51
|
Avanthay R, Garcia-Nicolas O, Ruggli N, Grau-Roma L, Párraga-Ros E, Summerfield A, Zimmer G. Evaluation of a novel intramuscular prime/intranasal boost vaccination strategy against influenza in the pig model. PLoS Pathog 2024; 20:e1012393. [PMID: 39116029 PMCID: PMC11309389 DOI: 10.1371/journal.ppat.1012393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Live-attenuated influenza vaccines (LAIV) offer advantages over the commonly used inactivated split influenza vaccines. However, finding the optimal balance between sufficient attenuation and immunogenicity has remained a challenge. We recently developed an alternative LAIV based on the 2009 pandemic H1N1 virus with a truncated NS1 protein and lacking PA-X protein expression (NS1(1-126)-ΔPAX). This virus showed a blunted replication and elicited a strong innate immune response. In the present study, we evaluated the efficacy of this vaccine candidate in the porcine animal model as a pertinent in vivo system. Immunization of pigs via the nasal route with the novel NS1(1-126)-ΔPAX LAIV did not cause disease and elicited a strong mucosal immune response that completely blocked replication of the homologous challenge virus in the respiratory tract. However, we observed prolonged shedding of our vaccine candidate from the upper respiratory tract. To improve LAIV safety, we developed a novel prime/boost vaccination strategy combining primary intramuscular immunization with a haemagglutinin-encoding propagation-defective vesicular stomatitis virus (VSV) replicon, followed by a secondary immunization with the NS1(1-126)-ΔPAX LAIV via the nasal route. This two-step immunization procedure significantly reduced LAIV shedding, increased the production of specific serum IgG, neutralizing antibodies, and Th1 memory cells, and resulted in sterilizing immunity against homologous virus challenge. In conclusion, our novel intramuscular prime/intranasal boost regimen interferes with virus shedding and transmission, a feature that will help combat influenza epidemics and pandemics.
Collapse
MESH Headings
- Animals
- Swine
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Injections, Intramuscular
- Administration, Intranasal
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Influenza A Virus, H1N1 Subtype/immunology
- Disease Models, Animal
- Antibodies, Viral/immunology
- Immunization, Secondary/methods
- Vaccination/methods
- Influenza, Human/prevention & control
- Influenza, Human/immunology
Collapse
Affiliation(s)
- Robin Avanthay
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Obdulio Garcia-Nicolas
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Llorenç Grau-Roma
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, COMPATH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ester Párraga-Ros
- Department of Anatomy and Comparative Pathology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Artur Summerfield
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
52
|
Chou SH, Chuang C, Juan CH, Ho YC, Liu SY, Chen L, Lin YT. Mechanisms and fitness of ceftazidime/avibactam-resistant Klebsiella pneumoniae clinical strains in Taiwan. Int J Antimicrob Agents 2024; 64:107244. [PMID: 38925227 DOI: 10.1016/j.ijantimicag.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection is a global public health issue, and ceftazidime/avibactam is recommended by international guidelines as the preferred treatment for KPC- and OXA-48-producing CRKP. Since its introduction in Taiwan in 2019, ceftazidime/avibactam-resistant strains have emerged. Our aim is to investigate the mechanisms of ceftazidime/avibactam resistance in CRKP in Taiwan and study their associated fitness costs. METHODS Ceftazidime/avibactam-resistant CRKP strains with exposure to ceftazidime/avibactam isolated from clinical specimens were consecutively collected at Taipei Veterans General Hospital in 2020. The serial strains exhibiting ceftazidime/avibactam-susceptible and ceftazidime/avibactam-resistant phenotypes isolated from the same patient were characterized using whole-genome sequencing and tested for their growth rates and competitive abilities. RESULTS A total of 35 ceftazidime/avibactam-resistant CRKP strains were identified, with 20 being metallo-β-lactamase producers. Ten strains harboured KPC variants, exhibiting MIC for ceftazidime/avibactam ranging from 64 to ≥256 mg/L. The 10 strains demonstrating high-level ceftazidime/avibactam resistance possessed mutated KPC variants: KPC-33 (n = 3), KPC-31 (n = 1), KPC-39 (n = 1), KPC-44 (n = 1), KPC-58 (n = 1), KPC-90 (n = 1), and two novel KPC variants. Ceftazidime/avibactam-resistant strains with KPC-33 and KPC-39 showed a significant fitness cost and lower growth rate compared to their parental strains. In contrast, ceftazidime/avibactam-resistant strains with KPC-58 and KPC-58 plus D179Y showed similar growth rates and competitive abilities compared to their parental strains. CONCLUSIONS Mutated KPC variants conferred high-level ceftazidime/avibactam resistance in Taiwan. Significant fitness costs were observed in both the ceftazidime/avibactam-resistant KPC-33 and KPC-39 strains. Despite conferring a similar level of ceftazidime/avibactam resistance, different KPC variants could entail varying degrees of fitness costs.
Collapse
Affiliation(s)
- Sheng-Hua Chou
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien Chuang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Han Juan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chien Ho
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Szu-Yu Liu
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
53
|
Schwickert KK, Glitscher M, Bender D, Benz NI, Murra R, Schwickert K, Pfalzgraf S, Schirmeister T, Hellmich UA, Hildt E. Zika virus replication is impaired by a selective agonist of the TRPML2 ion channel. Antiviral Res 2024; 228:105940. [PMID: 38901736 DOI: 10.1016/j.antiviral.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound's negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.
Collapse
Affiliation(s)
- Kerstin K Schwickert
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany; Department of Chemistry, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Robin Murra
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Steffen Pfalzgraf
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany; Cluster of Excellence "Balance of the Microverse", Friedrich Schiller University, Jena, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany.
| |
Collapse
|
54
|
Zhi Y, Wei J, Liu Z, Zhang Q, Zhang T, Hu G. Inhibitory effects of Belamcanda extract on inflammatory response and antiviral mechanism in H9N2 Avian influenza virus: insights from in vitro and in vivo studies. Poult Sci 2024; 103:103885. [PMID: 38851182 PMCID: PMC11208944 DOI: 10.1016/j.psj.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/02/2024] [Accepted: 05/18/2024] [Indexed: 06/10/2024] Open
Abstract
Avian influenza, particularly the H9N2 subtype, presents significant challenges to poultry health, underscoring the need for effective antiviral interventions. This study explores the antiviral capabilities of Belamcanda extract, a traditional Chinese medicinal herb, against H9N2 Avian influenza virus (AIV) in specific pathogen-free (SPF) chicks. Through a comprehensive approach, we evaluated the impact of the extract on cytokine modulation and crucial immunological signaling pathways, essential for understanding the host-virus interaction. Our findings demonstrate that Belamcanda extract significantly modulates the expression of key inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), interleukin-2 (IL-2), and interleukin-6 (IL-6), which are pivotal to the host's response to H9N2 AIV infection. Western blot analysis further revealed that the extract markedly reduces the expression of critical immune signaling molecules such as toll-like receptor 3 (TLR3), TIR-domain-containing adapter-inducing interferon-β (TRIF), and nuclear factor kappa B (NF-κB). These insights into the mechanisms by which Belamcanda extract influences host immune responses and hinders viral replication highlight its potential as an innovative antiviral agent for poultry health management. The study advances our comprehension of natural compounds' antiviral mechanisms and lays the groundwork for developing strategies to manage viral infections in poultry. The demonstrated ability of Belamcanda extract to modulate immune responses and inhibit viral replication establishes it as a promising candidate for future antiviral therapy development, especially in light of the need for effective treatments against evolving influenza virus strains and the critical demand for enhanced poultry health management strategies.
Collapse
Affiliation(s)
- Yan Zhi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jingjie Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhenyi Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qian Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Tao Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ge Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
55
|
Fraser ME, Kucharski C, Loh Z, Hanahoe E, Fraser MJ. Design and testing of Hepatitis Delta Ribozymes for suppression of Chikungunya virus infection in cell cultures. MEDICAL RESEARCH ARCHIVES 2024; 12. [PMID: 39324067 PMCID: PMC11423935 DOI: 10.18103/mra.v12i8.5762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chikungunya virus is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates following the introduction of its major vector, Aedes albopictus. Recent cases have been documented in Europe, the Caribbean, and the Americas. Chikungunya virus causes a disease frequently misdiagnosed as Dengue fever, with potentially life-threatening symptoms that can result in long term debilitating arthritis. There have been ongoing investigations of possible therapeutic interventions for both acute and chronic symptoms, but to date none have proven effective in reducing the severity or lasting effects of this disease. Recently, a promising vaccine candidate has received accelerated approval, indicating the importance of remedies to this emerging worldwide health threat. Nonetheless, therapeutic interventions for Chikungunya and other mosquito borne virus diseases are urgently needed yet remain elusive. The increasing risk of spread from endemic regions via human travel and commerce, coupled with the absence of a vaccine or approved therapeutic, puts a significant proportion of the world population at risk for this disease. In this report we explore the possibility of using Specific On/oFf Adapter Hepatitis Delta Virus Ribozymes as antivirals in cells infected with Chikungunya virus. The results we obtained suggest there could be some role in using these ribozyme molecules as antiviral therapies for not only Chikungunya virus, but potentially other viruses as well.
Collapse
Affiliation(s)
- Mark E Fraser
- Department of Pulmonology, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Cheryl Kucharski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Zoe Loh
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710
| | - Erin Hanahoe
- Moderna, 200 Technology Square, Cambridge MA 02139
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
56
|
Pandarangga P, Doan PTK, Tearle R, Low WY, Ren Y, Nguyen HTH, Dharmayanti NI, Hemmatzadeh F. mRNA Profiling and Transcriptomics Analysis of Chickens Received Newcastle Disease Virus Genotype II and Genotype VII Vaccines. Pathogens 2024; 13:638. [PMID: 39204239 PMCID: PMC11357267 DOI: 10.3390/pathogens13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Newcastle Disease Virus (NDV) genotype VII (GVII) is becoming the predominant strain of NDV in the poultry industry. It causes high mortality even in vaccinated chickens with a common NDV genotype II vaccine (GII-vacc). To overcome this, the killed GVII vaccine has been used to prevent NDV outbreaks. However, the debate about vaccine differences remains ongoing. Hence, this study investigated the difference in chickens' responses to the two vaccines at the molecular level. The spleen transcriptomes from vaccinated chickens reveal that GVII-vacc affected the immune response by downregulating neuroinflammation. It also enhanced a synaptogenesis pathway that operates typically in the nervous system, suggesting a mechanism for the neurotrophic effect of this strain. We speculated that the down-regulated immune system regulation correlated with protecting the nervous system from excess leukocytes and cytokine activity. In contrast, GII-vacc inhibited apoptosis by downregulating PERK/ATF4/CHOP as part of the unfolded protein response pathway but did not affect the expression of the same synaptogenesis pathway. Thus, the application of GVII-vacc needs to be considered in countries where GVII is the leading cause of NDV outbreaks. The predicted molecular signatures may also be used in developing new vaccines that trigger specific genes in the immune system in combating NDV outbreaks.
Collapse
Affiliation(s)
- Putri Pandarangga
- Departemen Klinik, Reproduksi, dan Patologi, Fakultas Kedokteran dan Kedokteran Hewan, Universitas Nusa Cendana, Kupang 85001, Indonesia;
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| | - Phuong Thi Kim Doan
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
- Department of Veterinary Medicine, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Rick Tearle
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Wai Yee Low
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Yan Ren
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Hanh Thi Hong Nguyen
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| | | | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| |
Collapse
|
57
|
Pino-Belmar C, Aguilar R, Valenzuela-Nieto GE, Cavieres VA, Cerda-Troncoso C, Navarrete VC, Salazar P, Burgos PV, Otth C, Bustamante HA. An Intrinsic Host Defense against HSV-1 Relies on the Activation of Xenophagy with the Active Clearance of Autophagic Receptors. Cells 2024; 13:1256. [PMID: 39120287 PMCID: PMC11311385 DOI: 10.3390/cells13151256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Autophagy engulfs cellular components in double-membrane-bound autophagosomes for clearance and recycling after fusion with lysosomes. Thus, autophagy is a key process for maintaining proteostasis and a powerful cell-intrinsic host defense mechanism, protecting cells against pathogens by targeting them through a specific form of selective autophagy known as xenophagy. In this context, ubiquitination acts as a signal of recognition of the cargoes for autophagic receptors, which direct them towards autophagosomes for subsequent breakdown. Nevertheless, autophagy can carry out a dual role since numerous viruses including members of the Orthoherpesviridae family can either inhibit or exploit autophagy for its own benefit and to replicate within host cells. There is growing evidence that Herpes simplex virus type 1 (HSV-1), a highly prevalent human pathogen that infects epidermal keratinocytes and sensitive neurons, is capable of negatively modulating autophagy. Since the effects of HSV-1 infection on autophagic receptors have been poorly explored, this study aims to understand the consequences of HSV-1 productive infection on the levels of the major autophagic receptors involved in xenophagy, key proteins in the recruitment of intracellular pathogens into autophagosomes. We found that productive HSV-1 infection in human neuroglioma cells and keratinocytes causes a reduction in the total levels of Ub conjugates and decreases protein levels of autophagic receptors, including SQSTM1/p62, OPTN1, NBR1, and NDP52, a phenotype that is also accompanied by reduced levels of LC3-I and LC3-II, which interact directly with autophagic receptors. Mechanistically, we show these phenotypes are the result of xenophagy activation in the early stages of productive HSV-1 infection to limit virus replication, thereby reducing progeny HSV-1 yield. Additionally, we found that the removal of the tegument HSV-1 protein US11, a recognized viral factor that counteracts autophagy in host cells, enhances the clearance of autophagic receptors, with a significant reduction in the progeny HSV-1 yield. Moreover, the removal of US11 increases the ubiquitination of SQSTM1/p62, indicating that US11 slows down the autophagy turnover of autophagy receptors. Overall, our findings suggest that xenophagy is a potent host defense against HSV-1 replication and reveals the role of the autophagic receptors in the delivery of HSV-1 to clearance via xenophagy.
Collapse
Affiliation(s)
- Camila Pino-Belmar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Rayén Aguilar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Guillermo E. Valenzuela-Nieto
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Cristóbal Cerda-Troncoso
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Valentina C. Navarrete
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Paula Salazar
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile; (V.A.C.); (C.C.-T.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago 7750000, Chile
| | - Carola Otth
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Hianara A. Bustamante
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile; (C.P.-B.); (R.A.); (V.C.N.); (P.S.)
| |
Collapse
|
58
|
Joharinia N, Bonneil É, Grandvaux N, Thibault P, Lippé R. Comprehensive proteomic analysis of HCoV-OC43 virions and virus-modulated extracellular vesicles. J Virol 2024; 98:e0085024. [PMID: 38953378 PMCID: PMC11265355 DOI: 10.1128/jvi.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
Viruses are obligate parasites that depend on the cellular machinery for their propagation. Several viruses also incorporate cellular proteins that facilitate viral spread. Defining these cellular proteins is critical to decipher viral life cycles and delineate novel therapeutic strategies. While numerous studies have explored the importance of host proteins in coronavirus spread, information about their presence in mature virions is limited. In this study, we developed a protocol to highly enrich mature HCoV-OC43 virions and characterize them by proteomics. Recognizing that cells release extracellular vesicles whose content is modulated by viruses, and given our ability to separate virions from these vesicles, we also analyzed their protein content in both uninfected and infected cells. We uncovered 69 unique cellular proteins associated with virions including 31 high-confidence hits. These proteins primarily regulate RNA metabolism, enzymatic activities, vesicular transport, cell adhesion, metabolite interconversion, and translation. We further discovered that the virus had a profound impact on exosome composition, incorporating 47 novel cellular proteins (11 high confidence) and excluding 92 others (61 high confidence) in virus-associated extracellular vesicles compared to uninfected cells. Moreover, a dsiRNA screen revealed that 11 of 18 select targets significantly impacted viral yields, including proteins found in virions or extracellular vesicles. Overall, this study provides new and important insights into the incorporation of numerous host proteins into HCoV-OC43 virions, their biological significance, and the ability of the virus to modulate extracellular vesicles. IMPORTANCE In recent years, coronaviruses have dominated global attention, making it crucial to develop methods to control them and prevent future pandemics. Besides viral proteins, host proteins play a significant role in viral propagation and offer potential therapeutic targets. Targeting host proteins is advantageous because they are less likely to mutate and develop resistance compared to viral proteins, a common issue with many antiviral treatments. In this study, we examined the protein content of the less virulent biosafety level 2 HCoV-OC43 virus as a stand-in for the more virulent SARS-CoV-2. Our findings reveal that several cellular proteins incorporated into the virion regulate viral spread. In addition, we report that the virus extensively modulates the content of extracellular vesicles, enhancing viral dissemination. This underscores the critical interplay between the virus, host proteins, and extracellular vesicles.
Collapse
Affiliation(s)
- Negar Joharinia
- Azrieli Research center of the CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Montreal, Quebec, Canada
| | - Éric Bonneil
- IRIC, University of Montreal, Montreal, Quebec, Canada
| | - Nathalie Grandvaux
- Research center of the CHUM (CRCHUM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Pierre Thibault
- IRIC, University of Montreal, Montreal, Quebec, Canada
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
| | - Roger Lippé
- Azrieli Research center of the CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Pathology and Cell biology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
59
|
Woytinek K, Glitscher M, Hildt E. Antagonism of epidermal growth factor receptor signaling favors hepatitis E virus life cycle. J Virol 2024; 98:e0058024. [PMID: 38856640 PMCID: PMC11265270 DOI: 10.1128/jvi.00580-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.
Collapse
Affiliation(s)
| | - Mirco Glitscher
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Eberhard Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
60
|
Galvez NM, Cao Y, Nitido AD, Deal CE, Boutros CL, MacDonald SW, Albrecht YES, Lam EC, Sheehan ML, Parsons D, Lin AZ, Deymier MJ, Brady JM, Moon B, Bullock CB, Tanno S, Pegu A, Chen X, Liu C, Koup RA, Mascola JR, Vrbanac VD, Lingwood D, Balazs AB. HIV broadly neutralizing antibody escapability drives the therapeutic efficacy of vectored immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603156. [PMID: 39026699 PMCID: PMC11257540 DOI: 10.1101/2024.07.11.603156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Broadly neutralizing antibodies (bNAbs) have shown great promise for prevention and treatment of HIV infection. Breadth of bNAb neutralization, measured in vitro across panels of diverse viral isolates, is often used as a predictor of clinical potential. However, recent prevention studies demonstrate that the clinical efficacy of a broad and potent bNAb (VRC01) is undermined by neutralization resistance of circulating strains. Using HIV-infected humanized mice, we find that therapeutic efficacy of bNAbs delivered as Vectored ImmunoTherapy (VIT) is a function of both the fitness cost and resistance benefit of mutations that emerge during viral escape, which we term 'escapability'. Applying this mechanistic framework, we find that the sequence of the envelope V5-loop alters the resistance benefits of mutants that arise during escape, thereby impacting the therapeutic efficacy of VIT-mediated viral suppression. We also find that an emtricitabine-based antiretroviral drug regimen dramatically enhances the efficacy of VIT, by reducing the fitness of mutants along the escape path. Our findings demonstrate that bNAb escapability is a key determinant to consider in the rational design of antibody regimens with maximal efficacy and illustrates a tractable means of minimizing viral escape from existing bNAbs.
Collapse
Affiliation(s)
- Nicolas M.S. Galvez
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Yi Cao
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Adam D. Nitido
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Cailin E. Deal
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Christine L. Boutros
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Scott W. MacDonald
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Yentli E. Soto Albrecht
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Evan C. Lam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Maegan L. Sheehan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Dylan Parsons
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Allen Z. Lin
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Martin J. Deymier
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Jacqueline M. Brady
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Benjamin Moon
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Christopher B. Bullock
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Serah Tanno
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases and National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases and National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases and National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases and National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases and National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir D. Vrbanac
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Alejandro B. Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
61
|
Fang F, Wang B, Lu X, Wang L, Chen X, Wang G, Yang Y. miR-126a-5p inhibits H1N1-induced inflammation and matrix protease secretion in lung fibroblasts by targeting ADAMTS-4. Arch Virol 2024; 169:164. [PMID: 38990242 DOI: 10.1007/s00705-024-06086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/26/2024] [Indexed: 07/12/2024]
Abstract
Upregulation of ADAMTS-4 has been reported to have an important role in lung injury, and ADAMTS-4 expression is regulated by miR-126a-5p in abdominal aortic aneurysms. The aim of this study was to investigate whether miR-126a-5p/ADAMTS-4 plays a role in influenza-virus-induced lung injury. Lung fibroblasts were infected with H1N1 influenza virus to detect changes in miR-126a-5p and ADAMTS-4 expression, and cell viability was measured by CCK-8 assay. Inflammatory factors and matrix protease levels were examined using ELISA kits, and cell apoptosis was assessed by measuring the levels of apoptosis-related proteins. A dual luciferase assay was used to verify the regulatory relationship between miR-126a-5p and ADAMTS-4. H1N1 influenza virus reduced fibroblast viability, inhibited miR-126a-5p expression, and promoted ADAMTS-4 expression. Overexpression of miR-126a-5p attenuated the cellular inflammatory response, apoptosis, matrix protease secretion, and virus replication. Luciferase reporter assays revealed that miR-126a-5p inhibited ADAMTS-4 expression by targeting ADAMTS-4 mRNA. Further experiments showed that overexpression of ADAMTS-4 significantly reversed the inhibitory effects of miR-126a-5p on fibroblast inflammation, apoptosis, matrix protease secretion, and virus replication. Upregulation of miR-126a-5p inhibits H1N1-induced apoptosis, inflammatory factors, and matrix protease secretion, as well as virus replication in lung fibroblasts.
Collapse
Affiliation(s)
- Fang Fang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Borong Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Xiang Lu
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Li Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Xiangjun Chen
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Guanghui Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China
| | - Yifan Yang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, Hangtian Avenue East Section, Chang'an District, Xi'an, Shaanxi, 710100, China.
| |
Collapse
|
62
|
Xia LY, Wang XF, Cui XM, Zhang YM, Wang ZF, Li ET, Fan CF, Song K, Li YG, Ye RZ, Li FX, Zhu DY, Zhang J, Shi ZZ, Zhang MZ, Li LJ, Shen SJ, Jin S, Zhang YW, Fu WG, Zhao L, Wang WH, Wang TC, Wang YC, Jiang JF, Hu YL, Jia N, Gao YW, Cao WC. Characterization of a pangolin SARS-CoV-2-related virus isolate that uses the human ACE2 receptor. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1502-1513. [PMID: 38478297 DOI: 10.1007/s11427-023-2484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 06/19/2024]
Abstract
Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.
Collapse
Affiliation(s)
- Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xue-Feng Wang
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China
| | - Yi-Ming Zhang
- Changchun Veterinary Research Institute, Changchun, 130122, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhen-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - En-Tao Li
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Chang-Fa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Ke Song
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuan-Guo Li
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Fang-Xu Li
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | | | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shi-Jing Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Song Jin
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Ya-Wei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wei-Guang Fu
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Wen-Hao Wang
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - Tie-Cheng Wang
- Changchun Veterinary Research Institute, Changchun, 130122, China
| | - You-Chun Wang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China
| | - Yan-Ling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, 530020, China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| | - Yu-Wei Gao
- Changchun Veterinary Research Institute, Changchun, 130122, China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
63
|
Trinh TTH, Do VT, Do VK, Vu-Khac H. Isolation and characterization of porcine parvovirus in Vietnam. Vet World 2024; 17:1530-1537. [PMID: 39185042 PMCID: PMC11344110 DOI: 10.14202/vetworld.2024.1530-1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/20/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim No study has successfully isolated parvovirus in Vietnam. This study aimed to isolate and characterize parvovirus strains indigenous in Vietnam for vaccine development against porcine parvovirus (PPV). Materials and Methods We collected serum and stillbirth samples from six provinces in Vietnam, and PPV-positive samples were identified using a polymerase chain reaction. Parvovirus isolation was attempted using the PK-15 cells maintained in a minimum essential medium supplemented with 5% fetal bovine serum and 1% antibiotics (Penicillin-streptomycin). The cells were incubated at 37°C with 5% CO2. Virulence experiments were conducted on white primiparous sows to evaluate the virulence of the PPV strain through hemagglutination inhibition (HI) titers and fetus lesions. Results We analyzed 360 serum and 32 stillbirth (liver and lungs) samples, revealing that 32/392 (8.2% ) of them were PPV-positive, all belonging to PPV1. Thirty-two PPV-positive samples were successfully isolated, with 100% identity as VP2 sequences. The phylogenetic tree revealed a close relationship with the Kresse strain (isolated from Canada in 1996) and the PPV1-0225-L-SD strain (isolated from China in 2022). Two PPV isolates (VC5 from Dongnai and TX7 from Thanhhoa) that exhibited high 50% tissue culture infectious dose titers were selected for the virulence experiment. On day 21, after injection, the HI antibody titers ranged from 10log2 to 12log2. On day 90, 71%-80% of fetuses were mummified. Conclusion This study showed that the PPV infection rate in Vietnam was 8.2%. Thirty-two isolates belonged to PPV1. Two PPV strains, VC5 and TX7, were determined to be highly virulent by the results of HI titers after injection into gilts. VC5 and TX7 were determined to be good candidates for further research on PPV vaccines.
Collapse
Affiliation(s)
- T. T. Hang Trinh
- Department of Biotechnology, Institute of Veterinary Research and Development of Central Vietnam, Nha Trang City, Vietnam
| | - V. Tan Do
- Department of Virology, Institute of Veterinary Research and Development of Central Vietnam, Nha Trang City, Vietnam
| | - V. Khien Do
- Department of Virology, Institute of Veterinary Research and Development of Central Vietnam, Nha Trang City, Vietnam
| | - Hung Vu-Khac
- Department of Biotechnology, Institute of Veterinary Research and Development of Central Vietnam, Nha Trang City, Vietnam
| |
Collapse
|
64
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
65
|
Ferrucci V, Miceli M, Pagliuca C, Bianco O, Castaldo L, Izzo L, Cozzolino M, Zannella C, Oglio F, Polcaro A, Randazzo A, Colicchio R, Galdiero M, Berni Canani R, Salvatore P, Zollo M. Modulation of innate immunity related genes resulting in prophylactic antimicrobial and antiviral properties. J Transl Med 2024; 22:574. [PMID: 38886736 PMCID: PMC11184722 DOI: 10.1186/s12967-024-05378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The innate immunity acts during the early phases of infection and its failure in response to a multilayer network of co-infections is cause of immune system dysregulation. Epidemiological SARS-CoV-2 infections data, show that Influenza Virus (FLU-A-B-C) and Respiratory Syncytial Virus (RSV) are co-habiting those respiratory traits. These viruses, especially in children (mostly affected by 'multi-system inflammatory syndrome in children' [MIS-C] and the winter pandemic FLU), in the aged population, and in 'fragile' patients are causing alteration in immune response. Then, bacterial and fungal pathogens are also co-habiting the upper respiratory traits (e.g., Staphylococcus aureus and Candida albicans), thus contributing to morbidity in those COVID-19 affected patients. METHODS Liquid chromatography coupled with high-resolution mass spectrometry using the quadrupole orbital ion trap analyser (i.e., UHPLC-Q-Orbitrap HRMS) was adopted to measure the polyphenols content of a new nutraceutical formula (Solution-3). Viral infections with SARS-CoV-2 (EG.5), FLU-A and RSV-A viruses (as performed in BLS3 authorised laboratory) and real time RT-PCR (qPCR) assay were used to test the antiviral action of the nutraceutical formula. Dilution susceptibility tests have been used to estimate the minimum inhibitory and bactericidal concentration (MIC and MBC, respectively) of Solution-3 on a variety of microorganisms belonging to Gram positive/ negative bacteria and fungi. Transcriptomic data analyses and functional genomics (i.e., RNAseq and data mining), coupled to qPCR and ELISA assays have been used to investigate the mechanisms of action of the nutraceutical formula on those processes involved in innate immune response. RESULTS Here, we have tested the combination of natural products containing higher amounts of polyphenols (i.e., propolis, Verbascum thapsus L., and Thymus vulgaris L.), together with the inorganic long chain polyphosphates 'polyPs' with antiviral, antibacterial, and antifungal behaviours, against SARS-CoV-2, FLU-A, RSV-A, Gram positive/ negative bacteria and fungi (i.e., Candida albicans). These components synergistically exert an immunomodulatory action by enhancing those processes involved in innate immune response (e.g., cytokines: IFNγ, TNFα, IL-10, IL-6/12; chemokines: CXCL1; antimicrobial peptides: HBD-2, LL-37; complement system: C3). CONCLUSION The prophylactic antimicrobial success of this nutraceutical formula against SARS-CoV-2, FLU-A and RSV-A viruses, together with the common bacteria and fungi co-infections as present in human oral cavity, is expected to be valuable.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Orazio Bianco
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Luana Izzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Marica Cozzolino
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Franca Oglio
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Antonio Polcaro
- Polcaro Fitopreparazioni S.R.L, Via Sant Agnello, 9 D; 80030, Roccarainola, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples 'Federico II', Via Domenico Montesano 49, 80131, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Roberto Berni Canani
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
- Dipartimento Di Scienze Mediche Traslazionali, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples 'Federico II', Via Sergio Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate 'Franco Salvatore', Via Gaetano Salvatore 486, 80145, Naples, Italy.
- Elysium Cell Bio Ita, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
66
|
Ripa I, Andreu S, Josa-Prado F, Fernández Gómez B, de Castro F, Arribas M, Bello-Morales R, López-Guerrero JA. Herpes Simplex Virus type 1 inhibits autophagy in glial cells but requires ATG5 for the success of viral replication. Front Microbiol 2024; 15:1411655. [PMID: 38915300 PMCID: PMC11194409 DOI: 10.3389/fmicb.2024.1411655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) 1 is a neurotropic virus that has been associated with neurodegenerative disorders. The dysregulation of autophagy by HSV-1 has been proposed as a potential cause of neurodegeneration. While studies have extensively tackled the interaction between autophagy and HSV-1 in neurons, research in glial cells is currently limited. Our studies demonstrate that HSV-1 inhibits, but not completely blocks, the formation of autophagosomes in human oligodendroglioma- and astrocytoma- derived cell lines. These findings have been confirmed in murine oligodendrocyte precursor cells (OPCs). Finally, this study investigates the impact of autophagy on HSV-1 infection in glial cells. While the lack of basal autophagy in LC3B knockout glial cells does not have a significant effect on viral infection, cells without the autophagy-related protein ATG5 exhibit reduced viral production. The absence of ATG5 leads to a decrease in the transcription and replication of viral genes, as well as a delay in the initial stages of the formation of HSV-1 replication compartments. These findings indicate that while autophagy may not play a significant role in antiviral defense in glial cells, HSV-1 may be inhibiting autophagy to exploit non-canonical functions of certain components of the autophagic machinery, such as ATG5, to benefit its lifecycle.
Collapse
Affiliation(s)
- Inés Ripa
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Fernando Josa-Prado
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | | | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | - María Arribas
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
67
|
Xiong T, Xie H, Li L, Liang S, Huang M, Yu C, Zhuang T, Liang X, Liu D, Chen R. Prevalence, Genotype Diversity, and Distinct Pathogenicity of 205 Gammacoronavirus Infectious Bronchitis Virus Isolates in China during 2019-2023. Viruses 2024; 16:930. [PMID: 38932222 PMCID: PMC11209364 DOI: 10.3390/v16060930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious disease in chickens and seriously endangers the poultry industry. The emergence and co-circulation of diverse IBV serotypes and genotypes with distinct pathogenicity worldwide pose a serious challenge to the development of effective intervention measures. In this study, we report the epidemic trends of IBV in China from 2019 to 2023 and a comparative analysis on the antigenic characteristics and pathogenicity of isolates among major prevalent lineages. Phylogenetic and recombination analyses based on the nucleotide sequences of the spike (S) 1 gene clustered a total of 205 isolates into twelve distinct lineages, with GI-19 as a predominant lineage (61.77 ± 4.56%) exhibiting an overall increasing trend over the past five years, and demonstrated that a majority of the variants were derived from gene recombination events. Further characterization of the growth and pathogenic properties of six representative isolates from different lineages classified four out of the six isolates as nephropathogenic types with mortality rates in one-day-old SPF chickens varying from 20-60%, one as a respiratory type with weak virulence, and one as a naturally occurring avirulent strain. Taken together, our findings illuminate the epidemic trends, prevalence, recombination, and pathogenicity of current IBV strains in China, providing key information for further strengthening the surveillance and pathogenicity studies of IBV.
Collapse
Affiliation(s)
- Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Hangao Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Lin Li
- Key Laboratory of Manufacture Technology of Veterinary Bioproducts, Ministry of Agriculture and Rural Affairs, Zhaoqing 526238, China
| | - Shijin Liang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Meizhen Huang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Chuanzhao Yu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Tingting Zhuang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Xuejing Liang
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Dingxiang Liu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|
68
|
McNabb L, Durr PA, Lunt R, Barr J, Adams TE, Pearce L, Poon LLM, Perera RAM, Demissie GF, Bowden TR. Development and preliminary validation of a MERS-CoV ELISA for serological testing of camels and alpacas. J Virol Methods 2024; 327:114923. [PMID: 38561124 DOI: 10.1016/j.jviromet.2024.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
This study describes the development and preliminary validation of a new serological assay using MERS-CoV S1 protein in an indirect enzyme-linked immunosorbent assay (ELISA) format. This assay has the advantage of being able to test MERS-CoV serum samples in a PC2 laboratory without the need for a high-level biocontainment laboratory (PC3 or PC4), which requires highly trained and skilled staff and a high level of resources and equipment. Furthermore, this MERS-CoV S1 ELISA enables a larger number of samples to be tested quickly, with results obtained in approximately five hours. The MERS-CoV S1 ELISA demonstrated high analytical specificity, with no cross-reactivity observed in serum of animals infected with other viruses, including different coronaviruses. We tested 166 positive and 40 negative camel serum samples and have estimated the diagnostic sensitivity (DSe) to be 99.4% (95% CI: 96.7 - 100.0%) and diagnostic specificity (DSp) to be 100% (95% CI: 97.2%-100.0%) relative to the assigned serology results (ppNT and VNT) using a S/P ratio cut-off value of >0.58. The findings of this study showed that our MERS-CoV S1 ELISA was more sensitive than the commercial EUROIMMUN ELISA (Se 99.4% vs 84.9%) and comparable to the ppNT assay, and therefore could be used as a diagnostic aid in countries in the Middle East where MERS-CoV is endemic in dromedary camels. The assay reagents and protocol were easily adapted and transferred from an Australian laboratory to a laboratory in the University of Hong Kong. Thus, the results described here show that the MERS-CoV S1 ELISA represents a cheap, rapid, robust, and reliable assay to support surveillance of MERS-CoV in camels in endemic regions.
Collapse
Affiliation(s)
- Leanne McNabb
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia.
| | - Peter A Durr
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia
| | - Ross Lunt
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia
| | - Jennifer Barr
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia
| | | | | | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Ranawaka Ap M Perera
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Getnet Fekadu Demissie
- College of Veterinary Medicine, Department of Veterinary Epidemiology, Microbiology and Public Health, Haramaya University, Haramaya, Ethiopia
| | - Timothy R Bowden
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, Victoria, Australia
| |
Collapse
|
69
|
Nguyen W, Gyawali N, Stewart R, Tang B, Cox AL, Yan K, Larcher T, Bishop CR, Wood N, Devine GJ, Suhrbier A, Rawle DJ. Characterisation of a Japanese Encephalitis virus genotype 4 isolate from the 2022 Australian outbreak. NPJ VIRUSES 2024; 2:15. [PMID: 40295675 PMCID: PMC11721158 DOI: 10.1038/s44298-024-00025-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/30/2025]
Abstract
Human infections with the Japanese encephalitis virus (JEV) are a leading cause of viral encephalitis. An unprecedented outbreak of JEV genotype 4 was recently reported in Australia, with an isolate (JEVNSW/22) obtained from a stillborn piglet brain. Herein we conduct a thorough characterization of JEVNSW/22 in three different mouse strains and in human cortical brain organoids (hBOs), and determined the ability of JEVNSW/22 to be neutralized by sera from humans vaccinated with IMOJEV. JEVNSW/22 was less virulent than JEVFU (genotype 2) and JEVNakayama (genotype 3) in C57BL/6J mice and in interferon regulatory factor 7 deficient (Irf7-/-) mice, with infection of wild-type and knockout murine embryonic fibroblasts indicating JEVNSW/22 is more sensitive to type I interferon responses. Irf7-/- mice provide a new model for JEVNSW/22, showing higher viremia levels compared to C57BL/6J mice, and allowing for lethal neuroinvasive infection. All JEV strains were universally lethal in Ifnar-/- mice by day 3, with histological signs of brain hemorrhage, but no other lesions. There were no indications of brain infection in Ifnar-/- mice, with viral protein detected in blood vessels, but not neurons. All JEV isolates showed robust cytopathic infection of human cortical brain organoids, albeit lower for JEVNSW/22. IMOJEV vaccination in humans induced antibodies capable of neutralizing JEVNSW/22, although, for all JEV strains, cross-neutralization titers declined with increasing divergence from IMOJEV in the envelope amino acid sequences. Overall, our study establishes JEVNSW/22 mouse and hBO models of infection, allowing for possible lethal neuroinvasive infection in mice that was rarer than for other JEV genotypes. JEV vaccination regimens may afford protection against this newly emerged JEV genotype 4 strain, although neutralizing antibody responses are sub-optimal.
Collapse
Affiliation(s)
- Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Narayan Gyawali
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Romal Stewart
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Abigail L Cox
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | | | - Cameron R Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
| | - Gregor J Devine
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
- GVN Center of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, 4029 and 4072, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
70
|
Cui Z, Zhang J, Wang J, Liu J, Sun P, Li J, Li G, Sun Y, Ying J, Li K, Zhao Z, Yuan H, Bai X, Ma X, Li P, Fu Y, Bao H, Li D, Zhang Q, Liu Z, Cao Y, Lu Z. Caffeic acid phenethyl ester: an effective antiviral agent against porcine reproductive and Respiratory Syndrome Virus. Antiviral Res 2024; 225:105868. [PMID: 38490343 DOI: 10.1016/j.antiviral.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) presents a formidable viral challenge in swine husbandry. Confronting the constraints of existing veterinary pharmaceuticals and vaccines, this investigation centers on Caffeic Acid Phenethyl Ester (CAPE) as a prospective clinical suppressant for the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). The study adopts an integrated methodology to evaluate CAPE's antiviral attributes. This encompasses a dual-phase analysis of CAPE's interaction with PRRSV, both in vitro and in vivo, and an examination of its influence on viral replication. Varied dosages of CAPE were subjected to empirical testing in animal models to quantify its efficacy in combating PRRSV infections. The findings reveal a pronounced antiviral potency, notably in prophylactic scenarios. As a predominant component of propolis, CAPE stands out as a promising candidate for clinical suppression, showing exceptional effectiveness in pre-exposure prophylaxis regimes. This highlights the potential of CAPE in spearheading cutting-edge strategies for the management of future PRRSV outbreaks.
Collapse
Affiliation(s)
- Zhanding Cui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jinlong Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinlong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jiaoyang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Guoxiu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Ying Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China; College of Veterinary Medicine, South China Agricultural University, No483 Wushan Road, TianheDistrict, Guangzhou, 510642, China
| | - Juanbin Ying
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
71
|
Jeong GU, Hwang I, Lee W, Choi JH, Yoon GY, Kim HS, Yang JS, Kim KC, Lee JY, Kim SJ, Kwon YC, Kim KD. Generation of a lethal mouse model expressing human ACE2 and TMPRSS2 for SARS-CoV-2 infection and pathogenesis. Exp Mol Med 2024; 56:1221-1229. [PMID: 38816566 PMCID: PMC11148094 DOI: 10.1038/s12276-024-01197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 06/01/2024] Open
Abstract
Mouse models expressing human ACE2 for coronavirus disease 2019 have been frequently used to understand its pathogenesis and develop therapeutic strategies against SARS-CoV-2. Given that human TMPRSS2 supports viral entry, replication, and pathogenesis, we established a double-transgenic mouse model expressing both human ACE2 and TMPRSS2 for SARS-CoV-2 infection. Co-overexpression of both genes increased viral infectivity in vitro and in vivo. Double-transgenic mice showed significant body weight loss, clinical disease symptoms, acute lung injury, lung inflammation, and lethality in response to viral infection, indicating that they were highly susceptible to SARS-CoV-2. Pretreatment with the TMPRSS2 inhibitor, nafamostat, effectively reduced virus-induced weight loss, viral replication, and mortality in the double-transgenic mice. Moreover, the susceptibility and differential pathogenesis of SARS-CoV-2 variants were demonstrated in this animal model. Together, our results demonstrate that double-transgenic mice could provide a highly susceptible mouse model for viral infection to understand SARS-CoV-2 pathogenesis and evaluate antiviral therapeutics against coronavirus disease 2019.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Division of Infectious Diseases, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Insu Hwang
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Wooseong Lee
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ji Hyun Choi
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gun Young Yoon
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hae Soo Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jeong-Sun Yang
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyung-Chang Kim
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seong-Jun Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Young-Chan Kwon
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
- Medical Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyun-Do Kim
- Center for Infectious Disease Vaccine and Diagnosis Innovation (CEVI), Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| |
Collapse
|
72
|
Siniavin AE, Gushchin VA, Shastina NS, Darnotuk ES, Luyksaar SI, Russu LI, Inshakova AM, Shidlovskaya EV, Vasina DV, Kuznetsova NA, Savina DM, Zorkov ID, Dolzhikova IV, Sheremet AB, Logunov DY, Zigangirova NA, Gintsburg AL. New conjugates based on N4-hydroxycytidine with more potent antiviral efficacy in vitro than EIDD-2801 against SARS-CoV-2 and other human coronaviruses. Antiviral Res 2024; 225:105871. [PMID: 38555022 DOI: 10.1016/j.antiviral.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The spread of COVID-19 continues due to genetic variation in SARS-CoV-2. Highly mutated variants of SARS-CoV-2 have an increased transmissibility and immune evasion. Due to the emergence of various new variants of the virus, there is an urgent need to develop broadly effective specific drugs for therapeutic strategies for the prevention and treatment of COVID-19. Molnupiravir (EIDD-2801, MK-4482), is an orally bioavailable ribonucleoside analogue of β-D-N4-hydroxycytidine (NHC), has demonstrated efficacy against SARS-CoV-2 and was recently approved for COVID-19 treatment. To improve antiviral potency of NHC, we developed a panel of NHC conjugates with lipophilic vectors and ester derivatives with amino- and carboxylic-acids. Most of the synthesized compounds had comparable or higher (2-20 times) antiviral activity than EIDD-2801, against different lineages of SARS-CoV-2, MERS-CoV, seasonal coronaviruses OC43 and 229E, as well as bovine coronavirus. For further studies, we assessed the most promising compound in terms of activity, simplicity and cost of synthesis - NHC conjugate with phenylpropionic acid (SN_9). SN_9 has shown high efficacy in prophylactic, therapeutic and transmission models of COVID-19 infection in hamsters. Importantly, SN_9 profoundly inhibited virus replication in the lower respiratory tract of hamsters and transgenic mice infected with the Omicron sublineages XBB.1.9.1, XBB.1.16 and EG.5.1.1. These data indicate that SN_9 represents a promising antiviral drug candidate for COVID-19 treatment, and NHC modification strategies deserve further investigation as an approach to develop prodrugs against various coronaviruses.
Collapse
Affiliation(s)
- Andrei E Siniavin
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia; Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
| | - Vladimir A Gushchin
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia; Department of Medical Genetics, Federal State Autonomous Educational Institution of Higher Education I M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991, Moscow, Russia; Department of Virology, Faculty of Biology Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Natal'ya S Shastina
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia; Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571, Moscow, Russia
| | - Elizaveta S Darnotuk
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia; Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571, Moscow, Russia
| | - Sergey I Luyksaar
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Leonid I Russu
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Anna M Inshakova
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia; Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571, Moscow, Russia
| | - Elena V Shidlovskaya
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Daria V Vasina
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Nadezhda A Kuznetsova
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Daria M Savina
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Ilya D Zorkov
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Inna V Dolzhikova
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Anna B Sheremet
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Denis Y Logunov
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Nailya A Zigangirova
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia
| | - Alexander L Gintsburg
- Department of Epidemiology, Federal State Budget Institution "National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N. F. Gamaleya" of the Ministry of Health of the Russian Federation, 123098, Moscow, Russia; Department of Infectology and Virology, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov, First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| |
Collapse
|
73
|
Albert MC, Uranga-Murillo I, Arias M, De Miguel D, Peña N, Montinaro A, Varanda AB, Theobald SJ, Areso I, Saggau J, Koch M, Liccardi G, Peltzer N, Rybniker J, Hurtado-Guerrero R, Merino P, Monzón M, Badiola JJ, Reindl-Schwaighofer R, Sanz-Pamplona R, Cebollada-Solanas A, Megyesfalvi Z, Dome B, Secrier M, Hartmann B, Bergmann M, Pardo J, Walczak H. Identification of FasL as a crucial host factor driving COVID-19 pathology and lethality. Cell Death Differ 2024; 31:544-557. [PMID: 38514848 PMCID: PMC11093991 DOI: 10.1038/s41418-024-01278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.
Collapse
Affiliation(s)
- Marie-Christine Albert
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
| | - Iratxe Uranga-Murillo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Maykel Arias
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Diego De Miguel
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
| | - Natacha Peña
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
| | - Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Ana Beatriz Varanda
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, 50931, Germany
| | - Itziar Areso
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Julia Saggau
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
| | - Manuel Koch
- Institue for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, Cologne, 50931, Germany
| | - Gianmaria Liccardi
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
| | - Nieves Peltzer
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- Department of Translational Genomics, University of Cologne, Cologne, 50931, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, 50931, Germany
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), University of Zaragoza, Zaragoza, 50018, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, 2200, Denmark
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), University of Zaragoza, Zaragoza, 50018, Spain
| | - Marta Monzón
- Research Centre for Encephalopaties and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, Zaragoza, 50013, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, Zaragoza, 50009, Spain
| | - Juan J Badiola
- Research Centre for Encephalopaties and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, Zaragoza, 50013, Spain
| | | | - Rebeca Sanz-Pamplona
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Fundación ARAID, Zaragoza, 50018, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Alberto Cebollada-Solanas
- Aragon Biomedical Research Center (CIBA), Instituto Aragonés de Ciencias de la Salud (IACS), Unidad de Biocomputación, Zaragoza, 50018, Spain
| | - Zsolt Megyesfalvi
- Deparment of Thoracic Surgery, Medical University of Vienna, Vienna, 1090, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, 1122, Hungary
- National Koranyi Institute of Pulmonology, Budapest, 1121, Hungary
| | - Balazs Dome
- Deparment of Thoracic Surgery, Medical University of Vienna, Vienna, 1090, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, 1122, Hungary
- National Koranyi Institute of Pulmonology, Budapest, 1121, Hungary
- Department of Translational Medicine, Lund University, Lund, SE-22100, Sweden
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - Boris Hartmann
- Virology Group, Institute for Veterinary Disease Control at AGES, Moedling, 2340, Austria
| | - Michael Bergmann
- Div. of Visceral Surgery, Dept. of General Surgery, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, 1090, Austria
| | - Julián Pardo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Henning Walczak
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany.
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany.
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
74
|
Merle-Nguyen L, Ando-Grard O, Bourgon C, St Albin A, Jacquelin J, Klonjkowski B, Le Poder S, Meunier N. Early corticosteroid treatment enhances recovery from SARS-CoV-2 induced loss of smell in hamster. Brain Behav Immun 2024; 118:78-89. [PMID: 38367845 DOI: 10.1016/j.bbi.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
Among the numerous long COVID symptoms, olfactory dysfunction persists in ∼10 % of patients suffering from SARS-CoV-2 induced anosmia. Among the few potential therapies, corticoid treatment has been used for its anti-inflammatory effect with mixed success in patients. In this study, we explored its impact using hamster as an animal model. SARS-CoV-2 infected hamsters lose their smell abilities and this loss is correlated with damage of the olfactory epithelium and persistent presence of innate immunity cells. We started a dexamethasone treatment 2 days post infection, when olfaction was already impacted, until 11 days post infection when it started to recover. We observed an improvement of olfactory capacities in the animals treated with corticoid compared to those treated with vehicle. This recovery was not related to differences in the remaining damage to the olfactory epithelium, which was similar in both groups. This improvement was however correlated with a reduced inflammation in the olfactory epithelium with a local increase of the mature olfactory neuron population. Surprisingly, at 11 days post infection, we observed an increased and disorganized presence of immature olfactory neurons, especially in persistent inflammatory zones of the epithelium. This unusual population of immature olfactory neurons coincided with a strong increase of olfactory epithelium proliferation in both groups. Our results indicate that persistent inflammation of the olfactory epithelium following SARS-CoV-2 infection may alter the extent and speed of regeneration of the olfactory neuron population, and that corticoid treatment is effective to limit inflammation and improve olfaction recovery following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laetitia Merle-Nguyen
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ophélie Ando-Grard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Bourgon
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Audrey St Albin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Juliette Jacquelin
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bernard Klonjkowski
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704 Paris, France
| | - Sophie Le Poder
- UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, 94704 Paris, France
| | - Nicolas Meunier
- Unité de Virologie et Immunologie Moléculaires (UR892), INRAE, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
75
|
Cevallos C, Jarmoluk P, Sviercz F, López CAM, Freiberger RN, Delpino MV, Quarleri J. Bystander Effects and Profibrotic Interactions in Hepatic Stellate Cells during HIV and HCV Coinfection. J Immunol Res 2024; 2024:6343757. [PMID: 38715844 PMCID: PMC11074826 DOI: 10.1155/2024/6343757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2025] Open
Abstract
This study aims to explore the influence of coinfection with HCV and HIV on hepatic fibrosis. A coculture system was set up to actively replicate both viruses, incorporating CD4 T lymphocytes (Jurkat), hepatic stellate cells (LX-2), and hepatocytes (Huh7.5). LX-2 cells' susceptibility to HIV infection was assessed through measurements of HIV receptor expression, exposure to cell-free virus, and cell-to-cell contact with HIV-infected Jurkat cells. The study evaluated profibrotic parameters, including programed cell death, ROS imbalance, cytokines (IL-6, TGF-β, and TNF-α), and extracellular matrix components (collagen, α-SMA, and MMP-9). The impact of HCV infection on LX-2/HIV-Jurkat was examined using soluble factors released from HCV-infected hepatocytes. Despite LX-2 cells being nonsusceptible to direct HIV infection, bystander effects were observed, leading to increased oxidative stress and dysregulated profibrotic cytokine release. Coculture with HIV-infected Jurkat cells intensified hepatic fibrosis, redox imbalance, expression of profibrotic cytokines, and extracellular matrix production. Conversely, HCV-infected Huh7.5 cells exhibited elevated profibrotic gene transcriptions but without measurable effects on the LX-2/HIV-Jurkat coculture. This study highlights how HIV-infected lymphocytes worsen hepatic fibrosis during HCV/HIV coinfection. They increase oxidative stress, profibrotic cytokine levels, and extracellular matrix production in hepatic stellate cells through direct contact and soluble factors. These insights offer valuable potential therapies for coinfected individuals.
Collapse
Affiliation(s)
- Cintia Cevallos
- Consejo de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Paraguay, 2155, piso 11, C1121 ABG, Buenos Aires, Argentina
| | - Patricio Jarmoluk
- Consejo de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Paraguay, 2155, piso 11, C1121 ABG, Buenos Aires, Argentina
| | - Franco Sviercz
- Consejo de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Paraguay, 2155, piso 11, C1121 ABG, Buenos Aires, Argentina
| | - Cinthya A. M. López
- Consejo de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Paraguay, 2155, piso 11, C1121 ABG, Buenos Aires, Argentina
| | - Rosa N. Freiberger
- Consejo de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Paraguay, 2155, piso 11, C1121 ABG, Buenos Aires, Argentina
| | - M. Victoria Delpino
- Consejo de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Paraguay, 2155, piso 11, C1121 ABG, Buenos Aires, Argentina
| | - Jorge Quarleri
- Consejo de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Paraguay, 2155, piso 11, C1121 ABG, Buenos Aires, Argentina
| |
Collapse
|
76
|
Zhi Y, Zhao X, Liu Z, Shen G, Zhang T, Zhang T, Hu G. Oxymatrine Modulation of TLR3 Signaling: A Dual-Action Mechanism for H9N2 Avian Influenza Virus Defense and Immune Regulation. Molecules 2024; 29:1945. [PMID: 38731436 PMCID: PMC11085666 DOI: 10.3390/molecules29091945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. We focused on how this natural compound can help in stopping the virus from spreading in cells that line the lungs of birds and potentially humans. Our findings show that Oxymatrine can both directly block the virus and boost the body's immune response against it. This dual-action mechanism is particularly interesting because it indicates that Oxymatrine might be a useful tool in developing new ways to prevent and treat this type of bird flu. Understanding how Oxymatrine works against the H9N2 virus could lead to safer and more natural ways to combat viral infections in animals and humans, contributing to the health and well-being of society. The H9N2 Avian Influenza Virus (AIV) is a persistent health threat because of its rapid mutation rate and the limited efficacy of vaccines, underscoring the urgent need for innovative therapies. This study investigated the H9N2 AIV antiviral properties of Oxymatrine (OMT), a compound derived from traditional Chinese medicine, particularly focusing on its interaction with pulmonary microvascular endothelial cells (PMVECs). Employing an array of in vitro assays, including 50% tissue culture infectious dose, Cell Counting Kit-8, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot, we systematically elucidated the multifaceted effects of OMT. OMT dose-dependently inhibited critical antiviral proteins (PKR and Mx1) and modulated the expression of type I interferons and key cytokines (IFN-α, IFN-β, IL-6, and TNF-α), thereby affecting TLR3 signaling and its downstream elements (NF-κB and IRF-3). OMT's antiviral efficacy extended beyond TLR3-mediated responses, suggesting its potential as a versatile antiviral agent. This study not only contributes to the growing body of research on the use of natural compounds as antiviral agents but also underscores the importance of further investigating the broader application of OMT for combating viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ge Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (Y.Z.); (X.Z.); (Z.L.); (G.S.); (T.Z.); (T.Z.)
| |
Collapse
|
77
|
Bykonia EN, Kleymenov DA, Gushchin VA, Siniavin AE, Mazunina EP, Kozlova SR, Zolotar AN, Usachev EV, Kuznetsova NA, Shidlovskaya EV, Pochtovyi AA, Kustova DD, Ivanov IA, Dmitriev SE, Ivanov RA, Logunov DY, Gintsburg AL. Major Role of S-Glycoprotein in Providing Immunogenicity and Protective Immunity in mRNA Lipid Nanoparticle Vaccines Based on SARS-CoV-2 Structural Proteins. Vaccines (Basel) 2024; 12:379. [PMID: 38675761 PMCID: PMC11053793 DOI: 10.3390/vaccines12040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
SARS-CoV-2 variants have evolved over time in recent years, demonstrating immune evasion of vaccine-induced neutralizing antibodies directed against the original S protein. Updated S-targeted vaccines provide a high level of protection against circulating variants of SARS-CoV-2, but this protection declines over time due to ongoing virus evolution. To achieve a broader protection, novel vaccine candidates involving additional antigens with low mutation rates are currently needed. Based on our recently studied mRNA lipid nanoparticle (mRNA-LNP) platform, we have generated mRNA-LNP encoding SARS-CoV-2 structural proteins M, N, S from different virus variants and studied their immunogenicity separately or in combination in vivo. As a result, all mRNA-LNP vaccine compositions encoding the S and N proteins induced excellent titers of RBD- and N-specific binding antibodies. The T cell responses were mainly specific CD4+ T cell lymphocytes producing IL-2 and TNF-alpha. mRNA-LNP encoding the M protein did not show a high immunogenicity. High neutralizing activity was detected in the sera of mice vaccinated with mRNA-LNP encoding S protein (alone or in combinations) against closely related strains, but was undetectable or significantly lower against an evolutionarily distant variant. Our data showed that the addition of mRNAs encoding S and M antigens to mRNA-N in the vaccine composition enhanced the immunogenicity of mRNA-N and induced a more robust immune response to the N protein. Based on our results, we suggested that the S protein plays a key role in enhancing the immune response to the N protein when they are both encoded in the mRNA-LNP vaccine.
Collapse
Affiliation(s)
- Evgeniia N. Bykonia
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Denis A. Kleymenov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Vladimir A. Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
- Department of Medical Genetics, Federal State Autonomous Educational Institution of Higher Education I M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
| | - Andrei E. Siniavin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Elena P. Mazunina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Sofia R. Kozlova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Anastasia N. Zolotar
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Evgeny V. Usachev
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Nadezhda A. Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Elena V. Shidlovskaya
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Andrei A. Pochtovyi
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
- Department of Medical Genetics, Federal State Autonomous Educational Institution of Higher Education I M Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
| | - Daria D. Kustova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Igor A. Ivanov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Sergey E. Dmitriev
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman A. Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia;
| | - Denis Y. Logunov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
| | - Alexander L. Gintsburg
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N. F. Gamaleya” of the Ministry of Health of the Russian Federation, Moscow 123098, Russia; (D.A.K.); (A.E.S.); (E.P.M.); (S.R.K.); (A.N.Z.); (E.V.U.); (N.A.K.); (E.V.S.); (A.A.P.); (D.D.K.); (I.A.I.); (S.E.D.); (D.Y.L.); (A.L.G.)
- Infectiology Department, I. M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
78
|
Rex EA, Seo D, Chappidi S, Pinkham C, Brito Oliveira S, Embry A, Heisler D, Liu Y, Munir M, Luger K, Alto NM, da Fonseca FG, Orchard R, Hancks DC, Gammon DB. FEAR antiviral response pathway is independent of interferons and countered by poxvirus proteins. Nat Microbiol 2024; 9:988-1006. [PMID: 38538832 PMCID: PMC11331548 DOI: 10.1038/s41564-024-01646-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
The human facilitates chromatin transcription (FACT) complex is a chromatin remodeller composed of human suppressor of Ty 16 homologue (hSpt16) and structure-specific recognition protein-1 subunits that regulates cellular gene expression. Whether FACT regulates host responses to infection remained unclear. We identify a FACT-mediated, interferon-independent, antiviral pathway that restricts poxvirus replication. Cell culture and bioinformatics approaches suggest that early viral gene expression triggers nuclear accumulation of SUMOylated hSpt16 subunits required for the expression of E26 transformation-specific sequence-1 (ETS-1)-a transcription factor that activates virus restriction programs. However, biochemical studies show that poxvirus-encoded A51R proteins block ETS-1 expression by outcompeting structure-specific recognition protein-1 binding to SUMOylated hSpt16 and by tethering SUMOylated hSpt16 to microtubules. Furthermore, A51R antagonism of FACT enhances poxvirus replication in human cells and virulence in mice. Finally, we show that FACT also restricts rhabdoviruses, flaviviruses and orthomyxoviruses, suggesting broad roles for FACT in antiviral immunity. Our study reveals the FACT-ETS-1 antiviral response (FEAR) pathway to be critical for eukaryotic antiviral immunity and describes a unique mechanism of viral immune evasion.
Collapse
Affiliation(s)
- Emily A Rex
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dahee Seo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sruthi Chappidi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chelsea Pinkham
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sabrynna Brito Oliveira
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Heisler
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Moiz Munir
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Orchard
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
79
|
Ribeiro de Carvalho G, Kudaka AM, Fares Sampar J, Alvares LE, Delarmelina C, Duarte MCT, Lona LMF. Quaternization of cassava starch and determination of antimicrobial activity against bacteria and coronavirus. Carbohydr Res 2024; 538:109098. [PMID: 38527408 DOI: 10.1016/j.carres.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
This study describes the novel development of quaternized cassava starch (Q-CS) with antimicrobial and antiviral properties, particularly effective against the MHV-3 coronavirus. The preparation of Q-CS involved the reaction of cassava starch (CS) with glycidyltrimethylammonium chloride (GTMAC) in an alkaline solution. Q-CS physicochemical properties were determined by FTIR, NMR, elemental analysis, zeta potential, TGA, and moisture sorption. FTIR and NMR spectra confirmed the introduction of cationic groups in the CS structure. The elemental analysis revealed a degree of substitution (DS) of 0.552 of the cationic reagent on the hydroxyl groups of CS. Furthermore, Q-CS exhibited a positive zeta potential value (+28.6 ± 0.60 mV) attributed to the high positive charge density shown by the quaternary ammonium groups. Q-CS demonstrated lower thermal stability and higher moisture sorption compared to CS. The antimicrobial activity of Q-CS was confirmed against Escherichia coli (MIC = 0.156 mg mL-1) and Staphylococcus aureus (MIC = 0.312 mg mL-1), along with a remarkable ability to inactivate 99% of MHV-3 coronavirus after only 1 min of direct contact. Additionally, Q-CS showed high cell viability (close to 100%) and minimal cytotoxicity effects, guaranteeing its safe use. Therefore, these findings indicate the potential use of Q-CS as a raw material for antiseptic biomaterials.
Collapse
Affiliation(s)
- Guilherme Ribeiro de Carvalho
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Amanda Miki Kudaka
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jórdan Fares Sampar
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lúcia Elvira Alvares
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Camila Delarmelina
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, University of Campinas (UNICAMP), Paulínia, SP, Brazil
| | - Marta Cristina Teixeira Duarte
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, University of Campinas (UNICAMP), Paulínia, SP, Brazil
| | - Liliane Maria Ferrareso Lona
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
80
|
Li W, Li W, Wu P, Jin W, Yuan L, Wang B, Li S, Kang X. Differential responses to avian pathogenic E. coli and the regulatory role of splenic miRNAs in APEC infection in Silkie chickens. Front Cell Infect Microbiol 2024; 14:1358216. [PMID: 38533381 PMCID: PMC10963617 DOI: 10.3389/fcimb.2024.1358216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a bacterial disease that harms the poultry industry worldwide, but its effect on Chinese Silkie has not been reported. Studies on whether there are differences in Silkie individual resistance to APEC and the regulatory role of spleen miRNAs lay the foundation for strategies against APEC. Therefore, 270 Silkie chickens were infected with the median lethal dose of an E. coli O1, O2, and O78 mixture. These chickens were divided into a susceptible group (Group S) and a recovery group (Group R) according to whether they survived 15 days postinfection (dpi). Moreover, 90 uninfected APEC Silkie served as controls (Group C). The splenic miRNA expression profile was examined to evaluate the role of miRNAs in the APEC infection response. Of the 270 Silkies infected with APEC, 144 were alive at 15 dpi. Cluster analysis and principal component analysis (PCA) of splenic miRNAs revealed that the four Group R replicates were clustered with the three Group C replicates and were far from the three Group S replicates. Differentially expressed (DE) miRNAs, especially gga-miR-146b-5p, play essential roles in immune and inflammatory responses to APEC. Functional enrichment analyses of DEmiRNAs suggested that suppression of immune system processes (biological processes) might contribute to susceptibility to APEC and that FoxO signaling pathways might be closely associated with the APEC infection response and postinfection repair. This study paves the way for screening anti-APEC Silkies and provides novel insights into the regulatory role of miRNAs in APEC infection.
Collapse
Affiliation(s)
- Wenqing Li
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Wanli Li
- The Shennong Laboratory, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Pinhui Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Jin
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lin Yuan
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingxun Wang
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shengli Li
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
81
|
Merz MP, Seal SV, Grova N, Mériaux S, Guebels P, Kanli G, Mommaerts E, Nicot N, Kaoma T, Keunen O, Nazarov PV, Turner JD. Early-life influenza A (H1N1) infection independently programs brain connectivity, HPA AXIS and tissue-specific gene expression profiles. Sci Rep 2024; 14:5898. [PMID: 38467724 PMCID: PMC10928197 DOI: 10.1038/s41598-024-56601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.
Collapse
Affiliation(s)
- Myriam P Merz
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365, Esch-Sur-Alzette, Luxembourg
- Central Biobank Charité, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Snehaa V Seal
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 Avenue de Université, L-4365, Esch-Sur-Alzette, Luxembourg
| | - Nathalie Grova
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
- Inserm U1256, NGERE, Nutrition-Génétique Et Exposition Aux Risques Environnementaux, Université de Lorraine, 54000, Nancy, France
| | - Sophie Mériaux
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
| | - Pauline Guebels
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg
| | - Georgia Kanli
- In Vivo Imaging Platform, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Translational Radiomics, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Elise Mommaerts
- LuxGen Genome Center, Laboratoire National de Santé, Luxembourg Institute of Health, 3555, Dudelange, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Laboratoire National de Santé, Luxembourg Institute of Health, 3555, Dudelange, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Olivier Keunen
- In Vivo Imaging Platform, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Translational Radiomics, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Bioinformatics Platform, Data Integration and Analysis Unit, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 Rue Henri Koch, 4354, Esch-Sur-Alzette, Luxembourg.
| |
Collapse
|
82
|
Marcos-Villar L, Perdiguero B, Anthiya S, Borrajo ML, Lou G, Franceschini L, Esteban I, Sánchez-Cordón PJ, Zamora C, Sorzano CÓS, Jordá L, Codó L, Gelpí JL, Sisteré-Oró M, Meyerhans A, Thielemans K, Martínez-Jiménez F, López-Bigas N, García F, Alonso MJ, Plana M, Esteban M, Gómez CE. Modulating the immune response to SARS-CoV-2 by different nanocarriers delivering an mRNA expressing trimeric RBD of the spike protein: COVARNA Consortium. NPJ Vaccines 2024; 9:53. [PMID: 38448450 PMCID: PMC10918104 DOI: 10.1038/s41541-024-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 03/08/2024] Open
Abstract
Vaccines based on mRNA technology have revolutionized the field. In fact, lipid nanoparticles (LNP) formulated with mRNA are the preferential vaccine platform used in the fight against SARS-CoV-2 infection, with wider application against other diseases. The high demand and property right protection of the most potent cationic/ionizable lipids used for LNP formulation of COVID-19 mRNA vaccines have promoted the design of alternative nanocarriers for nucleic acid delivery. In this study we have evaluated the immunogenicity and efficacy of different rationally designed lipid and polymeric-based nanoparticle prototypes against SARS-CoV-2 infection. An mRNA coding for a trimeric soluble form of the receptor binding domain (RBD) of the spike (S) protein from SARS-CoV-2 was encapsulated using different components to form nanoemulsions (NE), nanocapsules (NC) and lipid nanoparticles (LNP). The toxicity and biological activity of these prototypes were evaluated in cultured cells after transfection and in mice following homologous prime/boost immunization. Our findings reveal good levels of RBD protein expression with most of the formulations. In C57BL/6 mice immunized intramuscularly with two doses of formulated RBD-mRNA, the modified lipid nanoparticle (mLNP) and the classical lipid nanoparticle (LNP-1) were the most effective delivery nanocarriers at inducing binding and neutralizing antibodies against SARS-CoV-2. Both prototypes fully protected susceptible K18-hACE2 transgenic mice from morbidity and mortality following a SARS-CoV-2 challenge. These results highlight that modulation of mRNAs immunogenicity can be achieved by using alternative nanocarriers and support further assessment of mLNP and LNP-1 prototypes as delivery vehicles for mRNA vaccines.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gustavo Lou
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ignasi Esteban
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Pedro J Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Luis Jordá
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Laia Codó
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Josep L Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria López-Bigas
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - María J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Montserrat Plana
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
83
|
Agrawal A, Varshney R, Gattani A, Kirthika P, Gupta R, Kumar D, Singh RP, Singh P. SLAM (CD150) receptor homologous peptides block the peste des petits ruminants virus entry into B95a cells. Proteins 2024; 92:356-369. [PMID: 37881117 DOI: 10.1002/prot.26595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 μg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 μg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 μg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 μg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, Madhya Pradesh, India
| | - Rajat Varshney
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
- Division of Bacteriology and Mycology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | - Anil Gattani
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Biochemistry, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Perumalraja Kirthika
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohini Gupta
- Department of Veterinary Medicine, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | | | - Praveen Singh
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Biophysics Section, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| |
Collapse
|
84
|
Lee G, Kim A, Kang HR, Hwang JH, Park JH, Lee MJ, Kim B, Kim SM. Porcine interferon-α linked to the porcine IgG-Fc induces prolonged and broad-spectrum antiviral effects against foot-and-mouth disease virus. Antiviral Res 2024; 223:105836. [PMID: 38360296 DOI: 10.1016/j.antiviral.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.
Collapse
Affiliation(s)
- Gyeongmin Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Aro Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Hyo Rin Kang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Ji-Hyeon Hwang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Byounghan Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-City, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
85
|
Hadi N, Nazarian S, Rouhi S, Hosseini SE, Fathi J. Production of egg yolk antibody (IgY) against a chimeric protein containing IpaD, StxB, and TolC antigens from Shigella: An investigation of its prophylactic effects against Shiga toxin (Stx) and Shigella dysenteriae in vitro and in vivo. Heliyon 2024; 10:e26361. [PMID: 38404796 PMCID: PMC10884852 DOI: 10.1016/j.heliyon.2024.e26361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Shigella is a major problem in developing countries. Immunoglobulin Y (IgY) can be used for prophylaxis and neutralize bacteria. The aim of this study was to produce IgY against the chimeric protein containing IpaD, StxB, and TolC antigens from Shigella, investigate its prophylactic and neutralizing effects against Stx and Shigella dysenteriae. The nucleotide sequence corresponding to the chimeric protein was cloned into pET28a plasmid and expressed in E. coli BL21 (DE3). Protein expression was confirmed by SDS-PAGE and the recombinant protein was purified by Ni-NTA affinity chromatography. The 150 μg of chimeric protein was mixed with Freund's adjutant and injected into laying hens (Leghorn). IgY was purified using PEG6000 precipitation. Antibody titer in the serum and egg yolk was evaluated by ELISA. IgY challenge against 1,10 and 50 LD50 of Stx and S. dysenteriae was investigated. A 60.6 kDa recombinant protein was confirmed by SDS-PAGE. ELISA showed that the antibody titer was significantly increased. MTT assay [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] showed that at 16 μmol/L, IgY protected HeLa cells against Stx. Treatment of mice with 1000 and 1500 μg IgY leads to complete survival of the mice against 1LD50 toxin and 4000 μg of IgY led to complete survival against 1LD50, also 70% and 30% survival against 10 and 50 LD50S. dysenteriae. This study showed that IgY produced against Stx and Shigella virulence factors could cause high protective effects against bacteria and toxins.
Collapse
Affiliation(s)
- Nahal Hadi
- Department of Bacteriology and Virology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
| | - Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Seyed Edris Hosseini
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
86
|
Rockey NC, Le Sage V, Marr LC, Lakdawala SS. Seasonal influenza viruses decay more rapidly at intermediate humidity in droplets containing saliva compared to respiratory mucus. Appl Environ Microbiol 2024; 90:e0201023. [PMID: 38193683 PMCID: PMC10880610 DOI: 10.1128/aem.02010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Expulsions of virus-laden aerosols or droplets from the oral and nasal cavities of an infected host are an important source of onward respiratory virus transmission. However, the presence of infectious influenza virus in the oral cavity during infection has not been widely considered, and thus, little work has explored the environmental persistence of influenza virus in oral cavity expulsions. Using the ferret model, we detected infectious virus in the nasal and oral cavities, suggesting that the virus can be expelled into the environment from both anatomical sites. We also assessed the stability of two influenza A viruses (H1N1 and H3N2) in droplets of human saliva or respiratory mucus over a range of relative humidities. We observed that influenza virus infectivity decays rapidly in saliva droplets at intermediate relative humidity, while viruses in airway surface liquid droplets retain infectivity. Virus inactivation was not associated with bulk protein content, salt content, or droplet drying time. Instead, we found that saliva droplets exhibited distinct inactivation kinetics during the wet and dry phases at intermediate relative humidity, and droplet residue morphology may lead to the elevated first-order inactivation rate observed during the dry phase. Additionally, distinct differences in crystalline structure and nanobead localization were observed between saliva and airway surface liquid droplets. Together, our work demonstrates that different respiratory fluids exhibit unique virus persistence profiles and suggests that influenza viruses expelled from the oral cavity may contribute to virus transmission in low- and high-humidity environments.IMPORTANCEDetermining how long viruses persist in the environment is important for mitigating transmission risk. Expelled infectious droplets and aerosols are composed of respiratory fluids, including saliva and complex mucus mixtures, but how well influenza viruses survive in such fluids is largely unknown. Here, we find that infectious influenza virus is present in the oral cavity of infected ferrets, suggesting that saliva-containing expulsions can play a role in onward transmission. Additionally, influenza virus in droplets composed of saliva degrades more rapidly than virus within respiratory mucus. Droplet composition impacts the crystalline structure and virus localization in dried droplets. These results suggest that viruses from distinct sites in the respiratory tract could have variable persistence in the environment, which will impact viral transmission fitness.
Collapse
Affiliation(s)
- Nicole C. Rockey
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
87
|
Liu G, Zhang M, Wu B, Zhang C, Wang Y, Han X, Wang R, Li L, Wei Y, Sun Y, Cao X, Wang Y, Li Y, Li M, Zhao G, Ke Y, Guo Z, Yin Q, Sun Y. A highly susceptible hACE2-transgenic mouse model for SARS-CoV-2 research. Front Microbiol 2024; 15:1348405. [PMID: 38389533 PMCID: PMC10883650 DOI: 10.3389/fmicb.2024.1348405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Several animal models have been used to assist the development of vaccines and therapeutics since the COVID-19 outbreak. Due to the lack of binding affinity of mouse angiotensin-converting enzyme II (ACE2) to the S protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), increasing the susceptibility of mice to SARS-CoV-2 infection was considered in several ways. Here, we generated a COVID-19 mouse model expressing human ACE2 (hACE2) under the control of the CAG promoter. Overexpression of hACE2 did not pose a significant effect on weight growth. After SARS-CoV-2 inoculation, mice showed obvious viral replication and production of inflammation within 7 days, with a gradual decrease in body weight until death. Virological testing found that the virus can replicate in the respiratory system, small intestine, and brain. Additionally, this mouse model was applied to compare two antibody drug candidates, the anti-RBD antibody (MW06) and the mouse CD24-conjugated anti-RBD antibody (mCD24-MW06). Differences in antiviral effects between these two antibodies can be demonstrated in this mouse model when a challenge dose that invalidates the anti-RBD antibody treatment was used. This study provided a new mouse model for studying SARS-CoV-2 pathogenesis and evaluating potential interventions.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Min Zhang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Baolei Wu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yan Wang
- SPF (Beijing) Biotechnology Co., Ltd., Baoding, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Rongjuan Wang
- Beijing Kohnoor Science & Technology Co. Ltd., Beijing, China
| | - Li Li
- SPF (Beijing) Biotechnology Co., Ltd., Baoding, China
| | - Yuwei Wei
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yali Sun
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiangwen Cao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yalan Li
- Beijing Kohnoor Science & Technology Co. Ltd., Beijing, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Qi Yin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
88
|
Neckermann P, Mohr M, Billmeier M, Karlas A, Boilesen DR, Thirion C, Holst PJ, Jordan I, Sandig V, Asbach B, Wagner R. Transgene expression knock-down in recombinant Modified Vaccinia virus Ankara vectors improves genetic stability and sustained transgene maintenance across multiple passages. Front Immunol 2024; 15:1338492. [PMID: 38380318 PMCID: PMC10877035 DOI: 10.3389/fimmu.2024.1338492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Modified vaccinia virus Ankara is a versatile vaccine vector, well suited for transgene delivery, with an excellent safety profile. However, certain transgenes render recombinant MVA (rMVA) genetically unstable, leading to the accumulation of mutated rMVA with impaired transgene expression. This represents a major challenge for upscaling and manufacturing of rMVA vaccines. To prevent transgene-mediated negative selection, the continuous avian cell line AGE1.CR pIX (CR pIX) was modified to suppress transgene expression during rMVA generation and amplification. This was achieved by constitutively expressing a tetracycline repressor (TetR) together with a rat-derived shRNA in engineered CR pIX PRO suppressor cells targeting an operator element (tetO) and 3' untranslated sequence motif on a chimeric poxviral promoter and the transgene mRNA, respectively. This cell line was instrumental in generating two rMVA (isolate CR19) expressing a Macaca fascicularis papillomavirus type 3 (MfPV3) E1E2E6E7 artificially-fused polyprotein following recombination-mediated integration of the coding sequences into the DelIII (CR19 M-DelIII) or TK locus (CR19 M-TK), respectively. Characterization of rMVA on parental CR pIX or engineered CR pIX PRO suppressor cells revealed enhanced replication kinetics, higher virus titers and a focus morphology equaling wild-type MVA, when transgene expression was suppressed. Serially passaging both rMVA ten times on parental CR pIX cells and tracking E1E2E6E7 expression by flow cytometry revealed a rapid loss of transgene product after only few passages. PCR analysis and next-generation sequencing demonstrated that rMVA accumulated mutations within the E1E2E6E7 open reading frame (CR19 M-TK) or deletions of the whole transgene cassette (CR19 M-DelIII). In contrast, CR pIX PRO suppressor cells preserved robust transgene expression for up to 10 passages, however, rMVAs were more stable when E1E2E6E7 was integrated into the TK as compared to the DelIII locus. In conclusion, sustained knock-down of transgene expression in CR pIX PRO suppressor cells facilitates the generation, propagation and large-scale manufacturing of rMVA with transgenes hampering viral replication.
Collapse
Affiliation(s)
- Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Madlen Mohr
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | | | - Ditte R. Boilesen
- Department of Immunology and Microbiology, Center for Medical Parasitology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | - Peter J. Holst
- Department of Immunology and Microbiology, Center for Medical Parasitology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- InProTher APS, Copenhagen, Denmark
| | | | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institue of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
89
|
Xia LY, Wang ZF, Cui XM, Li YG, Ye RZ, Zhu DY, Li FX, Zhang J, Wang WH, Zhang MZ, Gao WY, Li LF, Que TC, Wang TC, Jia N, Jiang JF, Gao YW, Cao WC. Isolation and characterization of a pangolin-borne HKU4-related coronavirus that potentially infects human-DPP4-transgenic mice. Nat Commun 2024; 15:1048. [PMID: 38316817 PMCID: PMC10844334 DOI: 10.1038/s41467-024-45453-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
We recently detected a HKU4-related coronavirus in subgenus Merbecovirus (named pangolin-CoV-HKU4-P251T) from a Malayan pangolin1. Here we report isolation and characterization of pangolin-CoV-HKU4-P251T, the genome sequence of which is closest to that of a coronavirus from the greater bamboo bat (Tylonycteris robustula) in Yunnan Province, China, with a 94.3% nucleotide identity. Pangolin-CoV-HKU4-P251T is able to infect human cell lines, and replicates more efficiently in cells that express human-dipeptidyl-peptidase-4 (hDPP4)-expressing and pangolin-DPP4-expressing cells than in bat-DPP4-expressing cells. After intranasal inoculation with pangolin-CoV-HKU4-P251, hDPP4-transgenic female mice are likely infected, showing persistent viral RNA copy numbers in the lungs. Progressive interstitial pneumonia developed in the infected mice, characterized by the accumulation of macrophages, and increase of antiviral cytokines, proinflammatory cytokines, and chemokines in lung tissues. These findings suggest that the pangolin-borne HKU4-related coronavirus has a potential for emerging as a human pathogen by using hDPP4.
Collapse
Affiliation(s)
- Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Zhen-Fei Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China
| | - Yuan-Guo Li
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Fang-Xu Li
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Jie Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Wen-Hao Wang
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Lian-Feng Li
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China
| | - Teng-Cheng Que
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning, Guangxi, P. R. China
| | - Tie-Cheng Wang
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China.
| | - Yu-Wei Gao
- Changchun Veterinary Research Institute, Changchun, 130122, Jilin, P. R. China.
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, P. R. China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, P. R. China.
| |
Collapse
|
90
|
Bender D, Koulouri A, Wen X, Glitscher M, Schollmeier A, Fernandes da Costa L, Murra RO, Carra GP, Haberger V, Praefcke GJK, Hildt E. Guanylate-binding protein 1 acts as a pro-viral factor for the life cycle of hepatitis C virus. PLoS Pathog 2024; 20:e1011976. [PMID: 38315728 PMCID: PMC10868826 DOI: 10.1371/journal.ppat.1011976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Viral infections trigger the expression of interferons (IFNs) and interferon stimulated genes (ISGs), which are crucial to modulate an antiviral response. The human guanylate binding protein 1 (GBP1) is an ISG and exhibits antiviral activity against several viruses. In a previous study, GBP1 was described to impair replication of the hepatitis C virus (HCV). However, the impact of GBP1 on the HCV life cycle is still enigmatic. To monitor the expression and subcellular distribution of GBP1 and HCV we performed qPCR, Western blot, CLSM and STED microscopy, virus titration and reporter gene assays. In contrast to previous reports, we observed that HCV induces the expression of GBP1. Further, to induce GBP1 expression, the cells were stimulated with IFNγ. GBP1 modulation was achieved either by overexpression of GBP1-Wt or by siRNA-mediated knockdown. Silencing of GBP1 impaired the release of viral particles and resulted in intracellular HCV core accumulation, while overexpression of GBP1 favored viral replication and release. CLSM and STED analyses revealed a vesicular distribution of GBP1 in the perinuclear region. Here, it colocalizes with HCV core around lipid droplets, where it acts as assembly platform and thereby favors HCV morphogenesis and release. Collectively, our results identify an unprecedented function of GBP1 as a pro-viral factor. As such, it is essential for viral assembly and release acting through tethering factors involved in HCV morphogenesis onto the surface of lipid droplets.
Collapse
Affiliation(s)
- Daniela Bender
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Xingjian Wen
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Mirco Glitscher
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | | | | | - Gert Paul Carra
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Gerrit J. K. Praefcke
- Paul-Ehrlich-Institut, Department Haematology and Transfusion Medicine, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| |
Collapse
|
91
|
Shokeen K, Kumar S. Newcastle disease virus regulates its replication by instigating oxidative stress-driven Sirtuin 7 production. J Gen Virol 2024; 105. [PMID: 38376490 DOI: 10.1099/jgv.0.001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Reactive oxygen species (ROS) accumulation inside the cells instigates oxidative stress, activating stress-responsive genes. The viral strategies for promoting stressful conditions and utilizing the induced host proteins to enhance their replication remain elusive. The present work investigates the impact of oxidative stress responses on Newcastle disease virus (NDV) pathogenesis. Here, we show that the progression of NDV infection varies with intracellular ROS levels. Additionally, the results demonstrate that NDV infection modulates the expression of oxidative stress-responsive genes, majorly sirtuin 7 (SIRT7), a NAD+-dependent deacetylase. The modulation of SIRT7 protein, both through overexpression and knockdown, significantly impacts the replication dynamics of NDV in DF-1 cells. The activation of SIRT7 is found to be associated with the positive regulation of cellular protein deacetylation. Lastly, the results suggested that NDV-driven SIRT7 alters NAD+ metabolism in vitro and in ovo. We concluded that the elevated expression of NDV-mediated SIRT7 protein with enhanced activity metabolizes the NAD+ to deacetylase the host proteins, thus contributing to high virus replication.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
92
|
Ebneali F, Shayestehpour M, Piroozmand A, Sedaghat H, Yazdani S, Fateminasab Z. In vitro evaluation of inhibitory effect of Lactobacillus reuteri supernatant on the replication of herpes simplex virus type 1 and expression of UL54, UL52 and UL27 genes. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:90-96. [PMID: 38682053 PMCID: PMC11055432 DOI: 10.18502/ijm.v16i1.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives Human herpes virus type 1 (HSV-1) is a neurotropic pathogen that is infected more than 70% of the world population. The increasing of viral resistance to antiviral drugs and the emergence of side effects has motivated researchers to study the use of probiotics as new antiviral agents. The aim of the present study was to study for the first time the potential antiviral activity of Lactobacillus reuteri (L. reuteri) supernatant against HSV-1. Materials and Methods After measuring the cytotoxicity of L. reuteri supernatant by MTT assay, 1:16 dilution of it was added to HeLa cells before and after HSV-1 infection, after 1.5 hours incubation with HSV-1, and simultaneously with HSV-1 infection. After 48 hours of incubation at 37°C, the viral titer and expression levels of UL54, UL52 and UL27 genes were measured by tissue culture infectious dose 50 (TCID50 ) and Real-Time PCR methods, respectively. Results HSV-1 titer in the treatment conditions before infection, incubation with HSV-1, simultaneously with infection and after infection was reduced by 0.42, 3.42, 1.83, and 0.83 log 10 TCID50/ml, respectively. When the bacterial supernatant was first incubated with the virus and then added to the cell, or when it was added simultaneously with the virus, the expression of the UL27, UL52, and UL54 genes decreased significantly (p<0.05). When the bacterial supernatant is added to the cell before or after virus infection, the expression of UL52 and UL54 genes does not change significantly (P>0.05). Conclusion The study findings indicated that the supernatant of L. reuteri has a potent anti-HSV-1 effect especially if it is incubated with the virus before inoculation into the cell. Its possible antiviral mechanism is to inhibit the virus by binding to it or changing the surface structure of the virus. Metabolites of L. reuteri can be considered as a novel inhibitor of HSV-1 infection.
Collapse
Affiliation(s)
- Faezeh Ebneali
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shayestehpour
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Piroozmand
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Sedaghat
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shaghayegh Yazdani
- Department of Microbiology, Faculty of Medical Sciences, Islamic Azad University, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Fateminasab
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
93
|
Qin X, Jiang N, Zhu J, Zhang YA, Tu J. Snakehead vesiculovirus hijacks SH3RF1 for replication via mediating K63-linked ubiquitination at K264 of the phosphoprotein. Int J Biol Macromol 2024; 255:128201. [PMID: 37979762 DOI: 10.1016/j.ijbiomac.2023.128201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Snakehead vesiculovirus (SHVV) is a type of rhabdovirus that causes serious economic losses in snakehead fish culture in China. However, no specific antiviral drugs or vaccines are currently available for SHVV infection. In this study, 4D label-free ubiquitome analysis of SHVV-infected cells revealed dozens of ubiquitinated sites on the five SHVV proteins. We focused on investigating the ubiquitination of phosphoprotein (P), a viral polymerase co-factor involved in viral replication. SHVV-P was proved to be ubiquitinated via K63-linked ubiquitination at lysine 264 (K264). Overexpression of wild-type P, but not its K264R mutant, facilitated SHVV replication, indicating that K264 ubiquitination of the P protein is critical for SHVV replication. RNAi screening of 26 cellular E3 ubiquitin ligases identified five pro-viral factors for SHVV replication, including macrophage erythroblast attacher (MAEA), TNF receptor-associated factor 7 (TRAF7), and SH3 domain-containing ring finger protein 1 (SH3RF1), which interacted with and mediated ubiquitination of SHVV P. TRAF7 and SH3RF1, but not MAEA, mediated K63-linked ubiquitination of SHVV P, while only SH3RF1 mediated K264 ubiquitination of SHVV P. Besides, overexpression of SH3RF1 promoted SHVV replication and maintained the stability of SHVV P. In summary, SH3RF1 mediated K63-linked ubiquitination of SHVV P at K264 to facilitate SHVV replication, providing targets for developing anti-SHVV drugs and live-attenuated SHVV vaccines. Our study provides novel insights into the role of P protein in the replication of single-stranded, negative-sense RNA viruses.
Collapse
Affiliation(s)
- Xiangmou Qin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ningyan Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
94
|
Zhang CD, Jiang LH, Zhou X, He YP, Liu Y, Zhou DM, Lv Y, Wu BQ, Zhao ZY. Synergistic antitumor efficacy of rMV-Hu191 and Olaparib in pancreatic cancer by generating oxidative DNA damage and ROS-dependent apoptosis. Transl Oncol 2024; 39:101812. [PMID: 37871517 PMCID: PMC10598409 DOI: 10.1016/j.tranon.2023.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Malignancies with BRCA1/2 deficiencies are particularly sensitive to PARP inhibitors. Thus, combining PARP inhibitors with agents that impair DNA damage repair to treat BRCA1/2 wild-type PDAC could broaden the clinical use of these promising PARP inhibitors. Here we examined the synergism and mechanism of oncolytic measles virus (rMV-Hu191) with a PARP inhibitor (Olaparib) in vitro and in vivo. METHODS The cell viability assay, cell cycle analysis, colony formation assay, TCID 50 method, western blotting, flow cytometry, DNA comet assay, Mice bearing PDAC xenografts, IF, IHC and TUNEL assay were performed to explore the antitumor efficacy and underlying mechanisms. RESULTS In this study, we explored the antitumor activities of rMV-Hu191 and Olaparib in two PDAC cell lines harboring wild-type BRCA1/2 genes. Compared to monotherapy, the combination of rMV-Hu191 and Olaparib was able to synergistically cause growth arrest, apoptotic cell death and DNA damage, accompanying with excessive oxidative stress. Mechanistically, the data indicated that the observed synergy depended on the oxidative DNA damage and ROS-dependent apoptosis generating by rMV-Hu191 combined with Olaparib in human PDAC cells. Tumor inhibition and prolonged survival of PDAC mice xenografts in vivo confirmed the synergism of combinational treatment with trivial side-effects. CONCLUSIONS Our findings firstly suggested that combination treatment with rMV-Hu191 and Olaparib had a profound and synergistic therapeutic effect against human PDAC through synthetic lethality. In conclusion, we recommend combining oncolytic rMV-Hu191 with a PARP inhibitor (Olaparib) as a novel therapeutic strategy and provided a potential mechanism for advanced PDAC regardless of BRCA mutation status.
Collapse
Affiliation(s)
- Chu-di Zhang
- Department of Pediatrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China; Children's Hospital, Zhejiang University School of Medicine, 3333 Bin Sheng Rd, Bin Jiang District, Hangzhou 310000, China
| | - Li-Hong Jiang
- Children's Medical Center, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen 518000, China
| | - Xue Zhou
- Zunyi Medical University, Zunyi 563000, China
| | | | - Ye Liu
- Zunyi Medical University, Zunyi 563000, China
| | - Dong-Ming Zhou
- Children's Hospital, Zhejiang University School of Medicine, 3333 Bin Sheng Rd, Bin Jiang District, Hangzhou 310000, China
| | - Yao Lv
- Children's Hospital, Zhejiang University School of Medicine, 3333 Bin Sheng Rd, Bin Jiang District, Hangzhou 310000, China
| | - Ben-Qing Wu
- Children's Medical Center, University of Chinese Academy of Science Shenzhen Hospital, Shenzhen 518000, China.
| | - Zheng-Yan Zhao
- Children's Hospital, Zhejiang University School of Medicine, 3333 Bin Sheng Rd, Bin Jiang District, Hangzhou 310000, China.
| |
Collapse
|
95
|
Shi Y, Simpson S, Chen Y, Aull H, Benjamin J, Serra-Moreno R. Mutations accumulated in the Spike of SARS-CoV-2 Omicron allow for more efficient counteraction of the restriction factor BST2/Tetherin. PLoS Pathog 2024; 20:e1011912. [PMID: 38190411 PMCID: PMC10798645 DOI: 10.1371/journal.ppat.1011912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/19/2024] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
BST2/Tetherin is a restriction factor with broad antiviral activity against enveloped viruses, including coronaviruses. Specifically, BST2 traps nascent particles to membrane compartments, preventing their release and spread. In turn, viruses have evolved multiple mechanisms to counteract BST2. Here, we examined the interactions between BST2 and SARS-CoV-2. Our study shows that BST2 reduces SARS-CoV-2 virion release. However, the virus uses the Spike (S) protein to downregulate BST2. This requires a physical interaction between S and BST2, which routes BST2 for lysosomal degradation in a Clathtin- and ubiquitination-dependent manner. By surveying different SARS-CoV-2 variants of concern (Alpha-Omicron), we found that Omicron is more efficient at counteracting BST2, and that mutations in S account for its enhanced anti-BST2 activity. Mapping analyses revealed that several surfaces in the extracellular region of BST2 are required for an interaction with the Spike, and that the Omicron variant has changed its patterns of association with BST2 to improve its counteraction. Therefore, our study suggests that, besides enhancing receptor binding and evasion of neutralizing antibodies, mutations accumulated in the Spike afford more efficient counteraction of BST2, which highlights that BST2 antagonism is important for SARS-CoV-2 infectivity and spread.
Collapse
Affiliation(s)
- Yuhang Shi
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sydney Simpson
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Haley Aull
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jared Benjamin
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
96
|
Hadjkacem F, Elleuch J, Aitouguinane M, Chakou FZ, Ursu AV, Dubessay P, Bourgougnon N, Traikia M, Le Cerf D, El Alaoui-Talibi Z, El Modafar C, Boual Z, El Hadj MDO, Delattre C, Christophe G, Michaud P, Fendri I, Abdelkafi S, Pierre G. Primary structural features, physicochemical and biological properties of two water-soluble polysaccharides extracted from the brown Tunisian seaweed Halopteris scoparia. Int J Biol Macromol 2023; 253:126757. [PMID: 37678695 DOI: 10.1016/j.ijbiomac.2023.126757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Marine algae are the most abundant resource in the marine environment and are still a promising source of bioactive compounds including hydrocolloids. This study contributes to the evaluation of the biological and biotechnological potentials of two water soluble polysaccharides, namely alginates (AHS) and fucoidan (FHS), extracted and purified from Halopteris scoparia, an abundant Tunisian brown macroalgae collected in Tunisia (Tabarka region). The total sugars, neutral monosaccharides, uronic acids, proteins, polyphenols, and sulfate groups contents were quantified for both fractions, as well as their functional groups and primary structural features by Fourier transform infrared spectroscopy, ionic and/or gas chromatography and nuclear magnetic resonance analyses. AHS and FHS showed significant anti-inflammatory (IC50 ≈ 1 mg/mL), anticoagulant (e.g., 27-61.7 for the activated partial thromboplastin time), antihyperglycemic (0.1-40 μg/mL) and anti-trypsin (IC50 ≈ 0.3-0.4 mg/mL) effects. FHS and a hydrolyzed fraction showed a very promising potential against herpes viruses (HSV-1) (IC50 < 28 μg/mL). Besides, AHS and two hydrolyzed fractions were able to stimulate the natural defenses of tomato seedlings, assessing their elicitor capacity, by increasing the activity of phenylalanine ammonia-lyase (66-422 %) but also significantly changing the polyphenol content in the leaves (121-243 %) and roots (30-104 %) of tomato plants.
Collapse
Affiliation(s)
- Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia; Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Meriem Aitouguinane
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Fatma Zohra Chakou
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria
| | - Alina Violeta Ursu
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Pascal Dubessay
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, Lorient, France
| | - Mounir Traikia
- Institute of Chemistry of Clermont-Ferrand, Clermont Auvergne University, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France
| | - Didier Le Cerf
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Zakaria Boual
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria
| | - Mohamed Didi Ould El Hadj
- Laboratory for the Protection of Ecosystems in Arid and Semi-Arid Zones, Kasdi Merbah-University, Ouargla 30000, Algeria
| | - Cédric Delattre
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Gwendoline Christophe
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratory of Plant Biotechnologies Applied to the Improvement of Plants, Faculty of Sciences, University of Sfax, 3038 Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Guillaume Pierre
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France.
| |
Collapse
|
97
|
Mills JT, Minogue SC, Snowden JS, Arden WKC, Rowlands DJ, Stonehouse NJ, Wobus CE, Herod MR. Amino acid substitutions in norovirus VP1 dictate host dissemination via variations in cellular attachment. J Virol 2023; 97:e0171923. [PMID: 38032199 PMCID: PMC10734460 DOI: 10.1128/jvi.01719-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE All viruses initiate infection by utilizing receptors to attach to target host cells. These virus-receptor interactions can therefore dictate viral replication and pathogenesis. Understanding the nature of virus-receptor interactions could also be important for the development of novel therapies. Noroviruses are non-enveloped icosahedral viruses of medical importance. They are a common cause of acute gastroenteritis with no approved vaccine or therapy and are a tractable model for studying fundamental virus biology. In this study, we utilized the murine norovirus model system to show that variation in a single amino acid of the major capsid protein alone can affect viral infectivity through improved attachment to suspension cells. Modulating plasma membrane mobility reduced infectivity, suggesting an importance of membrane mobility for receptor recruitment and/or receptor conformation. Furthermore, different substitutions at this site altered viral tissue distribution in a murine model, illustrating how in-host capsid evolution could influence viral infectivity and/or immune evasion.
Collapse
Affiliation(s)
- Jake T. Mills
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Susanna C. Minogue
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph S. Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Wynter K. C. Arden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David J. Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J. Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Morgan R. Herod
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
98
|
Silva BJDA, Krogstad PA, Teles RMB, Andrade PR, Rajfer J, Ferrini MG, Yang OO, Bloom BR, Modlin RL. IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide. Front Immunol 2023; 14:1284148. [PMID: 38162653 PMCID: PMC10755032 DOI: 10.3389/fimmu.2023.1284148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified. Methods Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy. Results Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity. Discussion Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Bruno J. de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Paul A. Krogstad
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, United States
| | - Rosane M. B. Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Priscila R. Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Jacob Rajfer
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Monica G. Ferrini
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Health and Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Otto O. Yang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Barry R. Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
99
|
Jiménez-Meléndez A, Shakya R, Markussen T, Robertson LJ, Myrmel M, Makvandi-Nejad S. Gene expression profile of HCT-8 cells following single or co-infections with Cryptosporidium parvum and bovine coronavirus. Sci Rep 2023; 13:22106. [PMID: 38092824 PMCID: PMC10719361 DOI: 10.1038/s41598-023-49488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Ruchika Shakya
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lucy J Robertson
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Mette Myrmel
- Department of Paraclinical Sciences (PARAFAG), Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Shokouh Makvandi-Nejad
- Research Group Animal Health, Vaccinology, Norwegian Veterinary Institute, Ås, Norway
- Nykode Therapeutics ASA, Oslo Science Park, Oslo, Norway
| |
Collapse
|
100
|
Banović P, Mijatović D, Bogdan I, Simin V, Meletis E, Kostoulas P, Resman Rus K, Knap N, Korva M, Avšič-Županc T, Cabezas-Cruz A. Evidence of tick-borne encephalitis virus neutralizing antibodies in Serbian individuals exposed to tick bites. Front Microbiol 2023; 14:1314538. [PMID: 38156013 PMCID: PMC10754514 DOI: 10.3389/fmicb.2023.1314538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Tick-borne encephalitis (TBE) is an emerging vector-borne and food-borne disease caused by the tick-borne encephalitis virus (TBEV; Orthoflavivirus encephalitidis), with a distribution spanning the Eurasian continent. Despite its significant public health impact in various European regions, TBE remains largely underdiagnosed in Serbia due to limited awareness and diagnostic challenges. In response to this, our study aimed to comprehensively assess TBEV exposure in individuals infested with ticks and to identify potential TBEV foci within Serbia. Materials and methods From 2019 to 2021, we conducted an observational study involving 450 patients who reported tick infestations. Results Our demographic analysis revealed a median age of 38 years, with a slight male predominance among the participants. We documented tick infestations in 38 municipalities across 14 districts of Serbia, with a notable concentration in proximity to Fruška Gora Mountain. The ticks most frequently removed were Ixodes ricinus, with nymphs and adult females being the predominant stages. On average, nymphs were removed after about 27.1 hours of feeding, while adult females remained attached for approximately 44.4 hours. Notably, we found age as a significant predictor of infestation time for both nymphs and adult females. Furthermore, we detected TBEV-neutralizing antibodies in 0.66% of the serum samples, shedding light on potential TBEV foci, particularly in Fruška Gora Mountain and other regions of Serbia. Conclusion Our study emphasizes the urgent need for active TBE surveillance programs, especially in areas suspected of hosting TBEV foci, in order to assess the true TBE burden, identify at-risk populations, and implement effective preventive measures.
Collapse
Affiliation(s)
- Pavle Banović
- Clinic for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Dragana Mijatović
- Department for Research and Monitoring of Rabies and Other Zoonoses, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Ivana Bogdan
- Department of Microbiology, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Verica Simin
- Department of Microbiology, Pasteur Institute Novi Sad, Novi Sad, Serbia
| | - Eleftherios Meletis
- Faculty of Public and One Health, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Polychronis Kostoulas
- Faculty of Public and One Health, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Katarina Resman Rus
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|