51
|
Quetiapine Shortens the Lifespan of Caenorhabditis elegans through DOP-2, DAF-2 and RSKS-1. Int J Mol Sci 2022; 23:ijms232112927. [DOI: 10.3390/ijms232112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies implicate a key role of dopamine signaling in lifespan regulation. Our previous study found that quetiapine, an atypical antipsychotic drug that has antagonistic activity on dopamine D2-like receptors (D2Rs), shortened the lifespan of Caenorhabditis elegans (C. elegans). However, the detailed mechanism of this effect was not clear. In the present study, we evaluate the effect of quetiapine on aging and explore its underlying molecular mechanism. The results show that quetiapine shortened healthspan in C. elegans. The lifespan-shortening effect is dependent on DOP-2, a D2R expressed in worms. Quetiapine shortens lifespan through the C. elegans insulin and IGF-1 receptor DAF-2, but not the downstream Akt pathway. Quetiapine-induced lifespan reduction is dependent on RSKS-1, a key protein kinase that functions in mTOR signaling. In addition, the quetiapine effect is also related to mitochondrial function. These findings further support the key role of dopamine signaling in lifespan regulation and promote our insight into the mechanism of action of antipsychotic drugs.
Collapse
|
52
|
Horska K, Ruda-Kucerova J, Skrede S. GLP-1 agonists: superior for mind and body in antipsychotic-treated patients? Trends Endocrinol Metab 2022; 33:628-638. [PMID: 35902330 DOI: 10.1016/j.tem.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Antipsychotics (APDs) represent a core treatment for severe mental disorders (SMEs). Providing symptomatic relief, APDs do not exert therapeutic effects on another clinically significant domain of serious mental disorders, cognitive impairment. Moreover, adverse metabolic effects (diabetes, weight gain, dyslipidemia, and increased cardiovascular risk) are common during treatment with APDs. Among pharmacological candidates reversing APD-induced metabolic adverse effects, glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), approved for both diabetes and recently for obesity treatment, stand out due to their favorable effects on peripheral metabolic parameters. Interestingly, GLP-1 RAs are also proposed to have pro-cognitive effects. Particularly in terms of dual therapeutic mechanisms potentially improving both central nervous system (CNS) deficits and metabolic burden, GLP-1 RAs open a new perspective and assume a clinically advantageous position.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic; Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway; Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
53
|
Zhu Z, Gu Y, Zeng C, Yang M, Yu H, Chen H, Zhang B, Cai H. Olanzapine-induced lipid disturbances: A potential mechanism through the gut microbiota-brain axis. Front Pharmacol 2022; 13:897926. [PMID: 35991866 PMCID: PMC9388751 DOI: 10.3389/fphar.2022.897926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Long-term use of olanzapine can induce various side effects such as lipid metabolic disorders, but the mechanism remains to be elucidated. The gut microbiota-brain axis plays an important role in lipid metabolism, and may be related to the metabolic side effects of olanzapine. Therefore, we explored the mechanism by which olanzapine-induced lipid disturbances through the gut microbiota-brain axis. Methods: Sprague Dawley rats were randomly divided into two groups, which underwent subphrenic vagotomy and sham surgery. Then the two groups were further randomly divided into two subgroups, one was administered olanzapine (10 mg/kg/day) by intragastric administration, and the other was administered normal saline by intragastric administration (4 ml/kg/day) for 2 weeks. The final changes in lipid parameters, gut microbes and their metabolites, and orexin-related neuropeptides in the hypothalamus were investigated among the different groups. Results: Olanzapine induced lipid disturbances as indicated by increased weight gain, elevated ratio of white adipose tissue to brown adipose tissue, as well as increased triglyceride and total cholesterol. Olanzapine also increased the Firmicutes/Bacteroides (F/B) ratio in the gut, which was even aggravated by subphrenic vagotomy. In addition, olanzapine reduced the abundance of short-chain fatty acids (SCFAs) metabolism related microbiome and 5-hydroxytryptamine (5-HT) levels in the rat cecum, and increased the gene and protein expression of the appetite-related neuropeptide Y/agouti-related peptide (NPY/AgRP) in the hypothalamus. Conclusion: The abnormal lipid metabolism caused by olanzapine may be closely related to the vagus nerve-mediated gut microbiota-brain axis.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yuxiu Gu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Man Yang
- School of Pharmacy, Changsha Medical University, Changsha, China
| | - Hao Yu
- School of Pharmacy, Hunan University of Medicine, Changsha, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
54
|
Sosnowski K, Nehring P, Przybyłkowski A. Pancreas and Adverse Drug Reactions: A Literature Review. Drug Saf 2022; 45:929-939. [PMID: 35788538 DOI: 10.1007/s40264-022-01204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
Adverse drug reactions (ADRs) affecting the pancreas are a heterogeneous group of side effects that cause damage to pancreatic cells. Various mechanisms such as hypersensitization, sphincter of Oddi constriction, direct cytotoxic and metabolic effects on pancreatic cells, and dose-dependent idiosyncrasy lead to intrapancreatic activation of pancreatic enzymes resulting in drug-induced acute pancreatitis. Several medications have been linked with the development of pancreatic cancer. Pancreatic cancer may result from proinflammatory, proliferative, and antiapoptotic effects. Diabetogenic effect of drugs, which is understood as impairment of insulin secretion, may occur due to direct destruction of β cells, systemic toxicity affecting pancreatic islets and cell membrane glucose transporters, induction of Th1-type autoimmune response, and impairment of voltage-gated calcium channels in β cells, endoplasmic reticulum stress, and insulin signaling. A better understanding of ADRs that affect the pancreas may contribute to improving the awareness of clinicians and patients and reducing potential harmful side effects of implemented therapies.
Collapse
Affiliation(s)
- Konrad Sosnowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Piotr Nehring
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.
| |
Collapse
|
55
|
Huang J, Chen G, Zhang Q, Wang Y, Meng Q, Xu F, Zhang X, Zou W, Mi F, Yin J. Correlation between adipocyte fatty acid binding protein and glucose dysregulation is closely associated with obesity and metabolic syndrome: A cohort of Han Chinese population from Yunnan plateau. Lipids 2022; 57:257-264. [PMID: 35778866 DOI: 10.1002/lipd.12353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
The present study investigated the correlation of plasma A-FABP with glucose dysregulation under different body mass index (BMI) and metabolic states in a Han Chinese population from Yunnan plateau. We cross-sectionally analyzed data from the China Multi Ethnic Cohort, Yunnan province. Participants were divided into two groups. Group A contained 297 obese individuals with metabolic syndrome (MetS). Group B contained 326 age-, sex-, and region-matched normal BMI subjects without MetS. Glucose dysregulation was defined as elevated fasting plasma glucose (FPG) (FPG ≥ 5.6 mmol/L or current use of oral hypoglycemic agents or insulin). Circulating A-FABP were assayed by ELISA method. Binary and multiple regression analyses were preformed to evaluate the correlation between A-FABP and glucose dysregulation. Plasma A-FABP level was significantly higher in group A compared with group B (p < 0.001). Plasma A-FABP level correlated positively with elevated FPG in group A (r = 0.120, p = 0.039), but negatively with elevated FPG in group B (r = -0.115, p = 0.039). Multiple logistic regression analysis revealed that A-FABP was an independent predictor for elevated FPG in group A (β, 0.028; 95% CI, 1.001-1.056; p < 0.05), but not in group B (β, -0.008; 95% CI, 0.882-1.117; p > 0.05). In this study, A-FABP was an independent risk factor for glucose dysregulation in obese individuals with MetS living in the Yunnan plateau, but not for those without obesity and MetS.
Collapse
Affiliation(s)
- Juan Huang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Guo Chen
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiong Meng
- School of Public Health, Kunming Medical University, Kunming, China
| | - Fang Xu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, China
| | - Fei Mi
- School of Public Health, Kunming Medical University, Kunming, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China.,Baoshan College of Traditional Chinese Medicine, Baoshan, China
| |
Collapse
|
56
|
Goh KK, Chen CYA, Wu TH, Chen CH, Lu ML. Crosstalk between Schizophrenia and Metabolic Syndrome: The Role of Oxytocinergic Dysfunction. Int J Mol Sci 2022; 23:ijms23137092. [PMID: 35806096 PMCID: PMC9266532 DOI: 10.3390/ijms23137092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.
Collapse
Affiliation(s)
- Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Tzu-Hua Wu
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (K.K.G.); (C.Y.-A.C.); (C.-H.C.)
- Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
57
|
Grajales D, Vázquez P, Alén R, Hitos AB, Valverde ÁM. Attenuation of Olanzapine-Induced Endoplasmic Reticulum Stress Improves Insulin Secretion in Pancreatic Beta Cells. Metabolites 2022; 12:metabo12050443. [PMID: 35629947 PMCID: PMC9147261 DOI: 10.3390/metabo12050443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
Second-generation antipsychotics (SGAs), in particular, olanzapine and clozapine, have been associated with the development of type 2 diabetes mellitus (T2D) and metabolic syndrome in individuals with schizophrenia. In this context, beta cell dysfunction is a plausible mechanism by which SGAs cause T2D. Herein, we analyzed the direct effects of olanzapine, a commonly prescribed SGA with diabetogenic properties, on the INS-1 (821/13) beta cell line and isolated pancreatic islets. Treatment of INS-1 beta cells with non-toxic concentrations of olanzapine (3–6 μM) during 4 h activated endoplasmic reticulum (ER) stress-mediated signaling by increasing PERK/eIF2α phosphorylation, IRE-1 phosphorylation and XBP-1 splicing. Moreover, glucose-stimulated insulin secretion (GSIS) was inhibited when olanzapine was present for 16 h. The insulin secretory function of INS-1 cells was restored by inhibiting olanzapine-induced ER stress with tauroursodeoxycholic acid (TUDCA). Similar effects of olanzapine with or without TUDCA on ER-stress-mediated signaling and GSIS were found in pancreatic islets from female mice. Our results indicate that early activation of ER stress in pancreatic beta cells is a potential mechanism behind the alterations in glucose homeostasis induced by olanzapine.
Collapse
Affiliation(s)
- Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain; (D.G.); (P.V.); (R.A.); (A.B.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain; (D.G.); (P.V.); (R.A.); (A.B.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosa Alén
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain; (D.G.); (P.V.); (R.A.); (A.B.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana B. Hitos
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain; (D.G.); (P.V.); (R.A.); (A.B.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), 28029 Madrid, Spain; (D.G.); (P.V.); (R.A.); (A.B.H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
58
|
Abstract
Drug-induced diabetes mellitus is a growing problem in clinical practice. New, potent medications contribute to this problem in a population already at high risk of developing glucose disturbances because of poor lifestyle habits and high prevalence of being overweight/obese. The present review focuses on four important pharmacological classes: glucocorticoids; antipsychotics, especially second generation; antiretroviral therapies, which revolutionised the management of individuals with HIV; and immune checkpoint inhibitors, recently used for the immunotherapy of cancer. For each class, the prevalence of drug-induced diabetes will be evaluated, the most common clinical presentations will be described, the underlying mechanisms leading to hyperglycaemia will be briefly analysed, and some recommendations for appropriate monitoring and management will be proposed.
Collapse
Affiliation(s)
- Bruno Fève
- Department of Endocrinology, CRMR PRISIS, Saint-Antoine Hospital, AP-HP, Paris, France.
- Centre de Recherche Saint-Antoine, Institute of Cardiometabolism and Nutrition, Sorbonne University-Inserm, Paris, France.
| | - André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium.
- Division of Clinical Pharmacology, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium.
| |
Collapse
|
59
|
Swathy B, Banerjee M. Understanding Pharmaco-Epigenomic Response of Antipsychotic Drugs Using Genome-Wide MicroRNA Expression Profile in Liver Cell Line. Front Mol Neurosci 2022; 15:786632. [PMID: 35392270 PMCID: PMC8980709 DOI: 10.3389/fnmol.2022.786632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Interindividual variability in drug response is a major concern among patients undergoing antipsychotic drug treatment. Apart from genetic and physiological factors, this variability in drug response could also be attributed to epigenetic mechanisms. The microRNAs (miRNAs) are key epigenetic markers that play an important role in pathogenesis and drug response. Several studies have shown that miRNAs are implicated in regulating the expression of various genes involved in drug metabolism and transport. In a conventional clinical setup, it is extremely difficult to distinguish the role of miRNA in pathogenesis and drug response as it is difficult to obtain drug naïve patients. To resolve this issue, we aimed to identify the role of antipsychotic drug treatment in inducing miRNA expression under an in vitro condition using a hepatic cell line. A liver cell line was treated with a maximum tolerable drug dosage model for haloperidol, clozapine in monotherapy, and their combination in polytherapy. Genome-wide miRNA profiling was performed using 60,000 miRNA probes in the microarray format in different treatment groups. Several miRNAs were observed to be differentially expressed impacting the pharmacokinetic, pharmacodynamics, and epigenomics properties of antipsychotic drug treatment. Interestingly, some of these miRNA expression patterns were similar to reported miRNA observations on schizophrenia pathogenesis. This study unravels the potential role of miRNAs in the mechanism of action of the antipsychotic drug and could also reflect in drug-induced side effects. This study also signifies the importance of pharmacoepigenomics approach while evaluating the role of miRNAs in pathogenesis.
Collapse
|
60
|
Grajales D, Vázquez P, Ruíz-Rosario M, Tudurí E, Mirasierra M, Ferreira V, Hitos AB, Koller D, Zubiaur P, Cigudosa JC, Abad-Santos F, Vallejo M, Quesada I, Tirosh B, Leibowitz G, Valverde ÁM. The second-generation antipsychotic drug aripiprazole modulates the serotonergic system in pancreatic islets and induces beta cell dysfunction in female mice. Diabetologia 2022; 65:490-505. [PMID: 34932133 PMCID: PMC8803721 DOI: 10.1007/s00125-021-05630-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity. METHODS We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or aripiprazole-supplemented diet (5.5-6.0 mg kg-1 day-1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was assessed by static incubations and Ca2+ fluxes by imaging techniques. RESULTS Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05, respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet. Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydroxylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling, without preventing beta cell dysfunction. CONCLUSIONS/INTERPRETATION Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however, aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as these drugs may increase the risk for development of the metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Diana Grajales
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eva Tudurí
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Vítor Ferreira
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana B Hitos
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Iván Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Boaz Tirosh
- The Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
61
|
Vasileva SS, Tucker J, Siskind D, Eyles D. Does the gut microbiome mediate antipsychotic-induced metabolic side effects in schizophrenia? Expert Opin Drug Saf 2022; 21:625-639. [PMID: 35189774 DOI: 10.1080/14740338.2022.2042251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Second-generation antipsychotics (SGAs) are the most effective treatment for people with schizophrenia. Despite their effectiveness in treating psychotic symptoms, they have been linked to metabolic, cardiovascular and gastrointestinal side-effects. The gut microbiome has been implicated in potentiating symptoms of schizophrenia, response to treatment and medication-induced side effects and thus presents a novel target mediating second-generation antipsychotic-induced side effects in patients. AREAS COVERED This narrative review presents evidence from clinical and pre-clinical studies exploring the relationship between the gut microbiome, schizophrenia, second-generation antipsychotics and antipsychotic-induced side-effects. It also covers evidence for psychobiotic treatment as a potential supplementary therapy for people with schizophrenia. EXPERT OPINION The gut microbiome has the potential to mediate antipsychotic-induced side-effects in people with schizophrenia. Microbiome-focused treatments should be considered in combination with standard therapy in order to ameliorate debilitating drug-induced side effects, increase quality of life and potentially improve psychotic symptoms. Future studies should aim to collect not only microbiome data, but also metabolomic measures, dietary information and behavioral data.
Collapse
Affiliation(s)
| | - Jack Tucker
- Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Australia.,University of Queensland School of Clinical Medicine, Brisbane, Australia
| | - Dan Siskind
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Metro South Addiction and Mental Health Service, Metro South Health, Brisbane, Australia.,University of Queensland School of Clinical Medicine, Brisbane, Australia.,Queensland Centre for Mental Health Research, Brisbane, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, Brisbane, Australia
| |
Collapse
|
62
|
Fanelli G, Franke B, De Witte W, Ruisch IH, Haavik J, van Gils V, Jansen WJ, Vos SJB, Lind L, Buitelaar JK, Banaschewski T, Dalsgaard S, Serretti A, Mota NR, Poelmans G, Bralten J. Insulinopathies of the brain? Genetic overlap between somatic insulin-related and neuropsychiatric disorders. Transl Psychiatry 2022; 12:59. [PMID: 35165256 PMCID: PMC8844407 DOI: 10.1038/s41398-022-01817-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence of somatic insulinopathies, like metabolic syndrome (MetS), obesity, and type 2 diabetes mellitus (T2DM), is higher in Alzheimer's disease (AD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Dysregulation of insulin signalling has been implicated in these neuropsychiatric disorders, and shared genetic factors might partly underlie this observed multimorbidity. We investigated the genetic overlap between AD, ASD, and OCD with MetS, obesity, and T2DM by estimating pairwise global genetic correlations using the summary statistics of the largest available genome-wide association studies for these phenotypes. Having tested these hypotheses, other potential brain "insulinopathies" were also explored by estimating the genetic relationship of six additional neuropsychiatric disorders with nine insulin-related diseases/traits. Stratified covariance analyses were then performed to investigate the contribution of insulin-related gene sets. Significant negative genetic correlations were found between OCD and MetS (rg = -0.315, p = 3.9 × 10-8), OCD and obesity (rg = -0.379, p = 3.4 × 10-5), and OCD and T2DM (rg = -0.172, p = 3 × 10-4). Significant genetic correlations with insulin-related phenotypes were also found for anorexia nervosa (AN), attention-deficit/hyperactivity disorder (ADHD), major depressive disorder, and schizophrenia (p < 6.17 × 10-4). Stratified analyses showed negative genetic covariances between AD, ASD, OCD, ADHD, AN, bipolar disorder, schizophrenia and somatic insulinopathies through gene sets related to insulin signalling and insulin receptor recycling, and positive genetic covariances between AN and T2DM, as well as ADHD and MetS through gene sets related to insulin processing/secretion (p < 2.06 × 10-4). Overall, our findings suggest the existence of two clusters of neuropsychiatric disorders, in which the genetics of insulin-related diseases/traits may exert divergent pleiotropic effects. These results represent a starting point for a new research line on "insulinopathies" of the brain.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - I Hyun Ruisch
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Veerle van Gils
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Søren Dalsgaard
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, PSYCH, Aarhus, Denmark
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
63
|
Ahmadpanah M, Pezeshki R, Soltanian AR, Jahangard L, Dürsteler KM, Keshavarzi A, Brand S. Influence of adjuvant clonidine on mania, sleep disturbances and cognitive performance - Results from a double-blind and placebo-controlled randomized study in individuals with bipolar I disorder during their manic phase. J Psychiatr Res 2022; 146:163-171. [PMID: 34990968 DOI: 10.1016/j.jpsychires.2021.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND While the favorable effect of adjuvant clonidine in the treatment of acute mania has been observed already about 40 years ago, this line of treatment has not been further investigated. Here, we resumed this topic, and we tested the effect of adjuvant clonidine, an antihypertensive stimulating the alpha-2 central adrenergic receptor, on symptoms of mania, cognitive performance, and subjective sleep. To this end, we performed a randomized, double-blind and placebo-controlled clinical trial among inpatients with bipolar disorder I during their acute phase of mania. METHODS A total of 70 inpatients (mean age: 37.40 years; 15.7% females) with diagnosed bipolar disorder I and during their acute manic phase were randomly assigned either to the adjuvant clonidine (0.2 mg/d to a maximum of 0.6 mg/d) or to the placebo condition. Standard medication was lithium at therapeutic dosages. At baseline, participants completed a series of self-rating questionnaires covering sociodemographic information and subjective sleep. Subjective sleep was re-assessed 24 days later at the end of the study. Experts rated participants' acute state of mania with the Young Mania Rating Scale at baseline and at day 12 and day 24. Participants' cognitive performance was assessed at baseline and at day 24 at the end of the study. RESULTS Over time, mania scores significantly decreased (large effect size), but more so in the clonidine condition, compared to the placebo condition (medium effect size). Likewise, over time, subjective sleep improved (large effect size), but more so in the clonidine, compared to the placebo condition (medium effect size). Over time, cognitive performance improved (medium effect size), irrespective from the study condition. CONCLUSIONS Compared to placebo, adjuvant clonidine to lithium improved symptoms of mania, as rated by experts', and subjective sleep quality. Adjuvant clonidine had no further favorable (or detrimental) impact on cognitive performance.
Collapse
Affiliation(s)
- Mohammad Ahmadpanah
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Pezeshki
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Modeling of Non-Communicable Diseases Research Center, Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Jahangard
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kenneth M Dürsteler
- Psychiatric Clinics of the University of Basel, Division of Substance Use Disorders, University of Basel, Basel, Switzerland; Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Amir Keshavarzi
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, 4002 Basel, Switzerland; Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, Basel, Switzerland; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
64
|
Beeler JA, Burghardt NS. The Rise and Fall of Dopamine: A Two-Stage Model of the Development and Entrenchment of Anorexia Nervosa. Front Psychiatry 2022; 12:799548. [PMID: 35087433 PMCID: PMC8787068 DOI: 10.3389/fpsyt.2021.799548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Dopamine has long been implicated as a critical neural substrate mediating anorexia nervosa (AN). Despite nearly 50 years of research, the putative direction of change in dopamine function remains unclear and no consensus on the mechanistic role of dopamine in AN has been achieved. We hypothesize two stages in AN- corresponding to initial development and entrenchment- characterized by opposite changes in dopamine. First, caloric restriction, particularly when combined with exercise, triggers an escalating spiral of increasing dopamine that facilitates the behavioral plasticity necessary to establish and reinforce weight-loss behaviors. Second, chronic self-starvation reverses this escalation to reduce or impair dopamine which, in turn, confers behavioral inflexibility and entrenchment of now established AN behaviors. This pattern of enhanced, followed by impaired dopamine might be a common path to many behavioral disorders characterized by reinforcement learning and subsequent behavioral inflexibility. If correct, our hypothesis has significant clinical and research implications for AN and other disorders, such as addiction and obesity.
Collapse
Affiliation(s)
- Jeff A. Beeler
- Department of Psychology, Queens College, City University of New York, Flushing, NY, United States
- Psychology Program, The Graduate Center, CUNY, New York, NY, United States
- Biology Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Nesha S. Burghardt
- Psychology Program, The Graduate Center, CUNY, New York, NY, United States
- Department of Psychology, Hunter College, CUNY, New York, NY, United States
| |
Collapse
|
65
|
Tang C, Chua YC, Abdin E, Subramaniam M, Verma S. Twenty-Four Week, Randomized, Double-Blind, Placebo-Controlled Trial of Metformin for Antipsychotic-Induced Weight Gain in Patients with First-Episode Psychosis: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:137. [PMID: 35010394 PMCID: PMC8750805 DOI: 10.3390/ijerph19010137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Excessive weight gain and cardiometabolic dysfunction are common and clinically relevant side effects of antipsychotic medications. In this pilot study, we aimed to establish the feasibility of using metformin and its effectiveness in managing antipsychotic-induced weight gain in patients with first-episode psychosis (FEP) on follow-up with the Singapore Early Psychosis Intervention Programme in a 24-week, randomized, double-blind, placebo-controlled trial, to ascertain the effects of metformin discontinuation on body weight and evaluate the safety and tolerability of metformin. Participants between the ages of 16 and 40 with FEP assessed as clinically stable and who had gained ≥5% of their pre-drug weight after initiation of the antipsychotic treatment were recruited from outpatient clinics between April 2015 and April 2018. Seventeen participants met all the inclusion criteria and were randomized to receive metformin (n = 8) or the placebo (n = 9) at Week 0, with follow up assessments at Weeks 3, 6, 12, 24, and 36. Metformin was generally well-tolerated. Participants in the metformin arm were able to control their weight better than participants receiving the placebo, an effect that did not persist after discontinuation. Our results support the use of metformin as a safe and tolerable weight control measure in a typical outpatient sample of young people with FEP.
Collapse
Affiliation(s)
- Charmaine Tang
- Department of Psychosis, Institute of Mental Health, Singapore 539747, Singapore;
| | - Yi Chian Chua
- Department of Psychosis, Institute of Mental Health, Singapore 539747, Singapore;
| | - Edimansyah Abdin
- Research Division, Institute of Mental Health, Singapore 539747, Singapore; (E.A.); (M.S.)
| | - Mythily Subramaniam
- Research Division, Institute of Mental Health, Singapore 539747, Singapore; (E.A.); (M.S.)
| | - Swapna Verma
- Medical Board, Institute of Mental Health, Singapore 539747, Singapore;
- MD Programme Department, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
66
|
Zhuo C, Xu Y, Wang H, Zhou C, Liu J, Yu X, Shao H, Tian H, Fang T, Li Q, Chen J, Xu S, Ma X, Yang W, Yao C, Li B, Yang A, Chen Y, Huang G, Lin C. Clozapine induces metformin-resistant prediabetes/diabetes that is associated with poor clinical efficacy in patients with early treatment-resistant schizophrenia. J Affect Disord 2021; 295:163-172. [PMID: 34464878 DOI: 10.1016/j.jad.2021.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Two distinct subtypes of treatment-resistant schizophrenia (TRS) have been recently reported, including early-treatment resistance (E-TR) and late-treatment resistance (L-TR). This study was to assess clozapine-induced metformin-resistant prediabetes/diabetes and its correlation with clinical efficacy in schizophrenia E-TR subtype. METHODS This prospective cohort study enrolled 230 patients with schizophrenia E-TR subtype and they were treated with adequate doses of clozapine for 16 weeks, during which patients with prediabetes/diabetes were assigned to receive add-on metformin. The main outcomes and measures included incidence of clozapine-induced prediabetes/diabetes and metformin-resistant prediabetes/diabetes, and the efficacy of clozapine as assessed by the Positive and Negative Syndrome Scale (PANSS) score. RESULTS Clozapine-induced prediabetes/diabetes occurred in 76.52% of patients (170 prediabetes and 6 diabetes), of which the blood sugar of 43 (24.43%) patients was controlled with metformin. Despite add-on metformin, 47.06% (74/170) of prediabetes patients progressed to diabetes. In total, the incidence of clozapine-induced metformin-resistant prediabetes/diabetes was 75.57% (133/176). On completion of 16-week clozapine treatment, 16.52% (38/230) patients showed clinical improvement with PANSS scores of ≥50% declining. Furthermore, clozapine-induced prediabetes/diabetes was significantly correlated with the poor clinical efficacy of clozapine for schizophrenia E-TR subtype. CONCLUSIONS The incidence of clozapine-induced metformin-resistant prediabetes/diabetes was considerably high in the schizophrenia E-TR subtype. Clozapine-induced metformin-resistant prediabetes/diabetes represents an independent risk factor that adversely affects the clinical efficacy of clozapine for the schizophrenia E-TR subtype. This study provided new evidence for re-evaluating the use of clozapine for TRS, especially E-TR subtype, and the use of metformin for the glycemic control of clozapine-induced prediabetes/diabetes.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key Laboratory of Psychiatry Neuroimaging-genetics and Co-morbidity (PNGC_Lab), Tianjin Medical University Clinical Hospital of Mental Health, Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China.
| | - Yong Xu
- Department of Psychiatry, First Clinical Medical College, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, 100191, China
| | - Chunhua Zhou
- Department of Pharmacoloy, The First Hospital of Hebei Medical University, Shijiazhuang 05000, Hebei Province, China
| | - Jian Liu
- Clinical Laboratory, Tianjin Medical University Clinical Hospital of Mental Health, Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China
| | - Xiaocui Yu
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Clinical Laboratory, Tianjin Medical University Clinical Hospital of Mental Health, Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China
| | - Hailin Shao
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Hongjun Tian
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Tao Fang
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China
| | - Qianchen Li
- Department of Pharmacoloy, The First Hospital of Hebei Medical University, Shijiazhuang 05000, Hebei Province, China
| | - Jiayue Chen
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key Laboratory of Psychiatry Neuroimaging-genetics and Co-morbidity (PNGC_Lab), Tianjin Medical University Clinical Hospital of Mental Health, Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China
| | - Shuli Xu
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key Laboratory of Psychiatry Neuroimaging-genetics and Co-morbidity (PNGC_Lab), Tianjin Medical University Clinical Hospital of Mental Health, Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China
| | - Xiaoyan Ma
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key Laboratory of Psychiatry Neuroimaging-genetics and Co-morbidity (PNGC_Lab), Tianjin Medical University Clinical Hospital of Mental Health, Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China
| | - Weiliang Yang
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key Laboratory of Psychiatry Neuroimaging-genetics and Co-morbidity (PNGC_Lab), Tianjin Medical University Clinical Hospital of Mental Health, Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China
| | - Cong Yao
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key Laboratory of Psychiatry Neuroimaging-genetics and Co-morbidity (PNGC_Lab), Tianjin Medical University Clinical Hospital of Mental Health, Tianjin Anding Hospital, Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin 300222, China
| | - Bo Li
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin 300014, China
| | - Anqu Yang
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin 300014, China
| | - Yuhui Chen
- National Center of Endocrine and Metabolic Disease Comprehensive Management (MMC), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Key laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin fourth center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin 300140, China; Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin 300014, China
| | - Guoyong Huang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, 325000
| | - Chongguang Lin
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, 325000
| |
Collapse
|
67
|
Serum Levels of HCY, MIF, and hs-CRP Correlate with Glycolipid Metabolism in Adults with Never-Medicated First-Episode Schizophrenia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7394699. [PMID: 34812265 PMCID: PMC8605916 DOI: 10.1155/2021/7394699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023]
Abstract
Objective It has been reported that the prevalence of metabolic syndrome (MS) in multiepisode patients with schizophrenia is 35.3%, which is 2- to 4-fold higher than in the general population. The study is designed to compare the glycolipid metabolism in patients with first-episode schizophrenia (FES) with sex- and age-matched healthy controls to investigate changes in serum levels of homocysteine (Hcy), macrophage migration inhibitory factor (MIF), and high-sensitive C-reactive protein (hs-CRP) and their relationships with the glycolipid metabolism in patients with FES. Methods His case-control study included 88 patients diagnosed with FES and 88 sex- and age-matched healthy controls. Patient psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS), Young Mania Rating Scale (YMRS), and 17-item Hamilton Rating Scale for Depression (HAMD-17). Patients with FES were classified into MS and non-MS groups. Results There were significant differences in the education level, body mass index (BMI), and waist circumference between the patients with FES and healthy controls (all p > 0.05). The patients with FES had higher levels of FPG and blood glucose at the oral glucose tolerance test (OGTT) (2 h glucose) concomitant with higher proportion of impaired glucose tolerance (IGT) and homeostasis model assessment of insulin resistance (HOMA2-IR) than healthy controls (all p < 0.001). It was revealed that the patients with FES showed higher serum levels of Hcy, MIF, and hs-CRP than healthy controls (all p < 0.001). The serum level of Hcy shared positive correlations with the score of PANSS totals (r = 0.551) and the negative syndrome of the PANSS scale (r = 0.494). The serum levels of MIF and hs-CRP was only positively correlated with the negative syndrome of the PANSS scale (r = 0.320 and r = 0.446). The level of Hcy shared positive correlations with the levels of FPG, 2 h glucose, and HOMA2-IR; the level of MIF was only positively correlated with the level of HOMA2-IR; the level of hs-CRP had a positive correlation with both levels of FPG and 2 h glucose (all p < 0.001). The levels of Hcy, MIF, and hs-CRP all shared positive correlations with the TG level and negative correlations with the HDL-C level (all p < 0.001). There were remarkable differences between the MS and non-MS groups with regard to BMI, waist circumference, negative subscale of the PANSS scale, FPG, TG, and HDL-C (all p < 0.05). Elevated levels of Hcy, MIF, and hs-CRP were detected in the MS group compared to the non-MS group (all p < 0.05). Conclusion These findings suggest that increased concentrations of HCY, MIF, and hs-CRP may contribute to the abnormal glycolipid metabolism in the context of schizophrenia.
Collapse
|
68
|
Bellman V, Russell N, Depala K, Dellenbaugh A, Desai S, Vadukapuram R, Patel S, Srinivas S. Challenges in Treating Cancer Patients With Unstable Psychiatric Disorder. World J Oncol 2021; 12:137-148. [PMID: 34804276 PMCID: PMC8577605 DOI: 10.14740/wjon1402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 11/14/2022] Open
Abstract
In this review, we first present a case of chronic myeloid leukemia with acute psychosis, and then we will discuss the incidence of cancer in patients with psychotic disorders, the manifestations of new-onset psychosis, and the prevalence of preexisting psychosis in cancer patients, coupled with their impact on the treatment, diagnosis, and prognosis of cancer. This was a case that presented with acute psychosis and was found to have an elevated white blood cell count upon admission to an inpatient psychiatric unit. He was diagnosed with chronic myeloid leukemia and successfully managed with imatinib/dasatinib therapy. Psychiatrically, he was stabilized on two long-acting injectable medications to help maintain adherence. We were able to eliminate his active psychotic symptoms and return him to normal functioning in affect and thinking, achieving sustained compliance with treatment. We identified multiple inconsistencies in screening for cancer of all types in these patients, masking of signs and symptoms that would typically clue physicians to the presence of cancers, underreporting of symptoms, and disparate access to healthcare resources in patients with mental disorders when compared to the general population. Treatment of cancer in these patients as compared to the general population has also been shown to be incongruent, which will be elaborated upon. Psychiatric interventions, as well as supportive measures, for treating patients who are facing challenges during active cancer treatment will be discussed.
Collapse
Affiliation(s)
- Val Bellman
- Department of Psychiatry, University of Missouri Kansas City School of Medicine, 1000 E. 24th Street, Kansas City, MO 64108, USA
| | - Nina Russell
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Kartik Depala
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Saral Desai
- Department of Psychiatry, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Ramu Vadukapuram
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sushma Srinivas
- A.J. Institute of Medical Sciences and Research Centre, NH66, Kuntikan, Mangalore, Karnataka, India
| |
Collapse
|
69
|
Chen CH, Chen PY, Chen CYA, Chiu CC, Lu ML, Huang MC, Lin YK, Chen YH. Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111333. [PMID: 34769853 PMCID: PMC8583146 DOI: 10.3390/ijerph182111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
The one-carbon metabolism pathway is a suitable candidate for studying the genetic and epigenetic factors contributing to metabolic abnormalities in patients with schizophrenia. We recruited 232 patients with schizophrenia and analyzed their serum folate, vitamin B12, and homocysteine levels and metabolic parameters to investigate the associations of genetic variants of methylenetetrahydrofolate reductase (MTHFR) and folate levels with metabolic parameters. MTHFR C677T and MTHFR A1298C were genotyped. Results showed that MTHFR 677T allele carriers had lower levels of total cholesterol and low-density lipoprotein cholesterol than those with the 677CC genotype. Metabolic parameters did not differ between MTHFR 1298C and 1298AA carriers. Patients with a low folate level had a lower high-density lipoprotein cholesterol level than those with a normal folate level, but the effect disappeared after adjustment for age, sex, and types of antipsychotics used. We found significant interactions between MTHFR A1298C and the folate level status (low vs. normal) in terms of body mass index and waist circumference. In conclusion, genetic variants in one-carbon metabolism might play a role in antipsychotic-induced metabolic abnormalities. Prospective studies on drug-naïve, first-episode patients with schizophrenia are warranted to identify key regions of DNA methylation changes accounting for antipsychotic-induced metabolic abnormalities.
Collapse
Affiliation(s)
- Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-C.C.); (M.-L.L.); (M.-C.H.)
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Correspondence: (C.-H.C.); (Y.-H.C.); Tel.: +886-2-2930-7930 (ext. 53961) (C.-H.C.); Fax: +886-2-2933-5221 (C.-H.C.)
| | - Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei 110, Taiwan;
- Graduate Institute of Medical Science, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cynthia Yi-An Chen
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Chih-Chiang Chiu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-C.C.); (M.-L.L.); (M.-C.H.)
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei 110, Taiwan;
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-C.C.); (M.-L.L.); (M.-C.H.)
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Ming-Chyi Huang
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (C.-C.C.); (M.-L.L.); (M.-C.H.)
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei 110, Taiwan;
| | - Yen-Kuang Lin
- Biostatistics Center, Taipei Medical University, Taipei 110, Taiwan;
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.C.); Tel.: +886-2-2930-7930 (ext. 53961) (C.-H.C.); Fax: +886-2-2933-5221 (C.-H.C.)
| |
Collapse
|
70
|
Szeliga A, Stefanowski B, Meczekalski B, Snopek M, Kostrzak A, Smolarczyk R, Bala G, Duszewska A, Smolarczyk K, Maciejewska-Jeske M. Menopause in women with schizophrenia, schizoaffective disorder and bipolar disorder. Maturitas 2021; 152:57-62. [PMID: 34674808 DOI: 10.1016/j.maturitas.2021.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
The transition to menopause, usually occurring between the ages of 40 and 55, is a time when women are particularly vulnerable. When preexisting mental illness is present, symptoms are often amplified during this period. Moreover, women with mental illnesses experience menopausal symptoms similarly to healthy women. In this narrative review we summarize the current data regarding menopause in women with schizophrenia, schizoaffective disorder, and bipolar disorder, as well as current standards of management and care. The management of chronic disease in women suffering from severe mental illness is also considered.
Collapse
Affiliation(s)
- Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Bogdan Stefanowski
- First Department of Psychiatry, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland.
| | - Milena Snopek
- First Department of Psychiatry, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Gregory Bala
- Appletree Medical Group, 2150 Robertson Rd., Ottawa, Ontario, Canada
| | - Anna Duszewska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Smolarczyk
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland.
| | - Marzena Maciejewska-Jeske
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
71
|
Evaluation of an educational wellness program by sex differences in community-dwelling Japanese patients with schizophrenia. Arch Psychiatr Nurs 2021; 35:450-456. [PMID: 34561058 DOI: 10.1016/j.apnu.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/10/2021] [Accepted: 06/12/2021] [Indexed: 11/22/2022]
Abstract
This study was a 24-week non-randomized controlled trial aimed at investigating the effects of lifestyle education by sex in patients with schizophrenia. The data was collected and analyzed for 75 subjects at five facilities in Aomori, Japan. Mean weight and BMI decreased in both biologically male and female subjects over a 24-Week study period in the Intervention group, but were maintenance or increase in the control Group. Although, when compared with the control group by ANCOVA (Analysis of Covariance), there were significant differences in body weight, BMI, and body fat percentage in the biologically male participants in the Intervention group, but not in the females. For the biologically males in the Intervention group, sex differences were speculated to affect weight loss strategies, such as using a pedometer to incorporate walking into their daily routine. Thus, when implementing lifestyle improvement education program, it is recommended to implement a program that considers sex differences.
Collapse
|
72
|
Barbosa M, Fernandes V. Rapid-onset clozapine-induced hyperglycaemia: pathways of glycaemic dysregulation. BMJ Case Rep 2021; 14:e243938. [PMID: 34518181 PMCID: PMC8438955 DOI: 10.1136/bcr-2021-243938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 11/04/2022] Open
Abstract
Clozapine is an atypical antipsychotic used in refractory schizophrenia, also efficient in alleviating dyskinesia in Parkinson's disease. Despite its potency, this drug is associated with severe metabolic side effects, including increased risk for diabetes. We report the case of a 45-year-old overweight woman with Parkinson's disease who presented with rapid-onset hyperglycaemia within 2 months after starting clozapine for refractory dyskinaesia. She had a history of gestational diabetes. At presentation, her blood glucose level was 505 mg/dL and glycated haemoglobin 12.4%, with no catabolic symptoms. Clozapine was suspended and metformin was started, but adequate glycaemic control was achieved only with insulin therapy, along with exenatide and empagliflozin afterwards. We assume that clozapine acted as a trigger for rapid deterioration of glycaemic control through direct pathophysiological mechanisms, rather than an indirect slowly evolving weight gain-related metabolic syndrome pathway. Clinicians should be aware of this complication, enabling timely diagnosis and proper treatment.
Collapse
Affiliation(s)
| | - Vera Fernandes
- Endocrinology Department, Braga Hospital, Braga, Portugal
| |
Collapse
|
73
|
Managing glucose-related adverse events of antipsychotics is worth the effort. DRUGS & THERAPY PERSPECTIVES 2021. [DOI: 10.1007/s40267-021-00856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
74
|
Dubath C, Piras M, Gholam M, Laaboub N, Grosu C, Sentissi O, Gamma F, Solida A, von Gunten A, Conus P, Eap CB. Effect of Quetiapine, from Low to High Dose, on Weight and Metabolic Traits: Results from a Prospective Cohort Study. PHARMACOPSYCHIATRY 2021; 54:279-286. [PMID: 34388836 DOI: 10.1055/a-1525-2820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The atypical antipsychotic quetiapine is known to induce weight gain and other metabolic complications. The underlying mechanisms are multifactorial and poorly understood with almost no information on the effect of dosage. Concerns were thus raised with the rise in low-dose quetiapine off-label prescription (i. e.,<150 mg/day). METHODS In this study, we evaluated the influence of quetiapine dose for 474 patients included in PsyMetab and PsyClin studies on weight and metabolic parameter evolution. Weight, blood pressure, lipid, and glucose profiles were evaluated during a follow-up period of 3 months after treatment initiation. RESULTS Significant dose-dependent metabolic alterations were observed. The daily dose was found to influence weight gain and increase the risk of undergoing clinically relevant weight gain (≥7% from baseline). It was also associated with a change in plasma levels of cholesterol (total cholesterol, LDL cholesterol, and HDL cholesterol) as well as with increased odds of developing hypertriglyceridemia, as well as total and LDL hypercholesterolemia. No impact of a dose increase on blood pressure and plasma glucose level was observed. DISCUSSION The dose-dependent effect highlighted for weight gain and lipid alterations emphasizes the importance of prescribing the minimal effective dose. However, as the effect size of a dose increase on metabolic worsening is low, the potential harm of low-dose quetiapine should not be dismissed. Prescriptions must be carefully evaluated and regularly questioned in light of side effect onset.
Collapse
Affiliation(s)
- Céline Dubath
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Mehdi Gholam
- Center for Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Othman Sentissi
- Adult Psychiatry Division, Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - Franziska Gamma
- Les Toises Psychiatry and Psychotherapy Center, Lausanne, Switzerland
| | - Alessandra Solida
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
75
|
Molina JD, Avila S, Rubio G, López-Muñoz F. Metabolomic connections between schizophrenia, antipsychotic drugs and metabolic syndrome: A variety of players. Curr Pharm Des 2021; 27:4049-4061. [PMID: 34348619 DOI: 10.2174/1381612827666210804110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND Diagnosis of schizophrenia lacks of reliable medical diagnostic tests and robust biomarkers applied to clinical practice. Schizophrenic patients undergoing treatment with antipsychotics suffer a reduced life expectancy due to metabolic disarrangements that co-exist with their mental illness and predispose them to develop metabolic syndrome, also exacerbated by medication. Metabolomics is an emerging and potent technology able to accelerate this biomedical research. <P> Aim: This review focus on a detailed vision of the molecular mechanisms involved both in schizophrenia and antipsychotic-induced metabolic syndrome, based on innovative metabolites that consistently change in nascent metabolic syndrome, drug-naïve, first episode psychosis and/or schizophrenic patients compared to healthy subjects. <P> Main lines: Supported by metabolomic approaches, although not exclusively, noteworthy variations are reported mainly through serum samples of patients and controls in several scenes: 1) alterations in fatty acids, inflammatory response indicators, amino acids and biogenic amines, biometals and gut microbiota metabolites (schizophrenia); 2) alterations in metabolites involved in carbohydrate and gut microbiota metabolism, inflammation and oxidative stress (metabolic syndrome), some of them shared with the schizophrenia scene; 3) alterations of cytokines secreted by adipose tissue, phosphatidylcholines, acylcarnitines, Sirtuin 1, orexin-A and changes in microbiota composition (antipsychotic-induced metabolic syndrome). <P> Conclusion: Novel insights into the pathogenesis of schizophrenia and metabolic side-effects associated to its antipsychotic treatment, represent an urgent request for scientifics and clinicians. Leptin, carnitines, adiponectin, insulin or interleukin-6 represent some examples of candidate biomarkers. Cutting-edge technologies like metabolomics have the power of strengthen research for achieving preventive, diagnostic and therapeutical solutions for schizophrenia.
Collapse
Affiliation(s)
- Juan D Molina
- Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, 12 de Octubre University Hospital, Madrid. Spain
| | - Sonia Avila
- Department of Psychiatry, Faculty of Medicine, Complutense University of Madrid. Spain
| | - Gabriel Rubio
- Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, 12 de Octubre University Hospital, Madrid. Spain
| | | |
Collapse
|
76
|
Liu JH, Chen N, Guo YH, Guan XN, Wang J, Wang D, Xiu MH. Metabolomics-based understanding of the olanzapine-induced weight gain in female first-episode drug-naïve patients with schizophrenia. J Psychiatr Res 2021; 140:409-415. [PMID: 34144444 DOI: 10.1016/j.jpsychires.2021.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
Previous studies have demonstrated that patients with schizophrenia (SZ) have greater rate of metabolic disorder as compared with the control population, which likely be the consequence of use of atypical antipsychotics. Olanzapine is a widely used antipsychotic, which increases the weight of SZ patients. However, the underlying mechanism remains poorly understood. Here we report the metabolomics-based understanding of the weight gain induced by olanzapine. 57 first-episode drug-naïve patients (FEDN) were recruited, of whom 27 patients completed a 4-week clinical trial. We then profiled the metabolomes of their plasma with the LC-MS-based nontargeted metabolomics approach at the baseline and after olanzapine monotherapy for 4 weeks. We observed that the plasma of the olanzapine-treated patient had significantly higher lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE) and lower carnitine as compared with that of the baseline plasma samples. Moreover, regression analyses indicated that the change of LysoPC(14:0) level was an independent contributor to the olanzapine-induced weight gain. Our study suggests that the metabolomics-based approach may facilitate the identification of biomarkers associated with the metabolic disorder causing by antipsychotic in schizophrenia patients.
Collapse
Affiliation(s)
- Jia Hong Liu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nan Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Yan Hong Guo
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Xiao Ni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Jun Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Dong Wang
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Mei Hong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China.
| |
Collapse
|
77
|
Cernea S, Dima L, Correll CU, Manu P. Pharmacological Management of Glucose Dysregulation in Patients Treated with Second-Generation Antipsychotics. Drugs 2021; 80:1763-1781. [PMID: 32930957 DOI: 10.1007/s40265-020-01393-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fasting hyperglycemia, impaired glucose tolerance, prediabetes, and diabetes are frequently present in patients treated with second-generation antipsychotics (SGAPs) for schizophrenia, bipolar disorder, and other severe mental illnesses. These drugs are known to produce weight gain, which may lead to insulin resistance, glucose intolerance, and metabolic syndrome, which constitute important risk factors for the emergence of diabetes. The aim of this review was to formulate therapeutic guidelines for the management of diabetes in patients treated with SGAPs, based on the association between SGAP-induced weight gain and glucose dysregulation. A systematic search in PubMed from inception to March 2020 for randomized controlled trials (RCTs) of diabetes or prediabetes in patients treated with SGAPs was performed. PubMed was also searched for the most recent clinical practice guidelines of interventions for co-morbid conditions associated with diabetes mellitus (DM) (arterial hypertension and dyslipidemia), lifestyle interventions and switching from high metabolic liability SGAPs to safer SGAPs. The search identified 14 RCTs in patients treated with SGAPs. Drug therapy using metformin as first-line therapy and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) or perhaps sodium-glucose cotransporter-2 (SGLT2) inhibitors as add-on therapy, might be preferred in these patients as well, as they favorably influence glucose metabolism and body mass index, and provide cardio-renal benefits in general to the DM population, although for the SGLT-2 inhibitors there are no RCTs in this specific patient category so far. Metformin is also useful for treatment of prediabetes. Arterial hypertension should be treated with angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers, and statins should be used for correction of dyslipidemia. The outcome of lifestyle-changing interventions has been disappointing. Switching from clozapine, olanzapine, or quetiapine to lower cardiometabolic-risk SGAPs, like aripiprazole, brexpiprazole, cariprazine, lurasidone, or ziprasidone, has been recommended.
Collapse
Affiliation(s)
- Simona Cernea
- Faculty of Medicine/Department M4/Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Romania.,Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Universitatea Transilvania, Nicolae Balcescu Str 59, Brașov, 500019, Romania.
| | - Christoph U Correll
- Charite Universitaetsmedizin, Department of Child and Adolescent Psychiatry, Berlin, and Campus Virchow-Klinikum, Mittelallee 5A, Berlin, 13353, Germany.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Psychiatry and Molecular Medicine, Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY, USA
| | - Peter Manu
- Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA.,Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA.,South Oaks Hospital, Northwell Health System, Amityville, NY, USA
| |
Collapse
|
78
|
Ellfolk M, Leinonen MK, Gissler M, Kiuru-Kuhlefelt S, Saastamoinen L, Malm H. Second-generation antipsychotic use during pregnancy and risk of congenital malformations. Eur J Clin Pharmacol 2021; 77:1737-1745. [PMID: 34100993 PMCID: PMC8528770 DOI: 10.1007/s00228-021-03169-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/30/2021] [Indexed: 11/29/2022]
Abstract
Purpose
To study if second-generation antipsychotic (S-GA) use during the first trimester of pregnancy is associated with an increased risk of major congenital malformations (MCM).
Methods A population-based birth cohort study using national register data extracted from the Drugs and Pregnancy database in Finland, years 1996–2017. The sampling frame included 1,273,987 pregnant women. We included singleton pregnancies ending in live or stillbirth or termination of pregnancy due to severe malformation. Pregnancies with exposure to known teratogens were excluded. Women were categorized into three groups: exposed to S-GAs (n = 3478), exposed to first-generation antipsychotics (F-GAs) (n = 1030), and unexposed (no purchases of S-GAs or F-GAs during pregnancy, n = 22,540). We excluded genetic conditions and compared the prevalence of MCMs in S-GA users to the two comparison groups using multiple logistic regression models. Results Use of S-GAs during early pregnancy was not associated with an increased risk of overall MCMs compared to unexposed (adjusted odds ratio, OR 0.92; 95% CI 0.72–1.19) or to F-GA users (OR 0.82; 95% CI 0.56–1.20). Of individual S-GAs, olanzapine use was associated with an increased risk of overall MCMs (OR 2.12; 95% CI 1.19–3.76), and specifically, an increased risk of musculoskeletal malformations (OR 3.71; 95% CI 1.35–10.1) when compared to unexposed, while comparisons to F-GA users did not show significant results. Conclusions Olanzapine use is associated with an increased risk of major congenital malformations and specifically, musculoskeletal malformations. Use during pregnancy should be restricted to situations where no safer alternatives exist. Supplementary information The online version contains supplementary material available at 10.1007/s00228-021-03169-y.
Collapse
Affiliation(s)
- Maria Ellfolk
- Teratology Information, Department of Emergency Medicine Services, Helsinki University and Helsinki University Hospital, Tukholmankatu 17, 00029 HUS, Helsinki, Finland
| | - Maarit K Leinonen
- Information Services Department, Data and Analytics, Finnish Institute for Health and Welfare, PB 30, 00271, Helsinki, Finland
| | - Mika Gissler
- Information Services Department, Health and Social Services Data and Information Management Unit, Finnish Institute for Health and Welfare, PB 30, 00271, Helsinki, Finland.,Research Centre for Child Psychiatry, University of Turku, Lemminkäisenkatu 3, 20520, Turku, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institute, 141 83, Huddinge, Sweden
| | - Sonja Kiuru-Kuhlefelt
- Information Services Department, Health and Social Services Data and Information Management Unit, Finnish Institute for Health and Welfare, PB 30, 00271, Helsinki, Finland
| | - Leena Saastamoinen
- Research Unit, The Social Insurance Institution, Nordenskiöldinkatu 12, 00250, Helsinki, Finland
| | - Heli Malm
- Teratology Information, Department of Emergency Medicine Services, Helsinki University and Helsinki University Hospital, Tukholmankatu 17, 00029 HUS, Helsinki, Finland. .,Research Centre for Child Psychiatry, University of Turku, Lemminkäisenkatu 3, 20520, Turku, Finland. .,Department of Clinical Pharmacology, Helsinki University and Helsinki University Hospital, PB 20 (Tukholmankatu 8 C), 00014, Helsinki, Finland. .,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, PB 20 (Tukholmankatu 8 C), 00014, Helsinki, Finland.
| |
Collapse
|
79
|
Brown JT, Campo-Soria C, Bishop JR. Current strategies for predicting side effects from second generation antipsychotics in youth. Expert Opin Drug Metab Toxicol 2021; 17:655-664. [PMID: 33896324 DOI: 10.1080/17425255.2021.1922668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Antipsychotic medications are used to treat a number of conditions in children and adolescents. While side effect profiles from second generation antipsychotics (SGAs) may differ from older antipsychotics, they do not come without risk. Knowing which children may be at higher risk for specific outcomes is important clinical information for prescribers. Common side effects and toxicities of SGAs in children include movement disorders, weight gain, and hormonal changes. There are also rare, but potentially dangerous adverse events including neuroleptic malignant syndrome, hypersensitivity and suicidal ideation.Areas covered: This review will summarize and comment on clinical, pharmacological, and genetic factors having evidence as predictors of SGA-associated side effects and toxicities in children.Expert opinion: Observations across studies note that older children and those that do not respond early in treatment may be more at risk for movement disorders, while younger, antipsychotic naive children are at increased risk for weight gain. Relatively fewer studies have looked at pharmacogenetic relationships, although variations in pharmacokinetic and pharmacodynamic genes hold promise to advance drug dosing or selection strategies. Future efforts to assimilate multiple clinical, pharmacological, and genetic factors to facilitate predictive analytics and clinical decision support for prescribers will advance precision care to patients.
Collapse
Affiliation(s)
- Jacob T Brown
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Claudia Campo-Soria
- Department of Psychiatry, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.,Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
80
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
81
|
Carli M, Kolachalam S, Longoni B, Pintaudi A, Baldini M, Aringhieri S, Fasciani I, Annibale P, Maggio R, Scarselli M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals (Basel) 2021; 14:238. [PMID: 33800403 PMCID: PMC8001502 DOI: 10.3390/ph14030238] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed medications to treat schizophrenia, bipolar disorders and other psychotic disorders. However, they might cause metabolic syndrome (MetS) in terms of weight gain, dyslipidemia, type 2 diabetes (T2D), and high blood pressure, which are responsible for reduced life expectancy and poor adherence. Importantly, there is clear evidence that early metabolic disturbances can precede weight gain, even if the latter still remains the hallmark of AAPs use. In fact, AAPs interfere profoundly with glucose and lipid homeostasis acting mostly on hypothalamus, liver, pancreatic β-cells, adipose tissue, and skeletal muscle. Their actions on hypothalamic centers via dopamine, serotonin, acetylcholine, and histamine receptors affect neuropeptides and 5'AMP-activated protein kinase (AMPK) activity, thus producing a supraphysiological sympathetic outflow augmenting levels of glucagon and hepatic glucose production. In addition, altered insulin secretion, dyslipidemia, fat deposition in the liver and adipose tissues, and insulin resistance become aggravating factors for MetS. In clinical practice, among AAPs, olanzapine and clozapine are associated with the highest risk of MetS, whereas quetiapine, risperidone, asenapine and amisulpride cause moderate alterations. The new AAPs such as ziprasidone, lurasidone and the partial agonist aripiprazole seem more tolerable on the metabolic profile. However, these aspects must be considered together with the differences among AAPs in terms of their efficacy, where clozapine still remains the most effective. Intriguingly, there seems to be a correlation between AAP's higher clinical efficacy and increase risk of metabolic alterations. Finally, a multidisciplinary approach combining psychoeducation and therapeutic drug monitoring (TDM) is proposed as a first-line strategy to avoid the MetS. In addition, pharmacological treatments are discussed as well.
Collapse
Affiliation(s)
- Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Anna Pintaudi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Marco Baldini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany;
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| |
Collapse
|
82
|
Binge Eating Disorders in Antipsychotic-Treated Patients With Schizophrenia: Prevalence, Antipsychotic Specificities, and Changes Over Time. J Clin Psychopharmacol 2021; 41:114-120. [PMID: 33587392 DOI: 10.1097/jcp.0000000000001357] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Excessive energy intake likely favors metabolic dysfunction in patients with schizophrenia and may be, in part, the consequence of antipsychotic treatments. However, previous studies on the prevalence of bulimia and binge eating symptoms in antipsychotic-treated patients are contradictory and not sufficiently informative. METHODS The prevalence of bulimia nervosa, binge eating disorder, and subsyndromal binge eating disorder was studied using Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria in 156 patients with schizophrenia or schizoaffective disorder treated with antipsychotic monotherapy. The effects of different antipsychotics were compared. RESULTS The prevalence of full syndromal binge eating disorder was 4.4% and that of subsyndromal binge eating disorder was 18.7% in patients (23.1% for binge eating spectrum disorder), and there were no cases of bulimia nervosa. Compared with the whole sample, binge eating spectrum disorders were significantly more prevalent in clozapine- and olanzapine-treated patients. Comparisons of patients having undergone treatment for 2 years or less with patients treated for more than 2 years showed that binge eating spectrum disorders decrease significantly over time, the difference being significant in clozapine- and olanzapine-treated patients. Night eating, simply assessed by a single question, showed a prevalence of 30% and was more prevalent in women treated with clozapine and olanzapine, with no significant change over time. CONCLUSIONS Binge eating disorders should be considered as important factors involved in the development of weight gain and metabolic syndrome in antipsychotic-treated patients with schizophrenia. The difficulty to reliably assess binge eating spectrum disorders in patients with psychosis is highlighted.
Collapse
|
83
|
Babic I, Sellers D, Else PL, Nealon J, Osborne AL, Pai N, Weston-Green K. Effect of liraglutide on neural and peripheral markers of metabolic function during antipsychotic treatment in rats. J Psychopharmacol 2021; 35:284-302. [PMID: 33570012 DOI: 10.1177/0269881120981377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist that prevents metabolic side effects of the antipsychotic drugs (APDs) olanzapine and clozapine through unknown mechanisms. AIM This study aimed to investigate the effect of chronic APD and liraglutide co-treatment on key neural and peripheral metabolic signals, and acute liraglutide co-treatment on clozapine-induced hyperglycaemia. METHODS In study 1, rats were administered olanzapine (2 mg/kg), clozapine (12 mg/kg), liraglutide (0.2 mg/kg), olanzapine + liraglutide co-treatment, clozapine + liraglutide co-treatment or vehicle for six weeks. Feeding efficiency was examined weekly. Examination of brain tissue (dorsal vagal complex (DVC) and mediobasal hypothalamus (MBH)), plasma metabolic hormones and peripheral (liver and kidney) cellular metabolism and oxidative stress was conducted. In study 2, rats were administered a single dose of clozapine (12 mg/kg), liraglutide (0.4 mg/kg), clozapine + liraglutide co-treatment or vehicle. Glucose tolerance and plasma hormone levels were assessed. RESULTS Liraglutide co-treatment prevented the time-dependent increase in feeding efficiency caused by olanzapine, which plateaued by six weeks. There was no effect of chronic treatment on melanocortinergic, GABAergic, glutamatergic or endocannabionoid markers in the MBH or DVC. Peripheral hormones and cellular metabolic markers were unaltered by chronic APD treatment. Acute liraglutide co-treatment was unable to prevent clozapine-induced hyperglycaemia, but it did alter catecholamine levels. CONCLUSION The unexpected lack of change to central and peripheral markers following chronic treatment, despite the presence of weight gain, may reflect adaptive mechanisms. Further studies examining alterations across different time points are required to continue to elucidate the mechanisms underlying the benefits of liraglutide on APD-induced metabolic side effects.
Collapse
Affiliation(s)
- Ilijana Babic
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Dominic Sellers
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Paul L Else
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Jessica Nealon
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Ashleigh L Osborne
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Nagesh Pai
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| | - Katrina Weston-Green
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.,Neurohorizons Laboratory, Molecular Horizons, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia.,Illawarra and Shoalhaven Local Health District, Wollongong, Australia
| |
Collapse
|
84
|
A comparison of the metabolic side-effects of the second-generation antipsychotic drugs risperidone and paliperidone in animal models. PLoS One 2021; 16:e0246211. [PMID: 33508013 PMCID: PMC7842964 DOI: 10.1371/journal.pone.0246211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The second generation antipsychotic drugs represent the most common form of pharmacotherapy for schizophrenia disorders. It is now well established that most of the second generation drugs cause metabolic side-effects. Risperidone and its active metabolite paliperidone (9-hydroxyrisperidone) are two commonly used antipsychotic drugs with moderate metabolic liability. However, there is a dearth of preclinical data that directly compares the metabolic effects of these two drugs, using sophisticated experimental procedures. The goal of the present study was to compare metabolic effects for each drug versus control animals. METHODS Adult female rats were acutely treated with either risperidone (0.1, 0.5, 1, 2, 6 mg/kg), paliperidone (0.1, 0.5, 1, 2, 6 mg/kg) or vehicle and subjected to the glucose tolerance test; plasma was collected to measure insulin levels to measure insulin resistance with HOMA-IR. Separate groups of rats were treated with either risperidone (1, 6 mg/kg), paliperidone (1, 6 mg/kg) or vehicle, and subjected to the hyperinsulinemic euglycemic clamp. RESULTS Fasting glucose levels were increased by all but the lowest dose of risperidone, but only with the highest dose of paliperidone. HOMA-IR increased for both drugs with all but the lowest dose, while the three highest doses decreased glucose tolerance for both drugs. Risperidone and paliperidone both exhibited dose-dependent decreases in the glucose infusion rate in the clamp, reflecting pronounced insulin resistance. CONCLUSIONS In preclinical models, both risperidone and paliperidone exhibited notable metabolic side-effects that were dose-dependent. Differences between the two were modest, and most notable as effects on fasting glucose.
Collapse
|
85
|
Speyer H, Westergaard C, Albert N, Karlsen M, Stürup AE, Nordentoft M, Krogh J. Reversibility of Antipsychotic-Induced Weight Gain: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:577919. [PMID: 34393989 PMCID: PMC8355990 DOI: 10.3389/fendo.2021.577919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Weight gain is a major adverse effect of antipsychotic medication, negatively affecting physical and mental well-being. The objective of this study was to explore if dose reduction, discontinuation, switch to a partial agonist, or switch from polypharmacy to monotherapy will lead to weight loss. METHODS Controlled and uncontrolled studies reporting the effects of discontinuation, dose reduction, switch to a partial agonist, or switch from polypharmacy to monotherapy on weight were included. Primary outcome was difference in weight compared to maintenance groups based on controlled studies. Secondary outcome was change in weight from initiation of one of the included interventions until follow-up in a pre-post analysis. RESULTS We identified 40 randomized controlled trials and 15 uncontrolled studies including 12,279 individuals. The effect of the interventions, i.e. dose reduction, drug discontinuation, or switch to a partial agonis, reduced the weight with 1.5 kg (95% CI -2.03 to -0.98; P < 0.001) compared to maintenance treatment. The weight change from pre to post was a reduction of 1.13 kg (95% CI -1.36 to -0.90; P < 0.001). CONCLUSION We found a significant but small reduction in weight, suggesting that antipsychotic-induced weight gain can be reversed to some degree. Only a few studies were designed to address the question as primary outcome, which limits the generalizability of our findings.
Collapse
Affiliation(s)
- Helene Speyer
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
- *Correspondence: Helene Speyer,
| | - Casper Westergaard
- Department of First Episode Psychosis, Psychiatric Centre, Glostrup, Denmark
| | - Nikolai Albert
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
| | - Mette Karlsen
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
| | - Anne Emilie Stürup
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
| | - Merete Nordentoft
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
| | - Jesper Krogh
- Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
86
|
Zhang Y, Li X, Yao X, Yang Y, Ning X, Zhao T, Xia L, Zhang Y, Zhang K, Liu H. Do Leptin Play a Role in Metabolism-Related Psychopathological Symptoms? Front Psychiatry 2021; 12:710498. [PMID: 34566714 PMCID: PMC8460901 DOI: 10.3389/fpsyt.2021.710498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Objectives: Leptin is a crucial regulator of energy balance and is associated with obesity. In recent years, it has also been recognized as involved in the psychopathological mechanism. Our study aimed to elucidate the relationships between serum leptin levels, body mass index (BMI), and psychopathology symptoms in patients with schizophrenia. Methods: A cross-sectional assessment of 324 inpatients with schizophrenia was conducted. Schizophrenia symptoms were measured using the Positive and Negative Syndrome Scale (PANSS) and the Brief Psychiatric Rating Scale (BPRS). Serum leptin levels were assessed by the Enzyme-Linked Immunosorbent Assay (ELISA). Results: Significant differences in sex, BMI, and negative symptom subscale (PANSS-N) scores were found between the groups with high and low leptin levels in the study. Leptin levels were positively correlated with BMI (B = 2.322, t = 9.557, P < 0.001) and negatively correlated with PANSS-N scores (B = -0.303, t = -2.784, P = 0.006). Conclusions: Our results suggest that the increase in leptin levels is responsible for antipsychotic-induced weight gain and improved psychopathological symptoms.
Collapse
Affiliation(s)
- Yelei Zhang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoyue Li
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Xianhu Yao
- Maanshan Fourth People's Hospital, Maanshan, China
| | - Yating Yang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoshuai Ning
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Tongtong Zhao
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Yulong Zhang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
87
|
Yuen JWY, Kim DD, Procyshyn RM, Panenka WJ, Honer WG, Barr AM. A Focused Review of the Metabolic Side-Effects of Clozapine. Front Endocrinol (Lausanne) 2021; 12:609240. [PMID: 33716966 PMCID: PMC7947876 DOI: 10.3389/fendo.2021.609240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
The second generation antipsychotic drug clozapine represents the most effective pharmacotherapy for treatment-resistant psychosis. It is also associated with low rates of extrapyramidal symptoms and hyperprolactinemia compared to other antipsychotic drugs. However, clozapine tends to be underutilized in clinical practice due to a number of disabling and serious side-effects. These are characterized by a constellation of metabolic side-effects which include dysregulation of glucose, insulin, plasma lipids and body fat. Many patients treated with clozapine go on to develop metabolic syndrome at a higher rate than the general population, which predisposes them for Type 2 diabetes mellitus and cardiovascular disease. Treatments for the metabolic side-effects of clozapine vary in their efficacy. There is also a lack of knowledge about the underlying physiology of how clozapine exerts its metabolic effects in humans. In the current review, we focus on key studies which describe how clozapine affects each of the main symptoms of the metabolic syndrome, and cover some of the treatment options. The clinical data are then discussed in the context of preclinical studies that have been conducted to identify the key biological substrates involved, in order to provide a better integrated overview. Suggestions are provided about key areas for future research to better understand how clozapine causes metabolic dysregulation.
Collapse
Affiliation(s)
- Jessica W. Y. Yuen
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David D. Kim
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ric M. Procyshyn
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William J. Panenka
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William G. Honer
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M. Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Alasdair M. Barr,
| |
Collapse
|
88
|
Affiliation(s)
- Robert W Buchanan
- Department of Psychiatry and Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
89
|
Long-Term Assessment of Lurasidone in Schizophrenia: Post Hoc Analysis of a 12-Month, Double Blind, Active-Controlled Trial and 6-Month Open-Label Extension Study. Neurol Ther 2020; 10:121-147. [PMID: 33098548 PMCID: PMC8140059 DOI: 10.1007/s40120-020-00221-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 11/05/2022] Open
Abstract
Introduction A post hoc analysis of a double-blind (DB) active control trial and an open-label extension (OLE) study was conducted to evaluate the long-term effects of lurasidone in patients with schizophrenia. Methods In the DB trial, patients were randomised to receive lurasidone or risperidone for 12 months. In OLE, all patients received lurasidone for an additional 6 months. Treatment-emergent adverse events (TEAEs) were evaluated. Efficacy assessments included relapse rate (DB trial only), and Positive and Negative Syndrome Scale, Clinical Global Impression–Severity scale, and Montgomery–Åsberg Depression Rating Scale. Results In the DB trial, patients with schizophrenia were randomised to lurasidone (n = 399) and risperidone (n = 190), of whom 129 and 84 continued into OLE, respectively. During the DB trial, incidence of TEAEs was similar for lurasidone (84.1%) and risperidone (84.2%). Lurasidone was associated with minimal changes in metabolic variables and prolactin levels, whereas risperidone was associated with clinically significant increases in prolactin and fasting glucose levels. The proportion of patients with metabolic syndrome was significantly lower in patients treated with lurasidone versus risperidone at the end of the DB trial (25.5% vs 40.4%; p = 0.0177). During OLE, patients switching from risperidone to lurasidone experienced a reduction in weight and prolactin levels; those continuing treatment with lurasidone experienced minimal changes in metabolic variables and prolactin. At the end of OLE, the proportion of patients with metabolic syndrome was no longer significantly different between groups (23.5% vs 31.5%; p = not significant). Efficacy outcomes were generally similar between groups during the DB trial, and were maintained during OLE. Conclusion Lurasidone was generally well tolerated and effective in clinically stable schizophrenia patients over the long term. Lurasidone was also generally well tolerated and maintained effectiveness over 6 months in patients switching from risperidone. Patients switching from risperidone experienced improvements in metabolic parameters and prolactin levels. These findings confirm lurasidone’s long-term effectiveness and favourable metabolic profile in patients with schizophrenia. Trial Registration ClinicalTrials.gov identifier NCT00641745.
Collapse
|
90
|
Abd El-Hameed AM, Eskandrani AA, Elroby FA. Assessment of the ameliorative effect of Hypericum perforatum on olanzapine-induced hepatic oxidative stress and metabolic abnormalities in experimental male albino rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1834757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Abeer M. Abd El-Hameed
- Faculty of Science, Chemistry Department, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia
| | - Areej A. Eskandrani
- Faculty of Science, Chemistry Department, Taibah University, Al-Madinah Al-Munawara, Saudi Arabia
| | - Fadwa A. Elroby
- Faculty of Medicine, Forensic Medicine &Toxicology Department, Beni-Suef University, Egypt
| |
Collapse
|
91
|
Namiki H. Antipsychotic pitfalls: idiopathic intracranial hypertension and antipsychotic-induced weight gain. BMJ Case Rep 2020; 13:13/6/e236161. [PMID: 32606104 DOI: 10.1136/bcr-2020-236161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Idiopathic intracranial hypertension (IIH) is a condition associated with poor vision and headaches that can cause disability and reduced quality of life. The onset of IIH is typically associated with sudden weight gain and obesity, which may be due to first-generation or second-generation antipsychotics. This case involved the use of quetiapine in an obese, 28-year-old woman; she gained significant weight after starting the antipsychotic and later developed headaches and blurred vision. Reducing quetiapine and administering acetazolamide significantly improved her symptoms within 4 weeks. This case reminds physicians to consider IIH as a cause of headache and vision loss in patients who have gained weight after starting or increasing quetiapine.
Collapse
Affiliation(s)
- Hirofumi Namiki
- Tokachi-Ikeda Community Center, Japan Association for Development of Community Medicine, Ikeda-cho, Nakagawa-gun, Hokkaido, Japan
| |
Collapse
|
92
|
Dai F, Song JH, Hong YP, Bai X, Sohn WM, Hong SJ. Dopaminergic antagonists inhibit bile chemotaxis of adult Clonorchis sinensis and its egg production. PLoS Negl Trop Dis 2020; 14:e0008220. [PMID: 32226018 PMCID: PMC7145267 DOI: 10.1371/journal.pntd.0008220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/09/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
Human clonorchiasis, caused by Clonorchis sinensis, is endemic in East Asian countries. C. sinensis metacercariae excyst in the duodenum of mammalian hosts, migrate to the intrahepatic bile duct, and mature into adults in the milieu of bile. We have previously shown that newly excysted juvenile C. sinensis move chemotactically toward bile and bile acids. Here, the chemotactic behavior of adult C. sinensis (CsAd) toward bile and bile acids was investigated. CsAds moved toward 0.05-5% bile and were most attracted to 0.5% bile but moved away from 10% bile. Upon exposure to 1-10% bile, CsAds eventually stopped moving and then died quickly. Among bile acids, CsAds showed strong chemotaxis toward cholic acid (CA) and deoxycholic acid. On the contrary, CsAds repelled from lithocholic acid (LCA). Moreover, at higher than 10 mM LCA, CsAds became sluggish and eventually died. Dopamine D1 receptor antagonists (LE-300 and SKF-83566), D2/3 receptor antagonists (raclopride and its derivative CS-49612), and a dopamine re-uptake inhibitor inhibited CA-induced chemotaxis of CsAds almost completely. Clinically used antipsychotic drugs, namely chlorpromazine, haloperidol, and clozapine, are dopaminergic antagonists and are secreted into bile. They completely inhibited chemotaxis of CsAds toward CA. At the maximum doses used to treat patients, the three tested medicines only expelled 2-12% of CsAds from the experimentally infected rabbits, but reduced egg production by 64-79%. Thus, antipsychotic medicines with dopaminergic antagonism could be considered as new anthelmintic candidates for human C. sinensis infections.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yeon Pyo Hong
- Department of Preventive Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Xuelian Bai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Clinical Medicine Laboratory, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, PR China
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
93
|
Chen CYA, Goh KK, Chen CH, Lu ML. The Role of Adiponectin in the Pathogenesis of Metabolic Disturbances in Patients With Schizophrenia. Front Psychiatry 2020; 11:605124. [PMID: 33551872 PMCID: PMC7854923 DOI: 10.3389/fpsyt.2020.605124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Antipsychotic-induced metabolic disturbance is a common adverse event occurring in patients treated with antipsychotic drugs. The mechanisms underlying metabolic dysregulation are complex, involving various neurochemical and hormonal systems, the interaction of genetic and lifestyle risk factors, and the antipsychotic drug prescribed. Recently, there has been increasing interest in the relationship between antipsychotic-induced metabolic disturbances and body weight regulatory hormones such as adiponectin. Adiponectin, an adipocyte-derived protein related to insulin sensitivity, weight gain, and anti-inflammation, has attracted great attention because of its potential role of being a biomarker to predict cardiovascular and metabolic diseases. Previous studies regarding the effects of antipsychotics on blood adiponectin levels have shown controversial results. Several factors might contribute to those inconsistent results, including different antipsychotic drugs, duration of antipsychotic exposure, age, sex, and ethnicity. Here we summarize the existing evidence on the link between blood adiponectin levels and metabolic disturbances related to antipsychotic drugs in patients with schizophrenia. We further discuss the effects of individual antipsychotics, patients' gender, ethnicity, age, and treatment duration on those relationships. We propose that olanzapine and clozapine might have a time-dependent biphasic effect on blood adiponectin levels in patients with schizophrenia.
Collapse
Affiliation(s)
- Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|