51
|
Ren F, Huang J, Yang Y. Unveiling the impact of microplastics and nanoplastics on vascular plants: A cellular metabolomic and transcriptomic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116490. [PMID: 38795417 DOI: 10.1016/j.ecoenv.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
With increasing plastic manufacture and consumption, microplastics/nanoplastics (MP/NP) pollution has become one of the world's pressing global environmental issues, which poses significant threats to ecosystems and human health. In recent years, sharp increasing researches have confirmed that MP/NP had direct or indirect effects on vegetative growth and sexual process of vascular plant. But the potential mechanisms remain ambiguous. MP/NP particles can be adsorbed and/or absorbed by plant roots or leaves and thus cause diverse effects on plant. This holistic review aims to discuss the direct effects of MP/NP on vascular plant, with special emphasis on the changes of metabolic and molecular levels. MP/NP can alter substance and energy metabolism, as well as shifts in gene expression patterns. Key aspects affected by MP/NP stress include carbon and nitrogen metabolism, amino acids biosynthesis and plant hormone signal transduction, expression of stress related genes, carbon and nitrogen metabolism related genes, as well as those involved in pathogen defense. Additionally, the review provides updated insights into the growth and physiological responses of plants exposed to MP/NP, encompassing phenomena such as seed/spore germination, photosynthesis, oxidative stress, cytotoxicity, and genotoxicity. By examining the direct impact of MP/NP from both physiological and molecular perspectives, this review sets the stage for future investigations into the complex interactions between plants and plastic pollutants.
Collapse
Affiliation(s)
- Fugang Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China
| | - Jing Huang
- Department of Vocal Performance, Sichuan Conservatory of Music, Chengdu 610021, China
| | - Yongqing Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
52
|
Qadir M, Hussain A, Shah M, Hamayun M, Al-Huqail AA, Iqbal A, Ali S. Improving sunflower growth and arsenic bioremediation in polluted environments: Insights from ecotoxicology and sustainable mitigation approaches. Heliyon 2024; 10:e33078. [PMID: 38988560 PMCID: PMC11234106 DOI: 10.1016/j.heliyon.2024.e33078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The issue of arsenic (As) contamination in the environment has become a critical concern, impacting both human health and ecological equilibrium. Addressing this challenge requires a comprehensive strategy encompassing water treatment technologies, regulatory measures for industrial effluents, and the implementation of sustainable agricultural practices. In this study, diverse strategies were explored to enhance As accumulation in the presence of Acinetobacter bouvetii while safeguarding the host from the toxic effects of arsenate exposure. The sunflower seedlings associated with A. bouvetii demonstrated a favorable relative growth rate (RGR) and net assimilation rate (NAR) even less than 100 ppm of As stress. Remarkably, the NAR and RGR of A. bouvetii-associated seedlings outperformed those of control seedlings cultivated without A. bouvetii in As-free conditions. Additionally, a markedly greater buildup of bio-transformed As was observed in A. bouvetii-associated seedlings (P = 0.05). An intriguing observation was the normal levels of reactive oxygen species (ROS) in A. bouvetii-associated seedlings, along with elevated activities of key enzymatic antioxidants like catalases (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and peroxidases (POD), along with non-enzymatic antioxidants (phenols and flavonoids). This coordinated antioxidant defense system likely contributed to the improved survival and growth of the host plant species amidst As stress. A. bouvetii not only augmented the growth of the host plants but also facilitated the uptake of bio-transformed As in the contaminated medium. The rhizobacterium's modulation of various biochemical and physiological parameters indicates its role in ensuring the better survival and progression of the host plants under As stress.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Mohib Shah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Asma A. Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amjad Iqbal
- Department of Food Science & Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Republic of Korea
| |
Collapse
|
53
|
Badr A, Basuoni MM, Ibrahim M, Salama YE, Abd-Ellatif S, Abdel Razek ES, Amer KE, Ibrahim AA, Zayed EM. Ameliorative impacts of gamma-aminobutyric acid (GABA) on seedling growth, physiological biomarkers, and gene expression in eight wheat (Triticum aestivum L.) cultivars under salt stress. BMC PLANT BIOLOGY 2024; 24:605. [PMID: 38926865 PMCID: PMC11201109 DOI: 10.1186/s12870-024-05264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Plants spontaneously accumulate γ-aminobutyric acid (GABA), a nonprotein amino acid, in response to various stressors. Nevertheless, there is limited knowledge regarding the precise molecular mechanisms that plants employ to cope with salt stress. The objective of this study was to investigate the impact of GABA on the salt tolerance of eight distinct varieties of bread wheat (Triticum aestivum L.) by examining plant growth rates and physiological and molecular response characteristics. The application of salt stress had a detrimental impact on plant growth markers. Nevertheless, the impact was mitigated by the administration of GABA in comparison to the control treatment. When the cultivars Gemmiza 7, Gemmiza 9, and Gemmiza 12 were exposed to GABA at two distinct salt concentrations, there was a substantial increase in both the leaf chlorophyll content and photosynthetic rate. Both the control wheat cultivars and the plants exposed to salt treatment and GABA treatment showed alterations in stress-related biomarkers and antioxidants. This finding demonstrated that GABA plays a pivotal role in mitigating the impact of salt treatments on wheat cultivars. Among the eight examined kinds of wheat, CV. Gemmiza 7 and CV. Gemmiza 11 exhibited the most significant alterations in the expression of their TaSOS1 genes. CV. Misr 2, CV. Sakha 94, and CV. Sakha 95 exhibited the highest degree of variability in the expression of the NHX1, DHN3, and GR genes, respectively. The application of GABA to wheat plants enhances their ability to cope with salt stress by reducing the presence of reactive oxygen species (ROS) and other stress indicators, regulating stomatal aperture, enhancing photosynthesis, activating antioxidant enzymes, and upregulating genes involved in salt stress tolerance.
Collapse
Affiliation(s)
- Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mostafa M Basuoni
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Ibrahim
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yossry E Salama
- Crop Science Department, Faculty of Agriculture, Damanhour University, Beheira Governorate, Damanhour, 22516, Egypt
| | - Sawsan Abd-Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of the Scientific Research and Technological Application (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Elsayed S Abdel Razek
- Livestock Research Department, City of Scientific Research and Technological Applications (SRTA-City), Arid Lands Cultivation Research Institute (ALCRI), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Khaled E Amer
- Crop Science Department, Faculty of Agriculture, Damanhour University, Beheira Governorate, Damanhour, 22516, Egypt
| | - Amira A Ibrahim
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish, 45511, Egypt.
| | - Ehab M Zayed
- Cell Study Research Department, Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| |
Collapse
|
54
|
Papantzikos V, Mantzoukas S, Eliopoulos PA, Servis D, Bitivanos S, Patakioutas G. Evaluation of Various Inoculation Methods on the Effect of Beauveria bassiana on the Plant Growth of Kiwi and on Halyomorpha halys Infestation: A Two-Year Field Study. BIOLOGY 2024; 13:470. [PMID: 39056665 PMCID: PMC11273441 DOI: 10.3390/biology13070470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In this study, the bioinsecticidal action of a commercial formulation with Beauveria bassiana was evaluated on the new sucking pest in Greece: Halyomorpha halys, of the kiwifruit. Additionally, the biostimulant potential of the same formulation was studied on kiwi growth. The application was performed in three different ways in a commercial field of kiwi crop A. deliciosa "Hayward" field in Arta, Greece: (i) trunk spray, (ii) root injection, and (iii) trunk inoculation. During the 2 years seasons of the experiment, weekly measurements of the H. halys population were determined. The insect is sucking plants nutrients; therefore, the total chlorophyll content in the leaves of the treatments was recorded weekly. In addition, the percentage of infested kiwifruits was estimated at the end of the experiment. Moreover, to study the biostimulant potential of the formulation, growth measurements on stems and leaves were performed during the experiment. Finally, at the kiwi harvest point, the fruit biomass, dimensions, and weight were obtained, and the leaves' proline content was evaluated. The results encourage us to further study this EPF formulation as the bioinsecticidal effect was noted by the reduction in H. halys population, and biostimulant action was perceived by the higher plant biomass.
Collapse
Affiliation(s)
- Vasileios Papantzikos
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| | - Spiridon Mantzoukas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| | - Panagiotis A. Eliopoulos
- Laboratory of Plant Health Management, Department of Agrotechnology, University of Thessaly, Geopolis, 41500 Larissa, Greece;
| | | | | | - George Patakioutas
- Department of Agriculture, Arta Campus, University of Ioannina, 45100 Ioannina, Greece;
| |
Collapse
|
55
|
Gan J, Qiu Y, Tao Y, Zhang L, Okita TW, Yan Y, Tian L. RNA-seq analysis reveals transcriptome reprogramming and alternative splicing during early response to salt stress in tomato root. FRONTIERS IN PLANT SCIENCE 2024; 15:1394223. [PMID: 38966147 PMCID: PMC11222332 DOI: 10.3389/fpls.2024.1394223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Salt stress is one of the dominant abiotic stress conditions that cause severe damage to plant growth and, in turn, limiting crop productivity. It is therefore crucial to understand the molecular mechanism underlying plant root responses to high salinity as such knowledge will aid in efforts to develop salt-tolerant crops. Alternative splicing (AS) of precursor RNA is one of the important RNA processing steps that regulate gene expression and proteome diversity, and, consequently, many physiological and biochemical processes in plants, including responses to abiotic stresses like salt stress. In the current study, we utilized high-throughput RNA-sequencing to analyze the changes in the transcriptome and characterize AS landscape during the early response of tomato root to salt stress. Under salt stress conditions, 10,588 genes were found to be differentially expressed, including those involved in hormone signaling transduction, amino acid metabolism, and cell cycle regulation. More than 700 transcription factors (TFs), including members of the MYB, bHLH, and WRKY families, potentially regulated tomato root response to salt stress. AS events were found to be greatly enhanced under salt stress, where exon skipping was the most prevalent event. There were 3709 genes identified as differentially alternatively spliced (DAS), the most prominent of which were serine/threonine protein kinase, pentatricopeptide repeat (PPR)-containing protein, E3 ubiquitin-protein ligase. More than 100 DEGs were implicated in splicing and spliceosome assembly, which may regulate salt-responsive AS events in tomato roots. This study uncovers the stimulation of AS during tomato root response to salt stress and provides a valuable resource of salt-responsive genes for future studies to improve tomato salt tolerance.
Collapse
Affiliation(s)
- Jianghuang Gan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yongqi Qiu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yilin Tao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
56
|
Amir M, Raheem A, Yadav P, Kumar V, Tewari RK, Jalil SU, Danish M, Ansari MI. Phytofabricated gold nanoparticles as modulators of salt stress responses in spinach: implications for redox homeostasis, biochemical and physiological adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1408642. [PMID: 38957605 PMCID: PMC11217327 DOI: 10.3389/fpls.2024.1408642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Introduction The utilization of plant material for synthesizing nanoparticles effectively triggers physiological and biochemical responses in plants to combat abiotic stresses. Salt stress, particularly caused by NaCl, significantly affects plant morphology and physiology, leading to reduced crop yields. Understanding the mechanisms of salt tolerance is crucial for maintaining crop productivity. Methods In this study, we examined the effects of 150 μM spinach-assisted gold nanoparticles (S-AuNPs) on various parameters related to seed germination, growth attributes, photosynthetic pigments, stomatal traits, ion concentrations, stress markers, antioxidants, metabolites, and nutritional contents of spinach plants irrigated with 50 mM NaCl. Results Results showed that S-AuNPs enhanced chlorophyll levels, leading to improved light absorption, increased photosynthates production, higher sugar content, and stimulated plant growth under NaCl stress. Stomatal traits were improved, and partially closed stomata were reopened with S-AuNPs treatment, possibly due to K+/Na+ modulation, resulting in enhanced relative water content and stomatal conductance. ABA content decreased under S-AuNPs application, possibly due to K+ ion accumulation. S-AuNPs supplementation increased proline and flavonoid contents while reducing ROS accumulation and lipid peroxidation via activation of both non-enzymatic and enzymatic antioxidants. S-AuNPs also regulated the ionic ratio of K+/Na+, leading to decreased Na+ accumulation and increased levels of essential ions in spinach plants under NaCl irrigation. Discussion Overall, these findings suggest that S-AuNPs significantly contribute to salt stress endurance in spinach plants by modulating various physiological attributes.
Collapse
Affiliation(s)
- Mohammad Amir
- Department of Botany, University of Lucknow, Lucknow, India
| | - Abdul Raheem
- Department of Botany, University of Lucknow, Lucknow, India
| | | | - Vijay Kumar
- Department of Botany, University of Lucknow, Lucknow, India
| | | | - Syed Uzma Jalil
- Amity Institutes of Biotechnology, Amity University, Lucknow, India
| | - Mohammad Danish
- Botany section, Maulana Azad National Urdu University, Hydrabad, India
| | | |
Collapse
|
57
|
Qadir M, Hussain A, Shah M, Hamayun M, Iqbal A, Irshad M, Ahmad A, Alrefaei AF, Ali S. Staphylococcus arlettae mediated defense mechanisms and metabolite modulation against arsenic stress in Helianthus annuus. FRONTIERS IN PLANT SCIENCE 2024; 15:1391348. [PMID: 38952849 PMCID: PMC11216036 DOI: 10.3389/fpls.2024.1391348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Introduction Arsenate, a metalloid, acting as an analog to phosphate, has a tendency to accumulate more readily in plant species, leading to adverse effects. Methods In the current study, sunflower seedlings were exposed to 25, 50 and 100 ppm of the arsenic. Results Likewise, a notable reduction (p<0.05) was observed in the relative growth rate (RGR) by 4-folds and net assimilation rate (NAR) by 75% of Helianthus annuus when subjected to arsenic (As) stress. Nevertheless, the presence of Staphylococcus arlettae, a plant growth-promoting rhizobacterium with As tolerance, yielded an escalation in the growth of H. annuus within As-contaminated media. S. arlettae facilitated the conversion of As into a form accessible to plants, thereby, increasing its uptake and subsequent accumulation in plant tissues. S. arlettae encouraged the enzymatic antioxidant systems (Superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and catalase (CAT)) and non-enzymatic antioxidants (flavonoids, phenolics, and glutathione) in H. annuus seedlings following substantial As accumulation. The strain also induced the host plant to produce osmolytes like proline and sugars, mitigating water loss and maintaining cellular osmotic balance under As-induced stress. S. arlettae rectified imbalances in lignin content, reduced high malonaldehyde (MDA) levels, and minimized electrolyte leakage, thus counteracting the toxic impacts of the metal. Conclusion The strain exhibited the capability to concurrently encourage plant growth and remediate Ascontaminated growth media through 2-folds rate of biotransformation and bio-mobilization.
Collapse
Affiliation(s)
- Muhammad Qadir
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Irshad
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
58
|
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, Chen J, Abdelrahman M. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. STRESS BIOLOGY 2024; 4:31. [PMID: 38880851 PMCID: PMC11180647 DOI: 10.1007/s44154-024-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Elsisi
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Moaz Elshiekh
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Nourine Sabry
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Mark Aziz
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Kotb Attia
- College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | | |
Collapse
|
59
|
Emamverdian A, Khalofah A, Pehlivan N, Li Y, Chen M, Liu G. Iron nanoparticles in combination with other conventional Fe sources remediate mercury toxicity-affected plants and soils by nutrient accumulation in bamboo species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116431. [PMID: 38718730 DOI: 10.1016/j.ecoenv.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
The issue of mercury (Hg) toxicity has recently been identified as a significant environmental concern, with the potential to impede plant growth in forested and agricultural areas. Conversely, recent reports have indicated that Fe, may play a role in alleviating HM toxicity in plants. Therefore, this study's objective is to examine the potential of iron nanoparticles (Fe NPs) and various sources of Fe, particularly iron sulfate (Fe SO4 or Fe S) and iron-ethylene diamine tetra acetic acid (Fe - EDTA or Fe C), either individually or in combination, to mitigate the toxic effects of Hg on Pleioblastus pygmaeus. Involved mechanisms in the reduction of Hg toxicity in one-year bamboo species by Fe NPs, and by various Fe sources were introduced by a controlled greenhouse experiment. While 80 mg/L Hg significantly reduced plant growth and biomass (shoot dry weight (36%), root dry weight (31%), and shoot length (31%) and plant tolerance (34%) in comparison with control treatments, 60 mg/L Fe NPs and conventional sources of Fe increased proline accumulation (32%), antioxidant metabolism (21%), polyamines (114%), photosynthetic pigments (59%), as well as root dry weight (25%), and shoot dry weight (22%), and shoot length (22%). Fe NPs, Fe S, and Fe C in plant systems substantially enhanced tolerance to Hg toxicity (23%). This improvement was attributed to increased leaf-relative water content (39%), enhanced nutrient availability (50%), improved antioxidant capacity (34%), and reduced Hg translocation (6%) and accumulation (31%) in plant organs. Applying Fe NPs alone or in conjunction with a mixture of Fe C and Fe S can most efficiently improve bamboo plants' tolerance to Hg toxicity. The highest efficiency in increasing biochemical and physiological indexes under Hg, was related to the treatments of Fe NPs as well as Fe NPs + FeS + FeC. Thus, Fe NPs and other Fe sources might be effective options to remove toxicity from plants and soil. The future perspective may help establish mechanisms to regulate environmental toxicity and human health progressions.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Necla Pehlivan
- Department of Biology, Recep Tayyip Erdogan University, Rize 53100, Turkiye
| | - Yang Li
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Moxian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Guohua Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
60
|
Flores-Saavedra M, Plazas M, Gramazio P, Vicente O, Vilanova S, Prohens J. Growth and antioxidant responses to water stress in eggplant MAGIC population parents, F 1 hybrids and a subset of recombinant inbred lines. BMC PLANT BIOLOGY 2024; 24:560. [PMID: 38877388 PMCID: PMC11179202 DOI: 10.1186/s12870-024-05235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The generation of new eggplant (Solanum melongena L.) cultivars with drought tolerance is a main challenge in the current context of climate change. In this study, the eight parents (seven of S. melongena and one of the wild relative S. incanum L.) of the first eggplant MAGIC (Multiparent Advanced Generation Intercrossing) population, together with four F1 hybrids amongst them, five S5 MAGIC recombinant inbred lines selected for their genetic diversity, and one commercial hybrid were evaluated in young plant stage under water stress conditions (30% field capacity; FC) and control conditions (100% FC). After a 21-day treatment period, growth and biomass traits, photosynthetic pigments, oxidative stress markers, antioxidant compounds, and proline content were evaluated. RESULTS Significant effects (p < 0.05) were observed for genotype, water treatments and their interaction in most of the traits analyzed. The eight MAGIC population parental genotypes displayed a wide variation in their responses to water stress, with some of them exhibiting enhanced root development and reduced foliar biomass. The commercial hybrid had greater aerial growth compared to root growth. The four F1 hybrids among MAGIC parents differed in their performance, with some having significant positive or negative heterosis in several traits. The subset of five MAGIC lines displayed a wide diversity in their response to water stress. CONCLUSION The results show that a large diversity for tolerance to drought is available among the eggplant MAGIC materials, which can contribute to developing drought-tolerant eggplant cultivars.
Collapse
Affiliation(s)
- Martín Flores-Saavedra
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain.
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Oscar Vicente
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera 14, Valencia, 46022, Spain
| |
Collapse
|
61
|
Ali H, Mahmood I, Ali MF, Waheed A, Jawad H, Hussain S, Abasi F, Zulfiqar U, Siddiqui MH, Alamri S. Individual and interactive effects of amino acid and paracetamol on growth, physiological and biochemical aspects of Brassica napus L . under drought conditions. Heliyon 2024; 10:e31544. [PMID: 38882271 PMCID: PMC11176763 DOI: 10.1016/j.heliyon.2024.e31544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Drought stress poses a significant threat to Brassica napus (L.), impacting its growth, yield, and profitability. This study investigates the effects of foliar application of individual and interactive pharmaceutical (Paracetamol; 0 and 250 mg L-1) and amino acid (0 and 4 ml/L) on the growth, physiology, and yield of B. napus under drought stress. Seedlings were subjected to varying levels of drought stress (100% field capacity (FC; control) and 50% FC). Sole amino acid application significantly improved chlorophyll content, proline content, and relative water contents, as well as the activities of antioxidative enzymes (such as superoxide dismutase and catalase) while potentially decreased malondialdehyde and hydrogen peroxide contents under drought stress conditions. Pearson correlation analysis revealed strong positive correlations between these parameters and seed yield (R2 = 0.8-1), indicating their potential to enhance seed yield. On the contrary, sole application of paracetamol exhibited toxic effects on seedling growth and physiological aspects of B. napus. Furthermore, the combined application of paracetamol and amino acids disrupted physio-biochemical functions, leading to reduced yield. Overall, sole application of amino acids proves to be more effective in ameliorating the negative effects of drought on B. napus.
Collapse
Affiliation(s)
- Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Imran Mahmood
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Muhammad Faizan Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Murree Road, Rawalpindi, Punjab, 46000, Pakistan
| | - Alishba Waheed
- Department of Life Sciences, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan Punjab, 64200, Pakistan
| | - Husnain Jawad
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Fozia Abasi
- Department of Life Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
62
|
Shaaban A, Hemida KA, Abd El-Mageed TA, Semida WM, AbuQamar SF, El-Saadony MT, Al-Elwany OAAI, El-Tarabily KA. Incorporation of compost and biochar enhances yield and medicinal compounds in seeds of water-stressed Trigonella foenum-graecum L. plants cultivated in saline calcareous soils. BMC PLANT BIOLOGY 2024; 24:538. [PMID: 38867179 PMCID: PMC11167906 DOI: 10.1186/s12870-024-05182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.
Collapse
Affiliation(s)
- Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaulood A Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Wael M Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Omar A A I Al-Elwany
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
63
|
Alghabari F, Shah ZH. Comparative adaptability assessment of bread wheat and synthetic hexaploid genotypes under saline conditions using physiological, biochemical, and genetic indices. FRONTIERS IN PLANT SCIENCE 2024; 15:1336571. [PMID: 38916034 PMCID: PMC11194433 DOI: 10.3389/fpls.2024.1336571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The tolerance to salinity stress is an intricate phenomenon at cellular and whole plant level that requires the knowledge of contributing physiological and biochemical processes and the genetic control of participating traits. In this context, present study was conducted with objective to evaluate the physiological, biochemical, and genetic responses of different wheat genotypes including bread wheat (BW) and synthetic hexaploids (SHs) under saline and control environment. The experiment was conducted in two factorial arrangement in randomized complete block design (RCBD), with genotypes as one factor and treatments as another factor. A significant decline in physiological traits (chlorophyll, photosynthesis, stomatal conductance, transpiration, and cell membrane stability) was observed in all genotypes due to salt stress; however, this decline was higher in BW genotypes as compared to four SH genotypes. In addition, the biochemical traits including enzymes [superoxide dismutase, catalase, and peroxidase (POD)] activity, proline, and glycine betaine (GB) illustrated significant increase along with increase in the expression of corresponding genes (TaCAT1, TaSOD, TaPRX2A, TaP5CS, and TaBADH-A1) due to salt stress in SHs as compared to BW. Correspondingly, highly overexpressed genes, TaHKT1;4, TaNHX1, and TaAKT1 caused a significant decline in Na+/K+ in SH as compared to BW genotypes under salt stress. Moreover, correlation analysis, principal component analysis (PCA), and heatmap analysis have further confirmed that the association and expression of physiological and biochemical traits varied significantly with salinity stress and type of genotype. Overall, the physiological, biochemical, and genetic evaluation proved SHs as the most useful stock for transferring salinity tolerance to other superior BW cultivars via the right breeding program.
Collapse
Affiliation(s)
- Fahad Alghabari
- Department of Arid Land Agriculture, King Abdulaziz University, Jaddah, Saudi Arabia
| | - Zahid Hussain Shah
- Department of Plant Breeding and Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
64
|
Bak-Sypien I, Pawlak T, Paluch P, Wroblewska A, Dolot R, Pawlowicz A, Szczesio M, Wielgus E, Kaźmierski S, Górecki M, Pawlowska R, Chworos A, Potrzebowski MJ. Influence of heterochirality on the structure, dynamics, biological properties of cyclic(PFPF) tetrapeptides obtained by solvent-free ball mill mechanosynthesis. Sci Rep 2024; 14:12825. [PMID: 38834643 DOI: 10.1038/s41598-024-63552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Cyclic tetrapeptides c(Pro-Phe-Pro-Phe) obtained by the mechanosynthetic method using a ball mill were isolated in a pure stereochemical form as a homochiral system (all L-amino acids, sample A) and as a heterochiral system with D configuration at one of the stereogenic centers of Phe (sample B). The structure and stereochemistry of both samples were determined by X-ray diffraction studies of single crystals. In DMSO and acetonitrile, sample A exists as an equimolar mixture of two conformers, while only one is monitored for sample B. The conformational space and energetic preferences for possible conformers were calculated using DFT methods. The distinctly different conformational flexibility of the two samples was experimentally proven by Variable Temperature (VT) and 2D EXSY NMR measurements. Both samples were docked to histone deacetylase HDAC8. Cytotoxic studies proved that none of the tested cyclic peptide is toxic.
Collapse
Affiliation(s)
- Irena Bak-Sypien
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Piotr Paluch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aneta Wroblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Aleksandra Pawlowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 St., 61-704, Poznan, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116 St., 90-924, Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224, Warsaw, Poland
| | - Roza Pawlowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112 St., 90-363, Lodz, Poland.
| |
Collapse
|
65
|
Su TH, Shen Y, Chiang YY, Liu YT, You HM, Lin HC, Kung KN, Huang YM, Lai CM. Species selection as a key factor in the afforestation of coastal salt-affected lands: Insights from pot and field experiments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121126. [PMID: 38761629 DOI: 10.1016/j.jenvman.2024.121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Soil salinization is a significant global issue that leads to land degradation and loss of ecological function. In coastal areas, salinization hampers vegetation growth, and forestation efforts can accelerate the recovery of ecological functions and enhance resilience to extreme climates. However, the salinity tolerance of tree species varies due to complex biological factors, and results between lab/greenhouse and field studies are often inconsistent. Moreover, in salinized areas affected by extreme climatic and human impacts, afforestation with indigenous species may face adaptability challenges. Therefore, it is crucial to select appropriate cross-species salinity tolerance indicators that have been validated in the field to enhance the success of afforestation and reforestation efforts. This study focuses on five native coastal tree species in Taiwan, conducting afforestation experiments on salt-affected soils mixed with construction and demolition waste. It integrates short-term controlled experiments with potted seedlings and long-term field observations to establish growth performance and physiological and biochemical parameters indicative of salinity tolerance. Results showed that Heritiera littoralis Dryand. exhibited the highest salinity tolerance, accumulating significant leaf proline under increased salinity. Conversely, Melia azedarach Linn. had the lowest tolerance, evidenced by complete defoliation and reduced biomass under salt stress. Generally, the field growth performance of these species aligns with the results of short-term pot experiments. Leaf malondialdehyde content from pot experiments proved to be a reliable cross-species salinity tolerance indicator, correlating negatively with field relative height growth and survival rates. Additionally, parameters related to the photosynthetic system or water status, measured using portable devices, also moderately indicated field survival, aiding in identifying potential salt-tolerant tree species. This study underscores the pivotal role of species selection in afforestation success, demonstrating that small-scale, short-term salinity control experiments coupled with appropriate assessment tools can effectively identify species suitable for highly saline and degraded environments. This approach not only increases the success of afforestation but also conserves resources needed for field replanting and maintenance, supporting sustainable development goals.
Collapse
Affiliation(s)
- Tzu-Hao Su
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Yang Shen
- Department of Forestry, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Yao-Yu Chiang
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Yu-Ting Liu
- Department of Forestry, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Han-Ming You
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Hung-Chih Lin
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Kuan-Ning Kung
- Chiayi Research Center, Taiwan Forestry Research Institute, Chiayi City, 600054, Taiwan
| | - Yao-Moan Huang
- Forest Ecology Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan
| | - Chih-Ming Lai
- Silviculture Division, Taiwan Forestry Research Institute, Taipei City, 100060, Taiwan.
| |
Collapse
|
66
|
Sellamuthu G, Tarafdar A, Jasrotia RS, Chaudhary M, Vishwakarma H, Padaria JC. Introgression of Δ 1-pyrroline-5-carboxylate synthetase (PgP5CS) confers enhanced resistance to abiotic stresses in transgenic tobacco. Transgenic Res 2024; 33:131-147. [PMID: 38739244 DOI: 10.1007/s11248-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
Δ1-pyrroline-5-carboxylate synthetase (P5CS) is one of the key regulatory enzymes involved in the proline biosynthetic pathway. Proline acts as an osmoprotectant, molecular chaperone, antioxidant, and regulator of redox homeostasis. The accumulation of proline during stress is believed to confer tolerance in plants. In this study, we cloned the complete CDS of the P5CS from pearl millet (Pennisetum glaucum (L.) R.Br. and transformed into tobacco. Three transgenic tobacco plants with single-copy insertion were analyzed for drought and heat stress tolerance. No difference was observed between transgenic and wild-type (WT) plants when both were grown in normal conditions. However, under heat and drought, transgenic plants have been found to have higher chlorophyll, relative water, and proline content, and lower malondialdehyde (MDA) levels than WT plants. The photosynthetic parameters (stomatal conductance, intracellular CO2 concentration, and transpiration rate) were also observed to be high in transgenic plants under abiotic stress conditions. qRT-PCR analysis revealed that the expression of the transgene in drought and heat conditions was 2-10 and 2-7.5 fold higher than in normal conditions, respectively. Surprisingly, only P5CS was increased under heat stress conditions, indicating the possibility of feedback inhibition. Our results demonstrate the positive role of PgP5CS in enhancing abiotic stress tolerance in tobacco, suggesting its possible use to increase abiotic stress-tolerance in crops for sustained yield under adverse climatic conditions.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Avijit Tarafdar
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- International Crops Research Institute for Semi-Arid Tropics, Patancheruvu, India
| | - Rahul Singh Jasrotia
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Florida State University, Tallahassee, USA
| | - Minakshi Chaudhary
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Harinder Vishwakarma
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Jasdeep C Padaria
- National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
67
|
Kabiraj A, Halder U, Chitikineni A, Varshney RK, Bandopadhyay R. Insight into the genome of an arsenic loving and plant growth-promoting strain of Micrococcus luteus isolated from arsenic contaminated groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39063-39076. [PMID: 37864703 DOI: 10.1007/s11356-023-30361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
Contamination of arsenic in drinking water and foods is a threat for human beings. To achieve the goal for the reduction of arsenic availability, besides conventional technologies, arsenic bioremediation by using some potent bacteria is one of the hot topics for researchers. In this context, bacterium, AKS4c was isolated from arsenic contaminated water of Purbasthali, West Bengal, India, and through draft genome sequence; it was identified as a strain of Micrococcus luteus that comprised of 2.4 Mb genome with 73.1% GC content and 2256 protein coding genes. As the accessory genome, about 22 genomic islands (GIs) associated with many metal-resistant genes were identified. This strain was capable to tolerate more than 46,800 mg/L arsenate and 390 mg/L arsenite salts as well as found to be tolerable to multi-metals such as Fe, Pb, Mo, Mn, and Zn up to a certain limit of concentrations. Strain AKS4c was able to oxidize arsenite to less toxic arsenate, and its arsenic adsorption property was qualitatively confirmed through X-ray fluorescence (XRF) and Fourier transform infrared spectroscopy (FTIR) analysis. Quantitative estimation of plant growth-promoting attributes like Indole acetic acid (IAA), Gibberellic acid (GA), and proline production and enhancement of rice seedling growth in laboratory condition leads to its future applicability in arsenic bioremediation as a plant growth-promoting rhizobacteria (PGPR).
Collapse
Affiliation(s)
- Ashutosh Kabiraj
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Urmi Halder
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
68
|
Martins JTS, Costa TC, Machado LC, Ferreira RLC, Nascimento VR, Braga DG, Brito AEA, Nogueira GAS, Souza LC, Medeiros JCA, Silva TM, Jesus KM, Freitas JMN, Okumura RS, Oliveira Neto CF. Osmotic regulators in cowpea beans plants under water deficiency. BRAZ J BIOL 2024; 84:e281457. [PMID: 38896729 DOI: 10.1590/1519-6984.281457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cowpea is a leguminous plant belonging to the fabaceae family cultivated in the North and Northeast regions of Brazil, with productive potential. Among the abiotic factors, water deficiency is one of the main environmental limitations that influence agricultural production in the world. The objective of this work was to study the relative water content and osmoregulators of cowpea plants subjected to water stress. The experiment was carried out in a greenhouse at the Universidade Federal Rural da Amazônia (UFRA, Belém, PA), cowpea plants BR-17 Gurguéia Vigna unguiculata (L.) Walp were used. The experimental design was completely randomized (DIC) in a 2 × 2 factorial scheme, two water conditions (control and water deficit) and two times of stress (four and six days of water suspension), with 7 replications, totaling 28 experimental units. The water deficit affected plants, causing a reduction in relative water content (69.98%), starch (12.84% in leaves and 23.48% in roots) and carbohydrates (84.34%), and an increase in glycine-betaine, sucrose (114.11% in leaves and 18.71% in roots) and proline (358.86%) at time 2. The relative water content was negatively affected by water conditions, with a decrease in relation to the interaction of the aerial part and the root system. Therefore, greater metabolic responses were noted in plants that were subjected to stress treatment at time 2 (6 days).
Collapse
Affiliation(s)
- J T S Martins
- Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Departamento de Agronomia, Campos dos Goytacazes, RJ, Brasil
| | - T C Costa
- Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Departamento de Agronomia, Campos dos Goytacazes, RJ, Brasil
| | - L C Machado
- Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Departamento de Agronomia, Campos dos Goytacazes, RJ, Brasil
| | - R L C Ferreira
- Instituto Federal de Educação, Ciência e Tecnologia do Amapá - IFAP, Campus Agrícola Porto Grande, Macapá, AP, Brasil
| | - V R Nascimento
- Universidade Federal do Pará - UFPA, Instituto de Ciências Biológicas, Belém, PA, Brasil
| | - D G Braga
- Universidade Federal do Pará - UFPA, Instituto de Ciências Biológicas, Belém, PA, Brasil
| | - A E A Brito
- Fundação Amazônia de Amparo a Estudos e Pesquisas - FAPESPA, Belém, PA, Brasil
| | - G A S Nogueira
- Fundação Amazônia de Amparo a Estudos e Pesquisas - FAPESPA, Belém, PA, Brasil
| | - L C Souza
- Universidade Federal do Maranhão - UFMA, Centro de Ciências Agrárias e Ambientais, Chapadinha, MA, Brasil
| | - J C A Medeiros
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Belém, PA, Brasil
| | - T M Silva
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Belém, PA, Brasil
| | - K M Jesus
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Belém, PA, Brasil
| | - J M N Freitas
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Belém, PA, Brasil
| | - R S Okumura
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Belém, PA, Brasil
| | - C F Oliveira Neto
- Universidade Federal Rural da Amazônia - UFRA, Instituto de Ciências Agrárias, Belém, PA, Brasil
| |
Collapse
|
69
|
Liu W, Wei JW, Shan Q, Liu M, Xu J, Gong B. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation. PLANT PHYSIOLOGY 2024; 195:1038-1052. [PMID: 38478428 DOI: 10.1093/plphys/kiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 06/02/2024]
Abstract
Drought and soil salinization substantially impact agriculture. While proline's role in enhancing stress tolerance is known, the exact molecular mechanism by which plants process stress signals and control proline synthesis under stress is still not fully understood. In tomato (Solanum lycopersicum L.), drought and salt stress stimulate nitric oxide (NO) production, which boosts proline synthesis by activating Δ1-pyrroline-5-carboxylate synthetase (SlP5CS) and Δ1-pyrroline-5-carboxylate reductase (SlP5CR) genes and the P5CR enzyme. The crucial factor is stress-triggered NO production, which regulates the S-nitrosylation of SlP5CR at Cys-5, thereby increasing its NAD(P)H affinity and enzymatic activity. S-nitrosylation of SlP5CR enables tomato plants to better adapt to changing NAD(P)H levels, boosting both SlP5CR activity and proline synthesis during stress. By comparing tomato lines genetically modified to express different forms of SlP5CR, including a variant mimicking S-nitrosylation (SlP5CRC5W), we found that SlP5CRC5W plants show superior growth and stress tolerance. This is attributed to better P5CR activity, proline production, water use efficiency, reactive oxygen species scavenging, and sodium excretion. Overall, this study demonstrates that tomato engineered to mimic S-nitrosylated SlP5CR exhibits enhanced growth and yield under drought and salt stress conditions, highlighting a promising approach for stress-tolerant tomato cultivation.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Shan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Minghui Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jinghao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
70
|
Nader AA, Hauka FIA, Afify AH, El-Sawah AM. Drought-Tolerant Bacteria and Arbuscular Mycorrhizal Fungi Mitigate the Detrimental Effects of Drought Stress Induced by Withholding Irrigation at Critical Growth Stages of Soybean ( Glycine max, L.). Microorganisms 2024; 12:1123. [PMID: 38930505 PMCID: PMC11205826 DOI: 10.3390/microorganisms12061123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Considering current global climate change, drought stress is regarded as a major problem negatively impacting the growth of soybeans, particularly at the critical stages R3 (early pod) and R5 (seed development). Microbial inoculation is regarded as an ecologically friendly and low-cost-effective strategy for helping soybean plants withstand drought stress. The present study aimed to isolate newly drought-tolerant bacteria from native soil and evaluated their potential for producing growth-promoting substances as well as understanding how these isolated bacteria along with arbuscular mycorrhizal fungi (AMF) could mitigate drought stress in soybean plants at critical growth stages in a field experiment. In this study, 30 Bradyrhizobium isolates and 30 rhizobacterial isolates were isolated from the soybean nodules and rhizosphere, respectively. Polyethylene glycol (PEG) 6000 was used for evaluating their tolerance to drought, and then the production of growth promotion substances was evaluated under both without/with PEG. The most effective isolates (DTB4 and DTR30) were identified genetically using 16S rRNA gene. A field experiment was conducted to study the impact of inoculation with DTB4 and DTR30 along with AMF (Glomus clarum, Funneliformis mosseae, and Gigaspora margarita) on the growth and yield of drought-stressed soybeans. Our results showed that the bioinoculant applications improved the growth traits (shoot length, root length, leaf area, and dry weight), chlorophyll content, nutrient content (N, P, and K), nodulation, and yield components (pods number, seeds weight, and grain yield) of soybean plants under drought stress (p ≤ 0.05). Moreover, proline contents were decreased due to the bioinoculant applications under drought when compared to uninoculated treatments. As well as the count of bacteria, mycorrhizal colonization indices, and the activity of soil enzymes (dehydrogenase and phosphatase) were enhanced in the soybean rhizosphere under drought stress. This study's findings imply that using a mixture of bioinoculants may help soybean plants withstand drought stress, particularly during critical growth stages, and that soybean growth, productivity, and soil microbial activity were improved under drought stress.
Collapse
Affiliation(s)
| | | | | | - Ahmed M. El-Sawah
- Department of Agricultural Microbiology, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
71
|
Elkelish A, Alhudhaibi AM, Hossain AS, Haouala F, Alharbi BM, El-Banna MF, Rizk A, Badji A, AlJwaizea NI, Sayed AAS. Alleviating chromium-induced oxidative stress in Vigna radiata through exogenous trehalose application: insights into growth, photosynthetic efficiency, mineral nutrient uptake, and reactive oxygen species scavenging enzyme activity enhancement. BMC PLANT BIOLOGY 2024; 24:460. [PMID: 38797833 PMCID: PMC11129419 DOI: 10.1186/s12870-024-05152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Trehalose serves as a crucial osmolyte and plays a significant role in stress tolerance. The influence of exogenously added trehalose (1 and 5 mM) in alleviating the chromium (Cr; 0.5 mM) stress-induced decline in growth, photosynthesis, mineral uptake, antioxidant system and nitrate reductase activity in Vigna radiata was studied. Chromium (Cr) significantly declined shoot height (39.33%), shoot fresh weight (35.54%), shoot dry weight (36.79%), total chlorophylls (50.70%), carotenoids (29.96%), photosynthesis (33.97%), net intercellular CO2 (26.86%), transpiration rate (36.77%), the content of N (35.04%), P (35.77%), K (31.33%), S (23.91%), Mg (32.74%), and Ca (29.67%). However, the application of trehalose considerably alleviated the decline. Application of trehalose at both concentrations significantly reduced hydrogen peroxide accumulation, lipid peroxidation and electrolyte leakage, which were increased due to Cr stress. Application of trehalose significantly mitigated the Cr-induced oxidative damage by up-regulating the activity of reactive oxygen species (ROS) scavenging enzymes, including superoxide dismutase (182.03%), catalase (125.40%), ascorbate peroxidase (72.86%), and glutathione reductase (68.39%). Besides this, applied trehalose proved effective in enhancing ascorbate (24.29%) and reducing glutathione content (34.40%). In addition, also alleviated the decline in ascorbate by Cr stress to significant levels. The activity of nitrate reductase enhanced significantly (28.52%) due to trehalose activity and declined due to Cr stress (34.15%). Exogenous application of trehalose significantly improved the content of osmolytes, including proline, glycine betaine, sugars and total phenols under normal and Cr stress conditions. Furthermore, Trehalose significantly increased the content of key mineral elements and alleviated the decline induced by Cr to considerable levels.
Collapse
Affiliation(s)
- Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Abm Sharif Hossain
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Faouzi Haouala
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mostafa F El-Banna
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Rizk
- Department, Faculty of Agriculture, Tanta University, Tanta City, 31527, Egypt
| | - Arfang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Studies, Makerere University, P.O. Box 7062, Kampala, Uganda.
- Makerere University Regional Centre for Crop Improvement, Makerere University, Kampala, 7062, Uganda.
| | - Nada Ibrahim AlJwaizea
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
72
|
Ahmed M, Marrez DA, Rizk R, Zedan M, Abdul-Hamid D, Decsi K, Kovács GP, Tóth Z. The Influence of Zinc Oxide Nanoparticles and Salt Stress on the Morphological and Some Biochemical Characteristics of Solanum lycopersicum L. Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1418. [PMID: 38794488 PMCID: PMC11125107 DOI: 10.3390/plants13101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Salinity reduces crop yields and quality, causing global economic losses. Zinc oxide nanoparticles (ZnO-NPs) improve plant physiological and metabolic processes and abiotic stress resistance. This study examined the effects of foliar ZnO-NPs at 75 and 150 mg/L on tomato Kecskeméti 549 plants to alleviate salt stress caused by 150 mM NaCl. The precipitation procedure produced ZnO-NPs that were characterized using UV-VIS, TEM, STEM, DLS, EDAX, Zeta potential, and FTIR. The study assessed TPCs, TFCs, total hydrolyzable sugars, total free amino acids, protein, proline, H2O2, and MDA along with plant height, stem width, leaf area, and SPAD values. The polyphenolic burden was also measured by HPLC. With salt stress, plant growth and chlorophyll content decreased significantly. The growth and development of tomato plants changed by applying the ZnO-NPs. Dosages of ZnO-NPs had a significant effect across treatments. ZnO-NPs also increased chlorophyll, reduced stress markers, and released phenolic chemicals and proteins in the leaves of tomatoes. ZnO-NPs reduce salt stress by promoting the uptake of minerals. ZnO-NPs had beneficial effects on tomato plants when subjected to salt stress, making them an alternate technique to boost resilience in saline soils or low-quality irrigation water. This study examined how foliar application of chemically synthesized ZnO-NPs to the leaves affected biochemistry, morphology, and phenolic compound synthesis with and without NaCl.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Diaa Attia Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Roquia Rizk
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Mostafa Zedan
- National Institute of Laser Enhanced Science, Cairo University, Giza 12613, Egypt;
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| |
Collapse
|
73
|
Luo Q, Ma Y, Xie H, Chang F, Guan C, Yang B, Ma Y. Proline Metabolism in Response to Climate Extremes in Hairgrass. PLANTS (BASEL, SWITZERLAND) 2024; 13:1408. [PMID: 38794479 PMCID: PMC11125208 DOI: 10.3390/plants13101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Hairgrass (Deschampsia caespitosa), a widely distributed grass species considered promising in the ecological restoration of degraded grassland in the Qinghai-Xizang Plateau, is likely to be subjected to frequent drought and waterlogging stress due to ongoing climate change, further aggravating the degradation of grassland in this region. However, whether it would acclimate to water stresses resulting from extreme climates remains unknown. Proline accumulation is a crucial metabolic response of plants to challenging environmental conditions. This study aims to investigate the changes in proline accumulation and key enzymes in hairgrass shoot and root tissues in response to distinct climate extremes including moderate drought, moderate waterlogging, and dry-wet variations over 28 days using a completely randomized block design. The proline accumulation, contribution of the glutamate and ornithine pathways, and key enzyme activities related to proline metabolism in shoot and root tissues were examined. The results showed that water stress led to proline accumulation in both shoot and root tissues of hairgrass, highlighting the importance of this osmoprotectant in mitigating the effects of environmental challenges. The differential accumulation of proline in shoots compared to roots suggests a strategic allocation of resources by the plant to cope with osmotic stress. Enzymatic activities related to proline metabolism, such as Δ1-pyrroline-5-carboxylate synthetase, ornithine aminotransferase, Δ1-pyrroline-5-carboxylate reductase, Δ1-pyrroline-5-carboxylate dehydrogenase, and proline dehydrogenase, further emphasize the dynamic regulation of proline levels in hairgrass under water stress conditions. These findings support the potential for enhancing the stress resistance of hairgrass through the genetic manipulation of proline biosynthesis and catabolism pathways.
Collapse
Affiliation(s)
- Qiaoyu Luo
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Qinghai South of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810008, China
| | - Yonggui Ma
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Qinghai South of Qilian Mountain Forest Ecosystem Observation and Research Station, Huzhu 810500, China
| | - Feifei Chang
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Chiming Guan
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Xizang Plateau, Qinghai Normal University, Xining 810008, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Bing Yang
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Yushou Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810008, China
| |
Collapse
|
74
|
Ntanasi T, Karavidas I, Spyrou GP, Giannothanasis E, Aliferis KA, Saitanis C, Fotopoulos V, Sabatino L, Savvas D, Ntatsi G. Plant Biostimulants Enhance Tomato Resilience to Salinity Stress: Insights from Two Greek Landraces. PLANTS (BASEL, SWITZERLAND) 2024; 13:1404. [PMID: 38794474 PMCID: PMC11125247 DOI: 10.3390/plants13101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Salinity, one of the major abiotic stresses in plants, significantly hampers germination, photosynthesis, biomass production, nutrient balance, and yield of staple crops. To mitigate the impact of such stress without compromising yield and quality, sustainable agronomic practices are required. Among these practices, seaweed extracts (SWEs) and microbial biostimulants (PGRBs) have emerged as important categories of plant biostimulants (PBs). This research aimed at elucidating the effects on growth, yield, quality, and nutrient status of two Greek tomato landraces ('Tomataki' and 'Thessaloniki') following treatments with the Ascophyllum nodosum seaweed extract 'Algastar' and the PGPB 'Nitrostim' formulation. Plants were subjected to bi-weekly applications of biostimulants and supplied with two nutrient solutions: 0.5 mM (control) and 30 mM NaCl. The results revealed that the different mode(s) of action of the two PBs impacted the tolerance of the different landraces, since 'Tomataki' was benefited only from the SWE application while 'Thessaloniki' showed significant increase in fruit numbers and average fruit weight with the application of both PBs at 0.5 and 30 mM NaCl in the root zone. In conclusion, the stress induced by salinity can be mitigated by increasing tomato tolerance through the application of PBs, a sustainable tool for productivity enhancement, which aligns well with the strategy of the European Green Deal.
Collapse
Affiliation(s)
- Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - George P. Spyrou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Evangelos Giannothanasis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Department of Plant Science, Macdonald Campus, McGill University, Montreal, QC H9X 3V9, Canada
| | - Costas Saitanis
- Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology, P.O. Box 50329, 3603 Lemesos, Cyprus;
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (T.N.); (I.K.); (G.P.S.); (E.G.); (D.S.)
| |
Collapse
|
75
|
Li C, Wang C, Cheng Z, Li Y, Li W. Carotenoid biosynthesis genes LcLCYB, LcLCYE, and LcBCH from wolfberry confer increased carotenoid content and improved salt tolerance in tobacco. Sci Rep 2024; 14:10586. [PMID: 38719951 PMCID: PMC11079049 DOI: 10.1038/s41598-024-60848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene β-cyclase, lycopene ε-cyclase, and β-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene β-cyclase, lycopene ε-cyclase, and β-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.
Collapse
Affiliation(s)
- Chen Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Caili Wang
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China.
| | - Zhiyang Cheng
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Yu Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Wenjing Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| |
Collapse
|
76
|
Zou W, Yu Q, Ma Y, Sun G, Feng X, Ge L. Pivotal role of heterotrimeric G protein in the crosstalk between sugar signaling and abiotic stress response in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108567. [PMID: 38554538 DOI: 10.1016/j.plaphy.2024.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.
Collapse
Affiliation(s)
- Wenjiao Zou
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Yu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guoning Sun
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lei Ge
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China; Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, 257300, China.
| |
Collapse
|
77
|
Permana BH, Thiravetyan P, Treesubsuntorn C. Exogenous of different elicitors: proline and ornithine on Sansevieria trifasciata under particulate matter (PM) and volatile organic compounds (VOC). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34028-34037. [PMID: 38693456 DOI: 10.1007/s11356-024-33513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Phytoremediation has become famous for removing particulate matter (PM) and volatile organic compounds (VOC) in situ. Plants for removing PM and VOC were associated with botanical biofilters to attract pollution to the plant. On the other hand, persistent pollution exposure can lower plant health and phytoremediation effectiveness; therefore, improving plant tolerance against stress is necessary. Various elicitors can enhance plant tolerance to certain stressors. This study aims to investigate different elicitors to maintain plant health and improve the use of plants in phytoremediation for PM and VOC pollution. This experiment used Sansevieria trifasciata hort. ex Prain under PM and VOC stress. Exogenous elicitors, such as proline, ornithine, and a commercial product, were applied to the leaf parts before exposure to PM and VOC stress. The initial concentrations of PM1, PM2.5, and PM10 were 300-350, 350-450, and 400-500 µg m-3, respectively, while the VOC concentration was 2.5-3.0 mg m-3. The plant was stressed for 7 days. The result indicated that ornithine 10 mM is vital in improving plant tolerance and inducing antioxidant enzymes against PM and VOC, while proline 50 mM and a commercial product could not reduce plant stress. This study suggests that ornithine might be an important metabolite to improve plant tolerance to PM and VOC.
Collapse
Affiliation(s)
- Bayu Hadi Permana
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
78
|
Anand V, Pandey A. Unlocking the potential of SiO 2 and CeO 2 nanoparticles for arsenic mitigation in Vigna mungo L. Hepper (Blackgram). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34473-34491. [PMID: 38704781 DOI: 10.1007/s11356-024-33531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
In this study, the interaction effects of NaAsO2 (1 and 5 μM), SiO2 NPs (10 and 100 mg/L) and CeO2 NPs (10 and 100 mg/L) were assessed in Vigna mungo (Blackgram). The treatment of NaAsO2, SiO2, CeO2-NPs and combinations of NPs & As were applied to blackgram plants under hydroponic conditions. After its application, the morpho-physiological, antioxidant activity, and phytochemical study were evaluated. At 10 and 100 mg/L of SiO2 and CeO2-NPs, there was an increase in antioxidative enzymatic activity (p < 0.05) and reactive oxygen species (ROS). However, substantial ROS accumulation was observed at 1 and 5 μM NaAsO2 and 100 mg/L SiO2 NPs (p < 0.05). Additionally, at such concentrations, there is a substantial reduction in photosynthetic pigments, nitrogen fixation, chlorosis, and plant development when compared to controls (p < 0.05). The combination of SiO2 and CeO2 NPs (10 and 100 mg/L) with NaAsO2 decreased superoxide radical and hydrogen peroxide and improved SOD, CAT, APX, GR, and chlorophyll pigments (p < 0.05). Further FTIR results were evaluated for documenting elemental and phytochemical analysis.
Collapse
Affiliation(s)
- Vandita Anand
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
79
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Diversity and Community Composition of Three Plants' Rhizosphere Fungi in Kaolin Mining Areas. J Fungi (Basel) 2024; 10:306. [PMID: 38786661 PMCID: PMC11121986 DOI: 10.3390/jof10050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Mining activities in the kaolin mining area have led to the disruption of the ecological health of the mining area and nearby soils, but the effects on the fungal communities in the rhizosphere soils of the plants are not clear. Three common plants (Conyza bonariensis, Artemisia annua, and Dodonaea viscosa) in kaolin mining areas were selected and analyzed their rhizosphere soil fungal communities using ITS sequencing. The alpha diversity indices (Chao1, Shannon, Simpson, observed-species, pielou-e) of the fungal communities decreased to different extents in different plants compared to the non-kauri mining area. The β-diversity (PCoA, NMDS) analysis showed that the rhizosphere soil fungal communities of the three plants in the kaolin mine area were significantly differentiated from those of the control plants grown in the non-kaolin mine area, and the extent of this differentiation varied among the plants. The analysis of fungal community composition showed that the dominant fungi in the rhizosphere fungi of C. bonariensis and A. annua changed, with an increase in the proportion of Mycosphaerella (genus) by about 20% in C. bonariensis and A. annua. An increase in the proportion of Didymella (genus) by 40% in D. viscosa was observed. At the same time, three plant rhizosphere soils were affected by kaolin mining activities with the appearance of new fungal genera Ochrocladosporium and Plenodomus. Predictive functional potential analysis of the samples revealed that a significant decrease in the potential of functions such as biosynthesis and glycolysis occurred in the rhizosphere fungal communities of kaolin-mined plants compared to non-kaolin-mined areas. The results show that heavy metals and plant species are the key factors influencing these changes, which suggests that selecting plants that can bring more abundant fungi can adapt to heavy metal contamination to restore soil ecology in the kaolin mining area.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
80
|
Mascellani Bergo A, Leiss K, Havlik J. Twenty Years of 1H NMR Plant Metabolomics: A Way Forward toward Assessment of Plant Metabolites for Constitutive and Inducible Defenses to Biotic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8332-8346. [PMID: 38501393 DOI: 10.1021/acs.jafc.3c09362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Metabolomics has become an important tool in elucidating the complex relationship between a plant genotype and phenotype. For over 20 years, nuclear magnetic resonance (NMR) spectroscopy has been known for its robustness, quantitative capabilities, simplicity, and cost-efficiency. 1H NMR is the method of choice for analyzing a broad range of relatively abundant metabolites, which can be used for both capturing the plant chemical profile at one point in time and understanding the pathways that underpin plant defense. This systematic Review explores how 1H NMR-based plant metabolomics has contributed to understanding the role of various compounds in plant responses to biotic stress, focusing on both primary and secondary metabolites. It clarifies the challenges and advantages of using 1H NMR in plant metabolomics, interprets common trends observed, and suggests guidelines for method development and establishing standard procedures.
Collapse
Affiliation(s)
- Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czechia
| | - Kirsten Leiss
- Business Unit Greenhouse Horticulture, Wageningen University & Research, 2665MV Bleiswijk, Netherlands
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czechia
| |
Collapse
|
81
|
Inayat H, Mehmood H, Danish S, Alharbi SA, Ansari MJ, Datta R. Impact of cobalt and proline foliar application for alleviation of salinity stress in radish. BMC PLANT BIOLOGY 2024; 24:287. [PMID: 38627664 PMCID: PMC11020780 DOI: 10.1186/s12870-024-04998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Salinity stress ranks among the most prevalent stress globally, contributing to soil deterioration. Its negative impacts on crop productivity stem from mechanisms such as osmotic stress, ion toxicity, and oxidative stress, all of which impede plant growth and yield. The effect of cobalt with proline on mitigating salinity impact in radish plants is still unclear. That's why the current study was conducted with aim to explore the impact of different levels of Co and proline on radish cultivated in salt affected soils. There were four levels of cobalt, i.e., (0, 10, 15 and 20 mg/L) applied as CoSO4 and two levels of proline (0 and 0.25 mM), which were applied as foliar. The treatments were applied in a complete randomized design (CRD) with three replications. Results showed that 20 CoSO4 with proline showed improvement in shoot length (∼ 20%), root length (∼ 23%), plant dry weight (∼ 19%), and plant fresh weight (∼ 41%) compared to control. The significant increase in chlorophyll, physiological and biochemical attributes of radish plants compared to the control confirms the efficacy of 20 CoSO4 in conjunction with 10 mg/L proline for mitigating salinity stress. In conclusion, application of cobalt with proline can help to alleviate salinity stress in radish plants. However, multiple location experiments with various levels of cobalt and proline still needs in-depth investigations to validate the current findings.
Collapse
Affiliation(s)
- Hira Inayat
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Hassan Mehmood
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic
| |
Collapse
|
82
|
Tiwari K, Tiwari S, Kumar N, Sinha S, Krishnamurthy SL, Singh R, Kalia S, Singh NK, Rai V. QTLs and Genes for Salt Stress Tolerance: A Journey from Seed to Seed Continued. PLANTS (BASEL, SWITZERLAND) 2024; 13:1099. [PMID: 38674508 PMCID: PMC11054697 DOI: 10.3390/plants13081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/28/2024]
Abstract
Rice (Oryza sativa L.) is a crucial crop contributing to global food security; however, its production is susceptible to salinity, a significant abiotic stressor that negatively impacts plant germination, vigour, and yield, degrading crop production. Due to the presence of exchangeable sodium ions (Na+), the affected plants sustain two-way damage resulting in initial osmotic stress and subsequent ion toxicity in the plants, which alters the cell's ionic homeostasis and physiological status. To adapt to salt stress, plants sense and transfer osmotic and ionic signals into their respective cells, which results in alterations of their cellular properties. No specific Na+ sensor or receptor has been identified in plants for salt stress other than the SOS pathway. Increasing productivity under salt-affected soils necessitates conventional breeding supplemented with biotechnological interventions. However, knowledge of the genetic basis of salinity stress tolerance in the breeding pool is somewhat limited because of the complicated architecture of salinity stress tolerance, which needs to be expanded to create salt-tolerant variants with better adaptability. A comprehensive study that emphasizes the QTLs, genes and governing mechanisms for salt stress tolerance is discussed in the present study for future research in crop improvement.
Collapse
Affiliation(s)
- Keshav Tiwari
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sushma Tiwari
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Nivesh Kumar
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Shikha Sinha
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | | | - Renu Singh
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, New Delhi 110003, India
| | - Nagendra Kumar Singh
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Vandna Rai
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| |
Collapse
|
83
|
Cutroneo S, Prandi B, Pellegrini N, Sforza S, Tedeschi T. Assessment of Protein Quality and Digestibility in Plant-Based Meat Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8114-8125. [PMID: 38560783 DOI: 10.1021/acs.jafc.3c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this first work, commercial steak-like (n = 3) and cured meat (n = 3) analogues with different legume and cereal formulations were studied and compared to their animal-based (n = 3) counterparts. Plant-based products showed lower protein content than meat controls but a good amino acidic profile even though the sum of essential amino acids of plant-cured meats does not fulfill the requirements set by the Food and Agriculture Organization for children. A comparable release of soluble proteins and peptides in the digestates after in vitro digestion was observed in meat analogues as meat products, whereas the digestibility of proteins was lower in plant-based steaks and higher in plant-based cured meats than their counterparts. The overall protein quality and digestibility of products are related to both the use of good blending of protein sources and processes applied to produce them. An adequate substitution of meat with its analogues depends mostly on the quality of raw materials used, which should be communicated to consumers.
Collapse
Affiliation(s)
- Sara Cutroneo
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Barbara Prandi
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Stefano Sforza
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Tullia Tedeschi
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| |
Collapse
|
84
|
Demehin O, Attjioui M, Goñi O, O’Connell S. Chitosan from Mushroom Improves Drought Stress Tolerance in Tomatoes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1038. [PMID: 38611567 PMCID: PMC11013739 DOI: 10.3390/plants13071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Chitosan is a derivative of chitin that is one of the most abundant biopolymers in nature, found in crustacean shells as well as in fungi cell walls. Most of the commercially available chitosans are produced from the exoskeletons of crustaceans. The extraction process involves harsh chemicals, has limited potential due to the seasonal and limited supply and could cause allergic reactions. However, chitosan has been shown to alleviate the negative effect of environmental stressors in plants, but there is sparse evidence of how chitosan source affects this bioactivity. The aim of this study was to investigate the ability of chitosan from mushroom in comparison to crustacean chitosan in enhancing drought stress tolerance in tomato plants (cv. MicroTom). Chitosan treatment was applied through foliar application and plants were exposed to two 14-day drought stress periods at vegetative and fruit set growth stages. Phenotypic (e.g., fruit number and weight), physiological (RWC) and biochemical-stress-related markers (osmolytes, photosynthetic pigments and malondialdehyde) were analyzed at different time points during the crop growth cycle. Our hypothesis was that this drought stress model will negatively impact tomato plants while the foliar application of chitosan extracted from either crustacean or mushroom will alleviate this effect. Our findings indicate that drought stress markedly decreased the leaf relative water content (RWC) and chlorophyll content, increased lipid peroxidation, and significantly reduced the average fruit number. Chitosan application, regardless of the source, improved these parameters and enhanced plant tolerance to drought stress. It provides a comparative study of the biostimulant activity of chitosan from diverse sources and suggests that chitosan sourced from fungi could serve as a more sustainable and environmentally friendly alternative to the current chitosan from crustaceans.
Collapse
Affiliation(s)
- Olusoji Demehin
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Maha Attjioui
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Brandon Bioscience, Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Shane O’Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| |
Collapse
|
85
|
Yu H, Liu B, Yang Q, Yang Q, Li W, Fu F. Maize ZmLAZ1-3 gene negatively regulates drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2024; 24:246. [PMID: 38575869 PMCID: PMC10996212 DOI: 10.1186/s12870-024-04923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Molecular mechanisms in response to drought stress are important for the genetic improvement of maize. In our previous study, nine ZmLAZ1 members were identified in the maize genome, but the function of ZmLAZ1 was largely unknown. RESULTS The ZmLAZ1-3 gene was cloned from B73, and its drought-tolerant function was elucidated by expression analysis in transgenic Arabidopsis. The expression of ZmLAZ1-3 was upregulated by drought stress in different maize inbred lines. The driving activity of the ZmLAZ1-3 promoter was induced by drought stress and related to the abiotic stress-responsive elements such as MYB, MBS, and MYC. The results of subcellular localization indicated that the ZmLAZ1-3 protein localized on the plasma membrane and chloroplast. The ectopic expression of the ZmLAZ1-3 gene in Arabidopsis significantly reduced germination ratio and root length, decreased biomass, and relative water content, but increased relative electrical conductivity and malondialdehyde content under drought stress. Moreover, transcriptomics analysis showed that the differentially expressed genes between the transgenic lines and wild-type were mainly associated with response to abiotic stress and biotic stimulus, and related to pathways of hormone signal transduction, phenylpropanoid biosynthesis, mitogen-activated protein kinase signaling, and plant-pathogen interaction. CONCLUSION The study suggests that the ZmLAZ1-3 gene is a negative regulator in regulating drought tolerance and can be used to improve maize drought tolerance via its silencing or knockout.
Collapse
Affiliation(s)
- Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Bingliang Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China
| | - Qinyu Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Qingqing Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
86
|
Iqbal H, Yaning C. Redox priming could be an appropriate technique to minimize drought-induced adversities in quinoa. FRONTIERS IN PLANT SCIENCE 2024; 15:1253677. [PMID: 38638353 PMCID: PMC11025396 DOI: 10.3389/fpls.2024.1253677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
The exogenous use of the redox compound (H2O2) plays a significant role in abiotic stress tolerance. The present study investigated various H2O2 application methods (seed priming, foliar spray, and surface irrigation) with varying concentration levels (0 mM, 5 mM, 10 mM, 15 mM, 40 mM, 80 mM, and 160 mM) to evaluate the efficiency of supplying exogenous H2O2 to quinoa under water-deficit conditions. Drought stress reduced quinoa growth and yield by perturbing morphological traits, leading to the overproduction of reactive oxygen species and increased electrolyte leakage. Although all studied modes of H2O2 application improved quinoa performance, surface irrigation was found to be sensitive, causing oxidative damage in the present study. Seed priming showed a prominent increase in plant height due to profound emergence indexes compared to other modes under drought conditions. Strikingly, seed priming followed by foliar spray improved drought tolerance in quinoa and showed higher grain yield compared to surface irrigations. This increase in the yield performance of quinoa was attributed to improvements in total chlorophyll (37%), leaf relative water content (RWC; 20%), superoxide dismutase (SOD; 35%), peroxidase (97%), polyphenol oxidase (60%), and phenylalanine ammonia-lyase (58%) activities, and the accumulation of glycine betaine (96%), total soluble protein (TSP; 17%), proline contents (35%), and the highest reduction in leaf malondialdehyde contents (MDA; 36%) under drought stress. PCA analysis indicated that physio-biochemical traits (proline, SOD, TSP, total chlorophyll, MSI, and RWC) were strongly positively correlated with grain yield, and their contribution was much higher in redox priming than other application methods. In conclusion, exogenous H2O2 application, preferably redox priming, could be chosen to decrease drought-induced performance and yield losses in quinoa.
Collapse
Affiliation(s)
- Hassan Iqbal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chen Yaning
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
87
|
Sharmin RA, Karikari B, Bhuiyan MR, Kong K, Yu Z, Zhang C, Zhao T. Comparative Morpho-Physiological, Biochemical, and Gene Expressional Analyses Uncover Mechanisms of Waterlogging Tolerance in Two Soybean Introgression Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:1011. [PMID: 38611540 PMCID: PMC11013326 DOI: 10.3390/plants13071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
Waterlogging is one of the key abiotic factors that severely impedes the growth and productivity of soybeans on a global scale. To develop soybean cultivars that are tolerant to waterlogging, it is a prerequisite to unravel the mechanisms governing soybean responses to waterlogging. Hence, we explored the morphological, physiological, biochemical, and transcriptional changes in two contrasting soybean introgression lines, A192 (waterlogging tolerant, WT) and A186 (waterlogging sensitive, WS), under waterlogging. In comparison to the WT line, waterlogging drastically decreased the root length (RL), shoot length (ShL), root fresh weight (RFW), shoot fresh weight (ShFW), root dry weight (RDW), and shoot dry weight (ShDW) of the WS line. Similarly, waterlogging inhibited soybean plant growth by suppressing the plant's photosynthetic capacity, enhancing oxidative damage from reactive oxygen species, and decreasing the chlorophyll content in the WS line but not in the WT line. To counteract the oxidative damage and lipid peroxidation, the WT line exhibited increased activity of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), as well as higher levels of proline content than the WS line. In addition, the expression of antioxidant enzyme genes (POD1, POD2, FeSOD, Cu/ZnSOD, CAT1, and CAT2) and ethylene-related genes (such as ACO1, ACO2, ACS1, and ACS2) were found to be up-regulated in WT line under waterlogging stress conditions. In contrast, these genes showed a down-regulation in their expression levels in the stressed WS line. The integration of morpho-physiological, biochemical, and gene expression analyses provide a comprehensive understanding of the responses of WT and WS lines to waterlogging conditions. These findings would be beneficial for the future development of soybean cultivars that can withstand waterlogging.
Collapse
Affiliation(s)
- Ripa Akter Sharmin
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale P.O. Box TL 1882, Ghana
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Mashiur Rahman Bhuiyan
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Kong
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheping Yu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunting Zhang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
88
|
Forlani G, Sabbioni G, Barera S, Funck D. A complex array of factors regulate the activity of Arabidopsis thaliana δ 1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism. PLANT, CELL & ENVIRONMENT 2024; 47:1348-1362. [PMID: 38223941 DOI: 10.1111/pce.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The first and committed step in proline synthesis from glutamate is catalyzed by δ1 -pyrroline-5-carboxylate synthetase (P5CS). Two P5CS genes have been found in most angiosperms, one constitutively expressed to satisfy proline demand for protein synthesis, the other stress-induced. Despite the number of papers to investigate regulation at the transcriptional level, to date, the properties of the enzymes have been subjected to limited study. The isolation of Arabidopsis thaliana P5CS isoenzymes was achieved through heterologous expression and affinity purification. The two proteins were characterized with respect to kinetic and biochemical properties. AtP5CS2 showed KM values in the micro- to millimolar range, and its activity was inhibited by NADP+ , ADP and proline, and by glutamine and arginine at high levels. Mg2+ ions were required for activity, which was further stimulated by K+ and other cations. AtP5CS1 displayed positive cooperativity with glutamate and was almost insensitive to inhibition by proline. In the presence of physiological, nonsaturating concentrations of glutamate, proline was slightly stimulatory, and glutamine strongly increased the catalytic rate. Data suggest that the activity of AtP5CS isoenzymes is differentially regulated by a complex array of factors including the concentrations of proline, glutamate, glutamine, monovalent cations and pyridine dinucleotides.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Simone Barera
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
89
|
Karapetyan H, Marutyan S, Muradyan A, Badalyan H, Marutyan SV, Trchounian K. Changes in ATPase activity, antioxidant enzymes and proline biosynthesis in yeast Candida guilliermondii NP-4 under X-irradiation. J Bioenerg Biomembr 2024; 56:141-148. [PMID: 38308068 DOI: 10.1007/s10863-024-10003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
This study investigates the effects of X-radiation on ATPase activity and antioxidant enzyme activity, particularly enzymes involved in proline biosynthesis, in yeast C. guilliermondii NP-4. Moreover, the study examined the post-irradiation repair processes in these cells. Results showed that X-irradiation at a dose of 300 Gy led to an increase in catalase (CAT) and superoxide dismutase (SOD) activity, as well as, an increase in the CAT/SOD ratio in C. guilliermondii NP-4. The repair of radiation-induced damage requires a substantial amount of energy, resulting in an increased demand for ATP in the irradiated and repaired yeasts. Consequently, the total and FoF1-ATPase activity in yeast homogenates and mitochondria increased after X-irradiation and post-irradiation repair. It was showed an increase in the activity of proline biosynthesis enzymes (ornithine transaminase and proline-5-carboxylate reductase) in X-irradiated C. guilliermondii NP-4, which remained elevated even after post-irradiation repair. As a result, the proline levels in X-irradiated and repaired yeasts were higher than those in non-irradiated cells. These findings suggest that proline may have a radioprotective effect on X-irradiated C. guilliermondii NP-4 yeasts. Taken together this study provides insights into the effects of X-radiation on ATPase activity, antioxidant enzyme activity, and proline biosynthesis in C. guilliermondii NP-4 yeast cells, highlighting the potential radioprotective properties of proline in X-irradiated yeasts.
Collapse
Affiliation(s)
- Hasmik Karapetyan
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia
| | - Syuzan Marutyan
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia
| | - Anna Muradyan
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia
| | - Hamlet Badalyan
- Department of General Physics and Astrophysics, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia
| | - Seda V Marutyan
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia.
| | - Karen Trchounian
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia.
- Research Institute of Biology, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia.
- Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 1 A. Manoogian, Yerevan, 0025, Armenia.
| |
Collapse
|
90
|
Huang X, Gao F, Zhou P, Ma C, Tan W, Ma Y, Li M, Ni Z, Shi T, Hayat F, Li Y, Gao Z. Allelic variation of PmCBF03 contributes to the altitude and temperature adaptability in Japanese apricot (Prunus mume Sieb. et Zucc.). PLANT, CELL & ENVIRONMENT 2024; 47:1379-1396. [PMID: 38221869 DOI: 10.1111/pce.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024]
Abstract
Japanese apricot is an important subtropical deciduous fruit tree in China, widely distributed in different altitude areas. How does it adapt to the different temperature environments in these areas? In this study, we identified a low-temperature transcription factor PmCBF03 on chromosome 7 through adaptive analysis of populations at different altitudes, which has an early termination single nucleotide polymorphism mutation. There were two different types of variation, PmCBF03A type in high-altitude areas and PmCBF03T type in low-altitude areas. PmCBF03A gene increased the survival rate, Fv/Fm values, antioxidant enzyme activity, and expression levels of antioxidant enzyme genes, and reducing electrolyte leakage and accumulation of reactive oxygen species in transgenic Arabidopsis under low temperature and freezing stress. Simultaneously, PmCBF03A gene promoted the dormancy of transgenic Arabidopsis seeds than wild-type. Biochemical analysis demonstrated that PmCBF03A directly bound to the DRE/CRT element in the promoters of the PmCOR413, PmDAM6 and PmABI5 genes, promoting their transcription and enhanced the cold resistance and dormancy of the overexpressing PmCBF03A lines. While PmCBF03T gene is unable to bind to the promoters of PmDAM6 and PmABI5 genes, leading to early release of dormancy to adapt to the problem of insufficient chilling requirement in low-altitude areas.
Collapse
Affiliation(s)
- Xiao Huang
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feng Gao
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengyu Zhou
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengdong Ma
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Tan
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yufan Ma
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minglu Li
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaojun Ni
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ting Shi
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Faisal Hayat
- Department of Pomology, College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yongping Li
- Department of Special Fruit Tree Germplasm Resources, Yunnan Green Food Development Center, Kunming, Yunnan, China
| | - Zhihong Gao
- Fruit Tree Biotechnology Laboratory, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
91
|
Zhang X, Yu J, Qu G, Chen S. The cold-responsive C-repeat binding factors in Betula platyphylla Suk. positively regulate cold tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112012. [PMID: 38311248 DOI: 10.1016/j.plantsci.2024.112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Cold stress is one of the most destructive abiotic stresses limiting plant growth and development. CBF (C-repeat binding factor) transcription factors and their roles in cold response have been identified in Arabidopsis as well as several other plant species. However, the biological functions and related molecular mechanisms of CBFs in birch (Betula platyphylla Suk.) remain undetermined. In this study, five cold-responsive BpCBF genes, BpCBF1, BpCBF2, BpCBF7, BpCBF10 and BpCBF12 were cloned. Via protoplast transformation, BpCBF7 was found to be localized in nucleus. The result of yeast one hybrid assay validated the binding of BpCBF7 to the CRT/DRE (C-repeat/dehydration responsive element) elements in the promoter of BpERF1.1 gene. By overexpressing and repressing BpCBFs in birch plants, it was proven that BpCBFs play positive roles in the cold tolerance. At the metabolic level, BpCBFs OE lines had lower ROS accumulation, as well as higher activities of antioxidant enzymes (SOD, POD and CAT) and higher accumulation of protective substances (soluble sugar, soluble protein and proline). Via yeast one hybrid and co-transformation of effector and reporter vectors assay, it was proven that BpCBF7 can regulate the expression of BpERF5 and BpZAT10 genes by directly binding to their promoters. An interacting protein of BpCBF7, BpWRKY17, was identified by yeast two hybrid library sequencing and the interaction was validated with in vivo methods. These results indicates that BpCBFs can increase the cold tolerance of birch plants, partly by gene regulation and protein interaction. This study provides a reference for the research on CBF transcription factors and genetic improvement of forest trees upon abiotic stresses.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
92
|
Shah T, Khan Z, Alahmadi TA, Imran A, Asad M, Khan SR, Ansari MJ. Mycorrhizosphere bacteria inhibit chromium uptake and phytotoxicity by regulating proline metabolism, antioxidant defense system, and aquaporin gene expression in tomato. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24836-24850. [PMID: 38456983 DOI: 10.1007/s11356-024-32755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Chromium (Cr) contamination in soil-plant systems poses a pressing environmental challenge due to its detrimental impacts on plant growth and human health. Results exhibited that Cr stress decreased shoot biomass, root biomass, leaf relative water content, and plant height. However, single and co-application of Bacillus subtilis (BS) and arbuscular mycorrhizal fungi (AMF) considerably enhanced shoot biomass (+ 21%), root biomass (+ 2%), leaf relative water content (+ 26%), and plant height (+ 13) under Cr stress. The frequency of mycorrhizal (F) association (+ 5%), mycorrhizal colonization (+ 13%), and abundance of arbuscules (+ 5%) in the non-stressed soil was enhanced when inoculated with combined BS and AMF as compared to Cr-stressed soil. The co-inoculation with BS and AMF considerably enhanced total chlorophyll, carotenoids, and proline content in Cr-stressed plants. Cr-stressed plants resulted in attenuated response in SOD, POD, CAT, and GR activities when inoculated with BS and AMF consortia by altering oxidative stress biomarkers (H2O2 and MDA). In Cr-stressed plants, the combined application of BS and AMF considerably enhanced proline metabolism, for instance, P5CR (+ 17%), P5CS (+ 28%), OAT (- 22%), and ProDH (- 113%) as compared to control. Sole inoculation with AMF downregulated the expression of SIPIP2;1, SIPIP2;5, and SIPIP2;7 in Cr-stressed plants. However, the expression of NCED1 was downregulated with the application of sole AMF. In contrast, the relative expression of Le4 was upregulated in the presence of AMF and BS combination in Cr-stressed plants. Therefore, it is concluded that co-application of BS and AMF enhanced Cr tolerance by enhancing proline metabolism, antioxidant enzymes, and aquaporin gene expression. Future study might concentrate on elucidating the molecular processes behind the synergistic benefits of BS and AMF, as well as affirming their effectiveness in field experiments under a variety of environmental situations. Long-term research on the effect of microbial inoculation on soil health and plant production might also help to design sustainable chromium remediation solutions.
Collapse
Affiliation(s)
- Tariq Shah
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Peshawar, 25130, Pakistan.
| | - Zeeshan Khan
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King, Medical City, Khalid University Hospital, King Saud University, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Ayesha Imran
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Asad
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Shah Rukh Khan
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Moradabad, India
- College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
93
|
Sawant KR, Sarnaik AP, Singh R, Savvashe P, Baier T, Kruse O, Jutur PP, Lali A, Pandit RA. Outdoor cultivation and metabolomics exploration of Chlamydomonas engineered for bisabolene production. BIORESOURCE TECHNOLOGY 2024; 398:130513. [PMID: 38432540 DOI: 10.1016/j.biortech.2024.130513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Demonstrating outdoor cultivation of engineered microalgae at considerable scales is essential for their prospective large-scale deployment. Hence, this study focuses on the outdoor cultivation of an engineered Chlamydomonas reinhardtii strain, 3XAgBs-SQs, for bisabolene production under natural dynamic conditions of light and temperature. Our preliminary outdoor experiments showed improved growth, but frequent culture collapses in conventional Tris-acetate-phosphate medium. In contrast, modified high-salt medium (HSM) supported prolonged cell survival, outdoor. However, their subsequent outdoor scale-up from 250 mL to 5 L in HSM was effective with 10 g/L bicarbonate supplementation. Pulse amplitude modulation fluorometry and metabolomic analysis further validated their improved photosynthesis and uncompromised metabolic fluxes towards the biomass and the products (natural carotenoids and engineered bisabolene). These strains could produce 906 mg/L bisabolene and 54 mg/L carotenoids, demonstrating the first successful outdoor photoautotrophic cultivation of engineeredC. reinhardtii,establishing it as a one-cell two-wells biorefinery.
Collapse
Affiliation(s)
- Kaustubh R Sawant
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Aditya P Sarnaik
- School for Sustainable Engineering and the Built Environment, Arizona State University, The Polytechnic Campus, Mesa, AZ 85212, USA.
| | - Rabinder Singh
- Omics of Algae Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 237, Trebon 379 01, Czech Republic.
| | - Prashant Savvashe
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany.
| | - Pannaga Pavan Jutur
- Omics of Algae Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Arvind Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Reena A Pandit
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
94
|
Li H, Liu Y, Zhen B, Lv M, Zhou X, Yong B, Niu Q, Yang S. Proline Spray Relieves the Adverse Effects of Drought on Wheat Flag Leaf Function. PLANTS (BASEL, SWITZERLAND) 2024; 13:957. [PMID: 38611486 PMCID: PMC11013815 DOI: 10.3390/plants13070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Drought stress is one of the key factors restricting crop yield. The beneficial effects of exogenous proline on crop growth under drought stress have been demonstrated in maize, rice, and other crops. However, little is known about its effects on wheat under drought stress. Especially, the water-holding capacity of leaves were overlooked in most studies. Therefore, a barrel experiment was conducted with wheat at two drought levels (severe drought: 45% field capacity, mild drought: 60% field capacity), and three proline-spraying levels (0 mM, 25 mM, and 50 mM). Meanwhile, a control with no stress and no proline application was set. The anatomical features, water-holding capacity, antioxidant capacity, and proline content of flag leaves as well as grain yields were measured. The results showed that drought stress increased the activity of catalase and peroxidase and the content of proline in flag leaves, lessened the content of chlorophyll, deformed leaf veins, and decreased the grain yield. Exogenous proline could regulate the osmotic-regulation substance content, chlorophyll content, antioxidant enzyme activity, water-holding capacity, and tissue structure of wheat flag leaves under drought stress, ultimately alleviating the impact of drought stress on wheat yield. The application of proline (25 mM and 50 mM) increased the yield by 2.88% and 10.81% under mild drought and 33.90% and 52.88% under severe drought compared to wheat without proline spray, respectively.
Collapse
Affiliation(s)
- Huizhen Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Yuan Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Bo Zhen
- Jiangsu Vocational College of Agriculture & Forestry, Jurong 212499, China;
| | - Mouchao Lv
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Xinguo Zhou
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Beibei Yong
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Qinglin Niu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Shenjiao Yang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| |
Collapse
|
95
|
Dai T, Ban S, Han L, Li L, Zhang Y, Zhang Y, Zhu W. Effects of exogenous glycine betaine on growth and development of tomato seedlings under cold stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1332583. [PMID: 38584954 PMCID: PMC10995342 DOI: 10.3389/fpls.2024.1332583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Low temperature is a type of abiotic stress affecting the tomato (Solanum lycopersicum) growth. Understanding the mechanisms and utilization of exogenous substances underlying plant tolerance to cold stress would lay the foundation for improving temperature resilience in this important crop. Our study is aiming to investigate the effect of exogenous glycine betaine (GB) on tomato seedlings to increase tolerance to low temperatures. By treating tomato seedlings with exogenous GB under low temperature stress, we found that 30 mmol/L exogenous GB can significantly improve the cold tolerance of tomato seedlings. Exogenous GB can influence the enzyme activity of antioxidant defense system and ROS levels in tomato leaves. The seedlings with GB treatment presented higher Fv/Fm value and photochemical activity under cold stress compared with the control. Moreover, analysis of high-throughput plant phenotyping of tomato seedlings also supported that exogenous GB can protect the photosynthetic system of tomato seedlings under cold stress. In addition, we proved that exogenous GB significantly increased the content of endogenous abscisic acid (ABA) and decreased endogenous gibberellin (GA) levels, which protected tomatoes from low temperatures. Meanwhile, transcriptional analysis showed that GB regulated the expression of genes involved in antioxidant capacity, calcium signaling, photosynthesis activity, energy metabolism-related and low temperature pathway-related genes in tomato plants. In conclusion, our findings indicated that exogenous GB, as a cryoprotectant, can enhance plant tolerance to low temperature by improving the antioxidant system, photosynthetic system, hormone signaling, and cold response pathway and so on.
Collapse
Affiliation(s)
- Taoyu Dai
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Songtao Ban
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyuan Han
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Linyi Li
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yuechen Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Intelligent Agricultural Technology (Yangtze River Delta), Ministry of Agriculture and Rural Affairs, Agricultural Information Institute of Science and Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
96
|
García-Locascio E, Valenzuela EI, Cervantes-Avilés P. Impact of seed priming with Selenium nanoparticles on germination and seedlings growth of tomato. Sci Rep 2024; 14:6726. [PMID: 38509209 PMCID: PMC10954673 DOI: 10.1038/s41598-024-57049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Poor germination and seedlings growth can lead to significant economic losses for farmers, therefore, sustainable agricultural strategies to improve germination and early growth of crops are urgently needed. The objective of this work was to evaluate selenium nanoparticles (Se NPs) as nanopriming agents for tomato (Solanum lycopersicum) seeds germinated without stress conditions in both trays and Petri dishes. Germination quality, seedlings growth, synergism-antagonism of Se with other elements, and fate of Se NPs, were determined as function of different Se NPs concentrations (1, 10 and 50 ppm). Results indicated that the germination rate in Petri dishes improved with 10 ppm, while germination trays presented the best results at 1 ppm, increasing by 10 and 32.5%, respectively. Therefore, seedlings growth was measured only in germination trays. Proline content decreased up to 22.19% with 10 ppm, while for same treatment, the total antioxidant capacity (TAC) and total chlorophyll content increased up to 38.97% and 21.28%, respectively. Antagonisms between Se with Mg, K, Mn, Zn, Fe, Cu and Mo in the seed were confirmed. In the case of seedlings, the N content decreased as the Se content increased. Transmission Electron Microscopy (TEM) imaging confirmed that Se NPs surrounded the plastids of the seed cells. By this finding, it can be inferred that Se NPs can reach the embryo, which is supported by the antagonism of Se with important nutrients involved in embryogenesis, such as K, Mg and Fe, and resulted in a better germination quality. Moreover, the positive effect of Se NPs on total chlorophyll and TAC, and the negative correlation with proline content with Se content in the seed, can be explained by Se NPs interactions with proplastids and other organelles within the cells, resulting with the highest length and fresh weight when seeds were exposed to 1 ppm.
Collapse
Affiliation(s)
- Ezequiel García-Locascio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México
| | - Edgardo I Valenzuela
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, CP 72453, Puebla, Pue, México.
| |
Collapse
|
97
|
Bechtold EK, Wanek W, Nuesslein B, DaCosta M, Nüsslein K. Successional changes in bacterial phyllosphere communities are plant-host species dependent. Appl Environ Microbiol 2024; 90:e0175023. [PMID: 38349147 PMCID: PMC11206175 DOI: 10.1128/aem.01750-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/17/2024] [Indexed: 03/21/2024] Open
Abstract
Phyllosphere microbial communities are increasingly experiencing intense pulse disturbance events such as drought. It is currently unknown how phyllosphere communities respond to such disturbances and if they are able to recover. We explored the stability of phyllosphere communities over time, in response to drought stress, and under recovery from drought on temperate forage grasses. Compositional or functional changes were observed during the disturbance period and whether communities returned to non-stressed levels following recovery. Here, we found that phyllosphere community composition shifts as a result of simulated drought but does not fully recover after irrigation is resumed and that the degree of community response to drought is host species dependent. However, while community composition had changed, we found a high level of functional stability (resistance) over time and in the water deficit treatment. Ecological modeling enabled us to understand community assembly processes over a growing season and to determine if they were disrupted during a disturbance event. Phyllosphere community succession was characterized by a strong level of ecological drift, but drought disturbance resulted in variable selection, or, in other words, communities were diverging due to differences in selective pressures. This successional divergence of communities with drought was unique for each host species. Understanding phyllosphere responses to environmental stresses is important as climate change-induced stresses are expected to reduce crop productivity and phyllosphere functioning. IMPORTANCE Leaf surface microbiomes have the potential to influence agricultural and ecosystem productivity. We assessed their stability by determining composition, functional resistance, and resilience. Resistance is the degree to which communities remain unchanged as a result of disturbance, and resilience is the ability of a community to recover to pre-disturbance conditions. By understanding the mechanisms of community assembly and how they relate to the resistance and resilience of microbial communities under common environmental stresses such as drought, we can better understand how communities will adapt to a changing environment and how we can promote healthy agricultural microbiomes. In this study, phyllosphere compositional stability was highly related to plant host species phylogeny and, to a lesser extent, known stress tolerances. Phyllosphere community assembly and stability are a result of complex interactions of ecological processes that are differentially imposed by host species.
Collapse
Affiliation(s)
- Emily K. Bechtold
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Benedikt Nuesslein
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Michelle DaCosta
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
98
|
Hareem M, Danish S, Pervez M, Irshad U, Fahad S, Dawar K, Alharbi SA, Ansari MJ, Datta R. Optimizing chili production in drought stress: combining Zn-quantum dot biochar and proline for improved growth and yield. Sci Rep 2024; 14:6627. [PMID: 38503869 PMCID: PMC10951368 DOI: 10.1038/s41598-024-57204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The reduction in crop productivity due to drought stress, is a major concern in agriculture. Drought stress usually disrupts photosynthesis by triggering oxidative stress and generating reactive oxygen species (ROS). The use of zinc-quantum dot biochar (ZQDB) and proline (Pro) can be effective techniques to overcome this issue. Biochar has the potential to improve the water use efficiency while proline can play an imperative role in minimization of adverse impacts of ROS Proline, functioning as an osmotic protector, efficiently mitigates the adverse effects of heavy metals on plants by maintaining cellular structure, scavenging free radicals, and ensuring the stability of cellular integrity. That's why current study explored the impact of ZQDB and proline on chili growth under drought stress. Four treatments, i.e., control, 0.4%ZQDB, 0.1 mM Pro, and 0.4%ZQDB + Pro, were applied in 4 replications following the complete randomized design. Results exhibited that 0.4%ZQDB + Pro caused an increases in chili plant dry weight (29.28%), plant height (28.12%), fruit length (29.20%), fruit girth (59.81%), and fruit yield (55.78%) over control under drought stress. A significant increment in chlorophyll a (18.97%), chlorophyll b (49.02%), and total chlorophyll (26.67%), compared to control under drought stress, confirmed the effectiveness of 0.4%ZQDB + Pro. Furthermore, improvement in leaves N, P, and K concentration over control validated the efficacy of 0.4%ZQDB + Pro against drought stress. In conclusion, 0.4%ZQDB + Pro can mitigate drought stress in chili. More investigations are suggested to declare 0.4%ZQDB + Pro as promising amendment for mitigation of drought stress in other crops as well under changing climatic situations.
Collapse
Affiliation(s)
- Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Mahnoor Pervez
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Usman Irshad
- Department of Environmental Sciences, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| |
Collapse
|
99
|
Alsudays IM, Alshammary FH, Alabdallah NM, Alatawi A, Alotaibi MM, Alwutayd KM, Alharbi MM, Alghanem SMS, Alzuaibr FM, Gharib HS, Awad-Allah MMA. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC PLANT BIOLOGY 2024; 24:191. [PMID: 38486134 PMCID: PMC10941484 DOI: 10.1186/s12870-024-04863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).
Collapse
Affiliation(s)
| | - Fowzia Hamdan Alshammary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Aishah Alatawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mashael M Alotaibi
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Maha Mohammed Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Suliman M S Alghanem
- Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia
| | | | - Hany S Gharib
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafrelsheikh, 33516, Egypt
| | | |
Collapse
|
100
|
Karle SB, Kumar K. Rice tonoplast intrinsic protein member OsTIP1;2 confers tolerance to arsenite stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133078. [PMID: 38056278 DOI: 10.1016/j.jhazmat.2023.133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The International Agency for Research on Cancer categorizes arsenic (As) as a group I carcinogen. Arsenic exposure significantly reduces growth, development, metabolism, and crop yield. Tonoplast intrinsic proteins (TIPs) belong to the major intrinsic protein (MIP) superfamily and transport various substrates, including metals/metalloids. Our study aimed to characterize rice OsTIP1;2 in As[III] stress response. The gene expression analysis showed that the OsTIP1;2 expression was enhanced in roots on exposure to As[III] treatment. The heterologous expression of OsTIP1;2 in S. cerevisiae mutant lacking YCF1 (ycf1∆) complemented the As[III] transport function of the YCF1 transporter but not for boron (B) and arsenate As[V], indicating its substrate selective nature. The ycf1∆ mutant expressing OsTIP1;2 accumulated more As than the wild type (W303-1A) and ycf1∆ mutant strain carrying the pYES2.1 vector. OsTIP1;2 activity was partially inhibited in the presence of the aquaporin (AQP) inhibitors. The subcellular localization studies confirmed that OsTIP1;2 is localized to the tonoplast. The transient overexpression of OsTIP1;2 in Nicotiana benthamiana leaves resulted in increased activities of enzymatic and non-enzymatic antioxidants, suggesting a potential role in mitigating oxidative stress induced by As[III]. The transgenic N. tabacum overexpressing OsTIP1;2 displayed an As[III]-tolerant phenotype, with increased fresh weight and root length than the wild-type (WT) and empty vector (EV line). The As translocation factor (TF) for WT and EV was around 0.8, while that of OE lines was around 0.4. Moreover, the OE line bioconcentration factor (BCF) was more than 1. Notably, the reduced TF and increased BCF in the OE line imply the potential of OsTIP1;2 for phytostabilization.
Collapse
Affiliation(s)
- Suhas Balasaheb Karle
- Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa 403726, India
| | - Kundan Kumar
- Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa 403726, India.
| |
Collapse
|