and Na+ ions and, the immediate opening of mitochondrial permeability transition pore (mPTP) with the release of inflammatory cell damage-associated molecular patterns (DAMPs) like mitochondrial DNA (mtDNA), high-mobility group box1 (HMGB1), and interleukin1 (IL-1). The MLKL translocates to the nucleus to induce transcription of the NLRP3 inflammasome complex elements. MLKL-induced NLRP3 activity causes caspase-1 cleavage and, IL-1 activation which promotes neuroinflammation. RIPK1-dependent transcription increases illness-associated microglial and lysosomal abnormalities to facilitate amyloid plaque (Aβ) aggregation in AD. Recent research has linked neuroinflammation and mitochondrial fission with necroptosis. MicroRNAs (miRs) such as miR512-3p, miR874, miR499, miR155, and miR128a regulate neuronal necroptosis by targeting key components of necroptotic pathways. Necroptosis inhibitors act by inhibiting the membrane translocation of MLKL and RIPK1 activity. This review insights into the RIPK/MLKL necrosome-NLRP3 inflammasome interactions during death receptor-dependent and independent neuronal necroptosis, and clinical intervention by miRs to protect the brain from NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | | | - Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| |
Collapse
|
71
|
Qiu X, Wang J, Zhang W, Duan C, Chen T, Zhang D, Su J, Gao L. Disruption of the ADAM17/NF-κB feedback loop in astrocytes ameliorates HIV-1 Tat-induced inflammatory response and neuronal death. J Neurovirol 2023; 29:283-296. [PMID: 37185939 DOI: 10.1007/s13365-023-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
A disintegrin and metalloproteinases (ADAMs) are involved in multiple neurodegenerative diseases. However, the roles and mechanisms of ADAMs in HIV-associated neurocognitive disorder (HAND) remain unclear. Transactivator of transcription (Tat) induces inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. In this study, we determined that ADAM17 expression was upregulated during soluble Tat stimulus in HEB astroglial cells. Inhibition of ADAM17 suppressed Tat-induced pro-inflammatory cytokines production and rescued the astrocytes-derived conditioned media (ACM)-mediated SH-SY5Y neural cells apoptosis. Moreover, ADAM17 mediated Tat-triggered inflammatory response in a NF-κB-dependent manner. Conversely, Tat induced ADAM17 expression via NF-κB signaling pathway. In addition, pharmacological inhibition of NF-κB signaling inhibited Tat-induced inflammatory response, which could be rescued by overexpression of ADAM17. Taken together, our study clarifies the potential role of the ADAM17/NF-κB feedback loop in Tat-induced inflammatory response in astrocytes and the ACM-mediated neuronal death, which could be a novel therapeutic target for relief of HAND.
Collapse
Affiliation(s)
- Xiaoxia Qiu
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Jianjun Wang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Wei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tianpeng Chen
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
72
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
73
|
Wei Z, Bodnar B, Zhao RT, Xiao Q, Saribas S, Wang X, Ho WZ, Hu W. Human iPSC-derived brain organoids: A 3D mini-brain model for studying HIV infection. Exp Neurol 2023; 364:114386. [PMID: 36934866 PMCID: PMC10149614 DOI: 10.1016/j.expneurol.2023.114386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
The brain is one of the important reservoir sites for HIV persistent/latent infection that often leads to HIV-associated neurocognitive disorders (HAND). However, HIV dynamics in the brain is an understudied area and little is known about mechanisms underlying the development and progression of HAND. This issue is mainly due to the lack of suitable in vitro models that can recapitulate the cellular and molecular complexity of the human brain. Hence, there is an urgent need for such models to study HIV neuropathogenesis and to develop therapeutics for HAND. The emergence of three-dimensional (3D) brain organoids generated from induced pluripotent stem cells (iPSCs) has now provided a clinically relevant in vitro model to study HIV brain infection and neuropathogenesis. Recently, there have been a noticeable number of publications that demonstrate the feasibility and advantages of this model for studies of neurobiology and brain disorders as well as HIV infection. Here, we describe the development of iPSC-derived human microglia-containing brain organoids, including advantages/challenges, and focus on their applicability for modeling HIV brain infection.
Collapse
Affiliation(s)
- Zhengyu Wei
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Brittany Bodnar
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ruo-Tong Zhao
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Qianhao Xiao
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sami Saribas
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
74
|
Trunfio M, Mighetto L, Napoli L, Atzori C, Nigra M, Guastamacchia G, Bonora S, Di Perri G, Calcagno A. Cerebrospinal Fluid CXCL13 as Candidate Biomarker of Intrathecal Immune Activation, IgG Synthesis and Neurocognitive Impairment in People with HIV. J Neuroimmune Pharmacol 2023; 18:169-182. [PMID: 37166552 DOI: 10.1007/s11481-023-10066-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Plasma C-X-C-motif chemokine ligand-13 (CXCL13) has been linked to disease progression and mortality in people living with HIV (PLWH) and is a candidate target for immune-based strategies for HIV cure. Its role in central nervous system (CNS) of PLWH has not been detailed. We described CSF CXCL13 levels and its potential associations with neurological outcomes. Cross-sectional study enrolling PLWH without confounding for CXCL13 production. Subjects were divided according to CSF HIV-RNA in undetectable (< 20 cp/mL) and viremics. CSF CXCL13, and biomarkers of blood-brain barrier (BBB) impairment, intrathecal synthesis, and immune activation were measured by commercial immunoturbidimetric and ELISA assays. All subjects underwent neurocognitive assessment. Sensitivity analyses were conducted in subjects with intact BBB only. 175 participants were included. Detectable CSF CXCL13 was more common in the viremic (31.4%) compared to the undetectable group (13.5%; OR 2.9 [1.4-6.3], p = 0.006), but median levels did not change (15.8 [8.2-91.0] vs 10.0 [8.1-14.2] pg/mL). In viremics (n = 86), CXCL13 associated with higher CSF HIV-RNA, proteins, neopterin, intrathecal synthesis and BBB permeability. In undetectable participants (n = 89), CXCL13 associated with higher CD4+T-cells count, CD4/CD8 ratio, CSF proteins, neopterin, and intrathecal synthesis. The presence of CXCL13 in the CSF of undetectable participants was associated with increased odds of HIV-associated neurocognitive disorders (58.3% vs 28.6%, p = 0.041). Sensitivity analyses confirmed all these findings. CXCL13 is detectable in the CSF of PLWH that show increased intrathecal IgG synthesis and immune activation. In PLWH with CSF viral suppression, CXCL13 was also associated with neurocognitive impairment.
Collapse
Affiliation(s)
- Mattia Trunfio
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy.
- HIV Neurobehavioral Research Center (HNRC), Department of Psychiatry, University of California San Diego, San Diego, CA, 92093, USA.
| | - Lorenzo Mighetto
- Diagnostic Laboratory Unit, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Laura Napoli
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Cristiana Atzori
- Unit of Neurology, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Marco Nigra
- Diagnostic Laboratory Unit, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Giulia Guastamacchia
- Unit of Neurology, Maria Vittoria Hospital, ASL Città di Torino, Torino, 10144, Italy
| | - Stefano Bonora
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Giovanni Di Perri
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| | - Andrea Calcagno
- Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Torino, Torino, 10149, Italy
| |
Collapse
|
75
|
Solis-Leal A, Boby N, Mallick S, Cheng Y, Wu F, De La Torre G, Dufour J, Alvarez X, Shivanna V, Liu Y, Fennessey CM, Lifson JD, Li Q, Keele BF, Ling B. Lymphoid tissues contribute to viral clonotypes present in plasma at early post-ATI in SIV-infected rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542512. [PMID: 37398418 PMCID: PMC10312542 DOI: 10.1101/2023.05.30.542512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The rebound-competent viral reservoir (RCVR), comprised of virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after antiretroviral therapy interruption (ATI), remains the biggest obstacle to the eradication of HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop targeted therapeutic strategies for reducing the RCVR. In this study, barcoded SIVmac239M was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood, lymphoid tissues (LTs, spleen, mesenteric and inguinal lymph nodes), and non-lymphoid tissues (NLTs, colon, ileum, lung, liver, and brain) were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX/RNAscope/ in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy although plasma viral RNA remained < 22 copies/mL. Among the tissues studied, mesenteric and inguinal lymph nodes, and spleen contained viral barcodes detected in plasma, and trended to have higher cell-associated viral loads, higher intact provirus levels, and greater diversity of viral barcodes. CD4+ T cells were the main cell type harboring viral RNA (vRNA) after ATI. Further, T cell zones in LTs showed higher vRNA levels than B cell zones for most animals. These findings are consistent with LTs contributing to virus present in plasma early after ATI. One Sentence Summary The reemerging of SIV clonotypes at early post-ATI are likely from the secondary lymphoid tissues.
Collapse
|
76
|
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a heavy burden of disease and an important public health problem in the world. Although current antiretroviral therapy (ART) is effective at suppressing the virus in the blood, HIV still remains in two different types of reservoirs-the latently infected cells (represented by CD4+ T cells) and the tissues containing those cells, which may block access to ART, HIV-neutralizing antibodies and latency-reversing agents. The latter is the focus of our review, as blood viral load drops below detectable levels after ART, a deeper and more systematic understanding of the HIV tissue reservoirs is imperative. In this review, we take the lymphoid system (including lymph nodes, gut-associated lymphoid tissue, spleen and bone marrow), nervous system, respiratory system, reproductive system (divided into male and female), urinary system as the order, focusing on the particularity and importance of each tissue in HIV infection, the infection target cell types of each tissue, the specific infection situation of each tissue quantified by HIV DNA or HIV RNA and the evidence of compartmentalization and pharmacokinetics. In summary, we found that the present state of HIV in different tissues has both similarities and differences. In the future, the therapeutic principle we need to follow is to respect the discrepancy on the basis of grasping the commonality. The measures taken to completely eliminate the virus in the whole body cannot be generalized. It is necessary to formulate personalized treatment strategies according to the different characteristics of the HIV in the various tissues, so as to realize the prospect of curing AIDS as soon as possible.
Collapse
Affiliation(s)
- Kangpeng Li
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Ma
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
77
|
Dutta D, Liu J, Xiong H. The Impact of COVID-19 on People Living with HIV-1 and HIV-1-Associated Neurological Complications. Viruses 2023; 15:1117. [PMID: 37243203 PMCID: PMC10223371 DOI: 10.3390/v15051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of the coronavirus disease 2019 (COVID-19) pandemic, a fatal respiratory illness. The associated risk factors for COVID-19 are old age and medical comorbidities. In the current combined antiretroviral therapy (cART) era, a significant portion of people living with HIV-1 (PLWH) with controlled viremia is older and with comorbidities, making these people vulnerable to SARS-CoV-2 infection and COVID-19-associated severe outcomes. Additionally, SARS-CoV-2 is neurotropic and causes neurological complications, resulting in a health burden and an adverse impact on PLWH and exacerbating HIV-1-associated neurocognitive disorder (HAND). The impact of SARS-CoV-2 infection and COVID-19 severity on neuroinflammation, the development of HAND and preexisting HAND is poorly explored. In the present review, we compiled the current knowledge of differences and similarities between SARS-CoV-2 and HIV-1, the conditions of the SARS-CoV-2/COVID-19 and HIV-1/AIDS syndemic and their impact on the central nervous system (CNS). Risk factors of COVID-19 on PLWH and neurological manifestations, inflammatory mechanisms leading to the neurological syndrome, the development of HAND, and its influence on preexisting HAND are also discussed. Finally, we have reviewed the challenges of the present syndemic on the world population, with a particular emphasis on PLWH.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
78
|
Swingler M, Donadoni M, Bellizzi A, Cakir S, Sariyer IK. iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. J Neurovirol 2023; 29:121-134. [PMID: 37097597 PMCID: PMC10127962 DOI: 10.1007/s13365-023-01133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Progress in stem cell research has revolutionized the medical field for more than two decades. More recently, the discovery of induced pluripotent stem cells (iPSCs) has allowed for the development of advanced disease modeling and tissue engineering platforms. iPSCs are generated from adult somatic cells by reprogramming them into an embryonic-like state via the expression of transcription factors required for establishing pluripotency. In the context of the central nervous system (CNS), iPSCs have the potential to differentiate into a wide variety of brain cell types including neurons, astrocytes, microglial cells, endothelial cells, and oligodendrocytes. iPSCs can be used to generate brain organoids by using a constructive approach in three-dimensional (3D) culture in vitro. Recent advances in 3D brain organoid modeling have provided access to a better understanding of cell-to-cell interactions in disease progression, particularly with neurotropic viral infections. Neurotropic viral infections have been difficult to study in two-dimensional culture systems in vitro due to the lack of a multicellular composition of CNS cell networks. In recent years, 3D brain organoids have been preferred for modeling neurotropic viral diseases and have provided invaluable information for better understanding the molecular regulation of viral infection and cellular responses. Here we provide a comprehensive review of the literature on recent advances in iPSC-derived 3D brain organoid culturing and their utilization in modeling major neurotropic viral infections including HIV-1, HSV-1, JCV, ZIKV, CMV, and SARS-CoV2.
Collapse
Affiliation(s)
- Michael Swingler
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Senem Cakir
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
79
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
80
|
Li L, Zhao X, He JJ. HIV Tat Expression and Cocaine Exposure Lead to Sex- and Age-Specific Changes of the Microbiota Composition in the Gut. Microorganisms 2023; 11:799. [PMID: 36985373 PMCID: PMC10054272 DOI: 10.3390/microorganisms11030799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The balance of microbial communities in the gut is extremely important for normal physiological function. Disruption of the balance is often associated with various disorders and diseases. Both HIV infection and cocaine use are known to change the gut microbiota and the epithelial barrier integrity, which contribute to inflammation and immune activation. Our recent study shows that Tat expression and cocaine exposure result in changes of genome-wide DNA methylation and gene expression and lead to worsen the learning and memory impairments. In the current study, we extended the study to determine effects of Tat and cocaine on the gut microbiota composition. We found that both Tat expression and cocaine exposure increased Alteromonadaceae in 6-month-old female/male mice. In addition, we found that Tat, cocaine, or both increased Alteromonadaceae, Bacteroidaceae, Cyanobiaceae, Erysipelotrichaceae, and Muribaculaceae but decreased Clostridiales_vadinBB60_group, Desulfovibrionaceae, Helicobacteraceae, Lachnospiraceae, and Ruminococcaceae in 12-month-old female mice. Lastly, we analyzed changes of metabolic pathways and found that Tat decreased energy metabolism and nucleotide metabolism, and increased lipid metabolism and metabolism of other amino acids while cocaine increased lipid metabolism in 12-month-old female mice. These results demonstrated that Tat expression and cocaine exposure resulted in significant changes of the gut microbiota in an age- and sex-dependent manner and provide additional evidence to support the bidirectional gut-brain axis hypothesis.
Collapse
Affiliation(s)
- Lu Li
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Xiaojie Zhao
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Johnny J. He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| |
Collapse
|
81
|
Campos-Gonzalez G, Martinez-Picado J, Velasco-Hernandez T, Salgado M. Opportunities for CAR-T Cell Immunotherapy in HIV Cure. Viruses 2023; 15:v15030789. [PMID: 36992496 PMCID: PMC10057306 DOI: 10.3390/v15030789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Chimeric antigen receptor (CAR) technology is having a huge impact in the blood malignancy field and is becoming a well-established therapy for many types of leukaemia. In recent decades, efforts have been made to demonstrate that CAR-T cells have potential as a therapy to achieve a sterilizing cure for human immunodeficiency virus (HIV) infection. However, translation of this technology to the HIV scenario has not been easy, as many challenges have appeared along the way that hinder the consolidation of CAR-T cells as a putative therapy. Here, we review the origin and development of CAR-T cells, describe the advantages of CAR-T cell therapy in comparison with other therapies, and describe the major obstacles currently faced regarding application of this technology in the HIV field, specifically, viral escape, CAR-T cell infectivity, and accessibility to hidden reservoirs. Nonetheless, promising results in successfully tackling some of these issues that have been obtained in clinical trials suggest a bright future for CAR-T cells as a consolidated therapy.
Collapse
Affiliation(s)
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Talia Velasco-Hernandez
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- RICORS-TERAV, ISCIII, 28029 Madrid, Spain
| | - Maria Salgado
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| |
Collapse
|
82
|
Bai R, Song C, Lv S, Chang L, Hua W, Weng W, Wu H, Dai L. Role of microglia in HIV-1 infection. AIDS Res Ther 2023; 20:16. [PMID: 36927791 PMCID: PMC10018946 DOI: 10.1186/s12981-023-00511-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The usage of antiretroviral treatment (ART) has considerably decreased the morbidity and mortality related to HIV-1 (human immunodeficiency virus type 1) infection. However, ART is ineffective in eradicating the virus from the persistent cell reservoirs (e.g., microglia), noticeably hindering the cure for HIV-1. Microglia participate in the progression of neuroinflammation, brain aging, and HIV-1-associated neurocognitive disorder (HAND). Some methods have currently been studied as fundamental strategies targeting microglia. The purpose of this study was to comprehend microglia biology and its functions in HIV-1 infection, as well as to look into potential therapeutic approaches targeting microglia.
Collapse
Affiliation(s)
- Ruojing Bai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyun Lv
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Linlin Chang
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wei Hua
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Lili Dai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
83
|
Duran-Castells C, Llano A, Kawana-Tachikawa A, Prats A, Martinez-Zalacain I, Kobayashi-Ishihara M, Oriol-Tordera B, Peña R, Gálvez C, Silva-Arrieta S, Clotet B, Riveira-Muñoz E, Ballana E, Prado JG, Martinez-Picado J, Sanchez J, Mothe B, Hartigan-O'Connor D, Wyss-Coray T, Meyerhans A, Gisslén M, Price RW, Soriano-Mas C, Muñoz-Moreno JA, Brander C, Ruiz-Riol M. Sirtuin-2, NAD-Dependent Deacetylase, Is a New Potential Therapeutic Target for HIV-1 Infection and HIV-Related Neurological Dysfunction. J Virol 2023; 97:e0165522. [PMID: 36719240 PMCID: PMC9972991 DOI: 10.1128/jvi.01655-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
The implementation and access to combined antiretroviral treatment (cART) have dramatically improved the quality of life of people living with HIV (PLWH). However, some comorbidities, such as neurological disorders associated with HIV infection still represent a serious clinical challenge. Soluble factors in plasma that are associated with control of HIV replication and neurological dysfunction could serve as early biomarkers and as new therapeutic targets for this comorbidity. We used a customized antibody array for determination of blood plasma factors in 40 untreated PLWH with different levels of viremia and found sirtuin-2 (SIRT2), an NAD-dependent deacetylase, to be strongly associated with elevated viral loads and HIV provirus levels, as well as with markers of neurological damage (a-synuclein [SNCA], brain-derived neurotrophic factor [BDNF], microtubule-associated protein tau [MAPT], and neurofilament light protein [NFL]). Also, longitudinal analysis in HIV-infected individuals with immediate (n = 9) or delayed initiation (n = 10) of cART revealed that after 1 year on cART, SIRT2 plasma levels differed between both groups and correlated inversely with brain orbitofrontal cortex involution. Furthermore, targeting SIRT2 with specific small-molecule inhibitors in in vitro systems using J-LAT A2 and primary glial cells led to diminished HIV replication and virus reactivation from latency. Our data thus identify SIRT2 as a novel biomarker of uncontrolled HIV infection, with potential impact on neurological dysfunction and offers a new therapeutic target for HIV treatment and cure. IMPORTANCE Neurocognitive disorders are frequently reported in people living with HIV (PLWH) even with the introduction of combined antiretroviral treatment (cART). To identify biomarkers and potential therapeutic tools to target HIV infection in peripheral blood and in the central nervous system (CNS), plasma proteomics were applied in untreated chronic HIV-infected individuals with different levels of virus control. High plasma levels of sirtuin-2 (SIRT2), an NAD+ deacetylase, were detected in uncontrolled HIV infection and were strongly associated with plasma viral load and proviral levels. In parallel, SIRT2 levels in the peripheral blood and CNS were associated with markers of neurological damage and brain involution and were more pronounced in individuals who initiated cART later in infection. In vitro infection experiments using specific SIRT2 inhibitors suggest that specific targeting of SIRT2 could offer new therapeutic treatment options for HIV infections and their associated neurological dysfunction.
Collapse
Affiliation(s)
- Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
- Departament de Biologia, Cel·lular, Fisiologia i d'immunologia, Facultat de Medicina, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Anna Prats
- Fundació Lluita contra la Sida and Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | - Mie Kobayashi-Ishihara
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
- Departament de Biologia, Cel·lular, Fisiologia i d'immunologia, Facultat de Medicina, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Sandra Silva-Arrieta
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
- Fundació Lluita contra la Sida and Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Esther Ballana
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- ICREA, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Sanchez
- Centro de Investigaciones Tecnologicas Biomedicas y Medioambientales, CITBM, Lima, Peru
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
- Fundació Lluita contra la Sida and Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Dennis Hartigan-O'Connor
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Andreas Meyerhans
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Richard W Price
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Antonio Muñoz-Moreno
- Fundació Lluita contra la Sida and Infectious Diseases Department, Hospital Germans Trias i Pujol, Badalona, Spain
- Faculty of Psychology and Education Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
- Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- ICREA, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
84
|
Rheinberger M, Costa AL, Kampmann M, Glavas D, Shytaj IL, Sreeram S, Penzo C, Tibroni N, Garcia-Mesa Y, Leskov K, Fackler OT, Vlahovicek K, Karn J, Lucic B, Herrmann C, Lusic M. Genomic profiling of HIV-1 integration in microglia cells links viral integration to the topologically associated domains. Cell Rep 2023; 42:112110. [PMID: 36790927 DOI: 10.1016/j.celrep.2023.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir. HIV-1 insertions into introns of actively transcribed genes with IS hotspots in genic and super-enhancers, characteristic of blood cells, are maintained in the microglia cell model. Genome organization analysis reveals dynamic CCCTC-binding factor (CTCF) clusters in cells with active and repressed HIV-1 transcription, whereas CTCF removal impairs viral integration. We identify CTCF-enriched topologically associated domain (TAD) boundaries with signatures of transcriptionally active chromatin as HIV-1 integration determinants in microglia and CD4+ T cells, highlighting the importance of host genome organization in HIV-1 infection.
Collapse
Affiliation(s)
- Mona Rheinberger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ana Luisa Costa
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany
| | - Martin Kampmann
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dunja Glavas
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Iart Luca Shytaj
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Sheetal Sreeram
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carlotta Penzo
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Nadine Tibroni
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, 69120 Heidelberg, Germany.
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), 69120 Heidelberg, Germany.
| |
Collapse
|
85
|
Extracellular vesicles released from macrophages modulates interleukin-1β in astrocytic and neuronal cells. Sci Rep 2023; 13:3005. [PMID: 36810605 PMCID: PMC9944928 DOI: 10.1038/s41598-023-29746-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
We have recently demonstrated that long-term exposure of cigarette smoke condensate (CSC) to HIV-uninfected (U937) and -infected (U1) macrophages induce packaging of pro-inflammatory molecules, particularly IL-1β, in extracellular vesicles (EVs). Therefore, we hypothesize that exposure of EVs derived from CSC-treated macrophages to CNS cells can increase their IL-1β levels contributing to neuroinflammation. To test this hypothesis, we treated the U937 and U1 differentiated macrophages once daily with CSC (10 µg/ml) for 7 days. Then, we isolated EVs from these macrophages and treated these EVs with human astrocytic (SVGA) and neuronal (SH-SY5Y) cells in the absence and presence of CSC. We then examined the protein expression of IL-1β and oxidative stress related proteins, cytochrome P450 2A6 (CYP2A6), superoxide dismutase-1 (SOD1), catalase (CAT). We observed that the U937 cells have lower expression of IL-1β compared to their respective EVs, confirming that most of the produced IL-1β are packaged into EVs. Further, EVs isolated from HIV-infected and uninfected cells, both in the absence and presence of CSC, were treated to SVGA and SH-SY5Y cells. These treatments showed a significant increase in the levels of IL-1β in both SVGA and SH-SY5Y cells. However, under the same conditions, the levels of CYP2A6, SOD1, and catalase were only markedly altered. These findings suggest that the macrophages communicate with astrocytes and neuronal cells via EVs-containing IL-1β in both HIV and non-HIV setting and could contribute to neuroinflammation.
Collapse
|
86
|
Andre M, Nair M, Raymond AD. HIV Latency and Nanomedicine Strategies for Anti-HIV Treatment and Eradication. Biomedicines 2023; 11:biomedicines11020617. [PMID: 36831153 PMCID: PMC9953021 DOI: 10.3390/biomedicines11020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Antiretrovirals (ARVs) reduce Human Immunodeficiency Virus (HIV) loads to undetectable levels in infected patients. However, HIV can persist throughout the body in cellular reservoirs partly due to the inability of some ARVs to cross anatomical barriers and the capacity of HIV-1 to establish latent infection in resting CD4+ T cells and monocytes/macrophages. A cure for HIV is not likely unless latency is addressed and delivery of ARVs to cellular reservoir sites is improved. Nanomedicine has been used in ARV formulations to improve delivery and efficacy. More specifically, researchers are exploring the benefit of using nanoparticles to improve ARVs and nanomedicine in HIV eradication strategies such as shock and kill, block and lock, and others. This review will focus on mechanisms of HIV-1 latency and nanomedicine-based approaches to treat HIV.
Collapse
Affiliation(s)
- Mickensone Andre
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Andrea D. Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-305-348-6430
| |
Collapse
|
87
|
Soler Y, Rodriguez M, Austin D, Gineste C, Gelber C, El-Hage N. SERPIN-Derived Small Peptide (SP16) as a Potential Therapeutic Agent against HIV-Induced Inflammatory Molecules and Viral Replication in Cells of the Central Nervous System. Cells 2023; 12:cells12040632. [PMID: 36831299 PMCID: PMC9954444 DOI: 10.3390/cells12040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023] Open
Abstract
Despite the success of combined antiretroviral therapy (cART) increasing the survival rate in human immunodeficiency virus (HIV) patients, low levels of viremia persist in the brain of patients leading to glia (microglia and astrocytes)-induced neuroinflammation and consequently, the reactivation of HIV and neuronal injury. Here, we tested the therapeutic efficacy of a Low-Density Lipoprotein Receptor-Related Protein 1 (LRP-1) agonistic small peptide drug (SP16) in attenuating HIV replication and the secretion of inflammatory molecules in brain reservoirs. SP16 was developed by Serpin Pharma and is derived from the pentapeptide sequence of the serine protease inhibitor alpha-1-antitrypsin (A1AT). The SP16 peptide sequence was subsequently modified to improve the stability, bioavailability, efficacy, and binding to LRP-1; a scavenger regulatory receptor that internalizes ligands to induce anti-viral, anti-inflammatory, and pro-survival signals. Using glial cells infected with HIV, we showed that: (i) SP16 attenuated viral-induced secretion of pro-inflammatory molecules; and (ii) SP16 attenuated viral replication. Using an artificial 3D blood-brain barrier (BBB) system, we showed that: (i) SP16 was transported across the BBB; and (ii) restored the permeability of the BBB compromised by HIV. Mechanistically, we showed that SP16 interaction with LRP-1 and binding lead to: (i) down-regulation in the expression levels of nuclear factor-kappa beta (NF-κB); and (ii) up-regulation in the expression levels of Akt. Using an in vivo mouse model, we showed that SP16 was transported across the BBB after intranasal delivery, while animals infected with EcoHIV undergo a reduction in (i) viral replication and (ii) viral secreted inflammatory molecules, after exposure to SP16 and antiretrovirals. Overall, these studies confirm a therapeutic response of SP16 against HIV-associated inflammatory effects in the brain.
Collapse
Affiliation(s)
- Yemmy Soler
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Dana Austin
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cyrille Gineste
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Cohava Gelber
- Serpin Pharma, 9501 Discovery Blvd Suite 120, Manassas, VA 20109, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
- Correspondence: ; Tel.: +1-(305)-348-4346; Fax: +1-(305)-348-1109
| |
Collapse
|
88
|
Hamadani CM, Mahdi F, Merrell A, Flanders J, Cao R, Vashisth P, Pride MC, Hunter AN, Singh G, Roman G, Paris JJ, Tanner EEL. Ionic Liquid Coating-Driven Nanoparticle Delivery to the Brain: Applications for NeuroHIV. RESEARCH SQUARE 2023:rs.3.rs-2574352. [PMID: 36824802 PMCID: PMC9949257 DOI: 10.21203/rs.3.rs-2574352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience an array of neurological deficits that are collectively referred to as 'neuroHIV'. Herein we report the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs), which enabled 48% delivery of intravenously infused cargo to the brain. Moreover, the ionic liquid (IL) choline trans-2-hexenoate (CA2HA 1:2) demonstrated preferential accumulation in parenchymal microglia over endothelial cells post-delivery. We further demonstrate the successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into the IL-coated NPs and verify the retention of antiviral efficacy in vitro. IL-NPs were not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating conferred notable anti-viremic capacity on its own. In addition, in vitro cell culture assays showed markedly increased uptake of IL-coated nanoparticles into neuronal cells compared to bare nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB), illustrated in the graphical abstract below.
Collapse
|
89
|
Chu L, Shu Z, Gu X, Wu Y, Yang J, Deng H. The Endocannabinoid System as a Potential Therapeutic Target for HIV-1-Associated Neurocognitive Disorder. Cannabis Cannabinoid Res 2023. [PMID: 36745405 DOI: 10.1089/can.2022.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Despite the successful introduction of combined antiretroviral therapy, the prevalence of mild to moderate forms of HIV-associated neurocognitive disorders (HAND) remains high. It has been demonstrated that neuronal injury caused by HIV is excitotoxic and inflammatory, and it correlates with neurocognitive decline in HAND. Endocannabinoid system (ECS) protects the body from excitotoxicity and neuroinflammation on demand and presents a promising therapeutic target for treating HAND. Here, we firstly discuss the potential pathogenesis of HAND. We secondly discuss the structural and functional changes in the ECS that are currently known among HAND patients. We thirdly discuss current clinical and preclinical findings concerning the neuroprotective and anti-inflammatory properties of the ECS among HAND patients. Fourth, we will discuss the interactions between the ECS and neuroendocrine systems, including the hypothalamic-pituitary-adrenocortical (HPA) and hypothalamic-pituitary-gonadal (HPG) axes under the HAND conditions. Materials and Methods: We have carried out a review of the literature using PubMed to summarize the current state of knowledge on the association between ECS and HAND. Results: The ECS may be ideally suited for modulation of HAND pathophysiology. Direct activation of presynaptic cannabinoid receptor 1 or reduction of cannabinoid metabolism attenuates HAND excitotoxicity. Chronic neuroinflammation associated with HAND can be reduced by activating cannabinoid receptor 2 on immune cells. The sensitivity of the ECS to HIV may be enhanced by increased cannabinoid receptor expression in HAND. In addition, indirect regulation of the ECS through modulation of hormone-related receptors may be a potential strategy to influence the ECS and also alleviate the progression of HAND due to the reciprocal inhibition of the ECS by the HPA and HPG axes. Conclusions: Taken together, targeting the ECS may be a promising strategy to alleviate the inflammation and neurodegeneration caused by HIV-1 infection. Further studies are required to clarify the role of endocannabinoid signaling in HIV neurotoxicity. Strategies promoting endocannabinoid signaling may slow down cognitive decline of HAND are proposed.
Collapse
Affiliation(s)
- Liuxi Chu
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Zheng Shu
- Clinical Nutrition Department, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yan Wu
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Jin Yang
- Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China.,Department of Child and Adolescent Hygienics, School of Public Health, Southeast University, Nanjing, China
| | - Huihua Deng
- Department of Brain and Learning Science, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China.,Department of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing, China
| |
Collapse
|
90
|
Laumaea A, Marchitto L, Ding S, Beaudoin-Bussières G, Prévost J, Gasser R, Chatterjee D, Gendron-Lepage G, Medjahed H, Chen HC, Smith AB, Ding H, Kappes JC, Hahn BH, Kirchhoff F, Richard J, Duerr R, Finzi A. Small CD4 mimetics sensitize HIV-1-infected macrophages to antibody-dependent cellular cytotoxicity. Cell Rep 2023; 42:111983. [PMID: 36640355 PMCID: PMC9941794 DOI: 10.1016/j.celrep.2022.111983] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 envelope (Env) conformation determines the susceptibility of infected CD4+ T cells to antibody-dependent cellular cytotoxicity (ADCC). Upon interaction with CD4, Env adopts more "open" conformations, exposing ADCC epitopes. HIV-1 limits Env-CD4 interaction and protects infected cells against ADCC by downregulating CD4 via Nef, Vpu, and Env. Limited data exist, however, of the role of these proteins in downmodulating CD4 on infected macrophages and how this impacts Env conformation. While Nef, Vpu, and Env are all required to efficiently downregulate CD4 on infected CD4+ T cells, we show here that any one of these proteins is sufficient to downmodulate most CD4 from the surface of infected macrophages. Consistent with this finding, Nef and Vpu have a lesser impact on Env conformation and ADCC sensitivity in infected macrophages compared with CD4+ T cells. However, treatment of infected macrophages with small CD4 mimetics exposes vulnerable CD4-induced Env epitopes and sensitizes them to ADCC.
Collapse
Affiliation(s)
- Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
91
|
Nielson JA, Davis JM. Roles for Microglia in Cryptococcal Brain Dissemination in the Zebrafish Larva. Microbiol Spectr 2023; 11:e0431522. [PMID: 36719205 PMCID: PMC10100726 DOI: 10.1128/spectrum.04315-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cryptococcal infection begins in the lungs, but yeast cells subsequently access the bloodstream, from which they can reach the central nervous system (CNS). The resulting meningoencephalitis is the most common presentation and is very difficult to treat. How this fungus interacts with the blood-brain barrier (BBB) and establishes growth in the brain parenchyma remains a central question in fungal pathogenesis. We and others have developed the zebrafish larva as a model host for cryptococcosis and demonstrated that hematogenous CNS infection is replicated in this model. Here, we have used this model to examine the details of BBB crossing and the events immediately before and after. We have observed multiple mechanisms of BBB crossing and found that microglia, the resident phagocytes of the brain, likely have multiple roles. First, microglia either actively transfer yeast cells across the BBB or take up a significant proportion of them immediately after crossing. Second, microglia are capable of clearing individual cryptococcal cells at a developmental stage before adaptive immune cells have emerged. Third, microglia serve to maintain endothelial integrity, preventing other, phagocyte-independent forms of crossing. These proposed microglial functions during infection in the zebrafish larva generate new hypotheses concerning the establishment and control of cryptococcal meningoencephalitis. IMPORTANCE Cryptococcal meningitis is a fungal infection of the brain and a major cause of death in people with uncontrolled HIV. Infection begins in the lungs but can enter the bloodstream and disseminate to the brain. A structure called the blood-brain barrier must be crossed for the fungus to enter and cause meningitis. Learning how Cryptococcus crosses the blood-brain barrier will be crucial to understanding and possibly preventing brain infection. Using the zebrafish larva as a model host, we show that microglia, the resident phagocytes of the brain, potentially play multiple previously unappreciated roles in cryptococcal infection of the brain. These roles include reinforcing the integrity of the blood-brain barrier, clearing cryptococcal cells after they have crossed, and possibly participating directly in crossing via a previously unknown mechanism.
Collapse
Affiliation(s)
- Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - J. Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, USA
| |
Collapse
|
92
|
Mohammadzadeh N, Zhang N, Branton WG, Zghidi-Abouzid O, Cohen EA, Gelman BB, Estaquier J, Kong L, Power C. The HIV Restriction Factor Profile in the Brain Is Associated with the Clinical Status and Viral Quantities. Viruses 2023; 15:316. [PMID: 36851531 PMCID: PMC9962287 DOI: 10.3390/v15020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
HIV-encoded DNA, RNA and proteins persist in the brain despite effective antiretroviral therapy (ART), with undetectable plasma and cerebrospinal fluid viral RNA levels, often in association with neurocognitive impairments. Although the determinants of HIV persistence have garnered attention, the expression and regulation of antiretroviral host restriction factors (RFs) in the brain for HIV and SIV remain unknown. We investigated the transcriptomic profile of antiretroviral RF genes by RNA-sequencing with confirmation by qRT-PCR in the cerebral cortex of people who are uninfected (HIV[-]), those who are HIV-infected without pre-mortem brain disease (HIV[+]), those who are HIV-infected with neurocognitive disorders (HIV[+]/HAND) and those with neurocognitive disorders with encephalitis (HIV[+]/HIVE). We observed significant increases in RF expression in the brains of HIV[+]/HIVE in association with the brain viral load. Machine learning techniques identified MAN1B1 as a key gene that distinguished the HIV[+] group from the HIV[+] groups with HAND. Analyses of SIV-associated RFs in brains from SIV-infected Chinese rhesus macaques with different ART regimens revealed diminished RF expression among ART-exposed SIV-infected animals, although ART interruption resulted in an induced expression of several RF genes including OAS3, RNASEL, MX2 and MAN1B1. Thus, the brain displays a distinct expression profile of RFs that is associated with the neurological status as well as the brain viral burden. Moreover, ART interruption can influence the brain's RF profile, which might contribute to disease outcomes.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Na Zhang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - William G. Branton
- Department of Medicine (Neurology) University of Alberta, 6-11 Heritage Medical Research Centre, Edmonton, AB T6G 2R3, Canada
| | - Ouafa Zghidi-Abouzid
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Eric A. Cohen
- Institut de Recherches Cliniques de Montreal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Linglong Kong
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Medicine (Neurology) University of Alberta, 6-11 Heritage Medical Research Centre, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
93
|
Li H, McLaurin KA, Mactutus CF, Booze RM. Microglia Proliferation Underlies Synaptic Dysfunction in the Prefrontal Cortex: Implications for the Pathogenesis of HIV-1-Associated Neurocognitive and Affective Alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524942. [PMID: 36711456 PMCID: PMC9882316 DOI: 10.1101/2023.01.20.524942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the predominant cell type expressing HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of a combined RNAscope multiplex fluorescent and immunostaining assay revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV innoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1+ and Ki67+ relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and post synaptic density protein 95 (PSD-95), markers of pre-synaptic and post-synaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounts for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.
Collapse
|
94
|
Wahl A, Al-Harthi L. HIV infection of non-classical cells in the brain. Retrovirology 2023; 20:1. [PMID: 36639783 PMCID: PMC9840342 DOI: 10.1186/s12977-023-00616-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
Collapse
Affiliation(s)
- Angela Wahl
- grid.10698.360000000122483208International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lena Al-Harthi
- grid.240684.c0000 0001 0705 3621Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
95
|
Wang W, Liu D, Wang Y, Li R, Liu J, Liu M, Wang H, Li H. Frequency-dependent functional alterations in people living with HIV with early stage of HIV-associated neurocognitive disorder. Front Neurosci 2023; 16:985213. [PMID: 36699529 PMCID: PMC9868721 DOI: 10.3389/fnins.2022.985213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Background HIV enters the brain soon after seroconversion and causes HIV-associated neurocognitive disorder (HAND). However, the pathogenesis of this insidious impairment at an early stage remains unclear. Objectives To explore functional integration and segregation changes at the early stages of HAND, voxel-level indices of regional homogeneity (ReHo), the amplitude of low-frequency fluctuations (ALFF), and voxel-mirrored homotopic connectivity (VMHC) under two different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.073 Hz) were analyzed. Methods Ninety-eight people living with HIV (PLWH) and 44 seronegative controls underwent resting-state functional magnetic resonance imaging. Furthermore, all PLWHs underwent neuropsychological and daily functioning tests. The main effect of the group and the interaction between the group and frequency band were investigated. Finally, the relationship between the altered indices and the cognitive domains was explored. Results A significant group-by-frequency interaction was demonstrated in the right thalamus for ReHo; for VMHC, the interaction was observed in the bilateral precuneus and paracentral gyrus. The post hoc Bonferroni test indicated that the alteration of ReHo and VMHC could only be detected in slow-5. PLWH showed significantly reduced ALFF in both the frequency bands in the right occipital gyrus and right calcarine. Moreover, some altered functional integration and segregation indices are related to impaired cognitive function. Conclusion People living with HIV displayed aberrant functional integration and segregation at the early stages of HAND, which is linked to cognitive function. The frequency band of slow-5 might be more sensitive for detecting insidious damage at an early stage.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dan Liu
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- Department of Radiology, Beijing Second Hospital, Beijing, China
| | - Ruili Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mingming Liu
- Physical Examination Center, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Huasong Wang
- Department of Neurosurgery, Zhuhai People’s Hospital, Zhuhai, Guangdong, China,*Correspondence: Huasong Wang,
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China,Hongjun Li,
| |
Collapse
|
96
|
The Role of Chloroviruses as Possible Infectious Agents for Human Health: Putative Mechanisms of ATCV-1 Infection and Potential Routes of Transmission. Trop Med Infect Dis 2023; 8:tropicalmed8010040. [PMID: 36668947 PMCID: PMC9863483 DOI: 10.3390/tropicalmed8010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The Chlorovirus genus of the Phycodnaviridae family includes large viruses with a double-stranded DNA genome. Chloroviruses are widely distributed in freshwater bodies around the world and have been isolated from freshwater sources in Europe, Asia, Australia, and North and South America. One representative of chloroviruses is Acanthocystis turfacea chlorella virus 1 (ATCV-1), which is hosted by Chlorella heliozoae. A few publications in the last ten years about the potential effects of ATCV-1 on the human brain sparked interest among specialists in the field of human infectious pathology. The goal of our viewpoint was to compile the scant research on the effects of ATCV-1 on the human body, to demonstrate the role of chloroviruses as new possible infectious agents for human health, and to indicate potential routes of virus transmission. We believe that ATCV-1 transmission routes remain unexplored. We also question whether chlorella-based nutritional supplements are dangerous for ATCV-1 infections. Further research will help to identify the routes of infection, the cell types in which ATCV-1 can persist, and the pathological mechanisms of the virus's effect on the human body.
Collapse
|
97
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
98
|
Naranjo O, Torices S, Clifford PR, Daftari MT, Osborne OM, Fattakhov N, Toborek M. Pericyte infection by HIV-1: a fatal attraction. Retrovirology 2022; 19:27. [PMID: 36476484 PMCID: PMC9730689 DOI: 10.1186/s12977-022-00614-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
While HIV-1 is primarily an infection of CD4 + T cells, there is an emerging interest towards understanding how infection of other cell types can contribute to HIV-associated comorbidities. For HIV-1 to cross from the blood stream into tissues, the virus must come in direct contact with the vascular endothelium, including pericytes that envelope vascular endothelial cells. Pericytes are multifunctional cells that have been recognized for their essential role in angiogenesis, vessel maintenance, and blood flow rate. Most importantly, recent evidence has shown that pericytes can be a target of HIV-1 infection and support an active stage of the viral life cycle, with latency also suggested by in vitro data. Pericyte infection by HIV-1 has been confirmed in the postmortem human brains and in lungs from SIV-infected macaques. Moreover, pericyte dysfunction has been implicated in a variety of pathologies ranging from ischemic stroke to diabetes, which are common comorbidities among people with HIV-1. In this review, we discuss the role of pericytes during HIV-1 infection and their contribution to the progression of HIV-associated comorbidities.
Collapse
Affiliation(s)
- Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Paul R. Clifford
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Manav T. Daftari
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 11336 USA
| |
Collapse
|
99
|
Kandel SR, Luo X, He JJ. Nef inhibits HIV transcription and gene expression in astrocytes and HIV transmission from astrocytes to CD4 + T cells. J Neurovirol 2022; 28:552-565. [PMID: 36001227 DOI: 10.1007/s13365-022-01091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
HIV infects astrocytes in a restricted manner but leads to abundant expression of Nef, a major viral factor for HIV replication and disease progression. However, the roles of Nef in HIV gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells remain largely unclear. In this study, we attempted to address these issues by transfecting human primary astrocytes with HIV molecular clones with intact Nef and without Nef (a nonsense Nef mutant) and comparing gene expression and replication in astrocytes and viral transfer from astrocytes to CD4+ T cells MT4. First, we found that lack of Nef expression led to increased extracellular virus production from astrocytes and intracellular viral protein and RNA expression in astrocytes. Using a HIV LTR-driven luciferase reporter gene assay, we showed that ectopic Nef expression alone inhibited the HIV LTR promoter activity in astrocytes. Consistent with the previously established function of Nef, we showed that the infectivity of HIV derived from astrocytes with Nef expression was significantly higher than that with no Nef expression. Next, we performed the co-culture assay to determine HIV transfer from astrocytes transfected to MT4. We showed that lack of Nef expression led to significant increase in HIV transfer from astrocytes to MT4 using two HIV clones. We also used Nef-null HIV complemented with Nef in trans in the co-culture assay and demonstrated that Nef expression led to significantly decreased HIV transfer from astrocytes to MT4. Taken together, these findings support a negative role of Nef in HIV replication and pathogenesis in astrocytes.
Collapse
Affiliation(s)
- Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Xiaoyu Luo
- Gladstone Institute of Virology, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL, 60064, USA. .,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, 60064, USA. .,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
100
|
Zhou X, Zhou S, Tao J, Gao Y, Meng G, Cao D, Gao L. HIV-1 Tat drives the Fabp4/NF-κB feedback loop in microglia to mediate inflammatory response and neuronal apoptosis. J Neurovirol 2022; 28:483-496. [PMID: 36070137 DOI: 10.1007/s13365-022-01094-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Fatty acid-binding proteins (FABPs) are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of FABPs in HIV-associated neurocognitive disorder (HAND) remain yet unclear. In this study, cultured BV-2 microglial cells and HT-22 neuronal cells were used for in vitro experiments and HAND mouse models were constructed through intracerebroventricular injection of lentiviral vectors for in vivo experiments. FABP expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The interrelationship between Fabp4 and NF-κB signaling was investigated using chromatin immunoprecipitation, qRT-PCR, and Western blot. The role of Fabp4 in regulating inflammatory response was determined using qRT-PCR, enzyme-linked immunosorbent assay, Western blot, and immunofluorescence staining. Cell viability and apoptosis were analyzed using cell counting kit-8 assay and flow cytometry assay, respectively. Our results suggested an upregulation of Fabp4 expression in the presence of Tat. Tat-induced Fabp4 expression was directly regulated by NF-κB p65, followed by, Fabp4 facilitating Tat-activated NF-κB signaling pathway. We also observed that Fabp4 knockdown in microglial cells significantly suppressed inflammatory response and neuronal apoptosis both in vitro and in vivo. In conclusion, the presence of Tat in microglial cells results in Fabp4 and NF-κB to form a positive feedback loop leading to exacerbate inflammatory response and neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaodan Zhou
- Department of Hematology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Shuhui Zhou
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Jian Tao
- Department of Hematology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Yanan Gao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Gaoqiang Meng
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Duo Cao
- College of Life Science, Yan'an University, Yan'an, 716000, People's Republic of China.
| | - Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|