51
|
Fernandes SS, Egea MB, Salas-Mellado MDLM, Segura-Campos MR. Chia Oil and Mucilage Nanoemulsion: Potential Strategy to Protect a Functional Ingredient. Int J Mol Sci 2023; 24:7384. [PMID: 37108546 PMCID: PMC10139160 DOI: 10.3390/ijms24087384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanoencapsulation can increase the stability of bioactive compounds, ensuring protection against physical, chemical, or biological degradations, and allows to control of the release of these biocompounds. Chia oil is rich in polyunsaturated fatty acids-8% corresponds to omega 3 and 19% to omega 6-resulting in high susceptibility to oxidation. Encapsulation techniques allow the addition of chia oil to food to maintain its functionality. In this sense, one strategy is to use the nanoemulsion technique to protect chia oil from degradation. Therefore, this review aims to present the state-of-the-art use of nanoemulsion as a new encapsulation approach to chia oil. Furthermore, the chia mucilage-another chia seed product-is an excellent material for encapsulation due to its good emulsification properties (capacity and stability), solubility, and water and oil retention capacities. Currently, most studies of chia oil focus on microencapsulation, with few studies involving nanoencapsulation. Chia oil nanoemulsion using chia mucilage presents itself as a strategy for adding chia oil to foods, guaranteeing the functionality and oxidative stability of this oil.
Collapse
Affiliation(s)
- Sibele Santos Fernandes
- School of Chemistry and Food, Federal University of Rio Grande, Av Italy km 8, Carreiros 96203-900, Brazil;
| | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Sul Goiana, Km 01, Rio Verde 75901-970, Brazil
| | | | - Maira Rubi Segura-Campos
- Faculty of Chemical Engineering, Autonomous University of Yucatán, Periférico Norte km 33.5, Tablaje Catastral 13615, Mexico;
| |
Collapse
|
52
|
Katunzi-Kilewela A, Rweyemamu LM, Kaale LD, Kibazohi O, Fortunatus RM. Proximate composition, pasting and functional properties of composite flour blends from cassava and chia seeds flour. FOOD SCI TECHNOL INT 2023; 29:217-227. [PMID: 34964390 DOI: 10.1177/10820132211069471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study established the proximate composition, pasting, and functional properties of cassava flour (CF) blended with chia seeds flour (CSF). Composite flour was prepared by blending CF with CSF in the ratios of 95:05, 90:10, 85:15, 80:20, and 75:25 with CF and CSF used as controls, respectively. The effect of blending significantly (p < 0.05) increased protein, fat, fibre, and ash contents as CSF increased. On other hand, moisture and carbohydrate contents decreased significantly. Pasting properties of composite flour blends decreased significantly (p < 0.05) as the incorporation of CSF increased and a noticeable change was observed for composite flour (75:25) except for peak time and pasting temperature. Functional properties of water absorption capacity (WAC) of CSF were significantly different with CF and composite flour blends. Oil absorption capacity (OAC) of CF and CSF were significantly different, while the composite flour blends had varied OAC due to the inclusion of the different amounts of CSF. The swelling capacity (SC) of CF and CSF were not significantly different, but composite flour blends were significantly different from both CSF and CF. The least gelation concentration (LGC) and bulk density (BD) increased significantly as chia seeds increased. Increased concentration of chia CSF in the composite flour blends showed to alter the functional properties. This study recommends composite flour 75:25 for processing semiliquid products like porridge due to reduced pasting properties values that may be associated with increased energy density compared to CF.
Collapse
Affiliation(s)
- Ashura Katunzi-Kilewela
- Department of Food Science and Technology, 107660University of Dar es Salaam, Dar es Salaam, Tanzania.,363801Tanzania Bureau of Standards, Dar es Salaam, Tanzania
| | - Leonard Mp Rweyemamu
- Department of Food Science and Technology, 107660University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Lilian D Kaale
- Department of Food Science and Technology, 107660University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Oscar Kibazohi
- Department of Food Science and Technology, 107660University of Dar es Salaam, Dar es Salaam, Tanzania
| | | |
Collapse
|
53
|
Health-promoting approaches of the use of chia seeds. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
|
54
|
Mihai E, Negreanu-Pirjol BS, Craciunescu O, Ciucan T, Iosageanu A, Seciu-Grama AM, Prelipcean AM, Utoiu E, Coroiu V, Ghenea AM, Negreanu-Pirjol T. In Vitro Hypoglycemic Potential, Antioxidant and Prebiotic Activity after Simulated Digestion of Combined Blueberry Pomace and Chia Seed Extracts. Processes (Basel) 2023. [DOI: 10.3390/pr11041025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
This study aimed to evaluate the hypoglycemic potential, antioxidant activity and prebiotic activity of a hydroalcoholic extract of blueberry pomace (BP), an aqueous extract of chia seeds (CS) and a novel combination of BP–CS extracts (BCM) for further use as ingredient of functional food. Spectrometric and HPLC analyses were used to characterize the total phenolic and flavonoid content and composition of BP, while CS was analyzed for total carbohydrate content. Data showed that the BCM mixture exerted an inhibition of α-amylase activity, which was 1.36 times higher than that of BP and 1.25 higher than CS extract. The mixture also showed better scavenging activity of free DPPH radicals than individual extracts, and had an IC50 value of 603.12 µg/mL. In vitro testing indicated that both serum- and colon-reaching products of simulated intestinal digestion of BCM presented the capacity to protect Caco-2 intestinal cells against oxidative stress by inhibition of reactive oxygen species production. In addition, the colon-reaching product of BCM digestion had the capacity to significantly (p < 0.05) stimulate the growth of Lactobacillus rhamnosus and Lactobacillus acidophilus, revealing a prebiotic potential. All these results indicated that improved biological activity of the novel combination of BP and CS extracts could be due to the synergistic action of constituents. The combination is recommended for further testing and the development of novel functional food for controlling type 2 diabetes and gastrointestinal conditions.
Collapse
|
55
|
Li L, Song J, Zhang M, Iqbal S, Li Y, Zhang H, Zhang H. A near complete genome assembly of chia assists in identification of key fatty acid desaturases in developing seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1102715. [PMID: 37021303 PMCID: PMC10067618 DOI: 10.3389/fpls.2023.1102715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Chia is an annual crop whose seeds have the highest content of α-linolenic acid (ALA) of any plant known to date. We generated a high-quality assembly of the chia genome using circular consensus sequencing (CCS) of PacBio. The assembled six chromosomes are composed of 21 contigs and have a total length of 361.7 Mb. Genome annotation revealed a 53.5% repeat content and 35,850 protein-coding genes. Chia shared a common ancestor with Salvia splendens ~6.1 million years ago. Utilizing the reference genome and two transcriptome datasets, we identified candidate fatty acid desaturases responsible for ALA biosynthesis during chia seed development. Because the seed of S. splendens contains significantly lower proportion of ALA but similar total contents of unsaturated fatty acids, we suggest that strong expression of two ShFAD3 genes are critical for the high ALA content of chia seeds. This genome assembly will serve as a valuable resource for breeding, comparative genomics, and functional genomics studies of chia.
Collapse
Affiliation(s)
- Leiting Li
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Song
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiling Zhang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shahid Iqbal
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Yuanyuan Li
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- National Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
56
|
Comparative Analysis of Metabolic Variations, Antioxidant Profiles and Antimicrobial Activity of Salvia hispanica (Chia) Seed, Sprout, Leaf, Flower, Root and Herb Extracts. Molecules 2023; 28:molecules28062728. [PMID: 36985699 PMCID: PMC10056211 DOI: 10.3390/molecules28062728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The purpose of this study was to evaluate the phytochemical profiles of the seeds, sprouts, leaves, flowers, roots and herb of Salvia hispanica and to demonstrate their significant contribution to antioxidant and antimicrobial activities. Applied methods were: HPLC-DAD coupled with post-column derivatization with ABTS reagent, untargeted metabolomics performed by LC-Q-Orbitrap HRMS, and two-fold micro-dilution broth method, which involved suspending a solution of tested compounds dissolved in DMSO in Mueller–Hinton broth for bacteria or Mueller–Hinton broth with 2% glucose for fungi. Metabolomic profiling using LC-Q-Orbitrap HRMS used in this study yielded the identification and preliminary characterization of one hundred fifteen compounds. The dominant class of compounds was terpenoids (31 compounds), followed by flavonoids (21 compounds), phenolic acids and derivatives (19 compounds), organic acids (16 compounds) and others (fatty acids, sugars and unidentified compounds). The organic and phenolic acids were the most abundant classes in terms of total peak area, with distribution depending on the plant raw materials obtained from S. hispanica. The main compound among this class for all types of extracts was rosmarinic acid which was proven to be the most abundant for antioxidant potential. All tested extracts exhibited considerable antibacterial and antifungal activity. The strongest bioactivity was found in leaf extracts, which presented bactericidal activity against Gram-positive bacteria (S. aureus, S. epidermidis, M. luteus and E. faecalis). The work represents the first compendium of knowledge comparing different S. hispanica plant raw materials in terms of the profile of biologically active metabolites and their contribution to antioxidant, antimicrobial and antifungal activity.
Collapse
|
57
|
Mesías M, Gómez P, Olombrada E, Holgado F, Morales FJ. Risk/Benefit Evaluation of Chia Seeds as a New Ingredient in Cereal-Based Foods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20065114. [PMID: 36982021 PMCID: PMC10049232 DOI: 10.3390/ijerph20065114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/12/2023]
Abstract
Chia seed (Salvia hispanica L.) is a food rich in protein, fiber, polyunsaturated fatty acids and antioxidants. Consequently, its incorporation in food formulations may be desirable from a nutritional and healthy point of view. However, there is concern regarding the formation of process contaminants when they are subjected to thermal processing. The objective of this study was to incorporate different amounts of ground chia seeds in a biscuit model to evaluate the effect on the antioxidant capacity and formation of acrylamide and furfurals. Seven standard "Maria-type" biscuit formulations were prepared, replacing wheat flour with different amounts of ground chia seeds (defatted and non-defatted), from 0% (control biscuit) to 15% (respect to total solids in the recipe). Samples were baked at 180 °C for 22 min. Compared with the control biscuit, chia formulations increased the content of nutrients, antioxidant capacity (ABTS) and phenolic compounds (Folin-Ciocalteau method) but also doubled acrylamide levels and even raised more than 10 times furanic compound concentrations. Results indicate that the use of chia seeds as ingredients in new cereal-based formulations would improve the nutritional profile but also increase the occurrence of chemical process contaminants. This paradox should be carefully considered in the context of risk/benefit analysis.
Collapse
|
58
|
Kakkar S, Tandon R, Tandon N. The rising status of edible seeds in lifestyle related diseases: A review. Food Chem 2023; 402:134220. [DOI: 10.1016/j.foodchem.2022.134220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022]
|
59
|
Mondor M. Chia (Salvia Hispanica) Seed Oil Extraction By-Product and Its Edible Applications. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2022.2160457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Martin Mondor
- J2S 8E3 St-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada St-Hyacinthe, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| |
Collapse
|
60
|
Lopez C, Sotin H, Rabesona H, Novales B, Le Quéré JM, Froissard M, Faure JD, Guyot S, Anton M. Oil Bodies from Chia ( Salvia hispanica L.) and Camelina ( Camelina sativa L.) Seeds for Innovative Food Applications: Microstructure, Composition and Physical Stability. Foods 2023; 12:foods12010211. [PMID: 36613428 PMCID: PMC9818916 DOI: 10.3390/foods12010211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Exploring and deciphering the biodiversity of oil bodies (OBs) recovered from oilseeds are of growing interest in the preparation of sustainable, natural and healthy plant-based food products. This study focused on chia (Salvia hispanica L.) and camelina (Camelina sativa L.) seed OBs. A green refinery process including ultrasound to remove mucilage, aqueous extraction by grinding and centrifugation to recover OBs from the seeds was used. The microstructure, composition and physical stability of the OBs were examined. Confocal laser scanning microscopy images showed that chia and camelina seed OBs are spherical assemblies coated by a layer of phospholipids and proteins, which have been identified by gel electrophoresis. The mean diameters determined by laser light scattering measurements were 2.3 and 1.6 µm for chia and camelina seed OBs, respectively. The chia and camelina seed OBs were rich in lipids and other bioactive components with, respectively, 64% and 30% α-linolenic acid representing 70% and 53% of the total fatty acids in the sn-2 position of the triacylglycerols, 0.23% and 0.26% phospholipids, 3069 and 2674 mg/kg oil of β-sitosterol, and lipophilic antioxidants: 400 and 670 mg/kg oil of γ-tocopherol. Phenolic compounds were recovered from the aqueous extracts, such as rutin from camelina and caffeic acid from chia. Zeta-potential measurements showed changes from about -40 mV (pH 9) to values that were positive below the isoelectric points of pH 5.1 and 3.6 for chia and camelina seed OBs, respectively. Below pH 6.5, physical instability of the natural oil-in-water emulsions with aggregation and phase separation was found. This study will contribute to the development of innovative and sustainable food products based on natural oil-in-water emulsions containing chia and camelina seed OBs for their nutritional and health benefits.
Collapse
Affiliation(s)
| | | | | | - Bruno Novales
- INRAE, UR BIA, F-44316 Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | | | - Marine Froissard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), F-78000 Versailles, France
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), F-78000 Versailles, France
| | | | | |
Collapse
|
61
|
Khalid W, Arshad MS, Aziz A, Rahim M, Qaisrani TB, Afzal F, Ali A, Ranjha MMAN, Khalid MZ, Anjum F. Chia seeds ( Salvia hispanica L.): A therapeutic weapon in metabolic disorders. Food Sci Nutr 2023; 11:3-16. [PMID: 36655089 PMCID: PMC9834868 DOI: 10.1002/fsn3.3035] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022] Open
Abstract
The growth of functional components containing agricultural foods is enhancing because these components aid the human body against different chronic diseases. Currently, chia seeds basically belong to the mint family and are edible seeds of Salvia hispanica. These seeds are composed of different functional components including fiber, polyphenols, antioxidants, omega-3 fatty acid vitamins, minerals, and peptides. Besides, these seeds are also a good source of vegetable protein, unsaturated fat, carbohydrates, and ash. Chia seed components are helpful in cardiovascular disease (CVD) by reducing blood pressure, platelet aggregation, cholesterol, and oxidation. In GI-tract-related diseases like diabetes and constipation, chia fiber reduces the blood glucose level and provides bulk to stool. However, antioxidants and polyphenols are protected beta cells of the pancreas from inflammation. These components are protected from the cell damage of the different body parts, which can provide help in different types of cancer including breast, colorectal, liver, and pancreatic. Conclusively, some pervious studies approved that chia seed components are played important role in chronic diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Afifa Aziz
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and TechnologyGhazi UniversityDera Ghazi KhanPakistan
| | - Fareed Afzal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public HealthCentral South UniversityHunanChina
| | | | | | - Faqir Muhammad Anjum
- Islamic Food and Nutrition Council of AmericaIFANCA Halal Apex, Private LimitedFaisalabadPakistan
| |
Collapse
|
62
|
Oteri M, Bartolomeo G, Rigano F, Aspromonte J, Trovato E, Purcaro G, Dugo P, Mondello L, Beccaria M. Comprehensive Chemical Characterization of Chia ( Salvia hispanica L.) Seed Oil with a Focus on Minor Lipid Components. Foods 2022; 12:foods12010023. [PMID: 36613240 PMCID: PMC9818636 DOI: 10.3390/foods12010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
A comprehensive chemical characterization of different lipid components, namely fatty acid composition after derivatization in fatty acid methyl esters (FAMEs), triacylglycerols (TAGs), phospholipids (PLs), free fatty acids (FFAs), sterols, carotenoids, tocopherols, and polyphenols in Chia seed oil, obtained by Soxhlet extraction, was reported. Reversed phase liquid chromatography (RP-LC) coupled to UV and mass spectrometry (MS) detectors was employed for carotenoids, polyphenols, and TAGs determination; normal phase-LC in combination with fluorescence detector (FLD) was used for tocopherols analysis; PL and FFA fractions were investigated after a rapid solid phase extraction followed by RP-LC-MS and NanoLC coupled to electron ionization (EI) MS, respectively. Furthermore, gas chromatography (GC)-flame ionization (FID) and MS detectors were used for FAMEs and sterols analysis. Results demonstrated a significant content of bioactive compounds, such as the antioxidant tocopherols (22.88 µg mL-1), and a very high content of essential fatty acids (81.39%), namely α-linolenic (62.16%) and linoleic (19.23%) acids. In addition, for the best of authors knowledge, FFA profile, as well as some carotenoid classes has been elucidated for the first time. The importance of free fatty acids in vegetable matrices is related to the fact that they can be readily involved in metabolic processes or biosynthetic pathways of the plant itself. For a fast and reliable determination of this chemical class, a very innovative and sensitive NanoLC-EI-MS analytical determination was applied.
Collapse
Affiliation(s)
- Marianna Oteri
- Department of Veterinary Sciences, Section of Animal Production, University of Messina, I-98168 Messina, Italy
| | - Giovanni Bartolomeo
- Science4Life S.r.l., an Academic Spin-Off of University of Messina, I-98168 Messina, Italy
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, I-98168 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5722
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA, CONICET, Calle 47 esq. 115, La Plata 1900, Argentina
| | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, I-98168 Messina, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, I-98168 Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, I-98168 Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, I-00128 Rome, Italy
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical, and Agricultural Sciences (DOCPAS), Via Luigi Borsari 46, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
63
|
Paramita F, Katmawanti S, Kurniawan A. Proximate analysis and fiber content of smoothies fortified with Chia seeds. J Public Health Afr 2022. [DOI: 10.4081/jphia.2022.2407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Consuming adequate intake of fiber from fruit and vegetable is important to prevent metabolic disease. However consumption of fruit and vegetable in Indonesia still less than recommendation. Smoothies fortified with chia seeds has been develop to help achive adequate intake of fruit and vegetable. The objection of this study was to investigating proximate analysis and fiber content of smoothies fortified with various amount of chia seed (0 g, 2.5 g, 5 g and 7.5 g). This was a quantitative study with experimental design using four treatments. Proximat analysis perfomed with Gravimetry, Kjedahl, Soxhlet method for water and ash content, protein and lipid content. Carbohydrate content was test using by difference method. The addition of chia seeds increased the level of crude protein, lipids, carbohydrate and dietary fiber. Fortification of chia seeds in smoothies has improved nutritional content in our product and it became alternative ways to provide adequate intake of dietary fiber.
Collapse
|
64
|
Salgado VDSCN, Zago L, Antunes AEC, Miyahira RF. Chia (Salvia hispanica L.) Seed Germination: a Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:485-494. [PMID: 36083408 DOI: 10.1007/s11130-022-01011-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Chia (Salvia hispanica L.) is a seed native to northern Mexico and southern Guatemala that has started to be consumed in recent years in other regions of the world owing to its nutritional and functional properties. Germination of chia seeds seems to be able to further improve these properties, and it has been the subject of some studies. In general, germination has proven to be a simple and inexpensive process capable of improving the content of phenolic compounds and the antioxidant capacity of foods, as well as reducing antinutritional factors that interfere with nutrient absorption. A particular characteristic of chia seeds is that they produce mucilage when they are hydrated. For this reason, the germination conditions of the seed need to be adapted. The nutritional guidelines of some countries, such as Brazil, Germany and Sweden, recommend that the diet of the population should be more plant-based, thus encouraging the consumption of foods with a high content of bioactive compounds and nutrients, e.g., germinated seeds. This review briefly explored the germination conditions of chia seeds as well as the changes in phytonutrient content and antinutritional factors after their germination process. The main information available in the literature is that germination of chia seeds can increase the contents of protein, fiber, and total phenolic compounds. As a conclusion, germination of chia seeds is favorable for increasing their health benefits and nutritional value. However, chia germination parameters should be adjusted and microbiological risks should be properly evaluated.
Collapse
Affiliation(s)
| | - Lilia Zago
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil
| | | | - Roberta Fontanive Miyahira
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil.
| |
Collapse
|
65
|
Filippone A, Ardizzone A, Bova V, Lanza M, Casili G, Cuzzocrea S, Esposito E, Campolo M, Paterniti I. A Combination of Xyloglucan, Pea Protein and Chia Seed Ameliorates Intestinal Barrier Integrity and Mucosa Functionality in a Rat Model of Constipation-Predominant Irritable Bowel Syndrome. J Clin Med 2022; 11:jcm11237073. [PMID: 36498647 PMCID: PMC9739531 DOI: 10.3390/jcm11237073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Irritable Bowel Syndrome is a gastrointestinal disorder that affects the large intestine, which encompasses several symptoms including, but not limited to, abdominal pain, bloating and dysmotility. In particular, IBS associated with constipation (IBS-C) is characterized by hard and dry stools and inadequate evacuation and difficulty in defecation. Although several drugs ameliorate intestinal modifications and constipation-associated features, management of IBS is still a challenge. Natural compounds including Xyloglucan and pea protein (XP) and Chia seed powder (CS) are widely known to possess beneficial effects in counteracting several gastrointestinal disorders. Here, we aimed to assess the combined effects of XP and CS to treat constipation-related alterations in an IBS-C rat model. IBS-C was induced by gastric instillation of 2 mL of cold water (0-4 °C) for 14 days and Xiloglucan, Pea protein and Chia seeds (XP + CS) treatment was orally administered for 7 days. On day 22, colon tissues were collected for histological analysis. Our results showed that XP + CS administration attenuated constipation-related parameters by increasing body weight and food and water intake. Upon XP + CS treatment, from day 14 to 22, stool moisture content was restored to physiological level. Colonic tissues from IBS-C rats depicted a disruption of the organ architecture accompanied by edema. Loss of colonic structure was reflected by the marked reduction of tight junction protein expression, Occludin and zona occludens-1 (ZO-1). Administration of XP + CS treatment in IBS-C rats significantly ameliorated the colonic histological parameters and exerted a positive effect on barrier integrity by restoring the expression of Occludin and zona occludens-1 (ZO-1). Our findings demonstrated that the efficacy of XP and CS in managing constipation in rats is due to the ability of these compounds to form a protective barrier fortifying intestinal integrity and gut functionality.
Collapse
|
66
|
Mavroeidis A, Roussis I, Kakabouki I. The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review. Foods 2022; 11:3584. [PMID: 36429176 PMCID: PMC9689872 DOI: 10.3390/foods11223584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Achieving Food Security (FS) is perhaps our most challenging aspiration. Despite our best efforts, millions of people around the globe are malnourished or live with hunger. The state of the geo-political scene, as well as the COVID-19 pandemic, have recently brought forth fears of a Global Food Crisis (GFC). Here, we present the factors that threaten FS and could trigger a GFC, examine the potential of alternative crops (ACs) as a measure against an upcoming GFC, and highlight the key aspects of the ACs introduction process in new regions. ACs could enhance FS, yet their success is premised on the adoption of sustainable practices and the implementation of food strategies that aim to promote healthy consumer behaviours.
Collapse
Affiliation(s)
| | | | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
67
|
Bermejo NF, Munné-Bosch S. Mixing chia seeds and sprouts at different developmental stages: a cost-effective way to improve antioxidant vitamin composition. Food Chem 2022; 405:134880. [DOI: 10.1016/j.foodchem.2022.134880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
68
|
Meat extenders from different sources as protein-rich alternatives to improve the technological properties and functional quality of meat products. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Rodrigues MJ, Custódio L, Mecha D, Zengin G, Cziáky Z, Sotkó G, Pereira CG. Nutritional and Phyto-Therapeutic Value of the Halophyte Cladium mariscus L. (Pohl.): A Special Focus on Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:2910. [PMID: 36365362 PMCID: PMC9657221 DOI: 10.3390/plants11212910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This work searched for the phyto-therapeutic potential and nutritional value of seeds from the halophyte Cladium mariscus L. (Pohl.), aiming at its use as a source of bioactive ingredients for the food industry. Hence, the nutritional profile, including minerals, of seeds biomass was determined; food-grade samples were prepared, and their phytochemical fingerprinting assessed. Extracts were evaluated for in vitro antioxidant potential, inhibitory capacity towards enzymes related to neuroprotection, diabetes, and hyperpigmentation, and anti-inflammatory properties, along with a toxicological assessment. Sawgrass seeds can be considered a proper nutritional source with a good supply of minerals. All extracts had a high level of total phenolics (65.3−394.4 mg GAE/g DW) and showed a chemically rich and diverse profile of metabolites that have several biological properties described (e.g., antioxidant, anti-inflammatory). Extracts had no significant toxicity (cell viabilities > 80%) and were overall strong antioxidants (particularly at radical scavenging and reducing iron), effective tyrosinase inhibitors (55−71 mg KAE/g DW), showed anti-inflammatory properties (30−60% NO decrease), and had moderate capacity to inhibit enzymes related to neuroprotection (AChE 3.7−4.2, BChE 4.3−6.0 mg GALE/g DW) and diabetes (α-glucosidase 1.0−1.1, α-amylase 0.8−1.1 mmol ACAE/g). Altogether, results suggest that sawgrass seeds have the potential to be exploited as a new food product and are a reservoir of bioactive molecules with prospective applications as ingredients for value-added, functional, and/or preservative food products.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Débora Mecha
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary
| | - Gyula Sotkó
- Sotiva Seed Ltd., 4440 Tiszavasvári, Hungary
| | - Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
70
|
Elebeedy D, Ghanem A, Saleh A, Ibrahim MH, Kamaly OA, Abourehab MAS, Ali MA, Abd El Maksoud AI, El Hassab MA, Eldehna WM. In Vivo and In Silico Investigation of the Anti-Obesity Effects of Lactiplantibacillus plantarum Combined with Chia Seeds, Green Tea, and Chitosan in Alleviating Hyperlipidemia and Inflammation. Int J Mol Sci 2022; 23:12200. [PMID: 36293055 PMCID: PMC9602495 DOI: 10.3390/ijms232012200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
The increasing prevalence of obesity has become a demanding issue in both high-income and low-income countries. Treating obesity is challenging as the treatment options have many limitations. Recently, diet modification has been commonly applied to control or prevent obesity and its risks. In this study, we investigated novel therapeutic approaches using a combination of a potential probiotic source with prebiotics. Forty-eight adult male Sprague-Dawley rats were selected and divided into seven groups (eight rats per group). The first group was fed a high-fat diet, while the second group was a negative control. The other five groups were orally administered with a probiotic, Lactiplantibacillus plantarum (L. plantarum), and potential prebiotics sources (chia seeds, green tea, and chitosan) either individually or in combination for 45 days. We collected blood samples to analyze the biochemical parameters and dissected organs, including the liver, kidney, and pancreas, to evaluate obesity-related injuries. We observed a more significant decrease in the total body weight by combining these approaches than with individual agents. Moreover, treating the obese rats with this combination decreased serum catalase, superoxide dismutase, and liver malondialdehyde levels. A histopathological examination revealed a reduction in obesity-related injuries in the liver, kidney, and pancreas. Further docking studies indicated the potential role of chia seeds and green tea components in modulating obesity and its related problems. Therefore, we suggest that the daily administration of a pre- and probiotic combination may reduce obesity and its related problems.
Collapse
Affiliation(s)
- Dalia Elebeedy
- Pharmaceutical Biotechnology Department, College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City 12573, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona H. Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11754, Egypt
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 21961, Makkah 24382, Saudi Arabia
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
| | - Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Wagdy M. Eldehna
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| |
Collapse
|
71
|
Tanisha, Venkategowda S, Majumdar M. Amelioration of hyperglycemia and hyperlipidemia in a high-fat diet-fed mice by supplementation of a developed optimized polyherbal formulation. 3 Biotech 2022; 12:251. [PMID: 36060893 PMCID: PMC9428098 DOI: 10.1007/s13205-022-03309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022] Open
Abstract
This study evaluated in vivo anti-diabetic and anti-obesity activity of a polyherbal formulation's methanolic extract containing an optimized ratio of edible seeds (Salvia hispanica, Chenopodium quinoa, Nelumbo nucifera). Diet-induced obese mice model (C57BL/6) was developed by feeding the mice a high-fat diet for 10 weeks resulting in hyperglycemia and obesity. Different doses (125, 250 and 500 mg/kg of body weight) of formulation were administered orally daily for 6 weeks. Fasting blood glucose and body weight were monitored throughout the study. At the end of the study, serum parameters were analyzed and histological examinations were performed. There was a significant reduction in fasting blood glucose levels and body weight in animal groups receiving polyherbal formulation. Lipid profile was improved as revealed by a reduction in serum triglycerides and total cholesterol. Histological study showed an improvement in liver, kidney and pancreatic sections of treated mice. High-performance thin layer chromatography was performed to identify the phytochemicals responsible for the above-mentioned bioactivities. The results revealed the presence of flavonoid (rutin) in seeds of N.nucifera and in the polyherbal formulation. For the first time, this study demonstrated the anti-diabetic and anti-obesity potential of the optimized formulation. The formulation can be used as a potential therapy for management of diabesity.
Collapse
Affiliation(s)
- Tanisha
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Sunil Venkategowda
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| | - Mala Majumdar
- Jain (Deemed-to-be University), School of Sciences, #18/3, 9th Main, Jayanagar, 3rd Block, Bangalore, 560011 India
| |
Collapse
|
72
|
Adamczyk G, Krystyjan M, Kuźniar P, Kowalczewski PŁ, Bobel I. An Insight into Pasting and Rheological Behavior of Potato Starch Pastes and Gels with Whole and Ground Chia Seeds. Gels 2022; 8:gels8090598. [PMID: 36135310 PMCID: PMC9498488 DOI: 10.3390/gels8090598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
With regard to technological innovations, we applied chia (oilseeds) as a stabilizer additive in a normal and waxy potato starch sample to obtain stable starch-based gels during 20 days of storage. The aim of this study was to investigate the 5% w/w normal and waxy potato starch pastes (hot samples) and gels (cold samples) with the addition of 1% w/w whole and ground chia seeds properties as pasting and flow properties of pastes and textural properties of gels. The pasting process using a viscograph showed that normal and waxy potato starch with the addition of chia had a different pasting characteristic. The addition of chia seeds had a greater effect on the properties of normal potato starch than waxy potato starch. From a rheological point of view, starch pastes without chia were less theologically stable as they showed bigger areas of hysteresis loops. Minor changes in the hardness of gels were obtained in normal starch gels with chia seeds during 20 days of storing compared to the samples without chia seeds, whereas in the waxy starch gels, the effect was the opposite.
Collapse
Affiliation(s)
- Greta Adamczyk
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland or
- Correspondence:
| | - Magdalena Krystyjan
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Piotr Kuźniar
- Department of Food and Agriculture Production Engineering, Institute of Agricultural Sciences, Environment Management and Protection, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland
| | - Inna Bobel
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland or
- Department of Bakery and Confectionary Goods Technologies, Educational and Scientific Institute of Food Technology, National University of Food Technologies, 68 Volodymyrska St., 01601 Kyiv, Ukraine
| |
Collapse
|
73
|
Rabail R, Sultan MT, Khalid AR, Sahar AT, Zia S, Kowalczewski PŁ, Jeżowski P, Shabbir MA, Aadil RM. Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185907. [PMID: 36144643 PMCID: PMC9503555 DOI: 10.3390/molecules27185907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/23/2022]
Abstract
Health-protective functional foods are gaining popularity in the world of nutrition because they promote excellent health while decreasing pharmaceutical burdens. Chia seeds (CS) (Salvia hispanica L.), the greatest vegetative source of α-linolenic acid, bioactive proteins, and fibers, are among the top unconventional oilseeds shown to have bounteous benefits against various non-communicable diseases. Purposely, this study was designed to integrate roasted CS powder into white-flour-based ordinary bakery goods to improve their nutritional and nutraceutical profiles. CS efficacy in normal and hyperlipidemic Sprague-Dawley rats resulted in mitigating blood glucose, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while elevating high-density lipoprotein cholesterol, hematocrit, hemoglobin, red blood cell counts, and platelets. The nutritional profiling of chia-fortified muffins indicated significant increases of 47% in fat, 92% in fiber, 15% in protein, and 62% in minerals. The farinographic experiments of CS-blends revealed generally improved dough quality features with a significant rise in the degree of softening as fortification levels increased. A marketable recipe for CSF-muffins with several degrees of fortification demonstrated a significant rise in fat, 92% rise in fiber, 15% rise in protein, and 62% rise in minerals. Sensorial evaluation by trained taste panelists revealed a maximum appraisal of the 15% chia-fortified muffins due to aroma, appearance, and overall acceptability, and were forwarded for being acceptable for commercialization.
Collapse
Affiliation(s)
- Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Tauseef Sultan
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
- Correspondence: (M.T.S.); (R.M.A.)
| | - Abdur Rauf Khalid
- Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aqiba Tus Sahar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sania Zia
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, 60-965 Poznań, Poland
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (M.T.S.); (R.M.A.)
| |
Collapse
|
74
|
Quarta S, Massaro M, Carluccio MA, Calabriso N, Bravo L, Sarria B, García-Conesa MT. An Exploratory Critical Review on TNF-α as a Potential Inflammatory Biomarker Responsive to Dietary Intervention with Bioactive Foods and Derived Products. Foods 2022; 11:2524. [PMID: 36010524 PMCID: PMC9407274 DOI: 10.3390/foods11162524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
This review collects and critically examines data on the levels of tumour necrosis factor-alpha (TNF-α) in lean, overweight and obese subjects, and the effects of intervention with different foods and food products containing bioactive constituents in overweight/obese individuals. We additionally explore the influence of different single nucleotide polymorphisms (SNPs) on TNF-α levels and compare the response to food products with that to some anti-obesity drugs. Our aim was to provide an overview of the variability, consistency, and magnitude of the reported effects of dietary factors on TNF-α, and to envisage the reliability of measuring changes in the levels of this cytokine as a biomarker responsive to food intervention in association with the reduction in body weight. Regarding the circulating levels of TNF-α, we report: (i) a large intra-group variability, with most coefficients of variation (CV%) values being ≥30% and, in many cases, >100%; (ii) a large between-studies variability, with baseline TNF-α values ranging from <1.0 up to several hundred pg/mL; (iii) highly variable effects of the different dietary approaches with both statistically significant and not significant decreases or increases of the protein, and the absolute effect size varying from <0.1 pg/mL up to ≈50 pg/mL. Within this scenario of variability, it was not possible to discern clear differentiating limits in TNF-α between lean, overweight, and obese individuals or a distinct downregulatory effect on this cytokine by any of the different dietary approaches reviewed, i.e., polyunsaturated fatty acids (PUFAs), Vitamin-D (VitD), mixed (micro)nutrients, (poly)phenols or other phytochemicals. Further, there was not a clear relationship between the TNF-α responses and body weight changes. We found similarities between dietary and pharmacological treatments in terms of variability and limited evidence of the TNF-α response. Different factors that contribute to this variability are discussed and some specific recommendations are proposed to reinforce the need to improve future studies looking at this cytokine as a potential biomarker of response to dietary approaches.
Collapse
Affiliation(s)
- Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Laura Bravo
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Beatriz Sarria
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
75
|
Multifunctional Analysis of Chia Seed (Salvia hispanica L.) Bioactive Peptides Using Peptidomics and Molecular Dynamics Simulations Approaches. Int J Mol Sci 2022; 23:ijms23137288. [PMID: 35806294 PMCID: PMC9266559 DOI: 10.3390/ijms23137288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Chia seed peptides (CSP) can be a source of multifunctional biopeptides to treat non-communicable diseases. However, interactions and binding affinity involved in targeting specific receptors remains unexplored. In this study, molecular simulation techniques were used as virtual screening of CSP to determine drug-like candidates using a multi-target-directed ligand approach. CSP fraction with the best bioactivities in vitro was sequenced. Then, a prediction model was built using physicochemical descriptors (hydrophobicity, hydrophilicity, intestinal stability, antiangiogenic, antihypertensive, and anti-inflammatory) to calculate potential scores and rank possible biopeptides. Furthermore, molecular dynamics simulations (MDS) and ensemble molecular docking analysis were carried out using four human protein targets (ACE, angiotensin converting enzyme; VEGF, vascular endothelial growth factor; GLUC, glucocorticoid and MINC, mineralocorticoid receptors). Five known-sequence peptides (NNVFYPF, FNIVFPG, SRPWPIDY, QLQRWFR, GSRFDWTR) and five de novo peptides (DFKF, DLRF, FKAF, FRSF, QFRF) had the lowest energy score and higher affinity for ACE and VEGF. The therapeutic effects of these selected peptides can be related to the inhibition of the enzymes involved in angiogenesis and hypertension, due to formation of stable complexes with VEGF and ACE binding sites, respectively. The application of MDS is a good resource for identifying bioactive peptides for future experimental validation.
Collapse
|
76
|
Tak Y, Kaur M, Kumar R, Gautam C, Singh P, Kaur H, Kaur A, Bhatia S, Jha NK, Gupta PK, Amarowicz R. Repurposing chia seed oil: A versatile novel functional food. J Food Sci 2022; 87:2798-2819. [PMID: 35708201 DOI: 10.1111/1750-3841.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Chia seed oil (CSO) has been recently gaining tremendous interest as a functional food. The oil is rich in with polyunsaturated fatty acids (PUFAs), especially, alpha linolenic acid (ALA), linoleic acid (LA), tocopherols, phenolic acids, vitamins, and antioxidants. Extracting CSO through green technologies has been highly efficient, cost-effective, and sustainable, which has also shown to improve its nutritional potential and proved to be eco-friendly than any other traditional or conventional processes. Due to the presence of valuable bioactive metabolites, CSO is proving to be a revolutionary source for food, baking, dairy, pharmaceutical, livestock feed, and cosmetic industries. CSO has been reported to possess antidiabetic, anticancer, anti-inflammatory, antiobesity, antioxidant, antihyperlipidemic, insect-repellent, and skin-healing properties. However, studies on toxicological safety and commercial potency of CSO are limited and therefore the need of the hour is to focus on large-scale molecular mechanistic and clinical studies, which may throw light on the possible translational opportunities of CSO to be utilized to its complete potential. In this review, we have deliberated on the untapped therapeutical possibilities and novel findings about this functional food, its biochemical composition, extraction methods, nutritional profiling, oil stability, and nutraceutical and pharmaceutical applications for its health benefits and ability to counter various diseases.
Collapse
Affiliation(s)
- Yamini Tak
- Department of Biochemistry, Agriculture University, Kota, Rajasthan, India
| | - Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rajendra Kumar
- Department of Entomology, MBDDS Girls College, Siswali, Baran, Rajasthan, India
| | - Chirag Gautam
- Department of Plant Pathology, Agriculture University, Kota, Rajasthan, India
| | - Prabhjot Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harjeet Kaur
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amanpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surekha Bhatia
- Department of Processing & Food engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, India.,Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
77
|
Effect of Chia Seed as Egg Replacer on Quality, Nutritional Value, and Sensory Acceptability of Sponge Cake. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9673074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study aimed to make a cake by incorporating chia seed flour (CSF) at 0, 3, 5, and 7% with egg replacement at 0, 25, 50, and 100%, respectively. The addition of CSF increased the total proteins, fats, and mineral contents. However, cake volume, uniformity, and symmetry were lowered significantly (
) at an elevated level (5% and 7%) of CSF. Similarly, the cake depicted relatively higher textural hardness, springiness, cohesiveness, and chewiness upon addition of CSF. The higher substitution of CSF resulted in darker crust and crumb with lower sensory acceptability by the panelists, though the 3% CSF addition did not compromise the cake acceptance. Nonetheless, there were a significant rise in total phenolics and better antioxidant activity with CSF, measured as free radical scavenging activity. Most importantly, a massive rise in unsaturated fatty acids (ω-3, ω-6) and the simultaneous decline in total cholesterol were detected with increasing substitution of CSF.
Collapse
|
78
|
Ozón B, Cotabarren J, Valicenti T, Graciela Parisi M, David Obregón W. Chia expeller: A promising source of antioxidant, antihypertensive and antithrombotic peptides produced by enzymatic hydrolysis with Alcalase and Flavourzyme. Food Chem 2022; 380:132185. [DOI: 10.1016/j.foodchem.2022.132185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/23/2021] [Accepted: 01/15/2022] [Indexed: 11/30/2022]
|
79
|
Dominguez-Candela I, Lerma-Canto A, Cardona SC, Lora J, Fombuena V. Physicochemical Characterization of Novel Epoxidized Vegetable Oil from Chia Seed Oil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3250. [PMID: 35591583 PMCID: PMC9100186 DOI: 10.3390/ma15093250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022]
Abstract
In this study, a novel epoxidized vegetable oil (EVO) from chia seed oil (CSO) has been obtained, with the aim to be employed in a great variety of green products related to the polymeric industry, as plasticizers and compatibilizers. Previous to the epoxidation process characterization, the fatty acid (FA) composition of CSO was analyzed using gas chromatography (GC). Epoxidation of CSO has been performed using peracetic acid formed in situ with hydrogen peroxide and acetic acid, applying sulfuric acid as catalyst. The effects of key parameters as temperature (60, 70, and 75 °C), the molar ratio of hydrogen peroxide:double bond (H2O2:DB) (0.75:1.0 and 1.50:1.0), and reaction time (0-8 h) were evaluated to obtain the highest relative oxirane oxygen yield (Yoo). The evaluation of the epoxidation process was carried out through iodine value (IV), oxirane oxygen content (Oo), epoxy equivalent weight (EEW), and selectivity (S). The main functional groups were identified by means of FTIR and 1H NMR spectroscopy. Physical properties were compared in the different assays. The study of different parameters showed that the best epoxidation conditions were carried out at 75 °C and H2O2:DB (1.50:1), obtaining an Oo value of 8.26% and an EEW of 193 (g·eq-1). These high values, even higher than those obtained for commercial epoxidized oils such as soybean or linseed oil, show the potential of the chemical modification of chia seed oil to be used in the development of biopolymers.
Collapse
Affiliation(s)
- Ivan Dominguez-Candela
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Alejandro Lerma-Canto
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| | - Salvador Cayetano Cardona
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Jaime Lora
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy, Spain; (I.D.-C.); (S.C.C.); (J.L.)
| | - Vicent Fombuena
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
| |
Collapse
|
80
|
Cabrera-Santos D, Ordoñez-Salanueva CA, Sampayo-Maldonado S, Campos JE, Orozco-Segovia A, Flores-Ortiz CM. Quantifying Cardinal Temperatures of Chia ( Salvia hispanica L.) Using Non-Linear Regression Models. PLANTS (BASEL, SWITZERLAND) 2022; 11:1142. [PMID: 35567143 PMCID: PMC9105696 DOI: 10.3390/plants11091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Temperature is the main factor that impacts germination and therefore the success of annual crops, such as chia (Salvia hispanica L.), whose seeds are known for their high nutritional value related to its oil. The effect of temperature on germination is related to cardinal-temperature concepts that describe the range of temperature over which seeds of a particular species can germinate. Therefore, in this study, in addition to calculated germinative parameters such as total germination and germination rate of S. hispanica seeds, the effectiveness of non-linear models for estimating the cardinal temperatures of chia seeds was also determined. We observed that germination of S. hispanica occurred in cold to moderate-high temperatures (10-35 °C), having an optimal range between 25 and 35 °C, with the highest GR and t50 at 30 °C. Temperatures higher than 35 °C significantly reduced germination. Output parameters of the different non-linear models showed that the response of chia germination to temperature was best explained by beta models (B). Cardinal temperatures calculated by the B1 model for chia germination were: 2.52 ± 6.82 °C for the base, 30.45 ± 0.32 °C for the optimum, and 48.58 ± 2.93 °C for the ceiling temperature.
Collapse
Affiliation(s)
- Daniel Cabrera-Santos
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico; (D.C.-S.); (C.A.O.-S.); (S.S.-M.)
| | - Cesar A. Ordoñez-Salanueva
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico; (D.C.-S.); (C.A.O.-S.); (S.S.-M.)
| | - Salvador Sampayo-Maldonado
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico; (D.C.-S.); (C.A.O.-S.); (S.S.-M.)
| | - Jorge E. Campos
- Laboratorio de Bioquímica Molecular, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla C.P. 54090, Mexico;
| | - Alma Orozco-Segovia
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Cesar M. Flores-Ortiz
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico; (D.C.-S.); (C.A.O.-S.); (S.S.-M.)
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| |
Collapse
|
81
|
Cabrera-Santos D, Ordoñez-Salanueva CA, Sampayo-Maldonado S, Campos JE, Orozco-Segovia A, Flores-Ortiz CM. Quantifying Cardinal Temperatures of Chia ( Salvia hispanica L.) Using Non-Linear Regression Models. PLANTS (BASEL, SWITZERLAND) 2022. [PMID: 35567143 DOI: 10.3390/agriculture11060498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Temperature is the main factor that impacts germination and therefore the success of annual crops, such as chia (Salvia hispanica L.), whose seeds are known for their high nutritional value related to its oil. The effect of temperature on germination is related to cardinal-temperature concepts that describe the range of temperature over which seeds of a particular species can germinate. Therefore, in this study, in addition to calculated germinative parameters such as total germination and germination rate of S. hispanica seeds, the effectiveness of non-linear models for estimating the cardinal temperatures of chia seeds was also determined. We observed that germination of S. hispanica occurred in cold to moderate-high temperatures (10-35 °C), having an optimal range between 25 and 35 °C, with the highest GR and t50 at 30 °C. Temperatures higher than 35 °C significantly reduced germination. Output parameters of the different non-linear models showed that the response of chia germination to temperature was best explained by beta models (B). Cardinal temperatures calculated by the B1 model for chia germination were: 2.52 ± 6.82 °C for the base, 30.45 ± 0.32 °C for the optimum, and 48.58 ± 2.93 °C for the ceiling temperature.
Collapse
Affiliation(s)
- Daniel Cabrera-Santos
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Cesar A Ordoñez-Salanueva
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Salvador Sampayo-Maldonado
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| | - Jorge E Campos
- Laboratorio de Bioquímica Molecular, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla C.P. 54090, Mexico
| | - Alma Orozco-Segovia
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Cesar M Flores-Ortiz
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla C.P. 54090, Mexico
| |
Collapse
|
82
|
Han J, Zhang Q, Luo W, Wang Z, Pang Y, Shen X. In vitro
digestion of whole chia seeds (
Salvia hispanica
L.): Nutrient bioaccessibility, structural and functional changes. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jieyu Han
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Qiufang Zhang
- Zibo Institute for Inspection Testing and Metrology Zibo 255086 China
| | - Wentao Luo
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Ziyi Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Yuehong Pang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xiaofang Shen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 China
- Institute of Analytical Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
83
|
El-Feky AM, Elbatanony MM, Aboul Naser AF, Younis EA, Hamed MA. Salvia hispanica L. seeds extract alleviate encephalopathy in streptozotocin-induced diabetes in rats: Role of oxidative stress, neurotransmitters, DNA and histological indices. Biomarkers 2022; 27:427-440. [PMID: 35253573 DOI: 10.1080/1354750x.2022.2051072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT Diabetes mellitus (DM) is a metabolic disorder and may lead to cognitive dysfunctions. OBJECTIVE The aim of this work is to evaluate the potency of Salvia hispanica L. seeds (S. hispanica L.) (chia seeds) petroleum ether extract in attenuating brain complications associated with streptozotocin (STZ) induced diabetes in rats. MATERIALS AND METHODS Phytochemical composition of the seeds extract, macro and micro elements, vitamins, protein, carbohydrate and caloric values were estimated. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg body weight (b.wt)). Glibenclamide as a reference drug was also evaluated. The biochemical evaluation was done by measuring levels of glucose, insulin, α amylase, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), dopamine (DA), serotonin (5-HD), noradrenaline (NE), acetylcholinesterase (AchE), tumor necrosis factor-α (TNF-α), DNA fragmentation pattern and the histopathological profile of the brain hippocampus region. RESULTS Gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of twenty-five fatty acid esters and twenty-two compounds. Column chromatography led to the isolation of nine compounds. Treatment with the seeds extract revealed improvement of the measured parameters with variable degrees. CONCLUSION Chia seeds extract succeeded to attenuate the neurodegeneration in diabetic rats. Thereafter, it could be potentially used as a new dietary supplement against diabetic encephalopathy.
Collapse
Affiliation(s)
- Amal M El-Feky
- Pharmacognosy Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Asmaa F Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
84
|
Results of the BfR MEAL Study: The food type has a stronger impact on calcium, potassium and phosphorus levels than factors such as seasonality, regionality and type of production. Food Chem X 2022; 13:100221. [PMID: 35498977 PMCID: PMC9039896 DOI: 10.1016/j.fochx.2022.100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Analysis of calcium, potassium and phosphorus in 356 foods of the BfR MEAL Study. High mean levels were found in milk, cheese, nuts, legumes, spices and oilseeds. Differences in organic and conventional foods were determined for some MEAL foods. Lower potassium levels were determined in boiled compared to fried potatoes. Similar levels of phosphorus were found in most foods sampled regionally/seasonally.
The BfR MEAL Study aims to provide representative levels of chemical substances in foods consumed by the population in Germany for dietary exposure assessment. Calcium, potassium and phosphorus (Ca, K, P) are essential to obtain physiological functions in humans. Levels were investigated in 356 foods. Foods were purchased representatively, prepared as typically consumed and pooled before analysis. High mean levels were found in milk, dairy products, legumes, nuts, oilseeds and spices as well as chia seeds (Ca, K, P), chewing gum (Ca) and cocoa powder (K). Different levels comparing organically and conventionally produced foods were determined among others in cereal cracker (puffed), olives and tofu. Higher K levels were found in fried compared to boiled potatoes. Similar P levels were mainly found in regionally and seasonally sampled foods. These data provide a substantially improved basis to address dietary exposure assessment of the population in Germany for Ca, K and P.
Collapse
|
85
|
Motyka S, Koc K, Ekiert H, Blicharska E, Czarnek K, Szopa A. The Current State of Knowledge on Salvia hispanica and Salviae hispanicae semen (Chia Seeds). Molecules 2022; 27:molecules27041207. [PMID: 35208997 PMCID: PMC8877361 DOI: 10.3390/molecules27041207] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Chia seeds (Salviae hispanicae semen) are obtained from Salvia hispanica L. This raw material is distinguished by its rich chemical composition and valuable nutritional properties. It is currently referred to as “health food”. The purpose of the present work was to perform a literature review on S. hispanica and chia seeds, focusing on their chemical composition, biological properties, dietary importance, and medicinal uses. The valuable biological properties of chia seeds are related to their rich chemical composition, with particularly high content of polyunsaturated fatty acids, essential amino acids, polyphenols, as well as vitamins and bioelements. The available scientific literature indicates the cardioprotective, hypotensive, antidiabetic, and antiatherosclerotic effects of this raw material. In addition, studies based on in vitro assays and animal and human models have proven that chia seeds are characterized by neuroprotective, hepatoprotective, anti-inflammatory, and antioxidant properties. These properties indicate a valuable role of chia in the prevention of civilization diseases. Chia seeds are increasingly popular in functional food and cosmetic and pharmaceutical industries. That is attributed not only to their desirable chemical composition and biological activity but also to their high availability. Nevertheless, S. hispanica is also the object of specific biotechnological studies aimed at elaboration of micropropagation protocols of this plant species.
Collapse
Affiliation(s)
- Sara Motyka
- Chair and Department of Pharmaceutical Botany, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (S.M.); (K.K.); (H.E.)
| | - Katarzyna Koc
- Chair and Department of Pharmaceutical Botany, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (S.M.); (K.K.); (H.E.)
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (S.M.); (K.K.); (H.E.)
| | - Eliza Blicharska
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland
- Correspondence: (E.B.); (A.S.); Tel.: +48-814487182 (E.B.); +48-126205430 (A.S.)
| | - Katarzyna Czarnek
- Institute of Health Sciences, Faculty of Science and Health Sciences in Lublin, The John Paul II Catholic University of Lublin, ul. Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; (S.M.); (K.K.); (H.E.)
- Correspondence: (E.B.); (A.S.); Tel.: +48-814487182 (E.B.); +48-126205430 (A.S.)
| |
Collapse
|
86
|
Rahim MA, Imran M, Khan MK, Ahmad MH, Ahmad RS. Impact of spray drying operating conditions on encapsulation efficiency, oxidative quality, and sensorial evaluation of chia and fish oil blends. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Muhammad Abdul Rahim
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Imran
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Kamran Khan
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Muhammad Haseeb Ahmad
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Rabia Shabir Ahmad
- Department of Food Science Faculty of Life Sciences Government College University Faisalabad Pakistan
| |
Collapse
|
87
|
Mariod AA, Abdalrahman EM, Shakak MA. Black mahlab (Monechma ciliatum L.) seeds: processing effects on chemical composition and nutritional value. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-1-67-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Monechma ciliatum L. seeds are rich in proteins, carbohydrates, oils and mineral contents. Researchers have focused on new production development but there is no available data on the impact of processing techniques on the quality of the seeds. Our study aimed to investigate the impact of boiling, roasting, and germination on the composition and nutritional value of Monechma ciliatum (black mahlab) seeds.
Study objects and methods. We analyzed 7 kg of black mahlab seeds purchased from the local market. We applied standard methods used in boiling, roasting, and germination techniques. Proximate analyses were performed using the methods of the Association of Official Analytical Chemists. Minerals were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), and fatty acids were determined by gas chromatography. Tocopherols and amino acids in processed seeds were determined by high-performance liquid chromatography.
Results and discussion. The results showed that the proximate compositions of untreated, boiled, roasted, and germinated mahlab seeds were affected by boiling, roasting, and germination techniques. Most of the nutritional values were enhanced by all the treatments. In particular, all the processing techniques increased the protein content. Boiling and roasting increased the fat content, while boiling and germination increased the fiber content. Tocopherols were higher only in the germinated samples. Amino acids were increased by all the techniques. Minerals were affected by all the techniques, except for Na, which was higher in the germinated sample.
Conclusion. Boiling, roasting, and germination enhanced significantly the chemical composition of Monechma ciliatum seeds, which make them a value ingredient to develop new food products.
Collapse
|
88
|
El makawy AI, Mabrouk DM, Mohammed SE, Abdel-Aziem SH, EL-Kader HAA, Sharaf HA, Youssef DA, Ibrahim FM. The suppressive role of nanoencapsulated chia oil against DMBA-induced breast cancer through oxidative stress repression and tumor genes expression modulation in rats. Mol Biol Rep 2022; 49:10217-10228. [PMID: 36063350 PMCID: PMC9618492 DOI: 10.1007/s11033-022-07885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chia oil is high in omega-3 fatty acids, which have been linked to a lower risk of many diseases, including cancer. Oil encapsulation is a method that holds promise for maintaining oil content while enhancing solubility and stability. The purpose of this study is to prepare nanoencapsulated Chia oil and investigate its suppressive effects on rat chemically induced breast cancer. METHODS The oil was extracted from commercial Chia seeds and their fatty acids were analyzed using Gas Chromatography-mass spectrometry (GC/MS). Sodium alginate was used as a loading agent to create the Chia oil nanocapsules. The DPPH assay was used to assess the oil nanocapsules' capacity to scavenge free radicals. Breast cancer induction was done by single dose subcutaneously administration of 80 mg/kg dimethylbenz (a) anthracene (DMBA). Models of breast cancer were given Chia oil nanocapsules orally for one month at doses of 100 and 200 mg/kg. Through measuring intracellular reactive oxygen species (ROS) and protein carbonyl, assessing the gene expression of tumor suppressor genes (BRCA 1 & 2, TP53), and conducting histopathological analysis, the suppressive effect of Chia oil nanocapsules was examined. RESULTS The increase in ROS and PC levels brought on by DMBA was significantly decreased by the administration of Chia oil nanocapsules. In tumor tissue from rats given Chia oil nanocapsules, the mRNA expression levels of BRCA1, BRCA2, and TP53 were controlled Histopathological analysis clarified that the tissue architecture of breast tumors was improved by nanocapsules management. CONCLUSIONS These findings demonstrate the ability of Chia oil nanocapsules to inhibit cancer cells in the rat breast.
Collapse
Affiliation(s)
- Aida I. El makawy
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Dalia M. Mabrouk
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Shaimaa E. Mohammed
- Nutrition and Food Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Sekena H. Abdel-Aziem
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Heba A. Abd EL-Kader
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Hafiza A. Sharaf
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Dalia A. Youssef
- Pests and Plant Protection Department, Agricultural and Biology Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, P.O.12622, Egypt
| |
Collapse
|
89
|
Trujillo-Ramírez D, Reyes I, Lobato-Calleros C, Vernon-Carter E, Alvarez-Ramirez J. Chia seed oil-candelilla wax oleogels structural features and viscoelasticity are enhanced by annealing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
90
|
KHAN MA, AMEER K, SHAKOOR S, ASHRAF MR, BUTT M, KHALID MS, RAKHA A, ROHI M, NADEEM M, KHALIL AA, CHAUDHARY N, SAFEER M, RAFEH M. Development and characterization of wheat rusks supplemented with Chia (Salvia hispanica L.) flour with respect to physicochemical, rheological and sensory characteristics. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.53921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Allah RAKHA
- University of Agriculture Faisalabad, Pakistan
| | - Madiha ROHI
- Government College Women University, Pakistan
| | | | | | | | | | | |
Collapse
|
91
|
Yap JWL, Lee YY, Tang TK, Chong LC, Kuan CH, Lai OM, Phuah ET. Fatty acid profile, minor bioactive constituents and physicochemical properties of insect-based oils: A comprehensive review. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34913758 DOI: 10.1080/10408398.2021.2015681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insect-based food or ingredients have received tremendous attention worldwide because of their potential to ensure food and nutrition security, mitigating the reliance on land-dependent agricultural products. Indeed, insect-farming has low environmental impacts with reduced land, water and energy input. More importantly, insects are rich in high quality proteins and fats. They are also excellent sources of minerals, vitamins and bioactive compounds. Insect-based lipids are intriguing because they may contain high levels of unsaturated fatty acids particularly linoleic and α-linolenic acids. Besides, the insect-based lipids also show a considerable amount of bioactive components such as tocols, sterols and carotenoids. However, their fatty acid compositions and the nutritional values may vary depending on species, feed composition, developmental stage, geographical locations, and extraction techniques. Therefore, the present article aims to provide a comprehensive review on the fatty acid composition, the minor bioactive constituents and the physicochemical properties of fats and oils derived from insects of different orders (Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, Hemiptera and Diptera). The various parameters affecting the nutritional compositions of the insect-based lipids will also be highlighted. These information will definitely provide a detailed insight on the potential applications of these fats in various food systems based on their unique properties.
Collapse
Affiliation(s)
- Jeremy Wee-Lek Yap
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,Monash Industry Palm Oil Research Platform, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia Bandar Sunway
| | - Teck-Kim Tang
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Li-Choo Chong
- School of Food Studies and Gastronomy, Faculty of Social Science and Leisure Management, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Chee-Hao Kuan
- Department of Food Science with Nutrition, Faculty of Applied Science and Nutrition, Faculty of Science, UCSI University, Kuala Lumpur, Malaysia
| | - Oi-Ming Lai
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Eng-Tong Phuah
- Department of Food Science and Technology, School of Applied Sciences and Mathematics, Universiti Teknologi Brunei, Gadong, Brunei Darussalam
| |
Collapse
|
92
|
Lestari YN, Farida E, Amin N, Afridah W, Fitriyah FK, Sunanto S. Chia Seeds ( Salvia hispanica L.): Can They Be Used as Ingredients in Making Sports Energy Gel? Gels 2021; 7:gels7040267. [PMID: 34940327 PMCID: PMC8700922 DOI: 10.3390/gels7040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydration during exercise has been shown to limit performance. This study aimed to determine the best hydrocolloid for producing sports energy gel from chia seeds (Salvia hispanica L.). This study was a completed random-design study using one factor: the addition of 0.1% w/w hydrocolloids (SEG1: xanthan gum; SEG2: pectin; and SEG3: carboxymethyl cellulose). A sports energy gel was then analyzed for pH, viscosity, total soluble solids, potassium content, and gross energy. The sensory characteristics that were analyzed include color, texture, aroma, and flavor, using hedonic tests on 25 panelists. The addition of different hydrocolloids resulted in significant differences in pH, viscosity, total soluble solids, potassium, and energy contents (p = 0.026; 0.0001; 0.0001; and 0.0001). Differences in hydrocolloid types also led to differences in the panelists’ perceptions of the sports energy gels’ colors and textures (p = 0.008 and 0.0001). The best formulation was the sports energy gel with added xanthan gum, which showed the highest average energy, total soluble solids, potassium, and viscosity values, and the lowest average of pH values (60.24 ± 0.340, 10.6 ± 0.08, 19.6 ± 0.23, 367.4 ± 9.81, and 5.2 ± 0.38, respectively). The conclusion is that chia seeds can be used as the main ingredient for producing a high-energy sports gel. Energy has a huge impact on a person’s physical and mental health.
Collapse
Affiliation(s)
- Yanesti Nuravianda Lestari
- Department of Nutrition, Faculty of Sport Science, Universitas Negeri Semarang, Semarang 50229, Indonesia;
- Correspondence:
| | - Eko Farida
- Department of Nutrition, Faculty of Sport Science, Universitas Negeri Semarang, Semarang 50229, Indonesia;
| | - Nur Amin
- Department of Sport Science, Faculty of Health Science, Universitas Ngudi Waluyo, Semarang 50513, Indonesia;
| | - Wiwik Afridah
- Department of Public Health, Faculty of Health Science, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, Indonesia;
| | - Fifi Khoirul Fitriyah
- Department of Early Childhood Education, Faculty of Teacher Training and Education, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, Indonesia; (F.K.F.); (S.S.)
| | - Sunanto Sunanto
- Department of Early Childhood Education, Faculty of Teacher Training and Education, Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, Indonesia; (F.K.F.); (S.S.)
| |
Collapse
|
93
|
Drużyńska B, Wołosiak R, Grzebalska M, Majewska E, Ciecierska M, Worobiej E. Comparison of the Content of Selected Bioactive Components and Antiradical Properties in Yoghurts Enriched with Chia Seeds ( Salvia hispanica L.) and Chia Seeds Soaked in Apple Juice. Antioxidants (Basel) 2021; 10:1989. [PMID: 34943092 PMCID: PMC8750685 DOI: 10.3390/antiox10121989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the fact that consumers are looking for new, health-promoting products, there is a growing interest in various ingredients with a high biological activity that could enrich conventional foods. As is known, chia seeds are a rich source of various health-promoting compounds. The objective of this study was to determine the content of selected biologically active compounds and their antioxidant properties by means of DPPH●, ABTS+●, and the ability to chelate Fe (II) ions in chia seeds and yoghurts with the addition of these seeds and seeds soaked in apple juice. It was found that chia seeds are a rich source of bioactive ingredients with beneficial effects on human health-especially polyphenols. All the extracts showed antioxidant properties against the radicals used. The addition of seeds to yoghurt contributed to the presence of polyphenols, while soaking in apple juice resulted in a higher content of polyphenols in yoghurts. The enriched yoghurt extracts showed antioxidant properties against DPPH radicals and the ability to chelate Fe (II) ions. The addition of seeds soaked in apple juice significantly influenced the antioxidant activity against ABTS radicals. The addition of seeds (plain and soaked) did not cause significant changes in the pH of the yoghurts.
Collapse
Affiliation(s)
- Beata Drużyńska
- Department of Food Technology and Assessment, Division of Food Quality Assessment, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Rafał Wołosiak
- Department of Food Technology and Assessment, Division of Food Quality Assessment, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | | | - Ewa Majewska
- Department of Food Technology and Assessment, Division of Food Quality Assessment, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Marta Ciecierska
- Department of Food Technology and Assessment, Division of Food Quality Assessment, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Elwira Worobiej
- Department of Food Technology and Assessment, Division of Food Quality Assessment, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| |
Collapse
|
94
|
Rodríguez Lara A, Mesa-García MD, Medina KAD, Quirantes Piné R, Casuso RA, Segura Carretero A, Huertas JR. Assessment of the Phytochemical and Nutrimental Composition of Dark Chia Seed ( Salvia hispánica L.). Foods 2021; 10:3001. [PMID: 34945556 PMCID: PMC8702123 DOI: 10.3390/foods10123001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Chia seeds are rich sources of different macro and micronutrients associated with health benefits; thus, they may be considered as a functional food. However, the composition depends on the variety, origin, climate and soil. Here, we show a comprehensive characterization of extractable and non-extractable phenolic compounds of dark chia seed Salvia hispanica L. using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and discuss potential health benefits associated with the presence of a number of nutritional and bioactive compounds. We report that dark chia from Jalisco is a high-fiber food, containing omega-3 polyunsaturated fatty acids, essential amino acids (phenylalanine and tryptophan), and nucleosides (adenosine, guanidine and uridine), and rich in antioxidant phenolic compounds, mainly caffeic acid metabolites. Our data suggest that chia seeds may be used as ingredients for the development of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Avilene Rodríguez Lara
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| | - María Dolores Mesa-García
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain;
- Ibs.GRANADA, Biosanitary Research Institute of Granada, 18012 Granada, Spain
| | - Karla Alejandra Damián Medina
- University Center of Tonala, University of Guadalajara, Av 555 Ejido San José Tateposco, Nuevo Periferico Oriente, Tonala 45425, Mexico;
| | - Rosa Quirantes Piné
- Technological Centre for Research and Development of Functional Foods, Avenida del Conocimiento, 37, 18100 Granada, Spain; (R.Q.P.); (A.S.C.)
| | - Rafael A. Casuso
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| | - Antonio Segura Carretero
- Technological Centre for Research and Development of Functional Foods, Avenida del Conocimiento, 37, 18100 Granada, Spain; (R.Q.P.); (A.S.C.)
| | - Jesús Rodríguez Huertas
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| |
Collapse
|
95
|
Mohamed D, Mohammed S, Hamed I. Chia seeds oil enriched with phytosterols and mucilage as a cardioprotective dietary supplement towards inflammation, oxidative stress, and dyslipidemia. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2022.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Non-communicable diseases are a cluster of metabolic diseases, which include type-2 diabetes, cancer, and cardiovascular diseases (CVDs). The aim of the current research was to incorporate dietary fibers (mucilage) and phytosterol for enriching chia seeds oil for producing new dietary supplements for cardio-protection from oxidative stress, inflammation, and dyslipidemia. Methods: Fatty acids profile, phytosterols, and phenolic compounds content of the prepared dietary supplement were assessed. The cardioprotective potency of the dietary supplement was evaluated in rats fed on a high-fat diet for a month. Biochemical parameters related to inflammation, oxidative stress, lipid profile, cardiac enzymes, and kidney function were determined in all rats. Results: The results revealed that dietary supplement was rich in omega-3 fatty acids. Beta-sitosterol and campesterol were the major phytosterols in chia seeds oil dietary supplement. Phenolic compounds were present by 25.9 ± 1.202 mg gallic acid equivalent (GAE)/g dietary supplements. Rats fed on the high-fat diet showed significant elevation (P < 0.05) in inflammatory markers, oxidative stress, dyslipidemia, and cardiac enzymes in association with the elevation of kidney function compared with normal rats. Administration of both doses of dietary supplement significantly (P < 0.05) improved all the studied biochemical parameters. The high dose of the dietary supplement was promising in the reduction of inflammatory markers, oxidative stress, and improved dyslipidemia in accordance with the reduction of all cardiac enzymes and kidney function. Conclusion: Dietary supplements investigated in the current research showed cardioprotective potency through its anti-inflammatory and dyslipidemic activities, which may be attributed to the presence of phenolic compounds, omega-3 fatty acids, phytosterols, and soluble dietary fibers.
Collapse
Affiliation(s)
- Doha Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Shaimaa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim Hamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
96
|
Goyal A, Tanwar B, Kumar Sihag M, Sharma V. Sacha inchi (Plukenetia volubilis L.): An emerging source of nutrients, omega-3 fatty acid and phytochemicals. Food Chem 2021; 373:131459. [PMID: 34731811 DOI: 10.1016/j.foodchem.2021.131459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/30/2022]
Abstract
Sacha inchi (Plukenetia volubilis) (SI) is an oleaginous plant producing oil and protein-rich seeds. It has been cultivated for centuries and is native to the tropical rainforest of the Amazon region of South America including parts of Peru and northwestern Brazil. At present, SI seeds are emerging as a potential source of macro- and micronutrients, α-linolenic acid and phytochemicals. This review attempts to elucidate the nutrients, phytonutrients, safety, toxicity, health benefits and food applications of SI seed. Recent scientific studies have associated the consumption of SI seed/oil with reduced risk of chronic inflammatory diseases. However, lack of awareness and in-depth understanding has resulted in it being neglected both at the consumer and industrial level. In all, SI is an underutilized and undervalued oleaginous crop which not only has the potential to mitigate food and nutritional insecurity but also offers humongous opportunities for the development of novel value-added food products.
Collapse
Affiliation(s)
- Ankit Goyal
- Department of Dairy Chemistry, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Beenu Tanwar
- Department of Dairy Technology, Mansinhbhai Institute of Dairy and Food Technology, Mehsana 384002, Gujarat, India.
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, Punjab, India.
| | - Vivek Sharma
- Dairy Chemistry Division, National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana, India.
| |
Collapse
|
97
|
Salvia Species as Nutraceuticals: Focus on Antioxidant, Antidiabetic and Anti-Obesity Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Salvia plants belong to the Lamiaceae family and are recognized as being strongly aromatic, being widely used for different purposes in culinary or traditional medicine. These plants are well recognized as being rich in phenolic acids, flavonoids and terpenic compounds, which exhibit health-beneficial activities, protecting against oxidative and inflammatory-related diseases, such as diabetes and obesity. Because of these properties, phytochemicals from Salvia species have been investigated as health promoting agents, for application in distinct fields. However, the growing demand for natural products with possible uses and applications in industry requires scientific validation studies. This review consists of a compilation of relevant studies with an emphasis on the antioxidant, antidiabetic and anti-obesity properties of phenolic-rich extracts from Salvia plants.
Collapse
|
98
|
Quality Assessment of Wheat Bread Incorporating Chia Seeds. Foods 2021; 10:foods10102376. [PMID: 34681425 PMCID: PMC8535167 DOI: 10.3390/foods10102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to develop a concept of production for wheat bread enriched with chia seeds and to examine selected physicochemical properties. The examined product was wheat-flour bread made by a single-phase method, using yeast. The production concept assumed the modification of the recipe by replacing part of the wheat flour (1 or 5% w/w) with whole (CHw) or ground chia seeds (CHg). Bread quality was determined by calculating: dough yield, bread yield, baking loss, total baking loss and loaf volumes. Color was determined using the CIE L*a*b* system. In the texture analysis, the following texture parameters were measured: hardness, cohesion, chewiness and elasticity. The contents of crude fat, crude fiber, total protein, total ash and the total content of polyphenols were assessed to characterize the nutritive value of the bread. The breads with 1% addition of chia (1%CHw, 1%CHg) were characterized by the highest volume of loaves, which increased by at least 8.6% compared to the control bread (C), while in the case of 5% chia, the loaf volume depended on the form of seeds (better results were obtained with whole seeds). Substituting wheat flour with 1% chia seeds (whole or ground) resulted in a significant increase in nutritional value. For potential bread manufacturers, from a technological and economic point of view, replacing wheat flour with whole chia seeds at 1% (w/w) is most advantageous, compared to 5% (w/w).
Collapse
|
99
|
Comparison of the Effect of Enhancing Dry Fermented Sausages with Salvia hispanica and Nigella sativa Seed on Selected Physicochemical Properties Related to Food Safety during Processing. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aim of the study is to compare the effects of Salvia hispanica (Chia) seed and Nigella sativa (Black Cumin) seed in traditionally produced dry fermented sausages with reduced nitrites on the changes in physicochemical parameters (water content, pH, and water activity), thioarbituric acid reactive substances (TBARS), color parameters, the content of nitrosopigments, and microbial counts throughout the production process. At the end of the processing, the content of biogenic amines was also determined. Five samples were analyzed during the 30-day production process: the control sample, samples with 1% and 2% additions of chia seed, and samples with 1% and 2% additions of black cumin seed. It was indicated that the addition of chia or black cumin did not exert any effect on water content or water activity changes in fermented sausages. At the end of production, the samples were characterized by low water activity, in the range of 0.798–0.813. The sausages with chia seeds were characterized by the lowest pH due to the highest proliferation of lactic acid bacteria. TBARS values did not alter in both control and black cumin sausages throughout the experiment. Microbiological analysis showed that the addition of chia or black cumin seed enhances the proliferation of the lactic acid bacteria and caused a reduction in the number of Enterobacteriaceae in comparison to the control.
Collapse
|
100
|
Kataria A, Sharma S, Singh A, Singh B. Effect of hydrothermal and thermal processing on the antioxidative, antinutritional and functional characteristics of Salvia hispanica. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01161-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|