51
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
52
|
Protective Effect of Portulaca oleracea on Streptozotocin-Induced Type I Diabetes-Associated Reproductive System Dysfunction and Inflammation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186075. [PMID: 36144807 PMCID: PMC9506021 DOI: 10.3390/molecules27186075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
Background: Type-one diabetes (T1D), a chronic autoimmune disease with marked inflammatory responses, is associated with infertility complications and implications. Based on the anti-diabetic, antioxidant, and anti-hyperlipidemic potential of Portulaca oleracea (PO), this study aimed to evaluate the protective effect of this plant extract on streptozotocin-induced type-I-diabetes-associated reproductive system dysfunction and inflammation. Methods: Male rats were randomly divided into four experimental groups: control, diabetic, and treatment/s (PO extract at 100 or 300 mg/kg/daily). Then food and water consumption, body, testis and epididymis weights, histopathological evaluation, seminiferous tubules diameter, sperm count and motility, glucose levels, sex hormones, and inflammatory and oxidative stress markers were evaluated. Results: Our results showed that streptozotocin-induced diabetes significantly increased food and water consumption; increased glucose, MDA, TGF-β1, and TNF-α levels; and decreased the seminiferous tubules diameter, sperm count and motility, levels of LH, testosterone, total thiol, VEGF, and SOD activity. Interestingly, PO extract (phytochemically characterized by using liquid chromatography–mass spectrometry to detect bioactive molecules) significantly ameliorated these parameters and histopathological indexes’ damage in rats. Conclusion. Even if more preclinical assessments are needed to better characterize the mechanism/s of action, the results of this study will pave the way for the rational use of PO on diabetic-associated clinical complications and implications.
Collapse
|
53
|
Tsao CW, Ke PS, Yang HY, Chang TC, Liu CY. Curcumin Remedies Testicular Function and Spermatogenesis in Male Mice with Low-Carbohydrate-Diet-Induced Metabolic Dysfunction. Int J Mol Sci 2022; 23:ijms231710009. [PMID: 36077406 PMCID: PMC9456534 DOI: 10.3390/ijms231710009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing reports on the significance of dietary patterns in reproduction have arisen from both animal and human studies, suggesting an interactive association between nutrition and male fertility. The aim of this study was to investigate the effects of curcumin supplementation on low-carbohydrate-diet-induced metabolic dysfunction, testicular antioxidant capacity, apoptosis, inflammation and spermatogenesis in male mice. Male C57BL/6 mice were fed a normal diet (AIN-93M group, n = 12) and a low-carbohydrate diet for 12 weeks (LC group, fed with low-carbohydrate diet, n = 48), and mice randomly chosen from the LC group were later fed their original diet (LC group, n = 12). This diet was changed to AIN-93M feed (LC/AIN-93M group, n = 12), a ketogenic diet (LC/KD group, n = 12), or a ketogenic diet treated with curcumin supplementation for the final 6 weeks (LC/KDCu group, n = 12). A poor sperm morphology and mean testicular biopsy score (MTBS) were observed in the LC and LC/KD groups, but they were eliminated by the normal diet or ketogenic diet with curcumin. The LC group exhibited a lower testicular testosterone level and a lower 17β-HSD activity and protein expression. This also enhanced apoptosis protein expressions in testis tissue, including Bax/BCl2, cleaved caspase 3, PARP and NF-κB. Meanwhile, we found a statistically significant increase in lipid peroxidation and decreased superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase levels in the LC group. Our study indicated that a replacement of a normal diet or ketogenic diet supplemented with curcumin attenuated poor semen quality and reduced testosterone levels by the LC diet by reducing oxidative stress.
Collapse
Affiliation(s)
- Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
- Division of Experimental Surgery Center, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Pei-Shan Ke
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242304, Taiwan
| | - Hsin-Yi Yang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242304, Taiwan
| | - Ting-Chia Chang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242304, Taiwan
| | - Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242304, Taiwan
- Correspondence: ; Tel.: +886-2-29053610
| |
Collapse
|
54
|
Cargnelutti F, Di Nisio A, Pallotti F, Spaziani M, Tarsitano MG, Paoli D, Foresta C. Risk factors on testicular function in adolescents. J Endocrinol Invest 2022; 45:1625-1639. [PMID: 35286610 PMCID: PMC9360118 DOI: 10.1007/s40618-022-01769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Adolescence represents an important window for gonadal development. The aim of this review is to carry out a critical excursus of the most recent literature on endogenous and exogenous risk factors related to testicular function, focusing the research on adolescence period. METHODS A comprehensive literature search within PubMed was performed to provide a summary of currently available evidence regarding the impact on adolescence of varicocele, cryptorchidism, cancer, diabetes, lifestyle factors, endocrine disruptors, obesity and sexually transmitted diseases. We focused on human studies that evaluated a possible impact of these factors on puberty timing and their effects on andrological health. RESULTS Evidence collected seems to suggest that andrological health in adolescence may be impaired by several factors, as varicocele, cryptorchidism, and childhood cancer. Despite an early diagnosis and treatment, many adolescents might still have symptoms and sign of a testicular dysfunction in their adult life and at the current time it is not possible to predict which of them will experience andrological problems. Lifestyle factors might have a role in these discrepancies. Most studies point out towards a correlation between obesity, insulin resistance, alcohol, smoking, use of illegal drugs and testicular function in pubertal boys. Also, endocrine disruptors and sexually transmitted diseases might contribute to impair reproductive health, but more studies in adolescents are needed. CONCLUSION According to currently available evidence, there is an emerging global adverse trend of high-risk and unhealthy behaviors in male adolescents. A significant proportion of young men with unsuspected and undiagnosed andrological disorders engage in behaviors that could impair testicular development and function, with an increased risk for later male infertility and/or hypogonadism during the adult life. Therefore, adolescence should be considered a key time for intervention and prevention of later andrological diseases.
Collapse
Affiliation(s)
- F Cargnelutti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - F Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - M Spaziani
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - M G Tarsitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - D Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - C Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
55
|
BENKO F, CHOMOVÁ M, ULIČNÁ O, ĎURAČKA M, KOVÁČ J, TVRDÁ E. The impact of diabetes mellitus type 2 on the steroidogenesis of male Zucker Diabetic Fatty rats. Physiol Res 2022; 71:713-717. [PMID: 36047727 PMCID: PMC9841800 DOI: 10.33549/physiolres.934881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to evaluate the impact of diabetes mellitus type 2 (DM2) on the male endocrine system of Zucker Diabetic Fatty (ZDF) rats. Sexually mature ZDF rats were divided to a lean (control) and obese group, and had diabetes confirmed by blood tests. For the in vivo experiment, fasting blood was collected to obtain blood plasma. In case of the in vitro experiments, testicular fragments were cultured for 24 h, and the culture medium was collected. The concentrations of testosterone (T), androstenedione (A4), dehydroepiandrosterone (DHEA-S), estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were quantified in the blood plasma and the medium by the ELISA method, while cholesterol (CHOL) was assessed spectrophotometrically. A significant decline of T (36.31 %), A4 (25.11 %) and FSH (26.99 %) as well as a significant increase of CHOL and E2 (36.17 %) was observed in the blood plasma of obese ZDF rats in comparison to the control. Under in vitro conditions, a significant decrease of FSH (23.35 %) accompanied by an increase of E2 was observed in the obese group compared to the control. In the case of CHOL, LH, T, DHEA and A4 no significant differences were observed. Our results suggest that except for FSH and E2 all steroid biomolecules were synthetized normally by the testicular tissue, however a dramatic endocrine disturbance was observed at the system level. We may conclude that DM2 has negative effects on systemic hormone secretion and these alterations are more pronounced in combination with obesity.
Collapse
Affiliation(s)
- Filip BENKO
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Slovak Republic
| | - Mária CHOMOVÁ
- Faculty of Medicine, Institute of Medical Chemistry and Clinical Biochemistry, Comenius University in Bratislava, Slovak Republic
| | - Oľga ULIČNÁ
- Third Internal Clinic, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic
| | - Michal ĎURAČKA
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Slovak Republic
| | - Ján KOVÁČ
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Slovak Republic
| | - Eva TVRDÁ
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Slovak Republic
| |
Collapse
|
56
|
Moldovan C, Frumuzachi O, Babotă M, Barros L, Mocan A, Carradori S, Crişan G. Therapeutic Uses and Pharmacological Properties of Shallot ( Allium ascalonicum): A Systematic Review. Front Nutr 2022; 9:903686. [PMID: 35983491 PMCID: PMC9380064 DOI: 10.3389/fnut.2022.903686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 01/09/2023] Open
Abstract
Background Shallot (Allium ascalonicum L.) is a traditional plant species used throughout the world both for culinary purposes and as a folk remedy. To date (i.e., April 2022), there is no report on the main pharmacological activities exerted by shallot preparations and/or extracts. Scope and Approach The aim of this study was to comprehensively review the pharmacological activities exerted by shallot, with rigorous inclusion and exclusion criteria based on the scientific rigor of studies. Prisma guidelines were followed to perform the literature search. Key Findings and Conclusions The literature search yielded 2,410 articles of which 116 passed the required rigorous criteria for inclusion in this review. The extracts exert a potent antioxidant activity both in vitro and in vivo, as well as a strong inhibitory capacity on various pathogens with relevant implications for public health. Moreover, shallot can be used as adjuvant therapy in cardiovascular diseases, diabetes, cancer prevention, and other non-communicable diseases associated with inflammatory and oxidative pathways. Future studies investigating the chemical composition of this species, as well as the molecular mechanisms involved in the empirically observed pharmacological actions are required.
Collapse
Affiliation(s)
- Cadmiel Moldovan
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oleg Frumuzachi
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Babotă
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Andrei Mocan
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gianina Crişan
- Pharmaceutical Botany Department, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
57
|
Ma D, Hu L, Wang J, Luo M, Liang A, Lei X, Liao B, Li M, Xie M, Li H, Gong Y, Zi D, Li X, Chen X, Liao X. Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1314-1324. [PMID: 35929593 PMCID: PMC9828322 DOI: 10.3724/abbs.2022099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Spermatogenic dysfunction is one of the major secondary complications of diabetes; however, the underlying mechanisms remain ill-defined, and there is no available drug or strategy for the radical treatment of diabetic spermatogenic dysfunction. Therefore, the objective of this study is to investigate the protective effects of nicotinamide mononucleotide (NMN) on testicular spermatogenic function in streptozotocin (STZ)-induced diabetic mice. The results show that oral administration of NMN significantly increases the body and testis weight and the number of sperms. Moreover, the abnormal sperm count and the rate of sperm malformation are significantly decreased compared with the saline-treated diabetic mice. Histological analysis reveals that NMN treatment significantly increases the area and diameter of seminiferous tubules, accompanied by an increased number of spermatogenic cells and sperms. Immunohistochemistry and qRT-PCR results show that NMN increases Bcl-2 expression and decreases Bax expression in the testis. NMN also increases the protein expression of Vimentin and the mRNA expressions of WT1 and GATA4. In addition, qRT-PCR, western blot analysis and immunohistochemistry results also show that NMN increases the expressions of glycolysis-related rate-limiting enzymes including HK2, PKM2, and LDHA. In summary, this study demonstrates the protective effects of NMN on the testis in an STZ-induced diabetic mice model. NMN exerts its protective effects via reducing spermatogenic cell apoptosis by regulating glycolysis of Sertoli cells in diabetic mice. This study provides an experimental basis for the future clinical application of NMN in diabetes-induced spermatogenic dysfunction.
Collapse
Affiliation(s)
- Duo Ma
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Linlin Hu
- Reproductive Medicine CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaise533000China
| | - Jinyuan Wang
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Min Luo
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Aihong Liang
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xiaocan Lei
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Biyun Liao
- Reproductive Medicine CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaise533000China
| | - Meixiang Li
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ming Xie
- Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Haicheng Li
- Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yiwei Gong
- Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Dan Zi
- Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xiangrun Li
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Correspondence address. Tel: +86-13973593250; E-mail: (X.L.) / Tel: +86-13973403619; E-mail: (X.C.) / Tel: +86-13807398512; E-mail: (X.L.) @
| | - Xi Chen
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Institute of Clinical Anatomy & Reproductive MedicineHengyang Medical SchoolUniversity of South ChinaHengyang421001China,Correspondence address. Tel: +86-13973593250; E-mail: (X.L.) / Tel: +86-13973403619; E-mail: (X.C.) / Tel: +86-13807398512; E-mail: (X.L.) @
| | - Xucai Liao
- Hunan Province Collaborative Innovation Base of Endocrinology & Metabolism Science and Education for PostgraduatesThe First Affiliated Hospital of Shaoyang University and Hengyang Medical SchoolUniversity of South ChinaHengyang422000China,Correspondence address. Tel: +86-13973593250; E-mail: (X.L.) / Tel: +86-13973403619; E-mail: (X.C.) / Tel: +86-13807398512; E-mail: (X.L.) @
| |
Collapse
|
58
|
van Losenoord W, Levendal RA, Frost CL. Cannabis and metformin on diabetic male Wistar rat sperm and reproductive organ parameters. J Diabetes Metab Disord 2022. [PMID: 36404868 PMCID: PMC9672239 DOI: 10.1007/s40200-022-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Purpose Cannabis use has reportedly increased in type 2 diabetic users as a possible co-treatment for associated pain and inflammation. Both cannabis and metformin (an anti-diabetic drug) have a limited number of studies completed on their effect on male reproductive parameters in a diabetic model. This study determined if cannabis and metformin administration alter various reproductive parameters in diabetic male rats. Methods Male Wistar rats (n = 35) were fed on a high fat diet and injected with streptozotocin (30 mg/kg rat) to induce a type-2 diabetic model. Treatment groups received cannabis based on Delta-9-Tetrahydrocannabinol (THC) concentrations of 1.25, 2.5 and 5 mg/kg per rat and metformin (50 mg/kg) every alternate day for 10 weeks. Organ weight; serum testosterone levels and sperm count, motility, lipid peroxidation, citrate synthase and lactate dehydrogenase activities were measured. Results Cannabis treatment induced a significant concentration dependent decrease in sperm motility at 5 mg/kg rat THC (P = 0.009) administration. Metformin significantly (P = 0.035) increased sperm counts and lactate dehydrogenase activity (P = 0.002). Both cannabis and metformin negatively affected testosterone concentrations. Conclusions Cannabis needs to be used cautiously as an alternative treatment in diabetic males based on the negative effects observed for the various reproductive parameters in this diabetic rat model.
Collapse
|
59
|
Olojede SO, Lawal SK, Faborode OS, Dare A, Aladeyelu OS, Moodley R, Rennie CO, Naidu EC, Azu OO. Testicular ultrastructure and hormonal changes following administration of tenofovir disoproxil fumarate-loaded silver nanoparticle in type-2 diabetic rats. Sci Rep 2022; 12:9633. [PMID: 35688844 PMCID: PMC9187647 DOI: 10.1038/s41598-022-13321-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
Reproductive dysfunctions (RDs) characterized by impairment in testicular parameters, and metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM) are on the rise among human immunodeficiency virus (HIV) patients under tenofovir disoproxil fumarate (TDF) and highly active antiretroviral therapy (HAART). These adverse effects require a nanoparticle delivery system to circumvent biological barriers and ensure adequate ARVDs to viral reservoir sites like testis. This study aimed to investigate the effect of TDF-loaded silver nanoparticles (AgNPs), TDF-AgNPs on sperm quality, hormonal profile, insulin-like growth factor 1 (IGF-1), and testicular ultrastructure in diabetic rats, a result of which could cater for the neglected reproductive and metabolic dysfunctions in HIV therapeutic modality. Thirty-six adult Sprague–Dawley rats were assigned to diabetic and non-diabetic (n = 18). T2DM was induced by fructose-streptozotocin (Frt-STZ) rat model. Subsequently, the rats in both groups were subdivided into three groups each (n = 6) and administered distilled water, TDF, and TDF-AgNP. In this study, administration of TDF-AgNP to diabetic rats significantly reduced (p < 0.05) blood glucose level (268.7 ± 10.8 mg/dL) from 429 ± 16.9 mg/dL in diabetic control and prevented a drastic reduction in sperm count and viability. More so, TDF-AgNP significantly increased (p < 0.05) Gonadotropin-Releasing Hormone (1114.3 ± 112.6 µg), Follicle Stimulating Hormone (13.2 ± 1.5 IU/L), Luteinizing Hormone (140.7 ± 15.2 IU/L), testosterone (0.2 ± 0.02 ng/L), and IGF-1 (1564.0 ± 81.6 ng/mL) compared to their respective diabetic controls (383.4 ± 63.3, 6.1 ± 1.2, 76.1 ± 9.1, 0.1 ± 0.01, 769.4 ± 83.7). Also, TDF-AgNP treated diabetic rats presented an improved testicular architecture marked with the thickened basement membrane, degenerated Sertoli cells, spermatogenic cells, and axoneme. This study has demonstrated that administration of TDF-AgNPs restored the function of hypothalamic-pituitary–gonadal axis, normalized the hormonal profile, enhanced testicular function and structure to alleviate reproductive dysfunctions in diabetic rats. This is the first study to conjugate TDF with AgNPs and examined its effects on reproductive indices, local gonadal factor and testicular ultrastructure in male diabetic rats with the potential to cater for neglected reproductive dysfunction in HIV therapeutic modality.
Collapse
Affiliation(s)
- Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa.
| | - Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa.,Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Ayobami Dare
- Discipline of Physiology, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Roshila Moodley
- The Department of Chemistry, The University of Manchester, Manchester, UK
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Edwin Coleridge Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological & Translational Medical Sciences, School of Medicine, University of Namibia, Hage Geingob Campus, Private Bag 13301, Windhoek, Namibia
| |
Collapse
|
60
|
Wu X, Zhou L, Shi J, Cheng CY, Sun F. Multiomics analysis of male infertility. Biol Reprod 2022; 107:118-134. [PMID: 35639635 DOI: 10.1093/biolre/ioac109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 8-12% of couples globally, and the male factor is a primary cause in approximately 50% of couples. Male infertility is a multifactorial reproductive disorder, which can be caused by paracrine and autocrine factors, hormones, genes, and epigenetic changes. Recent studies in rodents and most notably in humans using multiomics approach have yielded important insights into understanding the biology of spermatogenesis. Nonetheless, the etiology and pathogenesis of male infertility are still largely unknown. In this review, we summarized and critically evaluated findings based on the use of advanced technologies to compare normal and obstructive azoospermia (OA) versus non-obstructive azoospermia (NOA) men, including whole-genome bisulfite sequencing (WGBS), single cell RNA-seq (scRNA-seq), whole exome sequencing (WES), and ATAC-seq. It is obvious that the multiomics approach is the method of choice for basic research and clinical studies including clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Liwei Zhou
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|
61
|
Abstract
Summary
High rates of infertility in type 2 diabetic (T2DM) men have led to attempts to understand the mechanisms involved in this process. This condition can be investigated from at least two aspects, namely sperm quality indices and epigenetic alterations. Epigenetics science encompasses the phenomena that can lead to inherited changes independently of the genetics. This study has been performed to test the hypothesis of the relationship between T2DM and the epigenetic profile of the sperm, as well as sperm quality indices. This research included 42 individuals referred to the infertility clinic of Royan Institute, Iran in 2019–2021. The study subjects were assigned to three groups: normozoospermic non-diabetic (control), normozoospermic diabetic (DN) and non-normozoospermic diabetic (D.Non-N). Sperm DNA fragmentation was evaluated using the sperm chromatin structure assay technique. The global methylation level was examined using 5-methyl cytosine antibody and the methylation status in differentially methylated regions of H19, MEST, and SNRPN was assessed using the methylation-sensitive high-resolution melting technique. The results showed that the sperm global methylation in spermatozoa of D.Non-N group was significantly reduced compared with the other two groups (P < 0.05). The MEST and H19 genes were hypomethylated in the spermatozoa of D.Non-N individuals, but the difference level was not significant for MEST. The SNRPN gene was significantly hypermethylated in these individuals (P < 0.05). The results of this study suggest that T2DM alters the methylation profile and epigenetic programming in spermatozoa of humans and that these methylation changes may ultimately influence the fertility status of men with diabetes.
Collapse
|
62
|
Hosseinipour M, Asgari R, Kermani J, Goodarzi N, Bakhtiari M. The antioxidant effects of hydroalcoholic extract of Ashrasi date palm on sperm parameters and DNA fragmentation in diabetic rats. Animal Model Exp Med 2022; 5:281-287. [PMID: 35527404 PMCID: PMC9240738 DOI: 10.1002/ame2.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Diabetes‐induced oxidative stress can have adverse effects on sperm and its DNA integrity. The Ashrasi date palm (ADP) has potent antioxidant properties. The aim of this study was to evaluate the antioxidant effect of ADP hydroalcoholic extract on sperm parameters and sperm DNA fragmentation in diabetic rats. Methods Forty male rats were randomly divided into five groups (n = 7): 1, control; 2, diabetic; 3–5, diabetic + ADP (30, 90 and 270 mg/kg for groups 3, 4 and 5, respectively). After preparation of ADP extract and its phytochemical screening, it was administered orally to rats, once a day for 5 weeks. At the end of the study, sperm parameters and sperm DNA fragmentation in all groups were investigated. Results At doses of 90 and 270 mg/kg, ADP extract significantly increased the sperm viability compared to diabetic group 2 (p = 0.04 and p = 0.03, respectively) and resulted in a significant decrease in immotile sperm (p = 0.002 and p = 0.006, respectively). At a dose of 270 mg/kg, a considerable enhancement of forward sperm motility was observed (p = 0.04) and there was a significant decrease in sperm DNA fragmentation (p = 0.04). Conclusions The findings of the present study show for the first time that the hydroalcoholic extract of ADP has protective and antioxidant effects against diabetes‐induced oxidative stress and can improve sperm parameters and protect sperm DNA integrity.
Collapse
Affiliation(s)
| | - Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Javid Kermani
- Faculty of Veterinary Medicine Razi Universtiy Kermanshah Iran
| | - Nader Goodarzi
- Department of Basic and Pathobiological Sciences, Faculty of Veterinary Medicine Razi Universtiy Kermanshah Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
63
|
Lei X, Huo P, Xie Y, Wang Y, Liu G, Tu H, Shi Q, Mo Z, Zhang S. Dendrobium nobile Lindl polysaccharides improve testicular spermatogenic function in streptozotocin‐induced diabetic rats. Mol Reprod Dev 2022; 89:202-213. [DOI: 10.1002/mrd.23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaocan Lei
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute University of South China Hengyang China
| | - Peng Huo
- School of Public and Health Guilin Medical University Guilin China
| | - Yuan‐jie Xie
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute University of South China Hengyang China
| | - Yaohui Wang
- School of Basic Medical Sciences Zunyi Medical University Zunyi China
| | - Guanghai Liu
- School of Basic Medical Sciences Zunyi Medical University Zunyi China
| | - Haoyan Tu
- Department of Reproductive Medical Center The Affiliated Hospital of Guilin Medical University Guilin China
| | - Qingxiang Shi
- School of Basic Medical Sciences Zunyi Medical University Zunyi China
| | - Zhong‐cheng Mo
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute University of South China Hengyang China
| | - Shun Zhang
- Department of Reproductive Medical Center The Affiliated Hospital of Guilin Medical University Guilin China
| |
Collapse
|
64
|
Derkach KV, Bakhtyukov AA, Morina IY, Romanova IV, Bayunova LV, Shpakov AO. Comparative Study of the Restoring Effect of Metformin, Gonadotropin, and Allosteric Agonist of Luteinizing Hormone Receptor on Spermatogenesis in Male Rats with Streptozotocin-Induced Type 2 Diabetes Mellitus. Bull Exp Biol Med 2022; 172:435-440. [PMID: 35175480 DOI: 10.1007/s10517-022-05409-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 12/11/2022]
Abstract
We compared the effectiveness of human chorionic gonadotropin (hCG; 5 days, 20 IU/rat/day), allosteric luteinizing hormone receptor agonist TP04 (5 days, 20 mg/kg/day), and metformin (28 days, 120 mg/kg/day) in restoring spermatogenesis in male rats with type 2 diabetes mellitus. hCG and TP04 increased the levels of testosterone and expression of the steroidogenic protein StAR, the number of spermatogenic cells, thickness of the seminal epithelium, and the number and motility of mature sperm that were reduced in diabetic rats, though they did not reduce the number of defective spermatozoa. Metformin had a weak effect on steroidogenesis, but was not inferior to luteinizing hormone receptor agonist by its restorative effect on spermatogenesis and also reduced the number of defective forms of spermatozoa. Thus, the spermatogenesis-restoring effect of metformin and luteinizing hormone receptor agonist in type 2 diabetes mellitus are comparable, despite different mechanisms of action.
Collapse
Affiliation(s)
- K V Derkach
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A A Bakhtyukov
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I Yu Morina
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I V Romanova
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - L V Bayunova
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A O Shpakov
- Laboratory of Molecular Endocrinology and Neurochemistry, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
65
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
66
|
Gallo A. Reprotoxic Impact of Environment, Diet, and Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1303. [PMID: 35162326 PMCID: PMC8834893 DOI: 10.3390/ijerph19031303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023]
Abstract
Reproductive health is progressively declining due to multiples endogenous and exogenous factors, such as environmental contaminants, diet and behavior. Accumulated evidences confirm that fertility and reproductive function have been adversely affected by exposure to chemical contaminants released in the environment. Today, the impact of diet and behavior on reproductive processes is also receiving special attention from the scientific community. Indeed, a close relationship between diet and fertility has been proven. Furthermore, a combination of unhealthy behavior, such as exposure to hazardous compounds and stress factors, poses living organisms at higher risk of reprotoxic effects. In particular, it has been described that poor life behaviors are associated with reduced male and female fertility due to decreased gamete quality and function. Most of the erroneous behaviors are, furthermore, a source of oxidative stress that, leading to epigenetic alterations, results in an impaired reproductive fitness. This review reports the detrimental impact of the most common environmental chemical stressors, diet, and behavior on reproductive functionality and success. Although clear evidences are still scarce, reassuring data are provided that a healthy diet and reverting unhealthy lifestyles may be of help to recover physiological reproductive conditions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
67
|
Chi Y, Wang X, Jia J, Huang T. Smoking Status and Type 2 Diabetes, and Cardiovascular Disease: A Comprehensive Analysis of Shared Genetic Etiology and Causal Relationship. Front Endocrinol (Lausanne) 2022; 13:809445. [PMID: 35250867 PMCID: PMC8894600 DOI: 10.3389/fendo.2022.809445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE This study aimed to explore shared genetic etiology and the causality between smoking status and type 2 diabetes (T2D), cardiovascular diseases (CVDs), and related metabolic traits. METHODS Using summary statistics from publicly available genome-wide association studies (GWASs), we estimated genetic correlations between smoking status and T2D, 6 major CVDs, and 8 related metabolic traits with linkage disequilibrium score regression (LDSC) analysis; identified shared genetic loci with large-scale genome-wide cross-trait meta-analysis; explored potential shared biological mechanisms with a series of post-GWAS analyses; and determined causality with Mendelian randomization (MR). RESULTS We found significant positive genetic associations with smoking status for T2D (Rg = 0.170, p = 9.39 × 10-22), coronary artery disease (CAD) (Rg = 0.234, p = 1.96 × 10-27), myocardial infarction (MI) (Rg = 0.226, p = 1.08 × 10-17), and heart failure (HF) (Rg = 0.276, p = 8.43 × 10-20). Cross-trait meta-analysis and transcriptome-wide association analysis of smoking status identified 210 loci (32 novel loci) and 354 gene-tissue pairs jointly associated with T2D, 63 loci (12 novel loci) and 37 gene-tissue pairs with CAD, 38 loci (6 novel loci) and 17 gene-tissue pairs with MI, and 28 loci (3 novel loci) and one gene-tissue pair with HF. The shared loci were enriched in the exo-/endocrine, cardiovascular, nervous, digestive, and genital systems. Furthermore, we observed that smoking status was causally related to a higher risk of T2D (β = 0.385, p = 3.31 × 10-3), CAD (β = 0.670, p = 7.86 × 10-11), MI (β = 0.725, p = 2.32 × 10-9), and HF (β = 0.520, p = 1.53 × 10-6). CONCLUSIONS Our findings provide strong evidence on shared genetic etiology and causal associations between smoking status and T2D, CAD, MI, and HF, underscoring the potential shared biological mechanisms underlying the link between smoking and T2D and CVDs. This work opens up a new way of more effective and timely prevention of smoking-related T2D and CVDs.
Collapse
Affiliation(s)
- Yanna Chi
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Statistical Science, Peking University, Beijing, China
- *Correspondence: Jinzhu Jia, ; Tao Huang,
| | - Tao Huang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
- *Correspondence: Jinzhu Jia, ; Tao Huang,
| |
Collapse
|
68
|
Dai M, Guo W, Zhu S, Gong G, Chen M, Zhong Z, Guo J, Zhang Y. Type 2 diabetes mellitus and the risk of abnormal spermatozoa: A Mendelian randomization study. Front Endocrinol (Lausanne) 2022; 13:1035338. [PMID: 36407300 PMCID: PMC9666365 DOI: 10.3389/fendo.2022.1035338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Abnormal spermatozoa can not only reduce the fertilization rate, but also prolong the natural conception time and even increase the risk of spontaneous miscarriage. Diabetes mellitus (DM) has become a major global health problem, and its incidence continues to rise, while affecting an increasing number of men in their reproductive years. Type 2 Diabetes Mellitus (T2DM), accounting for about 85-95% of DM, is closely related to the development of sperm. However, the exact association between T2DM and abnormal spermatozoa remains unclear. Herein, we designed a Two-sample Mendelian randomization (MR) study to explore the causal association between T2DM and abnormal spermatozoa risk in European population data which come from the GWAS summary datasets. We selected 9 single nucleotide polymorphisms (SNPs) of T2DM (exposure data) as instrumental variables (IVs), and then retrieved the suitable abnormal spermatozoa genome-wide association study (GWAS) data of European from Ieu Open GWAS Project database which includes 915 cases and 209,006 control as the outcome data. Our results indicate that strict T2DM might not result in a higher risk of abnormal spermatozoa genetically in Europeans (OR: 1.017, 95% confidence interval (CI): 0.771-1.342, p=0.902). Our findings demonstrate that only T2DM may not explain the relatively higher risk of abnormal spermatozoa in men with it in Europeans. In subsequent studies, more comprehensive and larger samples need to be studied to reveal the relationship and potential mechanism between T2DM and abnormal spermatozoa.
Collapse
Affiliation(s)
- Mengyuan Dai
- Department of Obstetrics and Gynecology of West China Second University Hospital, BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Weijie Guo
- Department of Obstetrics and Gynecology of West China Second University Hospital, BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - San Zhu
- Department of Obstetrics and Gynecology of West China Second University Hospital, BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guidong Gong
- Department of Obstetrics and Gynecology of West China Second University Hospital, BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Mei Chen
- Department of Obstetrics and Gynecology of West China Second University Hospital, BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zhuoling Zhong
- Department of Obstetrics and Gynecology of West China Second University Hospital, BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junling Guo
- Department of Obstetrics and Gynecology of West China Second University Hospital, BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yaoyao Zhang
- Department of Obstetrics and Gynecology of West China Second University Hospital, BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yaoyao Zhang,
| |
Collapse
|
69
|
Cochran DM, Jensen ET, Frazier JA, Jalnapurkar I, Kim S, Roell KR, Joseph RM, Hooper SR, Santos HP, Kuban KCK, Fry RC, O’Shea TM. Association of prenatal modifiable risk factors with attention-deficit hyperactivity disorder outcomes at age 10 and 15 in an extremely low gestational age cohort. Front Hum Neurosci 2022; 16:911098. [PMID: 36337853 PMCID: PMC9630552 DOI: 10.3389/fnhum.2022.911098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background The increased risk of developing attention-deficit hyperactivity disorder (ADHD) in extremely preterm infants is well-documented. Better understanding of perinatal risk factors, particularly those that are modifiable, can inform prevention efforts. Methods We examined data from the Extremely Low Gestational Age Newborns (ELGAN) Study. Participants were screened for ADHD at age 10 with the Child Symptom Inventory-4 (N = 734) and assessed at age 15 with a structured diagnostic interview (MINI-KID) to evaluate for the diagnosis of ADHD (N = 575). We studied associations of pre-pregnancy maternal body mass index (BMI), pregestational and/or gestational diabetes, maternal smoking during pregnancy (MSDP), and hypertensive disorders of pregnancy (HDP) with 10-year and 15-year ADHD outcomes. Relative risks were calculated using Poisson regression models with robust error variance, adjusted for maternal age, maternal educational status, use of food stamps, public insurance status, marital status at birth, and family history of ADHD. We defined ADHD as a positive screen on the CSI-4 at age 10 and/or meeting DSM-5 criteria at age 15 on the MINI-KID. We evaluated the robustness of the associations to broadening or restricting the definition of ADHD. We limited the analysis to individuals with IQ ≥ 70 to decrease confounding by cognitive functioning. We evaluated interactions between maternal BMI and diabetes status. We assessed for mediation of risk increase by alterations in inflammatory or neurotrophic protein levels in the first week of life. Results Elevated maternal BMI and maternal diabetes were each associated with a 55-65% increase in risk of ADHD, with evidence of both additive and multiplicative interactions between the two exposures. MSDP and HDP were not associated with the risk of ADHD outcomes. There was some evidence for association of ADHD outcomes with high levels of inflammatory proteins or moderate levels of neurotrophic proteins, but there was no evidence that these mediated the risk associated with maternal BMI or diabetes. Conclusion Contrary to previous population-based studies, MSDP and HDP did not predict ADHD outcomes in this extremely preterm cohort, but elevated maternal pre-pregnancy BMI, maternal diabetes, and perinatal inflammatory markers were associated with increased risk of ADHD at age 10 and/or 15, with positive interaction between pre-pregnancy BMI and maternal diabetes.
Collapse
Affiliation(s)
- David M. Cochran
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
- *Correspondence: David M. Cochran,
| | - Elizabeth T. Jensen
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Isha Jalnapurkar
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Sohye Kim
- Eunice Kennedy Shriver Center, UMass Chan Medical School, Worcester, MA, United States
| | - Kyle R. Roell
- Department of Environmental Sciences and Engineering, Institute for Environmental Health Solutions, University of North Carolina School, Chapel Hill, NC, United States
| | - Robert M. Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Stephen R. Hooper
- Department of Health Sciences, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Hudson P. Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, United States
| | - Karl C. K. Kuban
- Division of Neurology (Pediatric Neurology), Department of Pediatrics, Boston Medical Center and Boston University, Boston, MA, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Institute for Environmental Health Solutions, University of North Carolina School, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - T. Michael O’Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
70
|
Jazayeri M, Alizadeh A, Sadighi Gilani MA, Eftekhari-Yazdi P, Sharafi M, Shahverdi A. Underestimated Aspects in Male Infertility: Epigenetics is A New Approach in Men with Obesity or Diabetes: A Review. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:132-139. [PMID: 36029047 PMCID: PMC9396004 DOI: 10.22074/ijfs.2021.534003.1158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Infertility is a complex multifactorial problem that affects about 7% of men and 15% of couples worldwide. Many molecular mechanisms involved in male infertility. Destructive effects of infertility on the next generations are not well understood. Approximately 60-75% of male infertility cases have idiopathic causes, and there is a need for additional investigations other than routine examinations. Molecular factors that surround DNA, which are mitotically stable and independently regulate genome activity of DNA sequences, are known as epigenetics. The known epigenetic mechanisms are DNA methylation, histone modifications and non-coding RNAs. Prevalence of metabolic diseases has been increased dramatically because of changes in lifestyle and the current levels of inactivity. Metabolic disorders, such<br />as obesity and diabetes, are prevalent reasons for male infertility; despite the association between metabolic diseases and male infertility, few studies have been conducted on the effects of epigenetic alterations associated with these diseases and sperm abnormalities. Diabetes can affect the reproductive system and testicular function at multiple levels;<br />however, there are very few molecular and epigenetic studies related to sperm from males with diabetes. On the other hand, obesity has similar conditions, while male obesity is linked to notable alterations in the sperm molecular architecture affecting both function and embryo quality. Therefore, in this review article, we presented new and developed technologies to study different patterns of epigenetic changes, and explained the exact mechanisms of epigenetic changes linked to metabolic diseases and their relationship with male infertility.
Collapse
Affiliation(s)
- Maryam Jazayeri
- Department of Reproductive Biology, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Department of Poultry Sciences, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,P.O. Box: 16635-148Department of EmbryologyReproductive Biomedicine Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
| |
Collapse
|
71
|
Atere TG, Akinloye OA, Ugbaja RN, Ojo DA. Standardized Extract of Costus Afer Ker. Gawl leaves Modulates Reproductive Toxicity Caused by FructoseStreptozotocin Administration in Type-2 Diabetic Rats Model. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Co-administration of streptozotocin and fructose is believed to induce type 2 diabetes as well as to cause reproductive toxicity and testicular damage via increasing oxidative stress in rats. Objectives: In this study, the potential protective effect of Costus afer leaves methanol extract (CAME) on andrological parameters and pituitary-gonadal axis hormones of type 2 diabetes (T2D) in rats treated with streptozotocin and fructose was investigated. Methods: A total of 35 rats were divided into five groups, each including seven rats. Group 1 received normal saline, whereas T2D was induced in rats from groups 2, 3, 4, and 5. Group 2 served as diabetic control; while groups 3, 4, and 5 were treated orally with 12 mg/kg body weight (BW) of metformin as well as 100 and 200 BW of CAME, respectively, for 4 weeks. Hypothalamic–pituitary–gonadal responses, andrological parameters, DNA fragmentation, and oxidative stress parameters of the reproductive organs were examined in all treatment groups. Results: Administration of CAME reduced the degenerative changes in testes, epididymis and improved pituitary-gonadal axis hormone concentrations, and sperm morphology occasioned by the treatments. Conclusion: It was concluded that the administration of CAME ameliorated reproductive abnormalities in T2D rat models treated with streptozotocin-fructose administration.
Collapse
Affiliation(s)
- Tope Gafar Atere
- Department of Medical Biochemistry, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Oluseyi Adeboye Akinloye
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| | - Regina Ngozi Ugbaja
- Department of Biochemistry, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| | - David Ajiboye Ojo
- Department of Microbiology, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
72
|
Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO. The Effects of Separate and Combined Treatment of Male Rats with Type 2 Diabetes with Metformin and Orthosteric and Allosteric Agonists of Luteinizing Hormone Receptor on Steroidogenesis and Spermatogenesis. Int J Mol Sci 2021; 23:198. [PMID: 35008624 PMCID: PMC8745465 DOI: 10.3390/ijms23010198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
In men with type 2 diabetes mellitus (T2DM), steroidogenesis and spermatogenesis are impaired. Metformin and the agonists of luteinizing hormone/human chorionic gonadotropin(hCG)-receptor (LH/hCG-R) (hCG, low-molecular-weight allosteric LH/hCG-R-agonists) can be used to restore them. The aim was to study effectiveness of separate and combined administration of metformin, hCG and 5-amino-N-tert-butyl-2-(methylsulfanyl)-4-(3-(nicotinamido)phenyl)thieno[2,3-d]pyrimidine-6-carboxamide (TP3) on steroidogenesis and spermatogenesis in male rats with T2DM. hCG (15 IU/rat/day) and TP3 (15 mg/kg/day) were injected in the last five days of five-week metformin treatment (120 mg/kg/day). Metformin improved testicular steroidogenesis and spermatogenesis and restored LH/hCG-R-expression. Compared to control, in T2DM, hCG stimulated steroidogenesis and StAR-gene expression less effectively and, after five-day administration, reduced LH/hCG-R-expression, while TP3 effects changed weaker. In co-administration of metformin and LH/hCG-R-agonists, on the first day, stimulating effects of LH/hCG-R-agonists on testosterone levels and hCG-stimulated expression of StAR- and CYP17A1-genes were increased, but on the 3-5th day, they disappeared. This was due to reduced LH/hCG-R-gene expression and increased aromatase-catalyzed estradiol production. With co-administration, LH/hCG-R-agonists did not contribute to improving spermatogenesis, induced by metformin. Thus, in T2DM, metformin and LH/hCG-R-agonists restore steroidogenesis and spermatogenesis, with metformin being more effective in restoring spermatogenesis, and their co-administration improves LH/hCG-R-agonist-stimulating testicular steroidogenesis in acute but not chronic administration.
Collapse
Affiliation(s)
- Andrey A. Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Kira V. Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Viktor N. Sorokoumov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
- Institute of Chemistry, Saint Petersburg State University, 198504 St. Petersburg, Russia
| | - Anna M. Stepochkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina V. Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina Yu. Morina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Irina O. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Liubov V. Bayunova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| | - Alexander O. Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 194223 St. Petersburg, Russia; (A.A.B.); (K.V.D.); (V.N.S.); (A.M.S.); (I.V.R.); (I.Y.M.); (I.O.Z.); (L.V.B.)
| |
Collapse
|
73
|
Bakhtyukov AA, Derkach KV, Stepochkina AM, Sorokoumov VN, Bayunova LV, Lebedev IA, Shpakov AO. The Effect of Metformin Therapy on Luteinizing Hormone Receptor Agonist-Mediated Stimulation of Testosterone Production and Spermatogenesis in Diabetic Rats. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302106017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
74
|
Bisconti M, Simon JF, Grassi S, Leroy B, Martinet B, Arcolia V, Isachenko V, Hennebert E. Influence of Risk Factors for Male Infertility on Sperm Protein Composition. Int J Mol Sci 2021; 22:13164. [PMID: 34884971 PMCID: PMC8658491 DOI: 10.3390/ijms222313164] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a common health problem that can be influenced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. These effects have been largely demonstrated on sperm parameters (e.g., motility, numeration, vitality, DNA integrity). In addition, several studies showed the deregulation of sperm proteins in relation to some of these factors. This review inventories the literature related to the identification of sperm proteins showing abundance variations in response to the four risk factors for male infertility that are the most investigated in this context: obesity, diabetes, tobacco smoking, and exposure to bisphenol-A (BPA). First, we provide an overview of the techniques used to identify deregulated proteins. Then, we summarise the main results obtained in the different studies and provide a compiled list of deregulated proteins in relation to each risk factor. Gene ontology analysis of these deregulated proteins shows that oxidative stress and immune and inflammatory responses are common mechanisms involved in sperm alterations encountered in relation to the risk factors.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Jean-François Simon
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Sarah Grassi
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger, CP 160/12, 1000 Brussels, Belgium;
| | - Vanessa Arcolia
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynecology, University of Cologne, Kerpener Strasse 34, 50931 Cologne, Germany
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| |
Collapse
|
75
|
Fajri M, Ahmadi A, Sadrkhanlou R. Protective effects of Equisetum arvense methanolic extract on testicular tissue disorders in streptozotocin-induced diabetic murine model. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:497-503. [PMID: 35529823 PMCID: PMC9010846 DOI: 10.30466/vrf.2020.108502.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Diabetes in a long period can damage the testicular tissue and impair the male fertility potential. Recently, different herbal treatments have been used for the prevention of type I diabetes and its pathological effects. Methanolic extract of Equisetum arvense has anti-oxidant and hypoglycemic properties. Thus, the current study aimed to evaluate the protective effects of Equisetum arvense methanolic extract (EE) on diabetes-induced detrimental effects in mice testicular tissue. Thirty-two adult male mice were randomly divided into four groups including control-sham, diabetic (induced by streptozotocin, 50.00 mg kg-1 for five days), diabetic + EE 250 (250 mg kg-1) and diabetic + EE 500 (500 mg kg-1). After 45 days, all animals were euthanized and their testicles were dissected out and undergone histological analyses. Moreover, the serum level of testosterone was evaluated. Analyses showed that seminiferous tubules diameter, Leydig cells number per mm2 of the connective tissue, Sertoli cells number per tubule, serum level of testosterone and percentage of seminiferous tubules with positive tubular differentiation, repopulation and spermiogenesis indices were significantly decreased in the diabetic group in comparison with control-sham group. The administration of EE in test groups significantly decreased the adverse effects of diabetes (especially 500 mg kg-1). The results of this study revealed that diabetes disturbs spermatogenesis and spermiogenesis processes in mice. Meanwhile, the EE prevents diabetes-induced damages in mice testicular tissue, which may be associated with its hypoglycemic and antioxidative activities.
Collapse
Affiliation(s)
- Mehrsa Fajri
- DVM Graduate, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Abbas Ahmadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.,Correspondence Abbas Ahmadi. DVM, PhD, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran . E-mail:
| | - Rajabali Sadrkhanlou
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
76
|
Kizilay G, Bayram S, Ersoy O, Cerkezkayabekir A, Sapmaz-Metin M, Karaca T. Role of JNK, TGF-β1, Akt, IL-1β and INSL-3 in proanthocyanidin protection against apoptosis in diabetic rat testis. Biotech Histochem 2021; 97:363-371. [PMID: 34789048 DOI: 10.1080/10520295.2021.2002931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated how proanthocyanidin treatment altered c-Jun N-terminal kinases, transforming growth factor beta 1, serine/threonine-specific protein kinase, interleukin 1 beta and insulin-like 3 expression in the testis of diabetic rats. We used 24 Wistar albino male rats divided into four groups. Group 1 was untreated control. Group 2 was treated with 40 mg/kg streptozotocin (STZ) for 5 days. Group 3 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin once daily for six weeks. Group 4 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin. Superoxide dismutase activity was reduced in groups 3 and 4 compared to group 2. Glutathione peroxidase activity was increased significantly in groups 3 and 4 compared to groups 1 and 2. Catalase activity was decreased in group 4 compared to group 2. We found that proanthocyanidin increased cell proliferation in diabetic testis. Phospho-JNK and TGF-β1 immunostaining was decreased groups 3 and 4 compared to group 2, while p-Akt immunostaining was increased in groups 3 and 4. The number of IL-1β immunostained cells in groups 3 and 4 was decreased compared to group 2. INSL-3 immunostaining was increased significantly in group 3 compared to group 2. Our findings indicate that proanthocyanidin ameliorated diabetes related testicular dysfunction. Proanthocyanidin contributes to a balanced oxidant-antioxidant status, and balanced proliferation and apoptosis activity in the germinal cells.
Collapse
Affiliation(s)
- Gulnur Kizilay
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Sinasi Bayram
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Onur Ersoy
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | | | - Melike Sapmaz-Metin
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | | |
Collapse
|
77
|
Saremi A, Yousefvand Z, Parastesh M, Bayat M, Gahreman D. Aerobic training mitigates the negative impact of diabetes on fertility. Andrologia 2021; 54:e14306. [PMID: 34751459 DOI: 10.1111/and.14306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 11/27/2022] Open
Abstract
Diabetes negatively affects the reproductive system. This present study investigated the effects of aerobic training on protamine 1 and 2 mRNA expression, sex hormones, antioxidant defence and sperm quality in diabetic rats. Thirty-six male Wistar rats were randomly allocated into three groups including diabetic training (DT) group, diabetic (D) group and control (C) group. Rats in DT were exercised 5 times per week for 8 weeks. Blood samples were collected for evaluation of sex hormones 48 h after the last training session. Also, the testes were removed and subjected to histological evaluation and semen analysis. Testicular mRNA expressions of protamines were determined by RT-qPCR. Protamines 1 and 2, and the ratio of protamine 1 to protamine 2 were significantly lower in DT and D groups compared with C group (p < 0.01). LH and testosterone levels were significantly lower in D group compared with DT and C group (p < 0.01). Malondialdehyde was significantly lower in DT and C groups compared with D group (p < 0.001). Sperm parameters were significantly lower in D group compared with C group (p < 0.01). Our findings suggest that aerobic training may mitigate the negative impact of diabetes on sex hormones, oxidative stress, protamine content and sperm parameters in male rats.
Collapse
Affiliation(s)
- Abbas Saremi
- Department of Exercise Physiology, Faculty of Sport Sciences, Arak University, Arak, Iran
| | - Zahra Yousefvand
- Department of Exercise Physiology, Faculty of Sport Sciences, Arak University, Arak, Iran
| | - Mohammad Parastesh
- Department of Exercise Physiology, Faculty of Sport Sciences, Arak University, Arak, Iran
| | - Mohammad Bayat
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Casuarina, Northern Territory, Australia
| |
Collapse
|
78
|
Chen H, Murray E, Sinha A, Laumas A, Li J, Lesman D, Nie X, Hotaling J, Guo J, Cairns BR, Macosko EZ, Cheng CY, Chen F. Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Rep 2021; 37:109915. [PMID: 34731600 PMCID: PMC8606188 DOI: 10.1016/j.celrep.2021.109915] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Single-cell RNA sequencing has revealed extensive molecular diversity in gene programs governing mammalian spermatogenesis but fails to delineate their dynamics in the native context of seminiferous tubules, the spatially confined functional units of spermatogenesis. Here, we use Slide-seq, a spatial transcriptomics technology, to generate an atlas that captures the spatial gene expression patterns at near-single-cell resolution in the mouse and human testis. Using Slide-seq data, we devise a computational framework that accurately localizes testicular cell types in individual seminiferous tubules. Unbiased analysis systematically identifies spatially patterned genes and gene programs. Combining Slide-seq with targeted in situ RNA sequencing, we demonstrate significant differences in the cellular compositions of spermatogonial microenvironment between mouse and human testes. Finally, a comparison of the spatial atlas generated from the wild-type and diabetic mouse testis reveals a disruption in the spatial cellular organization of seminiferous tubules as a potential mechanism of diabetes-induced male infertility. Chen et al. generate a spatial transcriptome atlas of the mammalian testis at near-single-cell resolution that recapitulates spermatogenesis by accurately localizing testicular cell types and reconstructing tissue structures. The atlas is used to reveal the spatial organization of testicular microenvironment and profile its changes under diabetic conditions.
Collapse
Affiliation(s)
- Haiqi Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Evan Murray
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anubhav Sinha
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02142, USA
| | | | - Jilong Li
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Lesman
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xichen Nie
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jim Hotaling
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jingtao Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bradley R Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Evan Z Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, 10065, USA
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
79
|
Aksu EH, Kandemir FM, Küçükler S. Ameliorative effect of hesperidin on streptozotocin-diabetes mellitus-induced testicular DNA damage and sperm quality degradation in Sprague-Dawley rats. J Food Biochem 2021; 45:e13938. [PMID: 34532874 DOI: 10.1111/jfbc.13938] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effect of hesperidin on reproductive damage caused by diabetes mellitus. A total of 24 adult male rats were divided into four groups: control group, hesperidin group, diabetes mellitus group, and diabetes mellitus + hesperidin group. The study was conducted for 4 weeks. At the end of the study, the rats were sacrificed and testicular oxidative stress markers (MDA, GSH, GSH-Px, SOD, and CAT), DNA damage in testes (8-OHdG), and routine sperm parameters were evaluated. According to the results of the study, most of the parameters were similar in the control and hesperidin groups but CAT activity in the hesperidin group was statistically higher than the control group. Also, diabetes mellitus (DM) significantly increased MDA levels and decreased enzymatic antioxidant (GSH-Px, SOD, CAT) activities and nonenzymatic (GSH) antioxidant levels. On the other hand, hesperidin supplementation significantly decreased oxidative stress and increased enzymatic antioxidant activities and nonenzymatic antioxidant levels due to the antioxidant effect. Also, DM increased DNA damage levels in testicular tissue and hesperidin supplementation significantly decreased DNA damage levels in testes of diabetic male rats. Besides, sperm motility significantly decreased while abnormal sperm rate and dead sperm rate were significantly increased in diabetic rats. Hesperidin supplementation significantly reduced these side effects in diabetic rats. In conclusion, hesperidin supplementation could be beneficial for decreasing the side effects on the male reproductive system caused by DM in rats. PRACTICAL APPLICATIONS: Diabetes is an important metabolic disease, affecting quality of life and fertility. Hesperidin has an antioxidant effect and has a potential protective effect on reproductive toxicity in diabetic male rats. Hesperidin decreased oxidative stress, and DNA damage in testis resulted from hyperglycemia and improved sperm quality in diabetic rats. The hesperidin supplementation could be a good strategy to protect male fertility in diabetic patients.
Collapse
Affiliation(s)
- Emrah Hicazi Aksu
- Division of Reproduction and Artificial Insemination, Faculty of Veterinary, Kastamonu University, Kastamonu, Turkey
| | - Fatih Mehmet Kandemir
- Division of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Division of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| |
Collapse
|
80
|
Hu L, Wei S, Wu Y, Li S, Zhu P, Wang X. MicroRNA regulation of the proliferation and apoptosis of Leydig cells in diabetes. Mol Med 2021; 27:104. [PMID: 34496750 PMCID: PMC8425090 DOI: 10.1186/s10020-021-00370-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The number of patients with diabetes is increasing worldwide. Diabetic testicular damage can cause spermiogenesis disorders and sexual dysfunction. We thus explored the role of miRNAs in diabetic testicular damage, and revealed that they could serve as effective prevention and treatment therapeutic targets. METHODS Streptozotocin (STZ) was used to generate a rat model of type 2 diabetes. Rat testicular tissues were used for miRNA and mRNA sequencing. Through bioinformatics analysis, we constructed an miRNA-mRNA diabetic testicular damage regulatory network and screened for key miRNAs. We also used Leydig cells to generate a diabetic cell model and detected the downstream target genes of miRNAs, secretion of testosterone, and proliferation and apoptotic levels to elucidate the role and mechanism of the selected miRNAs in diabetic testicular damage. RESULTS Using second-generation sequencing, we identified 19 differentially expressed miRNAs and 555 mRNAs in the testes of diabetic rats. Based on computational prediction of targets and negative regulation relationships, we constructed a miRNA-mRNA regulatory network, including 12 miRNAs and 215 mRNAs. KEGG enrichment analysis revealed that genes were more concentrated on the survival signalling pathway. Based on this, we screened 2 key miRNAs, miR-504 and miR-935. In vitro, glucose could induce an increase in miR-504 and miR-935, whereas a decrease in MEK5 and MEF2C in a dose-dependent manner. Overexpression of miR-504 and miR-935 led to the decreased expression of MEK5 and MEF2C, decreased proliferation rate of Leydig cells, increased apoptotic rate, and decreased secretion of testosterone. Whereas, knockdown of miR-504 and miR-935 displayed opposite tendencies. CONCLUSIONS miRNAs play important roles in diabetic testicular damage. miR-504 and miR-935 might regulate testicular damage through the classic survival pathway of MEK5-ERK5-MEF2C. Targeted inhibition of miR-504 and miR-935 could reverse the high-glucose-induced testicular complications, thus posing as a potential therapeutic approach in diabetic testicular injury.
Collapse
Affiliation(s)
- Li Hu
- Shenzhen University South China Hospital, Shenzhen University, Shenzhen, 518111, People's Republic of China
- Department of Physiology, Shantou University of Medical College, Shantou, 515041, People's Republic of China
| | - Shaochai Wei
- Department of Physiology, Shantou University of Medical College, Shantou, 515041, People's Republic of China
| | - Yuqi Wu
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, NO.1098, Xueyuan Road, Shenzhen University City, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Shulin Li
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, NO.1098, Xueyuan Road, Shenzhen University City, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Pei Zhu
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, NO.1098, Xueyuan Road, Shenzhen University City, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, NO.1098, Xueyuan Road, Shenzhen University City, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
81
|
Khorasani MK, Ahangarpour A, Khorsandi L. Effects of crocin and metformin on methylglyoxal-induced reproductive system dysfunction in diabetic male mice. Clin Exp Reprod Med 2021; 48:221-228. [PMID: 34488286 PMCID: PMC8421661 DOI: 10.5653/cerm.2020.04259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Objective This study investigated the effect of crocin in methylglyoxal (MGO)-induced diabetic male mice. Methods Seventy 1-month-old male NMRI mice weighing 20–25 g were divided into seven groups (n=10): sham, MGO (600 mg/kg/day), MGO+crocin (15, 30, and 60 mg/kg/day), MGO+metformin (150 mg/kg/day), and crocin (60 mg/kg/day). MGO was administered orally for 30 days. Starting on day 14, after confirming hyperglycemia, metformin and crocin were administered orally. On day 31, plasma and tissue samples were prepared for experimental assessments. Results Blood glucose and insulin levels in the MGO group were higher than those in the sham group (p<0.001), and decreased in response to metformin (p<0.001) and crocin treatment (not at all doses). Testis width and volume decreased in the MGO mice and improved in the crocin-treated mice (p<0.05), but not in the metformin group. Superoxide dismutase levels decreased in diabetic mice (p<0.05) and malondialdehyde levels increased (p<0.001). Crocin and metformin improved malondialdehyde and superoxide dismutase. Testosterone (p<0.001) and sperm count (p<0.05) decreased in the diabetic mice, and treatment with metformin and crocin recovered these variables. Luteinizing hormone levels increased in diabetic mice (p<0.001) and crocin treatment (but not metformin) attenuated this increase. Seminiferous diameter and height decreased in the diabetic mice and increased in the treatment groups. Vacuoles and ruptures were seen in diabetic testicular tissue, and crocin improved testicular morphology (p<0.01). Conclusion MGO increased oxidative stress, reduced sex hormones, and induced histological problems in male reproductive organs. Crocin and metformin improved the reproductive damage caused by MGO-induced diabetes.
Collapse
Affiliation(s)
- Maryam Kheirollahi Khorasani
- Department of Physiology, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
82
|
Verón GL, Tissera AD, Bello R, Estofan GM, Hernández M, Beltramone F, Molina RI, Vazquez-Levin MH. Association between meteorological variables and semen quality: a retrospective study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1399-1414. [PMID: 33834291 DOI: 10.1007/s00484-021-02112-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Spermatogenesis is a temperature-dependent process, and high summer temperatures have been linked to lower sperm concentration and count. However, reports describing the association between other meteorological variables and semen quality are scarce. This study evaluated the association between semen quality and temperature, humidity, pressure, apparent temperature (AT), temperature-humidity index (THI), simplified wet-bulb global temperature (sWBGT), and sunshine duration. Semen samples were obtained at the Laboratorio de Andrología y Reproducción (LAR, Argentina), from men undergoing routine andrology examination (n=11657) and computer-assisted sperm analysis (n=4705) following WHO 2010 criteria. Meteorological variables readings were obtained from the Sistema Meteorológico Nacional. Sperm quality parameters were negatively affected in summer when compared to winter. Additionally, there was a significant decrease in sperm kinematics between winter and spring. Branch and bound variable selection followed by multiple regression analysis revealed a significant association between semen quality and meteorological variables. Specifically, changes in sunshine duration and humidity reinforced the prognosis of semen quality. Highest/lowest sunshine duration and humidity quantiles resulted in decreased sperm concentration, count, motility, vitality and membrane competence, nuclear maturity, and sperm kinematics associated to highest sunshine duration and lowest humidity. Findings from this report highlight the relevance of environmental studies for predicting alterations in male reproductive health associated to variations in meteorological variables, especially considering the current climate changes around the planet due to global warming and its consequences for human health.
Collapse
Affiliation(s)
- Gustavo Luis Verón
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (National Research Council of Argentina; CONICET)-Fundación IBYME (FIBYME), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Ricardo Bello
- Departamento de Metodología, Estadística y Matemática, Universidad de Tres de Febrero, Sáenz Peña, Buenos Aires, Argentina
| | | | - Mariana Hernández
- Centro Integral de Ginecología, Obstetricia y Reproducción (CIGOR), Córdoba, Argentina
| | - Fernando Beltramone
- Centro Integral de Ginecología, Obstetricia y Reproducción (CIGOR), Córdoba, Argentina
| | | | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (National Research Council of Argentina; CONICET)-Fundación IBYME (FIBYME), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
83
|
Nasiri K, Akbari A, Nimrouzi M, Ruyvaran M, Mohamadian A. Safflower seed oil improves steroidogenesis and spermatogenesis in rats with type II diabetes mellitus by modulating the genes expression involved in steroidogenesis, inflammation and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114139. [PMID: 33894286 DOI: 10.1016/j.jep.2021.114139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/02/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus (DM), as a multiorgan syndrome, is an endocrine and metabolic disorder that is associated with male reproductive system dysfunction and infertility. Safflower (Carthamus tinctorius L.) as an herbal remedy improves DM and infertility-related disorders. The anti-hypercholesterolemic, anti-inflammatory, and antioxidative properties of this herb have been well documented, but its role in testosterone production, male reproductive system and zinc homeostasis has not been fully illustrated. AIM OF THE STUDY This study aimed to investigate the preventive and therapeutic properties of different doses of safflower seed oil against reproductive damage caused by type II DM by investigating zinc element homeostasis, inflammation and oxidative damage in testis tissue and their relationship with testosterone production and sperm parameters. MATERIALS AND METHODS Eighty adult male Sprague-Dawley rats were randomly divided into eight groups and treated daily for 12 and 24 weeks in protective and therapeutic studies, respectively. Type II DM was induced by a High Fat Diet (HFD) in normoglycemic rats for three months. At the end of each study, serum level of glucose, testosterone, gonadotropins, TNF-α, insulin, and leptin were measured. Moreover, antioxidant enzymes activity, lipid peroxidation, zinc and testosterone along with the expression of Nrf-2, NF-κB, TNF-α, StAR, P450scc, and 17βHSD3 genes in the testis were detected. RESULTS After the intervention, the activity of antioxidant enzymes and the level of testosterone and gonadotropins significantly decreased in the rats with DM in comparison to the others. However, lipid peroxidation and serum level of insulin, leptin and TNF-α increased and the testicular level of zinc significantly changed in the rats with DM compared to the control groups (p < 0.05). The gene expression of NF-κB and TNF-α were also significantly increased and the gene expression of Nrf2, StAR, P450scc and 17βHSD3 were decreased in the testis of diabetic rats (p < 0.05). The results showed that pretreatment and treatment with safflower seed oil could improve these parameters in diabetic rats compared with untreated diabetic rats (p < 0.05). CONCLUSION HFD could impair the production of testosterone and sperm, and reduce gonadotropin by increasing the serum level of leptin and inducing insulin resistance, oxidative stress and inflammation. However, safflower oil in a dose-dependent manner could improve testosterone level and sperm parameters by improving the level of leptin, zinc and insulin resistance, and the genes expression involved in testosterone synthesis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Khadijeh Nasiri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran.
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Majid Nimrouzi
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Persian Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maede Ruyvaran
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Persian Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Mohamadian
- Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
84
|
Babaei M, Alizadeh-Fanalou S, Nourian A, Yarahmadi S, Farahmandian N, Nabi-Afjadi M, Alipourfard I, Bahreini E. Evaluation of testicular glycogen storage, FGF21 and LDH expression and physiological parameters of sperm in hyperglycemic rats treated with hydroalcoholic extract of Securigera Securidaca seeds, and Glibenclamide. Reprod Biol Endocrinol 2021; 19:104. [PMID: 34233693 PMCID: PMC8262065 DOI: 10.1186/s12958-021-00794-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Structural and physiological changes in sperm and semen parameters reduce fertility in diabetic patients. Securigera Securidaca (S. Securidaca) seed is a herbal medicine with hypoglycemic, antioxidant, and anti-hypertensive effects. The question now is whether this herbal medicine improves fertility in diabetic males. The study aimed to evaluate the effects of hydroalcoholic extract of S. Securidaca seeds (HESS), glibenclamide and a combination of both on fertility in hyperglycemic rats by comparing histological and some biochemical changes in testicular tissue and sperm parameters. The treatment protocol included administration of three doses of HESS and one dose of glibenclamide, as well as treatment with both in diabetic Wistar diabetic rats and comparison of the results with untrated groups. The quality of the testicular tissue as well as histometric parameters and spermatogenesis indices were evaluated during histopathological examination. Epididymal sperm analysis including sperm motility, viability, abnormalities, maturity, and chromatin structure were studied. The effect of HESS on the expression of LDH and FGF21 genes and tissue levels of glycogen, lactate, and total antioxidant capacity in testicular tissue was investigated and compared with glibenclamide. HESS improved sperm parameters in diabetic rats but showed little restorative effect on damaged testicular tissue. In this regard, glibenclamide was more effective than the highest dose of HESS and its combination with HESS enhanced its effectiveness so that histological tissue characteristics and sperm parameters were were comparable to those of healthy rats. The expression level of testicular FGF21 gene increased in diabetic rats, which intensified after treatment with HESS as well as glibenclamide. The combination of HESS and glibenclamide restored the expression level of testicular LDH gene, as well as tissue storage of glycogen, lactate and LDH activity, and serum testosterone to the levels near healthy control. S. Securidaca seeds can be considered as an effective supplement in combination with hypoglycemic drugs to prevent infertility complications in diabetes.
Collapse
Affiliation(s)
- Mohammad Babaei
- grid.411807.b0000 0000 9828 9578Department of Clinical Sciences, Faculty of V, eterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Shahin Alizadeh-Fanalou
- grid.411746.10000 0004 4911 7066Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Nourian
- grid.411807.b0000 0000 9828 9578Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Sahar Yarahmadi
- grid.411746.10000 0004 4911 7066Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Farahmandian
- grid.411746.10000 0004 4911 7066Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Iraj Alipourfard
- grid.11866.380000 0001 2259 4135Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Elham Bahreini
- grid.411746.10000 0004 4911 7066Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
85
|
Samir SM, Elalfy M, Nashar EME, Alghamdi MA, Hamza E, Serria MS, Elhadidy MG. Cardamonin exerts a protective effect against autophagy and apoptosis in the testicles of diabetic male rats through the expression of Nrf2 via p62-mediated Keap-1 degradation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:341-354. [PMID: 34187951 PMCID: PMC8255125 DOI: 10.4196/kjpp.2021.25.4.341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/08/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
Cardamonin (CARD) is a chalconoid with anti-inflammatory and antioxidant properties, and it is present in several plants. We sought to explore whether CARD exerts any positive effects against hyperglycemia-induced testicular dysfunction caused by type 2 diabetes and aimed to identify its possible intracellular pathways. Adult male rats were subdivided into six groups: control, CARD, diabetic (DM), DM + glibenclamide (GLIB), DM + CARD and DM + GLIB + CARD. Type 2 DM induced a significant increase in blood glucose and insulin resistance, along with diminished serum insulin, testosterone and gonadotropins levels, which were associated with the impairment of key testicular androgenic enzymes and cellular redox balance. Administration of CARD at a dose of 80 mg/kg for 4 weeks effectively normalized all of these alterations, and the improvement was confirmed by epididymal sperm analysis. After treatment with CARD, the pathological changes in spermatogenic tubules were markedly improved. Significantly, CARD upregulated testicular glucose transporter-8 (GLUT-8) expression and had inhibitory effects on elevated autophagy markers and caspase-3 immunoreactive cells. Furthermore, our results revealed that CARD was able to attenuate damage via activation of Nrf2 through the p62-dependent degradation of testicular anti-Kelch-like ECH-associated protein-1 (Keap-1). In conclusion, this study suggests that CARD provides protection against diabetic stress-mediated testicular damage. The use of CARD with conventional anti-diabetic therapy was associated with improved efficacy compared with conventional therapy alone.
Collapse
Affiliation(s)
- Shereen M Samir
- Department of Medical Physiology, College of Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Mahmoud Elalfy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, Faculty of Medicine, King Khalid University, Abha 61421, Saudi Arabia.,Department of Histology and Cell Biology, College of Medicine, Benha University, Benha 13511, Egypt
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Eman Hamza
- Medical Biochemistry Department, College of Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Mohamed Saad Serria
- Medical Biochemistry Department, College of Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Mona G Elhadidy
- Department of Medical Physiology, College of Medicine, Mansoura University, Mansoura 35511, Egypt.,Department of Medical Physiology, College of Medicine, Al-Baha University, Al-Baha 65525, Saudi Arabia
| |
Collapse
|
86
|
Guimarães-Ervilha LO, Ladeira LCM, Carvalho RPR, Bento IPDS, Bastos DSS, Souza ACF, Santos EC, de Oliveira LL, Maldonado IRDSC, Machado-Neves M. Green Tea Infusion Ameliorates Histological Damages in Testis and Epididymis of Diabetic Rats. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-13. [PMID: 34184626 DOI: 10.1017/s1431927621012071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Green tea is a popular drink used for therapeutic purposes to mitigate the consequences of diabetes. In this study, we aimed at evaluating the potential of green tea infusion to ameliorate structural and enzymatic damages caused by hyperglycemia in the testis and epididymis of Wistar rats. For that, nondiabetic and streptozotocin-induced diabetic rats (negative control and diabetes control, respectively) received 0.6 mL of water by gavage. Another set of diabetic animals received 100 mg/kg of green tea infusion diluted in 0.6 mL of water/gavage (diabetes + green tea) daily. After 42 days of treatment, the testes and epididymides were removed and processed for histopathological analysis, micromineral determination, and enzymatic assays. The results showed that treatment with green tea infusion preserved the testicular and epididymal histoarchitecture, improving the seminiferous epithelium and the sperm production previously affected by diabetes. Treatment with green tea reduced tissue damages caused by this metabolic condition. Given the severity of hyperglycemia, there was no efficacy of the green tea infusion in maintaining the testosterone levels, antioxidant enzyme activity, and microminerals content. Thus, our findings indicate a protective effect of this infusion on histological parameters, with possible use as a complementary therapy for diabetes.
Collapse
Affiliation(s)
| | - Luiz Carlos Maia Ladeira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| | | | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| | - Ana Cláudia Ferreira Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro23897-000, Brazil
| | - Eliziária Cardoso Santos
- Medicine School, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais39100-000, Brazil
| | | | | | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| |
Collapse
|
87
|
Chen Y, Chen J, Shu A, Liu L, Wu Q, Wu J, Song S, Fan W, Zhu Y, Xu H, Sun J, Yang L. Combination of the Herbs Radix Rehmanniae and Cornus Officinalis Mitigated Testicular Damage From Diabetes Mellitus by Enhancing Glycolysis via the AGEs/RAGE/HIF-1α Axis. Front Pharmacol 2021; 12:678300. [PMID: 34262451 PMCID: PMC8273766 DOI: 10.3389/fphar.2021.678300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Radix Rehmanniae and Cornus Officinalis (RR-CO) have been widely used as "nourishing Yin and tonifying kidney" herb pairs for the treatment of diabetes mellitus (DM) and its complications in traditional Chinese medicine (TCM). Based on the theory of "kidney governing reproduction" in TCM, the aim of this study was to investigate the therapeutic effects of RR-CO on DM-induced reproduction damage through regulating testicular glycolysis. Moreover, the regulation of AGEs/RAGE/HIF-1α axis on the testicular glycolysis process has also been studied. Spontaneous DM model KK-Ay mice were used to investigate the protective effect of RR, CO, RR-CO on DM-induced reproductive disturbances. RR, CO, RR-CO improved DM-induced renal and testicular morphology damages. Moreover, the impaired spermatogenesis, germ cell apoptosis and motility in testis induced upon DM were also attenuated by RR, CO or RR-CO, accompanied by an increased level of glycolysis metabolomics such as l-lactate, d-Fructose 1,6-bisphosphate, etc. Meanwhile, glucose membrane transporters (GLUT1, GLUT3), monocarboxylate transporter 4 (MCT4) expression, lactate dehydrogenase (LDH) activity, HIF-1α were upregulated by RR, CO and RR-CO treatment compared with the model group, whereas AGE level and RAGE expression were decreased with the drug administration. The RR-CO group was associated with superior protective effects in comparison to RR, CO use only. Aminoguanidine (Ami) and FPS-ZM1, the AGEs and RAGE inhibitors, were used as a tool drug to study the mechanism, showing different degrees of protection against DM-induced reproductive damage. This work preliminarily sheds light on the herb pair RR-CO exhibited favorable effects against DM-induced reproductive disturbances through enhancing testicular glycolysis, which might be mediated by AGEs/RAGE/HIF-1α axis.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jing Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Hanlin College, Nanjing University of Chinese Medicine, Taizhou, China
| | - Anmei Shu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liping Liu
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qin Wu
- College of Clinical Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Juansong Wu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Siyuan Song
- College of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Weiping Fan
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yihui Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiqin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jihu Sun
- College of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liucai Yang
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
88
|
Allam MAM, Khowailed AA, Elattar S, Mahmoud AM. Umbelliferone ameliorates oxidative stress and testicular injury, improves steroidogenesis and upregulates peroxisome proliferator-activated receptor gamma in type 2 diabetic rats. J Pharm Pharmacol 2021; 74:573-584. [PMID: 34156072 DOI: 10.1093/jpp/rgab083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/13/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Diabetes mellitus (DM) is a chronic disease associated with serious complications, including male infertility. Umbelliferone (UMB) is a coumarin with promising antioxidant, anti-inflammatory and other beneficial effects. This study investigated the ameliorative effect of UMB against testicular injury, oxidative stress and altered steroidogenesis in rats with type 2 DM. METHODS Rats received a high fat diet for 4 weeks followed by a single injection of streptozotocin. Diabetic rats were treated with UMB or pioglitazone (PIO) for 6 weeks and samples were collected for analysis. KEY FINDINGS Diabetic rats exhibited hyperglycemia, insulin resistance and dyslipidemia associated with increased serum pro-inflammatory cytokines, and decreased gonadotropins and testosterone. UMB significantly ameliorated metabolic alterations, decreased pro-inflammatory cytokines, and increased gonadotropins and testosterone levels. UMB prevented testicular injury, suppressed lipid peroxidation and nitric oxide and increased antioxidants in diabetic rats. In addition, UMB upregulated testicular gonadotropins receptors, steroidogenesis markers (steroidogenic acute regulatory protein, cytochrome P450 family 17 subfamily A member 1 [CYP17A1], 3β-hydroxysteroid dehydrogenase [3ß-HSD] and 17ß-hydroxysteroid dehydrogenase [17ß-HSD]), and peroxisome proliferator-activated receptor gamma (PPARγ) expression. CONCLUSIONS UMB prevents testicular injury by preventing metabolic alterations, suppressing oxidative damage and inflammation, and boosting antioxidant defenses in diabetic rats. UMB enhanced pituitary-gonadal axis and steroidogenesis and upregulated testicular PPARγ in diabetic rats. Thus, UMB may represent a protective agent against testicular injury and sexual dysfunction associated with chronic hyperglycemia.
Collapse
Affiliation(s)
- Mohamed A M Allam
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Akef A Khowailed
- Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Samah Elattar
- Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.,Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
89
|
Heidari H, Abdollahi M, Khani S, Nojavan F, Khani S. Effect of Alpinia officinarum extract on reproductive damages in streptozotocin induced diabetic male rats. J Diabetes Metab Disord 2021; 20:77-85. [PMID: 34222060 PMCID: PMC8212207 DOI: 10.1007/s40200-020-00711-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Infertility is one of the systemic problems in diabetic men. The purpose of the present study is investigation of the effects of the Alpinia officinarum (AO) hydro-alcoholic extract on the reproductive system damages in diabetic male rats. METHODS Twenty four male rats were randomly assigned into 4 groups (n = 6); i.e., control, diabetic control, and diabetic rats treated orally with AO extract (200 and 500 mg kg-1). A single dose (60 mg kg-1) of streptozotocin (STZ) was injected intraperitoneally (IP) to induce diabetes. After 8 weeks of treatment, blood samples, testis, and cauda epididymis were excised to evaluate specific hormonal changes, sperm parameters, and testis morphology. RESULTS Diabetic control rats showed remarkably lower body and testicular weights, testicular volumes, and sperm parameters compared with the control group (p <0.05). Diabetic control rats also exhibited significantly decreased serum testosterone and follicle stimulating hormone (FSH). Sperm parameters were considerably enhanced in diabetic animals gavaged with AO extract. Testosterone levels were significantly elevated by administrating 500 mg kg-1 AO extract to the diabetic control rats (p <0.05). The morphological assessment of testis of treatment group (500 mg kg-1) indicated remarkable differences (p <0.05) by increasing the seminiferous tubules diameter (STD) and thickness of the seminiferous epithelium (TSE) compared with diabetic control rats. CONCLUSION As demonstrated by the results, AO extract ameliorated sperm damage and improved sperm morphology besides improving histological damage in the testis in diabetic rats. In addition, the dose of 500 mg kg-1 worked more efficiently than 200 mg kg-1.
Collapse
Affiliation(s)
- Hamid Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maasoume Abdollahi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sima Khani
- Department of Chemistry, University of Massachusetts Boston, Boston, MA USA
| | - Fatemeh Nojavan
- Department of Iranian Traditional Medicine, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Samira Khani
- Neuroscience Research Center, Qom University of Medical Sciences, Pardis Campus, Ghadir Blvd, Qom, Iran
| |
Collapse
|
90
|
Aghajani MMR, Golsorkhtabaramiri M, Mirabi P. Treatment of aspermia (anejaculation) in a diabetic infertile man (a case report). JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2021. [DOI: 10.1016/j.jecr.2021.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
91
|
Reproductive disorders in male rats induced by high-fructose consumption from juvenile age to puberty. Arh Hig Rada Toksikol 2021; 71:78-86. [PMID: 32597133 PMCID: PMC7837242 DOI: 10.2478/aiht-2020-71-3303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/01/2020] [Indexed: 11/20/2022] Open
Abstract
There is compelling evidence that a hypercaloric, high-fructose diet can cause metabolic syndrome (MetS) and a whole range of other metabolic changes. In the context of androgen deficiency, MetS in boys merits special attention, but the effects of fructose-rich diet in youth on future male reproductive function are still poorly evidenced. The aim of this study was to address this issue and analyse the effects of high-fructose intake starting from weaning to puberty (postnatal day 23 up to 83) on the reproductive function of male rats. For this purpose juvenile male Wistar rats were divided in two groups: control and the group receiving 10 % fructose solution instead of drinking water. Reproductive function was evaluated in terms of fertility, sperm count, testes/epididymis morphology, and serum sex hormones. The fructose-treated group showed a decrease in testosterone and twofold increase in luteinising and follicle-stimulating hormone levels in the serum. This was accompanied with lower testis/epididymis weights, sperm count, and changed testis/epididymis morphology. Their fertility remained unchanged, but the fertility of females mating with these males diminished. In addition, pre-implantation and post-implantation embryonic death rate rose in these females. Our results have confirmed that high fructose consumption from early age until puberty can impair the reproductive function of male rats, and call for further animal and epidemiological investigation.
Collapse
|
92
|
Hervás I, Valls L, Rivera-Egea R, Juliá MG, Navarro-Gomezlechon A, Garrido N, Martínez-Jabaloyas JM. TESE-ICSI outcomes per couple in vasectomized males are negatively affected by time since the intervention, but not other comorbidities. Reprod Biomed Online 2021; 43:708-717. [PMID: 34391685 DOI: 10.1016/j.rbmo.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
RESEARCH QUESTION Does time since vasectomy (as obstructive interval) and the presence of different male comorbidities adversely affect the likelihood of achieving a newborn for vasectomized males undergoing testicular sperm extraction (TESE) and intracytoplasmic sperm injection (ICSI)? DESIGN This retrospective study included 364 couples with vasectomized males undergoing TESE-ICSI cycles with autologous oocytes at IVI Valencia. The main outcome was live birth rate (LBR). Subjects were divided according to the male risk factor evaluated into quartiles (obstructive interval, body mass index [BMI]) or groups (hypertension, diabetes mellitus, dyslipidaemia). The reproductive outcomes were calculated per embryo transfer, per ovarian stimulation completed, and per couple. RESULTS The average obstructive interval was 11.3 years. The LBR was 34.4% (95% CI 30.1-38.6) per embryo transfer, 27.8% (95% CI 24.1-31.5) per ovarian stimulation and 46.2% (95% CI 41.8-51.3) per couple. When considering obstructive interval, a significantly lower LBR per couple (P = 0.04) was found in the group with the longest obstruction time: Q1 42.1% (95% CI 33.5-50.7), Q2 49.1% (95% CI 36.1-62.1), Q3 56.3% (95% CI 46.7-65.9) and Q4 37.2% (95% CI 26.5-47.9) but the cumulative live birth rate (CLBR) was not affected (P = 0.63). LBR per ovarian stimulation of males with hypertension was significantly lower (P = 0.04) than healthy males: 13.5% (95% CI 2.5-24.5) and 28.6% (95% CI 24.7-32.5), respectively. The group of diabetic vasectomized males had a significantly higher CLBR (P = 0.02). The remaining risk factors assessed (smoking, dyslipidaemia and a high BMI) did not affect LBR compared with their healthy counterparts. CONCLUSION Time since vasectomy appears to negatively influence the LBR when assessed per couple. The CLBR was not affected by the obstructive interval or the presence of other male comorbidities apart from diabetes, which had a significant effect.
Collapse
Affiliation(s)
- Irene Hervás
- IVI Foundation, The Health Research Institute La Fe, Valencia 46026, Spain
| | - Lorena Valls
- Urology Unit, Hospital Clínico Universitario de Valencia, Valencia 46010, Spain
| | | | - María Gil Juliá
- IVI Foundation, The Health Research Institute La Fe, Valencia 46026, Spain
| | | | - Nicolás Garrido
- IVI Foundation, The Health Research Institute La Fe, Valencia 46026, Spain.
| | - José María Martínez-Jabaloyas
- Andrology Unit, IVIRMA Valencia, Valencia 46015, Spain; Department of Surgery, Valencia University, Valencia 46010, Spain
| |
Collapse
|
93
|
Qi M, Liang X, Lu J, Zhao H, Jin M. Effect of resveratrol intervention on renal pathological injury and spermatogenesis in type 2 diabetic mice. Am J Transl Res 2021; 13:4719-4725. [PMID: 34150052 PMCID: PMC8205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Type 2 diabetes (T2D) is a clinically common cardiovascular disease that can lead to kidney damage and adversely affect male fertility and sperm quality. Resveratrol (Res) is a natural product that has a wide range of effects in animals and cell models. OBJECTIVE This research is designed to observe the effect of resveratrol (Res) intervention on renal pathologic injury and spermatogenesis in mice with type 2 diabetes (T2D). METHODS Sixty healthy male SD mice without specific pathogens (SPF grade) were selected, and numbered by statistical software to randomize into control group (CG; n=20), model group (MG; n=20) and research group (RG; n=20). Mice in CG were given regular diet, while those in MG and RG were fed with high fat diet. Subsequently, RG was given Res intervention while MG received no treatment. Biochemical indexes [triglyceride (TG), total cholesterol (TC), fasting blood glucose (FBG), 24-hour urinary albumin excretion rate (24h-UAER)] of mice in the three groups before and after intervention were observed and recorded. The effect of Res on oxidative stress, kidney histopathological structure, spermatogenic function, sperm density and viability of mice, as well as spermatogenic cell cycle of testis were determined. RESULTS Res reduced hyperlipidemia and hyperglycemia in T2D mice. By reducing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), Res relieved oxidative stress and alleviated kidney tissue damage. In addition, Res improved the spermatogenic function of T2D mice by increasing the sperm density and survival rate and restoring the percentage of spermatogenic cells at all levels. CONCLUSIONS Res intervention in T2D mice can reduce kidney tissue damage, lower blood glucose (BG), and improve spermatogenic function by increasing sperm density and restoring the percentage of spermatogenic cells at all levels.
Collapse
Affiliation(s)
- Man Qi
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University Beijing 100020, China
| | - Xiaolong Liang
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University Beijing 100020, China
| | - Jun Lu
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University Beijing 100020, China
| | - Hongying Zhao
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University Beijing 100020, China
| | - Mulan Jin
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University Beijing 100020, China
| |
Collapse
|
94
|
Das M, Annie L, Derkach KV, Shpakov AO, Gurusubramanian G, Roy VK. Expression and localization of apelin and its receptor in the testes of diabetic mice and its possible role in steroidogenesis. Cytokine 2021; 144:155554. [PMID: 33962842 DOI: 10.1016/j.cyto.2021.155554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/23/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder with severe hyperglycemia, one of the complications of which is testicular dysfunctions, androgen deficiency and decreased male fertility. In the diabetic testes, the expression and signaling pathways of leptin and a number of other adipokines are significantly changed. However, there is no information on the localization and expression of adipokine, apelin and its receptor (APJ) in the diabetic testes, although there is information on the involvement of apelin in the regulation of reproductive functions. The aim of this study was to investigate the expression and localization of apelin and APJ in the testes of mice with streptozotocin-induced T1DM and to estimate the effects of agonist (apelin-13) and antagonist (ML221) of APJ on the testosterone production by diabetic testis explants in the in vitro conditions. We first detected the expression of apelin and its receptor in the mouse testes, and showed an increased intratesticular expression of apelin and APJ along with the reduced testosterone secretion in T1DM. Using imunohistochemical approach, we showed that apelin and APJ are localized in the Leydig and germ cells, and in diabetes, the amount of these proteins was significantly higher than in the control mice. The diabetic testes had a decrease in germ cell proliferation (the reduced PCNA and GCNA levels) and an increase in apoptosis (the increased active caspase-3 and decreased BCL2 levels). These results suggest an involvement of apelin and APJ in T1DM-induced testicular pathogenesis. Treatment of the cultured testis explants with ML221 significantly increased the testosterone secretion, whereas apelin-13 was ineffective. Thus, hyperapelinemia in the testes can significantly contribute to testicular pathogenesis in T1DM, and pharmacological inhibition of apelin receptors can improve testicular steroidogenesis.
Collapse
Affiliation(s)
- Milirani Das
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India
| | | | - Kira V Derkach
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Shpakov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
95
|
Tribulus terrestris Efficacy and Safety Concerns in Diabetes and Erectile Dysfunction, Assessed in an Experimental Model. PLANTS 2021; 10:plants10040744. [PMID: 33920217 PMCID: PMC8069229 DOI: 10.3390/plants10040744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
The present project aims to evaluate Tribulus terrestris (TT) extracts by addressing various possible mechanisms of action in order to see whether the use of TT supplements in diabetes and diabetes complications is justified. Diabetic rats were divided into three groups: diabetic control group, TT extract with low protodioscin content group (TT-LPC) and TT extract with high protodioscin content group (TT-HPC). After twelve weeks of treatment, fasting blood glucose, insulin, LH, FSH and testosterone levels were measured. Both TT preparations reduced elevated blood glucose level. Insulin and luteinizing hormone levels were not significantly different compared with the control group; however, the FSH and testosterone levels were significantly higher in the TT-HPC group compared with the diabetic control group. The testosterone level is correlated in part with the protodioscin concentration in extracts and is probably mediated through an FSH-linked pathway.
Collapse
|
96
|
Akarca Dizakar SÖ, Saribas GS, Tekcan A. Effects of ellagic acid in the testes of streptozotocin induced diabetic rats. Drug Chem Toxicol 2021; 45:2123-2130. [PMID: 33832387 DOI: 10.1080/01480545.2021.1908714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus (DM) is a serious and common in the world health problem that leads to different complications. Changes in oxidative stress and antioxidant capacity play an important role in the pathogenesis of DM. The purpose of this study was to investigate ellagic acid (EA) treatment in diabetes induced testicular damage. In our study, 24 male Sprague Dawley rats were divided into four groups. Group 1: Control (n = 6), Group 2: EA (n = 6), Group 3: Diabet (n = 6), Group 4: Diabet + EA (n = 6). Diabetes was induced by intraperitoneal injection of streptozocin (STZ) (55 mg/kg) to group 3 and 4. EA was given 100 mg/kg/day group 2 and 4 for 35 days by oral gavage. We used that Hematoxylen-Eosin (H&E) and Johnsen's scoring to determine histological change. The terminal-deoxynucleoitidyl-transferase mediated nick end-labeling assay (TUNEL) was used for apoptosis. Oxidative stress markers were determined by qRT-PCR and immunexpression of Nrf2 was evaluated in testicular tissue. In conclusion, EA administration on the diabetes model has changed the histopathological features, apopotosis and oxidative stress marker genes in the testis and may have an effect on the reduction of diabetes induced testicular damage.
Collapse
Affiliation(s)
| | - Gulistan Sanem Saribas
- Department of Histology and Embryology, Faculty of Medicine, Ahi Evran University, Kirsehir, turkey
| | - Akın Tekcan
- Department of Medical Biology Faculty of Medicine, Amasya University, Amasya, Turkey
| |
Collapse
|
97
|
Aeeni M, Razi M, Alizadeh A, Alizadeh A. The molecular mechanism behind insulin protective effects on testicular tissue of hyperglycemic rats. Life Sci 2021; 277:119394. [PMID: 33785345 DOI: 10.1016/j.lfs.2021.119394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
AIMS The present study assessed the possible mechanisms by which the insulin regulates the heat shock (HSPs) and transitional proteins expression and consequently ameliorates the oxidative stress-induced damages in germ and sperm cells DNA contents. MAIN METHODS Mature male Wistar rats were distributed into control, Hyperglycemia-induced (HG) and insulin-treated HG-induced (HG-I) groups. Following 8 weeks from HG induction, testicular total antioxidant capacity (TAC), immunoreactivity of 8-oxodG, germ cells mRNA damage, Hsp70-2a, Hsp90, transitional proteins 1 and 2 (TP-1 and -2) mRNA and protein expressions were analyzed. Moreover, the sperm chromatin condensation was assessed by aniline-blue staining, and DNA integrity of germ and sperm cells were analyzed by TUNEL and acrdine-orange staining techniques. KEY FINDINGS The HG animals exhibited significant (p < 0.05) reduction in TAC, HSp70-2a, TP-1 and TP-2 expression levels, and increment in 8-oxodG immunoreactivity, mRNA damage, and Hsp90 expression. However, insulin treatment resulted in (p < 0.05) enhanced TAC level, Hsp70-2a, Hsp90, TP-1 and TP-2 expressions, besides reduced 8-oxodG immunoreactivity and mRNA damage compared to the HG group (p < 0.05). The chromatin condensation and the germ and sperm cells DNA fragmentation were decreased in HG-I group. SIGNIFICANCE Insulin treatment amplifies the testicular TAC level, improves the Hsp70-2a, TP-1, and TP-2 expressions, and boosts the Hsp90-mediated role in DNA repairment process. Consequently, altogether could maintain the HG-induced DNA integrity in the testicular and sperm cells.
Collapse
Affiliation(s)
- Mahsa Aeeni
- Division of Histology & Embryology, Department of Basic Science, Faculty of Veterinary Medicine, P.O.BOX: 1177, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Division of Histology & Embryology, Department of Basic Science, Faculty of Veterinary Medicine, P.O.BOX: 1177, Urmia University, Urmia, Iran.
| | - Alireza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
98
|
Carvalho MG, Silva KM, Aristizabal VHV, Ortiz PEO, Paranzini CS, Melchert A, Amaro JL, Souza FF. Effects of Obesity and Diabetes on Sperm Cell Proteomics in Rats. J Proteome Res 2021; 20:2628-2642. [PMID: 33705140 DOI: 10.1021/acs.jproteome.0c01044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infertility caused by male factors is potentially associated with metabolic disorders such as obesity and/or diabetes. This experimental study was conducted in a male rodent model to assess the effects of different diseases on semen quality and sperm proteomics. Ten Wistar rats were used for each treatment. Rats were fed commercial food provided controllably to the control group and the diabetic group, and a hypercaloric diet supplemented with 5% sucrose in water was provided ad libitum to the obese group for 38 weeks. Diabetes was induced with 35 mg/kg streptozotocin. After euthanasia, testicles, spermatozoa, fat, and blood (serum) samples were collected. Spermatozoa were evaluated for quality and subjected to proteomics analyses. Histology and cytology of the testis, and serum leptin, adiponectin, interleukin 8 (IL-8), blood glucose, and testosterone levels, were also assessed. Body weight, retroperitoneal and testicular fat, and the Lee index were also measured. Obesity and diabetes were induced. The diabetic group showed noticeable changes in spermatogenesis and sperm quality. The mass spectrometry proteomics data have been deposited in Mendeley Data (doi: 10.17632/rfp7kfjcsd.5). Fifteen proteins varied in abundance between groups, especially proteins related to energy production and structural function of the spermatozoa, suggesting disturbances in energy production with a subsequent alteration in sperm motility in both groups, but with a compensatory response in the obese group.
Collapse
Affiliation(s)
- Marcos G Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Kelry M Silva
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Viviana H V Aristizabal
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Pablo E O Ortiz
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Cristiane S Paranzini
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil.,Envol Biomedical, Immokalee, Florida 34143, United States
| | - Alessandra Melchert
- Department of Veterinary Clinical, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, 18618-681 Botucatu, São Paulo, Brazil
| | - João L Amaro
- Department of Surgical Specialties and Anesthesiology, Urology, School of Medicine, São Paulo State University ̈Júlio de Mesquita Filho"-UNESP, 18618-687 Botucatu, São Paulo, Brazil
| | - Fabiana F Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| |
Collapse
|
99
|
Vanderhout SM, Rastegar Panah M, Garcia-Bailo B, Grace-Farfaglia P, Samsel K, Dockray J, Jarvi K, El-Sohemy A. Nutrition, genetic variation and male fertility. Transl Androl Urol 2021; 10:1410-1431. [PMID: 33850777 PMCID: PMC8039611 DOI: 10.21037/tau-20-592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infertility affects nearly 50 million couples worldwide, with 40-50% of cases having a male factor component. It is well established that nutritional status impacts reproductive development, health and function, although the exact mechanisms have not been fully elucidated. Genetic variation that affects nutrient metabolism may impact fertility through nutrigenetic mechanisms. This review summarizes current knowledge on the role of several dietary components (vitamins A, B12, C, D, E, folate, betaine, choline, calcium, iron, caffeine, fiber, sugar, dietary fat, and gluten) in male reproductive health. Evidence of gene-nutrient interactions and their potential effect on fertility is also examined. Understanding the relationship between genetic variation, nutrition and male fertility is key to developing personalized, DNA-based dietary recommendations to enhance the fertility of men who have difficulty conceiving.
Collapse
Affiliation(s)
| | | | | | | | - Konrad Samsel
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Judith Dockray
- Murray Koffler Urologic Wellness Centre, Department of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Keith Jarvi
- Murray Koffler Urologic Wellness Centre, Department of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
100
|
Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, Arafa M, Panner Selvam MK, Shah R. Male infertility. Lancet 2021; 397:319-333. [PMID: 33308486 DOI: 10.1016/s0140-6736(20)32667-2] [Citation(s) in RCA: 495] [Impact Index Per Article: 165.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
It is estimated that infertility affects 8-12% of couples globally, with a male factor being a primary or contributing cause in approximately 50% of couples. Causes of male subfertility vary highly, but can be related to congenital, acquired, or idiopathic factors that impair spermatogenesis. Many health conditions can affect male fertility, which underscores the need for a thorough evaluation of patients to identify treatable or reversible lifestyle factors or medical conditions. Although semen analysis remains the cornerstone for evaluating male infertility, advanced diagnostic tests to investigate sperm quality and function have been developed to improve diagnosis and management. The use of assisted reproductive techniques has also substantially improved the ability of couples with infertility to have biological children. This Seminar aims to provide a comprehensive overview of the assessment and management of men with infertility, along with current controversies and future endeavours.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Chak-Lam Cho
- SH Ho Urology Center, Department of Surgery, Chinese University of Hong Kong, Hong Kong
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA; Department of Medical Bioscience, University of Western Cape, Bellville, South Africa; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sarah Vij
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Mohamed Arafa
- Male Infertility Unit, Urology Department, Hamad Medical Corporation, Doha, Qatar; Andrology Department, Cairo University, Cairo, Egypt
| | | | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Center, Mumbai, India
| |
Collapse
|