951
|
Mohammed BS, Cohen S, Reeds D, Young VL, Klein S. Long-term effects of large-volume liposuction on metabolic risk factors for coronary heart disease. Obesity (Silver Spring) 2008; 16:2648-51. [PMID: 18820648 PMCID: PMC2656416 DOI: 10.1038/oby.2008.418] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abdominal obesity is associated with metabolic risk factors for coronary heart disease (CHD). Although we previously found that using liposuction surgery to remove abdominal subcutaneous adipose tissue (SAT) did not result in metabolic benefits, it is possible that postoperative inflammation masked the beneficial effects. Therefore, this study provides a long-term evaluation of a cohort of subjects from our original study. Body composition and metabolic risk factors for CHD, including oral glucose tolerance, insulin resistance, plasma lipid profile, and blood pressure were evaluated in seven obese (39 +/- 2 kg/m(2)) women before and at 10, 27, and 84-208 weeks after large-volume liposuction. Liposuction surgery removed 9.4 +/- 1.8 kg of body fat (16 +/- 2% of total fat mass; 6.1 +/- 1.4 kg decrease in body weight), primarily from abdominal SAT; body composition and weight remained the same from 10 through 84-208 weeks. Metabolic endpoints (oral glucose tolerance, homeostasis model assessment of insulin resistance, blood pressure and plasma triglyceride (TG), high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol concentrations) obtained at 10 through 208 weeks were not different from baseline and did not change over time. These data demonstrate that removal of a large amount of abdominal SAT by using liposuction does not improve CHD metabolic risk factors associated with abdominal obesity, despite a long-term reduction in body fat.
Collapse
Affiliation(s)
- B. Selma Mohammed
- Division of Geriatrics and Nutritional Science, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel Cohen
- Division of Geriatrics and Nutritional Science, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dominic Reeds
- Division of Geriatrics and Nutritional Science, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - V. Leroy Young
- Division of Geriatrics and Nutritional Science, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel Klein
- Division of Geriatrics and Nutritional Science, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
952
|
Abstract
As is well known, adipose tissue is an important site for lipid metabolism and insulin-responsive glucose uptake. The recent discovery of the endocrine function of adipose tissue and the association of obesity with chronic low-grade inflammation in adipose tissue has reinforced the concept of the central role of adipose tissue in mediating obesity-linked insulin resistance and metabolic dysregulation. The study of adipose cells has provided new insights into the mechanism underlying insulin resistance as well as the therapeutic strategies for diabetes. Numerous efforts have been made in identifying key molecular regulators of insulin action and metabolism, including the utilization of advanced proteomics technology. Various proteomic approaches have been applied to identify the adipose secretome, protein-expression profiling and post-translational modifications in adipose cells in the pathological state. In this review, we summarize the recent advances in the proteomics of adipose tissue, and discuss the identified proteins that potentially play important roles in insulin resistance and diabetes.
Collapse
Affiliation(s)
- Xiaoli Chen
- University of Minnesota, Food Science and Nutrition - Room 139, 1334 Eckles Avenue, St. Paul, MN 55108-1038, USA.
| | | |
Collapse
|
953
|
Abstract
Adipose tissue metabolism exerts a profound impact on whole-body metabolism. We review how fuel partitioning between adipocytes and other tissues affects insulin signaling pathways. We discuss the role of adipose tissue inflammation in adipocyte metabolism and whole-body insulin sensitivity. Finally, we mention the role of adipokines in autocrine and paracrine signaling.
Collapse
Affiliation(s)
- Alan D Attie
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
954
|
Abstract
The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to directly promote the development of diabetes and cardiovascular disease. However, in 2005, the American Diabetes Association and the European Association for the Study of Diabetes jointly stated that no existing definition of the metabolic syndrome meets the criteria of a syndrome, and there have been endless debates on the pros and cons of using the concept of this syndrome. The controversy may stem from confusion between the syndrome and obesity. Obesity is an epidemic, essentially contagious disease caused by an environment of excess nutritional energy and reinforced by deeply rooted social norms. The epidemic of obesity should be prevented or controlled by social and political means, similar to the approaches now being taken to combat global warming. The diagnosis of metabolic syndrome is useless for this public purpose. The purpose of establishing criteria for diagnosing metabolic syndrome is to find individuals who are at increased risk of diabetes and cardiovascular disease and who require specific therapy including diet and exercise. The syndrome may be an adipose tissue disease different from obesity; in that case, it would be characterized by inflammation clinically detected through systemic inflammatory markers such as high-sensitivity C-reactive protein and insulin resistance reflecting histological changes in adipose tissue. However, many problems in defining the optimal diagnostic criteria remain unresolved.
Collapse
Affiliation(s)
- Eiji Oda
- Medical Check-up Center, Tachikawa Medical Center, Nagamachi 2-2-16, Nagaoka 940-0053, Japan.
| |
Collapse
|
955
|
Abstract
OBJECTIVE Endogenous expression of apolipoprotein E (apoE) has a significant impact on adipocyte lipid metabolism and is markedly suppressed in obesity. Adipose tissue oxidant stress is emerging as an important mediator of adipocyte dysfunction. These studies were undertaken to evaluate the role of oxidant stress for regulation of adipocyte apoE. RESEARCH DESIGN AND METHODS ApoE gene and protein expression in 3T3-L1 adipocytes or mature adipocytes and adipose tissue from C57/BL6 mice was evaluated after induction of oxidant stress. The response of adipose tissue and adipocytes from obese compared with lean mice to antioxidants was also assessed. RESULTS Oxidant stress in 3T3-L1 cells or adipocytes and adipose tissue from lean mice significantly reduced apoE mRNA and protein level. Inclusion of an antioxidant eliminated this reduction. Oxidant stress was accompanied by activation of the nuclear factor-kappaB (NF-kappaB) transcription complex, and its effect on apoE was eliminated by an NF-kappaB activation inhibitor. Treatment of freshly isolated adipose tissue or mature adipocytes from obese mice with antioxidant increased apoE expression but had no effect on cells or tissue from lean mice. Incubation of freshly isolated adipocytes from lean mice with stromovascular cells from obese mice significantly suppressed adipocyte apoE compared with incubation with stromovascular cells from lean mice, but this suppression was reversed by inclusion of antioxidant or a neutralizing antibody to tumor necrosis factor-alpha. CONCLUSIONS Oxidant stress significantly modulates adipose tissue and adipocyte apoE expression. Furthermore, oxidant stress contributes to suppression of adipocyte apoE in obesity. This suppression depends on interaction between adipose tissue stromovascular cells and adipocytes.
Collapse
|
956
|
Abstract
CONTEXT Adipose tissue is increasingly recognized as an active endocrine organ with many secretory products and part of the innate immune system. With obesity, macrophages infiltrate adipose tissue, and numerous adipocytokines are released by both macrophages and adipocytes. Adipocytokines play important roles in the pathogenesis of insulin resistance and associated metabolic complications such as dyslipidemia, hypertension, and premature heart disease. EVIDENCE ACQUISITION Published literature was analyzed with the intent of addressing the role of the major adipose secretory proteins in human obesity, insulin resistance, and type 2 diabetes. EVIDENCE SYNTHESIS This review analyzes the characteristics of different adipocytokines, including leptin, adiponectin, pro-inflammatory cytokines, resistin, retinol binding protein 4, visfatin, and others, and their roles in the pathogenesis of insulin resistance. CONCLUSIONS Inflamed fat in obesity secretes an array of proteins implicated in the impairment of insulin signaling. Further studies are needed to understand the triggers that initiate inflammation in adipose tissue and the role of each adipokine in the pathogenesis of insulin resistance.
Collapse
Affiliation(s)
- Neda Rasouli
- The Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | | |
Collapse
|
957
|
Laplante M, Festuccia WT, Soucy G, Blanchard PG, Renaud A, Berger JP, Olivecrona G, Deshaies Y. Tissue-specific postprandial clearance is the major determinant of PPARgamma-induced triglyceride lowering in the rat. Am J Physiol Regul Integr Comp Physiol 2008; 296:R57-66. [PMID: 18971352 DOI: 10.1152/ajpregu.90552.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonism potently reduces circulating triglycerides (TG) in rodents and more modestly so in humans. This study aimed to quantify in vivo the relative contribution of hepatic VLDL-TG secretion and tissue-specific TG clearance to such action. Rats were fed an obesogenic diet, treated with the PPARgamma full agonist COOH (30 mg.kg(-1).day(-1)) for 3 wk, and studied in both the fasted and refed (fat-free) states. Hepatic VLDL-TG secretion rate was not affected by chronic COOH in the fasted state and was only modestly decreased (-30%) in refed rats. In contrast, postprandial VLDL-TG clearance was increased 2.6-fold by COOH, which concomitantly stimulated adipose tissue TG-derived lipid uptake and one of its major determinants, lipoprotein lipase (LPL) activity, in a highly depot-specific manner. TG-derived lipid uptake and LPL were indeed strongly increased in subcutaneous inguinal white adipose tissue and in brown adipose tissue, independently of the nutritional state, whereas of the three visceral fat depots examined (epididymal, retroperitoneal, mesenteric) only the latter responded consistently to COOH. Robust correlations (0.5 < r < 0.9) were observed between TG-derived lipid uptake and LPL in adipose tissues. The agonist did not increase LPL in muscle, and its enhancing action on postprandial muscle lipid uptake appeared to be mediated by post-LPL processes involving increased expression of fatty acid binding/transport proteins (aP2, likely in infiltrated adipocytes, FAT/CD36, and FATP-1). The study establishes in a diet-induced obesity model the major contribution of lipid uptake by specific, metabolically safe adipose depots to the postprandial hypotriglyceridemic action of PPARgamma agonism, and suggests a key role for LPL therein.
Collapse
Affiliation(s)
- Mathieu Laplante
- Laval Hospital Research Center, Faculty of Medicine, Laval Univ., 2725 Ch Sainte-Foy, Québec, QC, Canada G1V 4G5
| | | | | | | | | | | | | | | |
Collapse
|
958
|
Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 2008; 118:2992-3002. [PMID: 18769626 DOI: 10.1172/jci34260] [Citation(s) in RCA: 858] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insulin resistance is a major metabolic feature of obesity and is a key factor in the etiology of a number of diseases, including type 2 diabetes. In this review, we discuss potential mechanisms by which brief nutrient excess and obesity lead to insulin resistance and propose that these mechanisms of action are different but interrelated. We discuss how pathways that "sense" nutrients within skeletal muscle are readily able to regulate insulin action. We then discuss how obesity leads to insulin resistance via a complex interplay among systemic fatty acid excess, microhypoxia in adipose tissue, ER stress, and inflammation. In particular, we focus on the hypothesis that the macrophage is an important cell type in the propagation of inflammation and induction of insulin resistance in obesity. Overall, we provide our integrative perspective regarding how nutrients and obesity interact to regulate insulin sensitivity.
Collapse
Affiliation(s)
- Simon Schenk
- Department of Medicine, Division of Endocrinology and Metabolism, UCSD, La Jolla, California 92093, USA
| | | | | |
Collapse
|
959
|
Bibliography. Current world literature. Diseases of the aorta, pulmonary, and peripheral vessels. Curr Opin Cardiol 2008; 23:646-7. [PMID: 18830082 DOI: 10.1097/hco.0b013e328316c259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
960
|
Pasarica M, Loiler S, Dhurandhar NV. Acute effect of infection by adipogenic human adenovirus Ad36. Arch Virol 2008; 153:2097-102. [PMID: 18830560 PMCID: PMC2744363 DOI: 10.1007/s00705-008-0219-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
Abstract
Human adenovirus Ad36 is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. We inoculated rats with Ad36 or UV-inactivated Ad36, or mock-infected them. Four days later, Ad36-infected rats showed 23% greater epididymal fat pad weight and viral mRNA; the viral DNA could also be detected in tissues viz. the liver, brain, and adipose tissue. Intranasal or intra-peritoneal routes of viral inoculation showed similar tissue affinity. The serum cytokine response was markedly down-regulated. Ad36 acutely suppresses the systemic immune response and spreads widely. This information will help to determine Ad36 tissue tropism and its metabolic consequences.
Collapse
Affiliation(s)
- Magdalena Pasarica
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
961
|
Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, Gu W, Accili D. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8:333-41. [PMID: 18840364 PMCID: PMC3222897 DOI: 10.1016/j.cmet.2008.08.014] [Citation(s) in RCA: 512] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/03/2008] [Accepted: 08/15/2008] [Indexed: 01/12/2023]
Abstract
In yeast, worms, and flies, an extra copy of the gene encoding the Sirtuin Sir2 increases metabolic efficiency, as does administration of polyphenols like resveratrol, thought to act through Sirtuins. But evidence that Sirtuin gain of function results in increased metabolic efficiency in mammals is limited. We generated transgenic mice with moderate overexpression of SirT1, designed to mimic the Sirtuin gain of function that improves metabolism in C. elegans. These mice exhibit normal insulin sensitivity but decreased food intake and locomotor activity, resulting in decreased energy expenditure. However, in various models of insulin resistance and diabetes, SirT1 transgenics display improved glucose tolerance due to decreased hepatic glucose production and increased adiponectin levels, without changes in body weight or composition. We conclude that SirT1 gain of function primes the organism for metabolic adaptation to insulin resistance, increasing hepatic insulin sensitivity and decreasing whole-body energy requirements. These findings have important implications for Sirtuin-based therapies in humans.
Collapse
Affiliation(s)
- Alexander S. Banks
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Ning Kon
- Institute for Cancer Genetics, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Colette Knight
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Michihiro Matsumoto
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Roger Gutiérrez-Juárez
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Luciano Rossetti
- Departments of Medicine and Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Domenico Accili
- Naomi Berrie Diabetes Center, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| |
Collapse
|
962
|
Bates HE, Sirek A, Kiraly MA, Yue JTY, Riddell MC, Matthews SG, Vranic M. Adaptation to intermittent stress promotes maintenance of beta-cell compensation: comparison with food restriction. Am J Physiol Endocrinol Metab 2008; 295:E947-58. [PMID: 18713962 DOI: 10.1152/ajpendo.90378.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intermittent restraint stress delays hyperglycemia in ZDF rats better than pair feeding. We hypothesized that intermittent stress would preserve beta-cell mass through distinct mechanisms from food restriction. We studied temporal effects of intermittent stress on beta-cell compensation during pre-, early, and late diabetes. Six-week-old obese male ZDF rats were restraint-stressed 1 h/day, 5 days/wk for 0, 3, 6, or 13 wk and compared with age-matched obese ZDF rats that had been food restricted for 13 wk, and 19-wk-old lean ZDF rats. Thirteen weeks of stress and food restriction lowered cumulative food intake 10-15%. Obese islets were fibrotic and disorganized and not improved by stress or food restriction. Obese pancreata had islet hyperplasia and showed evidence of neogenesis, but by 19 wk old beta-cell mass was not increased, and islets had fewer beta-cells that were hypertrophic. Both stress and food restriction partially preserved beta-cell mass at 19 wk old via islet hypertrophy, whereas stress additionally lowered alpha-cell mass. Concomitant with maintenance of insulin responses to glucose, stress delayed the sixfold decline in beta-cell proliferation and reduced beta-cell hypertrophy, translating into 30% more beta-cells per islet after 13 wk. In contrast, food restriction did not improve insulin responses or beta-cell hyperplasia, exacerbated beta-cell hypertrophy, and resulted in fewer beta-cells and greater alpha-cell mass than with stress. Thus, preservation of beta-cell mass with adaptation to intermittent stress is related to beta-cell hyperplasia, maintenance of insulin responses to glucose, and reductions in alpha-cell mass that do not occur with food restriction.
Collapse
Affiliation(s)
- Holly E Bates
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
963
|
Tan CY, Vidal-Puig A. Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans 2008; 36:935-40. [PMID: 18793164 DOI: 10.1042/bst0360935] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of obesity is increasing and with it the prevalence of associated metabolic complications. Precisely how obesity results in metabolic disturbances remains unclear. In the face of persistent positive caloric balance, it has been postulated that the capacity of adipose tissue to safely store fat may be vital. This paper explores some of the evidence suggesting that the risk of developing metabolic disturbances is not related to how much fat an individual has, but how well their fat can expand to accommodate the caloric excess. If this is true, the metabolic consequences of obesity may arise from the inability to become more obese.
Collapse
Affiliation(s)
- Chong Yew Tan
- Metabolic Research Laboratories, Level 4, Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
964
|
Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Differential modulation of diet-induced obesity and adipocyte functionality by human apolipoprotein E3 and E4 in mice. Int J Obes (Lond) 2008; 32:1595-605. [PMID: 18725890 PMCID: PMC2805194 DOI: 10.1038/ijo.2008.143] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Apolipoprotein E (apoE), a key protein in lipid metabolism, is highly expressed in adipose tissues. Studies have shown that human APOE*4 is associated with a lower body mass index but with a greater risk of coronary heart disease compared with other APOE alleles. To define the isoform-specific role of apoE in regulating the expandability and functionality of adipose tissues, we investigated the effects of diet-induced obesity in mice whose endogenous Apoe gene has been replaced by either the human APOE*3 or APOE*4 allele. RESULTS After 8 weeks on a Western-type high-fat diet, male APOE4 mice displayed impaired tolerance to glucose and fat overload compared with APOE3 mice. Subcutaneous fat tissues in APOE4 and APOE3 mice after high fat feeding were not different. In contrast, although epididymal fat tissues in APOE4 mice gained 30% less weight during the high fat feeding than in APOE3 mice, they showed impaired insulin-stimulated glucose uptake ex vivo. Epididymal APOE4 adipocytes were larger in size than APOE3 adipocytes, and expressed reduced levels of mRNA for peroxisome proliferator-activated receptor gamma2 and adiponectin, important markers of adipocyte functionality. Adenoviral expression of apoE3 in apoE-null culture adipocytes induced adiponectin mRNA in a dose-dependent manner, but the induction was significantly blunted in cells overexpressing apoE4. However, in contrast to the apoE3-expressing cells, Glut1, but not Glut4, expression levels were positively correlated with increased apoE4 mRNA, suggesting that apoE4 expression in adipocyte interferes in insulin-sensing pathways. CONCLUSION Dysfunctional epididymal adipose tissues contribute to the accelerated impairment of glucose tolerance in APOE4 mice fed a Western-type diet. Our results underscore the importance of functionality of individual fat depots rather than total fat mass as a determinant for metabolic disturbance during diet-induced obesity.
Collapse
Affiliation(s)
- J M Arbones-Mainar
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525, USA
| | | | | | | |
Collapse
|
965
|
Abstract
Mechanisms underlying obesity-related metabolic disorders are poorly understood. Samuel Virtue and Antonio Vidal-Puig explore the evidence for an emerging hypothesis that attributes metabolic complications not to obesity per se, but to an individual's capacity for adipose tissue expandability.
Collapse
Affiliation(s)
- Samuel Virtue
- * To whom correspondence should be addressed. E-mail: (SV); (AV-P)
| | | |
Collapse
|
966
|
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008; 134:933-44. [PMID: 18805087 PMCID: PMC2728618 DOI: 10.1016/j.cell.2008.07.048] [Citation(s) in RCA: 855] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 06/05/2008] [Accepted: 07/22/2008] [Indexed: 12/22/2022]
Abstract
Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Haiming Cao
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
967
|
Shi X, Burkart A, Nicoloro SM, Czech MP, Straubhaar J, Corvera S. Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J Biol Chem 2008; 283:30658-67. [PMID: 18779333 DOI: 10.1074/jbc.m800510200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adipocyte function is crucial for the control of whole body energy homeostasis. Pathway analysis of differentiating 3T3-L1 adipocytes reveals that major metabolic pathways induced during differentiation involve mitochondrial function. However, it is not clear why differentiated white adipocytes require enhanced respiratory chain activity relative to pre-adipocytes. To address this question, we used small interference RNA to interfere with the induction of the transcription factor Tfam, which is highly induced between days 2 and 4 of differentiation and is crucial for replication of mitochondrial DNA. Interference with Tfam resulted in cells with decreased respiratory chain capacity, reflected by decreased basal oxygen consumption, and decreased mitochondrial ATP synthesis, but no difference in many other adipocyte functions or expression levels of adipose-specific genes. However, insulin-stimulated GLUT4 translocation to the cell surface and subsequent glucose transport are impaired in Tfam knockdown cells. Paradoxically, insulin-stimulated Akt phosphorylation is significantly enhanced in these cells. These studies reveal independent links between mitochondrial function, insulin signaling, and glucose transport, in which impaired respiratory chain activity enhances insulin signaling to Akt phosphorylation, but impairs GLUT4 translocation. These results indicate that mitochondrial respiratory chain dysfunction in adipocytes can cause impaired insulin responsiveness of GLUT4 translocation by a mechanism downstream of the Akt protein kinase.
Collapse
Affiliation(s)
- Xiarong Shi
- University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | |
Collapse
|
968
|
Abstract
Adipose tissue contains many cell types. Among the more abundant are adipocytes, preadipocytes, immune cells, and endothelial cells. During times of excess caloric intake, these cells have to adjust and remodel to accommodate the increased demand for triglyceride storage. Based on a comprehensive analysis of the total adipose tissue secretome, this article focuses on three areas of adipokine biology: (1) How does the adipocyte interact with the extracellular matrix over the course of obesity? (2) Does the adipocyte, per se, play a role in the innate immune response? (3) How is the angiogenic profile of adipose tissue linked to the development of insulin resistance? The authors present a comprehensive overview of all of the currently available secreted adipose tissue products that have been identified at the protein level.
Collapse
Affiliation(s)
- Nils Halberg
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, Denmark
| | - Ingrid Wernstedt
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
969
|
MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J Hepatol 2008; 49:407-16. [PMID: 18534710 DOI: 10.1016/j.jhep.2008.03.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/26/2008] [Accepted: 03/19/2008] [Indexed: 02/03/2023]
Abstract
BACKGROUND/AIMS In these studies, we tested the hypothesis that increased lipid intake would exacerbate the severity of nutritional steatohepatitis. METHODS C57Bl/6J mice were fed methionine-and-choline deficient (MCD) diets containing 20% (high) or 5% (low) fat by weight for 3 weeks and compared to lipid-matched controls. RESULTS MCD feeding increased serum ALT levels and induced hepatic steatosis, lobular inflammation and ballooning degeneration of hepatocytes, irrespective of dietary fat content. Hepatic triglyceride accumulation was similar between high and low-fat MCD-fed mice, but lipoperoxide levels were approximately 3-fold higher in the high-fat MCD-fed animals. Serum adiponectin levels increased in MCD-fed mice, although to a lesser extent in high-fat fed animals. AMPK phosphorylation was correspondingly increased in muscle of MCD-fed mice, but hepatic AMPK phosphorylation decreased, and there was little evidence of PPAR alpha activation, suggesting impaired adiponectin action in the livers of MCD-fed animals. Hepatocyte PPAR gamma mRNA levels increased in MCD-fed mice, and were associated with increased aP2 expression, indicating adipogenic transformation of hepatocytes. CONCLUSIONS Increased dietary lipid intake did not alter steatohepatitis severity in MCD-fed mice despite increased lipoperoxide accumulation. Instead, steatohepatitis was associated with impaired hepatic adiponectin action, and adipogenic transformation of hepatocytes in both low and high-fat MCD-fed mice.
Collapse
|
970
|
Rogers PM, Mashtalir N, Rathod MA, Dubuisson O, Wang Z, Dasuri K, Babin S, Gupta A, Markward N, Cefalu WT, Dhurandhar NV. Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes 2008; 57:2321-31. [PMID: 18599527 PMCID: PMC2518483 DOI: 10.2337/db07-1311] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 06/11/2008] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Experimental infection of rats with human adenovirus type 36 (Ad-36) promotes adipogenesis and improves insulin sensitivity in a manner reminiscent of the pharmacologic effect of thiozolinediones. To exploit the potential of the viral proteins as a therapeutic target for treating insulin resistance, this study investigated the ability of Ad-36 to induce metabolically favorable changes in human adipose tissue. RESEARCH DESIGN AND METHODS We determined whether Ad-36 increases glucose uptake in human adipose tissue explants. Cell-signaling pathways targeted by Ad-36 to increase glucose uptake were determined in the explants and human adipose-derived stem cells. Ad-2, a nonadipogenic human adenovirus, was used as a negative control. As a proof of concept, nondiabetic and diabetic subjects were screened for the presence of Ad-36 antibodies to ascertain if natural Ad-36 infection predicted improved glycemic control. RESULTS Ad-36 increased glucose uptake by adipose tissue explants obtained from nondiabetic and diabetic subjects. Without insulin stimulation, Ad-36 upregulated expressions of several proadipogenic genes, adiponectin, and fatty acid synthase and reduced the expression of inflammatory cytokine macrophage chemoattractant protein-1 in a phosphotidylinositol 3-kinase (PI3K)-dependent manner. In turn, the activation of PI3K by Ad-36 was independent of insulin receptor signaling but dependent on Ras signaling recruited by Ad-36. Ad-2 was nonadipogenic and did not increase glucose uptake. Natural Ad-36 infection in nondiabetic and diabetic subjects was associated with significantly lower fasting glucose levels and A1C, respectively. CONCLUSIONS Ad-36 proteins may provide novel therapeutic targets that remodel human adipose tissue to a more metabolically favorable profile.
Collapse
Affiliation(s)
- Pamela M. Rogers
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Nazar Mashtalir
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Miloni A. Rathod
- Department of Nutrition, Wayne State University, Detroit, Michigan
| | - Olga Dubuisson
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Zhong Wang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Kumar Dasuri
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Scott Babin
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Alok Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Nathan Markward
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - William T. Cefalu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Nikhil V. Dhurandhar
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| |
Collapse
|
971
|
Nagajyothi F, Desruisseaux MS, Thiruvur N, Weiss LM, Braunstein VL, Albanese C, Teixeira MM, de Almeida CJ, Lisanti MP, Scherer PE, Tanowitz HB. Trypanosoma cruzi infection of cultured adipocytes results in an inflammatory phenotype. Obesity (Silver Spring) 2008; 16:1992-7. [PMID: 19186325 PMCID: PMC2771879 DOI: 10.1038/oby.2008.331] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infection with Trypanosoma cruzi, the etiologic agent of Chagas disease is accompanied by an intense inflammatory reaction. Our laboratory group has identified adipose tissue as one of the major sites of inflammation during disease progression. Because adipose tissue is composed of many cell types, we were interested in investigating whether the adipocyte per se was a source of inflammatory mediators in this infection. Cultured adipocytes were infected with the Tulahuen strain of T. cruzi for 48-96 h. Immunoblot and quantitative PCR (qPCR) analyses demonstrated an increase in the expression of proinflammatory cytokines and chemokines, including interleukin (IL)-1 beta, interferon-gamma, tumor necrosis factor-alpha, CCL2, CCL5, and CXCL10 as well as an increase in the expression of Toll-like receptors-2 and 9 and activation of the notch pathway. Interestingly, caveolin-1 expression was reduced while cyclin D1 and extracellular signal-regulated kinase (ERK) expression was increased. The expression of PI3kinase and the activation of AKT (phosphorylated AKT) were increased suggesting that infection may induce components of the insulin/IGF-1 receptor cascade. There was an infection-associated decrease in adiponectin and peroxisome proliferator-activated receptor-gamma (PPAR-gamma). These data provide a mechanism for the increase in the inflammatory phenotype that occurs in T. cruzi-infected adipocytes. Overall, these data implicate the adipocyte as an important target of T. cruzi, and one which contributes significantly to the inflammatory response observed in Chagas disease.
Collapse
Affiliation(s)
- Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mahalia S. Desruisseaux
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Niranjan Thiruvur
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vicki L. Braunstein
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cecilia J. de Almeida
- Department of Cancer Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- The Muscular and Neurodegenerative Disease Unit, University of Genoa, Gaslini Pediatric Institute, Genoa, Italy
| | - Michael P. Lisanti
- Department of Cancer Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- The Muscular and Neurodegenerative Disease Unit, University of Genoa, Gaslini Pediatric Institute, Genoa, Italy
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern School of Medicine, Dallas, Texas, USA
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
972
|
Oda E, Watanabe K. High-sensitivity C-reactive protein and metabolic syndrome (insulin resistance syndrome), including nonalcoholic steatohepatitis. J Gastroenterol 2008; 43:312-3; author reply 313. [PMID: 18458848 DOI: 10.1007/s00535-008-2175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 11/19/2007] [Indexed: 02/04/2023]
|
973
|
Swarbrick MM, Havel PJ. Physiological, pharmacological, and nutritional regulation of circulating adiponectin concentrations in humans. Metab Syndr Relat Disord 2008; 6:87-102. [PMID: 18510434 DOI: 10.1089/met.2007.0029] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adiponectin is an adipocyte hormone that links visceral adiposity with insulin resistance and atherosclerosis. It is unique among adipocyte-derived hormones in that its circulating concentrations are inversely proportional to adiposity, and low adiponectin concentrations predict the development of type 2 diabetes and cardiovascular disease. Consequently, in the decade since its discovery, adiponectin has generated immense interest as a potential therapeutic target for the metabolic syndrome and diabetes. This review summarizes current research regarding the regulation of circulating adiponectin concentrations by physiological, pharmacological, and nutritional factors, with an emphasis on human studies. In humans, plasma adiponectin concentrations are influenced by age and gender, and are inversely proportional to visceral adiposity. In vitro studies suggest that adiponectin production may be determined primarily by adipocyte size and insulin sensitivity, with larger, insulin-resistant adipocytes producing less adiponectin. While adiponectin concentrations are unchanged after meal ingestion, they are increased by significant weight loss, such as after bariatric surgery. In addition, adiponectin production is inhibited by a number of hormones, including testosterone, prolactin, glucocorticoids and growth hormone, and by inflammation and oxidative stress in adipose tissue. Smoking decreases, while moderate alcohol consumption increases, circulating adiponectin concentrations. Dietary fatty acid composition in rodents influences adiponectin production via ligand-activated nuclear receptors (PPARs); however, current evidence in humans is equivocal. In addition to PPAR agonists (such as thiazolidinediones and fibrates), a number of pharmacological agents (angiotensin receptor type 1 blockers, ACE inhibitors, and cannabinoid receptor antagonists) used in treatment of the metabolic syndrome also increase adiponectin concentrations in humans.
Collapse
Affiliation(s)
- Michael M Swarbrick
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
974
|
Abstract
Obesity is an inflammatory disorder characterized by heightened activity of the innate immune system. Innate immune activation is central to the development of obesity-related insulin resistance; it also plays an important role in obesity-related tissue damage, such as that seen in atherosclerosis. Recent research has implicated the innate immune system in the pathophysiology of obesity-related liver disease. This review summarizes how innate immune processes, occurring both within and outside the liver, cause not only insulin resistance but also end-organ damage in the form of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Jacquelyn J Maher
- Department of Medicine, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
975
|
Deivanayagam S, Mohammed BS, Vitola BE, Naguib GH, Keshen TH, Kirk EP, Klein S. Nonalcoholic fatty liver disease is associated with hepatic and skeletal muscle insulin resistance in overweight adolescents. Am J Clin Nutr 2008; 88:257-62. [PMID: 18689359 PMCID: PMC2556977 DOI: 10.1093/ajcn/88.2.257] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) and insulin resistance are common in overweight adolescents. OBJECTIVE The purpose of this study was to determine the relation between NAFLD and insulin sensitivity in liver and skeletal muscle by studying overweight adolescents with a normal or high intrahepatic triglyceride (IHTG) content, who were matched for age, sex, body mass index (BMI; in kg/m(2)), and Tanner stage. DESIGN Stable-isotope-labeled tracer infusion and the hyperinsulinemic-euglycemic clamp procedure were used to assess skeletal muscle and hepatic insulin sensitivity, and magnetic resonance spectroscopy was used to assess the IHTG content in 10 overweight (BMI = 35.9 +/- 1.3) adolescents with NAFLD (IHTG = 28.4 +/- 3.4%) and 10 overweight (BMI = 36.6 +/- 1.5) adolescents with a normal IHTG content (3.3 +/- 0.5%). RESULTS The baseline plasma glucose concentration and the rate of appearance of glucose in plasma were the same in subjects with a normal (87.1 +/- 1.2 mg/dL, 16.2 +/- 1.1 micromol . kg fat-free mass(-1) . min(-1)) or high (89.2 +/- 2.5 mg/dL, 16.3 +/- 1.2 micromol . kg fat-free mass(-1) . min(-1)) IHTG content. However, compared with subjects who had a normal IHTG content, subjects with NAFLD had a lower hepatic insulin sensitivity index, based on baseline glucose kinetics and insulin concentrations (4.0 +/- 0.5 compared with 2.4 +/- 0.4; P < 0.05) and an impaired increase in glucose uptake during insulin infusion (169 +/- 28.1% compared with 67 +/- 9.6% above baseline; P < 0.01). In addition, the plasma triglyceride concentration was greater and the plasma HDL-cholesterol concentration was lower in subjects with NAFLD than in those with a normal IHTG content. CONCLUSION An elevated IHTG content in overweight adolescents is associated with dyslipidemia and with insulin-resistant glucose metabolism in both liver and skeletal muscle.
Collapse
Affiliation(s)
- Sheela Deivanayagam
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition and the Division of Pediatric Surgery, Washington University, School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
976
|
Yue L, Christman JW, Mazzone T. Tumor necrosis factor-alpha-mediated suppression of adipocyte apolipoprotein E gene transcription: primary role for the nuclear factor (NF)-kappaB pathway and NFkappaB p50. Endocrinology 2008; 149:4051-8. [PMID: 18467438 PMCID: PMC2488247 DOI: 10.1210/en.2008-0340] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipose tissue inflammation accompanying obesity has important consequences for adipocyte lipid metabolism, and increased adipose tissue TNFalpha plays an important role for mediating the effect of inflammation on adipocyte function. Recent studies have shown that apolipoprotein E (apoE) is highly expressed in adipose tissue where it plays an important role in modulating adipocyte triglyceride metabolism, triglyceride mass, and adipocyte size. We have previously reported that TNFalpha reduces adipocyte apoE, and the current studies were undertaken to evaluate the molecular mechanism for this regulation. TNFalpha repression of adipocyte apoE gene expression required an intact nuclear factor (NF)-kappaB binding site at -43 in the apoE promoter. Site-directed mutagenesis at this site completely eliminated TNFalpha regulation of an apoE gene reporter. TNFalpha treatment activated binding of NFkappaB p50, isolated from adipocyte nuclei, to the apoE promoter. Two structurally distinct inhibitors of NFkappaB complex activation or translocation abrogated the TNFalpha effect on the apoE gene. Using chromatin immunoprecipitation assays, we demonstrated that treatment of adipocytes with TNFalpha led to increased binding of NFkappaB p50, and decreased binding of p65 and Sp1, to this region of the apoE promoter in living cells. The key role played by increased p50 binding was confirmed by p50 knockdown experiments. Reduction of p50 expression using small interference RNA completely eliminated TNFalpha-mediated reduction of endogenous adipocyte apoE gene expression. These results establish the molecular link between adipose tissue inflammation and apoE gene expression in adipocytes. The suppression of adipocyte apoE by the proinflammatory adipose tissue milieu associated with obesity will have important downstream effects on adipocyte triglyceride turnover and content.
Collapse
Affiliation(s)
- Lili Yue
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
977
|
Chen J, Hui ST, Couto FM, Mungrue IN, Davis DB, Attie AD, Lusis AJ, Davis RA, Shalev A. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J 2008; 22:3581-94. [PMID: 18552236 DOI: 10.1096/fj.08-111690] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic beta-cell loss through apoptosis represents a key factor in the pathogenesis of diabetes; however, no effective approaches to block this process and preserve endogenous beta-cell mass are currently available. To study the role of thioredoxin-interacting protein (TXNIP), a proapoptotic beta-cell factor we recently identified, we used HcB-19 (TXNIP nonsense mutation) and beta-cell-specific TXNIP knockout (bTKO) mice. Interestingly, HcB-19 mice demonstrate increased adiposity, but have lower blood glucose levels and increased pancreatic beta-cell mass (as assessed by morphometry). Moreover, HcB-19 mice are resistant to streptozotocin-induced diabetes. When intercrossed with obese, insulin-resistant, and diabetic mice, double-mutant BTBRlep(ob/ob)txnip(hcb/hcb) are even more obese, but are protected against diabetes and beta-cell apoptosis, resulting in a 3-fold increase in beta-cell mass. Beta-cell-specific TXNIP deletion also enhanced beta-cell mass (P<0.005) and protected against diabetes, and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) revealed a approximately 50-fold reduction in beta-cell apoptosis in streptozotocin-treated bTKO mice. We further discovered that TXNIP deficiency induces Akt/Bcl-xL signaling and inhibits mitochondrial beta-cell death, suggesting that these mechanisms may mediate the beta-cell protective effects of TXNIP deficiency. These results suggest that lowering beta-cell TXNIP expression could serve as a novel strategy for the treatment of type 1 and type 2 diabetes by promoting endogenous beta-cell survival.
Collapse
Affiliation(s)
- Junqin Chen
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
978
|
|
979
|
Li M, Kim DH, Tsenovoy PL, Peterson SJ, Rezzani R, Rodella LF, Aronow WS, Ikehara S, Abraham NG. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 2008; 57:1526-1535. [PMID: 18375438 DOI: 10.2337/db07-1764] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We hypothesized that the induction of heme oxygenase (HO)-1 and increased HO activity, which induces arterial antioxidative enzymes and vasoprotection in a mouse and a rat model of diabetes, would ameliorate insulin resistance, obesity, and diabetes in the ob mouse model of type 2 diabetes. RESEARCH DESIGN AND METHODS Lean and ob mice were intraperitoneally administered the HO-1 inducer cobalt protoporphyrin (3 mg/kg CoPP) with and without the HO inhibitor stannous mesoporphyrin (2 mg/100 g SnMP) once a week for 6 weeks. Body weight, blood glucose, and serum cytokines and adiponectin were measured. Aorta, adipose tissue, bone marrow, and mesenchymal stem cells (MSCs) were isolated and assessed for HO expression and adipogenesis. RESULTS HO activity was reduced in ob mice compared with age-matched lean mice. Administration of CoPP caused a sustained increase in HO-1 protein, prevented weight gain, decreased visceral and subcutaneous fat content (P < 0.03 and 0.01, respectively, compared with vehicle animals), increased serum adiponectin, and decreased plasma tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-6, and IL-1beta levels (P < 0.05). HO-1 induction improved insulin sensitivity and glucose tolerance and decreased insulin levels. Upregulation of HO-1 decreased adipogenesis in bone marrow in vivo and in cultured MSCs and increased adiponectin levels in the culture media. Inhibition of HO activity decreased adiponectin and increased secretion of TNF-alpha, IL-6, and IL-1beta levels in ob mice. CONCLUSIONS This study provides strong evidence for the existence of an HO-1-adiponectin regulatory axis that can be manipulated to ameliorate the deleterious effects of obesity and the metabolic syndrome associated with cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Ming Li
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
980
|
Kim DH, Burgess AP, Li M, Tsenovoy PL, Addabbo F, McClung JA, Puri N, Abraham NG. Heme oxygenase-mediated increases in adiponectin decrease fat content and inflammatory cytokines tumor necrosis factor-alpha and interleukin-6 in Zucker rats and reduce adipogenesis in human mesenchymal stem cells. J Pharmacol Exp Ther 2008; 325:833-40. [PMID: 18334666 DOI: 10.1124/jpet.107.135285] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adiponectin, an abundant adipocyte-derived plasma protein that modulates vascular function in type 2 diabetes, has been shown to provide cytoprotection to both pancreatic and vascular systems in diabetes. Therefore, we examined whether up-regulation of heme oxygenase (HO)-1 ameliorates the levels of inflammatory cytokines and influences serum adiponectin in Zucker fat (ZF) rats. ZF rats displayed a decrease in both HO activity and HO-1 and HO-2 protein levels and an increase in tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 compared with Zucker lean (ZL) rats. Treatment of ZF animals with 2 mg/kg cobalt protoporphyrin IX (CoPP) increased protein levels of HO-1 and HO activity, but HO-2 was unaffected. The increase in HO-1 was associated with a decrease in superoxide levels (p < 0.05) and an increase in plasma adiponectin (p < 0.005), compared with untreated ZF rats. CoPP treatment decreased visceral and s.c. fat content, and it reduced weight gain (p < 0.01). In addition, the inflammatory cytokines TNF-alpha and IL-6 were decreased (p < 0.04 and p < 0.008, respectively). Treatment of human bone marrow-derived adipocytes cultured with CoPP resulted in an increase in HO-1 and a decrease in superoxide levels. Up-regulation of HO-1 caused adipose remodeling, smaller adipocytes, and increased adiponectin secretion in the culture medium of human bone marrow-derived adipocytes. In summary, this study demonstrates that the antiobesity effect of HO-1 induction results in an increase in adiponectin secretion, in vivo and in vitro, a decrease in TNF-alpha and IL-6, and a reduction in weight gain. These findings highlight the pivotal role and symbiotic relationship of HO-1 and adiponectin in the modulation of the metabolic syndrome phenotype.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Dept. of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
981
|
Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008; 14:222-31. [PMID: 18235842 DOI: 10.2119/2007-00119.tilg] [Citation(s) in RCA: 521] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/18/2008] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance (IR) plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. It has been demonstrated that IR is associated with a state of chronic low-grade inflammation, and several mediators released from various cell types, including immune cells and adipocytes, have been identified as being involved in the development of IR. Among those are several pro-inflammatory cytokines such as tumor necrosis factor-alpha(TNF-alpha), interleukin (IL)-1, IL-6, and various adipocytokines. Furthermore, several transcription factors and kinases such as c-Jun N-terminal kinase (JNK) and inhibitor of kappa B kinase-beta (IKKbeta), a kinase located proximal of nuclear factor-kappaB (NF-kappaB), participate in this process. Hepatocyte-specific overexpression of NF-kappaB is associated with IR and can mimic all features of fatty liver disease. Whereas the evidence for an important role of many pro-inflammatory pathways in IR in in vitro and animal studies is overwhelming, data from interventional studies in humans to prove this concept are still minor. As a complex network of inflammatory cytokines, adipocytokines, transcription factors, receptor molecules, and acute-phase reactants are involved in the development of IR, new therapeutic approaches in IR-related diseases will be based on a better understanding of their complex interactions.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Gastroenterology and Hepatology, Innsbruck Medical University, Innsbruck, Austria.
| | | |
Collapse
|
982
|
Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2008. [PMID: 18235842 DOI: 10.2119/2007-00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin resistance (IR) plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. It has been demonstrated that IR is associated with a state of chronic low-grade inflammation, and several mediators released from various cell types, including immune cells and adipocytes, have been identified as being involved in the development of IR. Among those are several pro-inflammatory cytokines such as tumor necrosis factor-alpha(TNF-alpha), interleukin (IL)-1, IL-6, and various adipocytokines. Furthermore, several transcription factors and kinases such as c-Jun N-terminal kinase (JNK) and inhibitor of kappa B kinase-beta (IKKbeta), a kinase located proximal of nuclear factor-kappaB (NF-kappaB), participate in this process. Hepatocyte-specific overexpression of NF-kappaB is associated with IR and can mimic all features of fatty liver disease. Whereas the evidence for an important role of many pro-inflammatory pathways in IR in in vitro and animal studies is overwhelming, data from interventional studies in humans to prove this concept are still minor. As a complex network of inflammatory cytokines, adipocytokines, transcription factors, receptor molecules, and acute-phase reactants are involved in the development of IR, new therapeutic approaches in IR-related diseases will be based on a better understanding of their complex interactions.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Gastroenterology and Hepatology, Innsbruck Medical University, Innsbruck, Austria.
| | | |
Collapse
|
983
|
Abstract
Inflammatory responses represent a hallmark of numerous pathologies including sepsis, bacterial infection, insulin resistance, and malign obesity. Here we describe an unexpected coactivator function for the nuclear receptor interacting protein 140 (RIP140) for nuclear factor kappaB (NFkappaB), a master transcriptional regulator of inflammation in multiple tissues. Previous work has shown that RIP140 suppresses the expression of metabolic gene networks, but we have found that genetic as well as acute deficiency of RIP140 leads to the inhibition of the proinflammatory program in macrophages. The ability of RIP140 to function as a coactivator for cytokine gene promoter activity relies on direct protein-protein interactions with the NFkappaB subunit RelA and histone acetylase cAMP-responsive element binding protein (CREB)-binding protein (CBP). RIP140-dependent control of proinflammatory gene expression via RelA/CBP may, therefore, represent a molecular rational for the cellular integration of metabolic and inflammatory pathways.
Collapse
|
984
|
Abstract
Intra-abdominal fat is an established risk factor for the metabolic syndrome. In this issue of Cell Metabolism, Tran et al. (2008) test the cell-autonomous and location-related properties of transplanted intra-abdominal and subcutaneous fat depots. While subcutaneous fat seems to confer metabolic benefits, species differences in adipose biology justify caution in interpreting the results.
Collapse
|
985
|
Festuccia WT, Oztezcan S, Laplante M, Berthiaume M, Michel C, Dohgu S, Denis RG, Brito MN, Brito NA, Miller DS, Banks WA, Bartness TJ, Richard D, Deshaies Y. Peroxisome proliferator-activated receptor-gamma-mediated positive energy balance in the rat is associated with reduced sympathetic drive to adipose tissues and thyroid status. Endocrinology 2008; 149:2121-30. [PMID: 18218698 DOI: 10.1210/en.2007-1553] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) activation up-regulates thermogenesis-related genes in rodent white and brown adipose tissues (WAT and BAT) without increasing whole-body energy expenditure. We tested here whether such dissociation is the result of a negative modulation of sympathetic activity to WAT and BAT and thyroid axis components by PPARgamma activation. Administration of the PPARgamma agonist rosiglitazone (15 mg/kg.d) for 7 d to male Sprague Dawley rats increased food intake (10%), feed efficiency (31%), weight gain (45%), spontaneous motor activity (60%), and BAT and WAT mass and reduced whole-body oxygen consumption. Consistent with an anabolic setting, rosiglitazone markedly reduced sympathetic activity to BAT and WAT (>50%) and thyroid status as evidenced by reduced levels of plasma thyroid hormones (T(4) and T(3)) and mRNA levels of BAT and liver T(3)-generating enzymes iodothyronine type 2 (-40%) and type 1 (-32%) deiodinases, respectively. Rosiglitazone also decreased mRNA levels of the thyroid hormone receptor (THR) isoforms alpha1 (-34%) and beta (-66%) in BAT and isoforms alpha1 (-20%) and alpha2 (-47%) in retroperitoneal WAT. These metabolic effects were associated with a reduction in mRNA levels of the pro-energy expenditure peptides CRH and CART in specific hypothalamic nuclei. A direct central action of rosiglitazone is, however, unlikely based on its low brain uptake and lack of metabolic effects of intracerebroventricular administration. In conclusion, a reduction in BAT sympathetic activity and thyroid status appears to, at least partly, explain the PPARgamma-induced reduction in energy expenditure and the fact that up-regulation of thermogenic gene expression does not translate into functional stimulation of whole-body thermogenesis in vivo.
Collapse
Affiliation(s)
- William T Festuccia
- Laval Hospital Research Centre, Faculty of Medicine, Laval University, Laval Hospital-d'Youville Y3110, 2725 Chemin Sainte-Foy, Quebec, Canada G1V 4G5
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
986
|
Herling AW, Kilp S, Elvert R, Haschke G, Kramer W. Increased energy expenditure contributes more to the body weight-reducing effect of rimonabant than reduced food intake in candy-fed wistar rats. Endocrinology 2008; 149:2557-66. [PMID: 18276749 DOI: 10.1210/en.2007-1515] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CB1 receptor antagonist, rimonabant, affects the endocannabinoid system and causes a sustained reduction in body weight (BW) despite the transient nature of the reduction in food intake. Therefore, in a multiple-dose study, female candy-fed Wistar rats were treated with rimonabant (10 mg/kg) and matched with pair-fed rats to distinguish between hypophagic action and hypothesized effects on energy expenditure. Within the first week of treatment, rimonabant reduced BW nearly to levels of standard rat chow-fed rats. Evaluation of energy balance (energy expenditure measured by indirect calorimetry in relation to metabolizable energy intake calculated by bomb calorimetry) revealed that increased energy expenditure based on increased fat oxidation contributed more to sustained BW reduction than reduced food intake. A mere food reduction through pair feeding did not result in comparable effects because animals reduced their energy expenditure to save energy stores. Because fat oxidation measured by indirect calorimetry increased immediately after dosing in the postprandial state, the acute effect of rimonabant on lipolysis was investigated in postprandial male rats. Rimonabant elevated free fatty acids postprandially, demonstrating an inherent pharmacological activity of rimonabant to induce lipolysis and not secondarily postabsorptively due to reduced food intake. We conclude that the weight-reducing effect of rimonabant was due to continuously elevated energy expenditure based on increased fat oxidation driven by lipolysis from fat tissue as long as fat stores were elevated. When the amount of endogenous fat stores declined, rimonabant-induced increased energy expenditure was maintained by a re-increase in food intake.
Collapse
Affiliation(s)
- Andreas W Herling
- Therapeutic Department Metabolism, Pharmacology, H 821, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
987
|
Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 2008; 7:410-20. [PMID: 18460332 PMCID: PMC3204870 DOI: 10.1016/j.cmet.2008.04.004] [Citation(s) in RCA: 558] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/06/2008] [Accepted: 04/07/2008] [Indexed: 12/11/2022]
Abstract
Subcutaneous (SC) and visceral (VIS) obesity are associated with different risks of diabetes and the metabolic syndrome. To elucidate whether these differences are due to anatomic location or intrinsic differences in adipose depots, we characterized mice after transplantation of SC or VIS fat from donor mice into either SC or VIS regions of recipient mice. The group with SC fat transplanted into the VIS cavity exhibited decreased body weight, total fat mass, and glucose and insulin levels. These mice also exhibited improved insulin sensitivity during hyperinsulinemic-euglycemic clamps with increased whole-body glucose uptake, glucose uptake into endogenous fat, and insulin suppression of hepatic glucose production. These effects were observed to a lesser extent with SC fat transplanted to the SC area, whereas VIS fat transplanted to the VIS area was without effect. These data suggest that SC fat is intrinsically different from VIS fat and produces substances that can act systemically to improve glucose metabolism.
Collapse
Affiliation(s)
- Thien T Tran
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
988
|
Crowe S, Turpin SM, Ke F, Kemp BE, Watt MJ. Metabolic remodeling in adipocytes promotes ciliary neurotrophic factor-mediated fat loss in obesity. Endocrinology 2008; 149:2546-56. [PMID: 18276754 DOI: 10.1210/en.2007-1447] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity is characterized by an expanded adipose tissue mass, and reversing obesity reduces the risk of insulin resistance and cardiovascular disease. Ciliary neurotrophic factor (CNTF) reverses obesity by promoting the preferential loss of white adipose tissue. We evaluated the cellular and molecular mechanisms by which CNTF regulates adiposity. Obese mice fed a high-fat diet were treated with saline or recombinant CNTF for 10 d, and adipose tissue was removed for analysis. Another group fed a high-fat diet was pair fed to CNTF mice. In separate experiments, 3T3-L1 adipocytes were treated with CNTF to examine metabolic responses and signaling. CNTF reduced adipose mass that resulted from reductions in adipocyte area and triglyceride content. CNTF treatment did not affect lipolysis but resulted in decreases in fat esterification and lipogenesis and enhanced fatty acid oxidation. The enhanced fat oxidation was associated with the expression of peroxisome proliferator-activated receptor coactivator-1alpha (PGC1alpha) and nuclear respiratory factor 1 and increases in oxidative phosphorylation subunits and mitochondrial biogenesis as determined by electron microscopy. Studies in cultured adipocytes revealed that CNTF activates p38 MAPK and AMP-activated protein kinase. Inhibiting p38 activation prevented the CNTF-induced increase in PGC1alpha but not AMP-activated protein kinase activation. Diminished food intake with pair feeding induced similar decreases in fat mass, but this was related to increased expression of uncoupling protein 1. We conclude that CNTF reprograms adipose tissue to promote mitochondrial biogenesis, enhancing oxidative capacity and reducing lipogenic capacity, thereby resulting in triglyceride loss.
Collapse
Affiliation(s)
- Seamus Crowe
- St. Vincent's Institute of Medical Research and the Department of Medicine, The University of Melbourne, Fitzroy, Victoria 3065, Australia
| | | | | | | | | |
Collapse
|
989
|
Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008; 118:829-38. [PMID: 18317565 DOI: 10.1172/jci34275] [Citation(s) in RCA: 933] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, and type 2 diabetes. NAFLD represents a large spectrum of diseases ranging from (i) fatty liver (hepatic steatosis); (ii) steatosis with inflammation and necrosis; and (iii) cirrhosis. Although the molecular mechanism leading to the development of hepatic steatosis in the pathogenesis of NAFLD is complex, recent animal models have shown that modulating important enzymes in fatty acid synthesis in liver may be key for the treatment of NAFLD. This review discusses recent advances in the field.
Collapse
Affiliation(s)
- Catherine Postic
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.
| | | |
Collapse
|
990
|
Peterson SJ, Drummond G, Kim DH, Li M, Kruger AL, Ikehara S, Abraham NG. L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice. J Lipid Res 2008; 49:1658-69. [PMID: 18426778 DOI: 10.1194/jlr.m800046-jlr200] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We hypothesized that the apolipoprotein mimetic peptide L-4F, which induces arterial anti-oxidative enzymes and is vasoprotective in a rat model of diabetes, would ameliorate insulin resistance and diabetes in obese mice. L-4F (2 mg/kg/d) administered to ob/ob mice for 6 weeks limited weight gain without altering food intake, decreased visceral (P < 0.02) and subcutaneous (P < 0.045) fat content, decreased plasma IL-1beta and IL-6 levels (P < 0.05) and increased insulin sensitivity, resulting in decreased glucose (P < 0.001) and insulin (P < 0.036) levels. In addition, L-4F treatment increased aortic and bone marrow heme oxygenase (HO) activity and decreased aortic and bone marrow superoxide production (P < 0.001). L-4F treatment increased serum adiponectin levels (P < 0.037) and decreased adipogenesis in mouse bone marrow (P < 0.039) and in cultures of human bone marrow-derived mesenchymal stem cells (P < 0.022). This was manifested by reduced adiposity, improved insulin sensitivity, improved glucose tolerance, increased plasma adiponectin levels, and reduced IL-1beta and IL-6 levels in obese mice. This study highlights the existence of a temporal relationship between HO-1 and adiponectin that is positively affected by L-4F in the ob/ob mouse model of diabetes, resulting in the amelioration of the deleterious effects of diabetes.
Collapse
Affiliation(s)
- Stephen J Peterson
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
991
|
Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome. Proc Natl Acad Sci U S A 2008; 105:6139-44. [PMID: 18413598 DOI: 10.1073/pnas.0801981105] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine whether adipocyte storage capacity influences the onset and severity of type 2 diabetes and other components of the metabolic syndrome, we made normal and db/db mice resistant to obesity by overexpressing leptin receptor-b on the aP2-Lepr-b promoter. On a 4% diet, these mice have no phenotype, but on a 60% fat diet, they resist diet-induced obesity because constitutive adipocyte-specific overexpression of Lepr-b prevents obesity via the antilipogenic autocrine/paracrine action of leptin on adipocytes. After 8 months on the same 60% fat diet, body fat of transgenic mice was 70% below WT controls. Cardiac and liver fat was elevated in the transgenics, and their hyperinsulinemia was more marked, suggesting greater insulin resistance. The aP2-Lepr-b transgene also prevented obesity in db/db mice; at 10 weeks of age their body fat was half that of the db/db mice. This lack of obesity was attributable to reduced expression of sterol regulatory element binding protein-1c and its target lipogenic enzymes in adipose tissue and a 6-fold increase in Pref-1 mRNA. Severe diabetes was present in transgenics at 4 weeks of age, 10 weeks before db/db controls. Echocardiographic evidence of cardiomyopathy appeared at 10 weeks, weeks before the db/db mice. Histologically, loss of beta cells and myocardial fibrosis was present in the transgenic group at least 6 weeks before the db/db mice. These results suggest that the expression level of genes that regulate the adipogenic response to overnutrition profoundly influences the age of onset and severity of diet-induced type 2 diabetes and co-morbidities.
Collapse
|
992
|
Frick F, Hume R, Robinson IC, Edén S, Oscarsson J. Hepatic and adipose tissue depot-specific changes in lipid metabolism in Late-onset Obese (LOB) rats. Lipids 2008; 43:313-24. [PMID: 18335266 DOI: 10.1007/s11745-008-3164-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 02/19/2008] [Indexed: 01/22/2023]
Abstract
Transgenic Late-onset OBesity (LOB) rats slowly develop a male-specific, autosomal dominant, obesity phenotype with a specific increase in peri-renal white adipose tissue (WAT) depot and preserved insulin sensitivity (Bains et al. in Endocrinology 145:2666-2679, 2004). To better understand the remarkable phenotype of these rats, the lipid metabolism was investigated in male LOB and non-transgenic (NT) littermates. Total plasma cholesterol (C) levels were normal but total plasma triacylglycerol (TAG) (2.8-fold) and hepatic TAG content (25%) was elevated in LOB males. Plasma VLDL-C and VLDL-TAG levels were higher while plasma apoB levels were 60% lower in LOB males. Increased hepatic TAG secretion explained the increased VLDL levels in LOB males. The hepatic gene expression of FAS, SCD-1, mitochondrial (mt)GPAT, and DGAT2 was up-regulated in both old obese and young non-obese LOB rats. Lipoprotein lipase (LPL) activity in heart and epididymal white adipose tissue (WAT) was unchanged, while LPL activity was increased in peri-renal WAT (30%) and decreased in soleus muscle (40%). Moreover, FAS, SCD-1 and DGAT2 gene expression was increased in peri-renal, but not in epididymal WAT. Basal lipolysis was reduced or unchanged and beta-adrenergic stimulated lipolysis was reduced in WAT from both old obese and young non-obese LOB rats. To summarize, the obese phenotype of LOB male rats is associated with increased hepatic TAG production and secretion, a shift in LPL activity from skeletal muscle to WAT, reduced lipolytic response in WAT depots and a specific increase in expression of genes responsible for fatty acid and TAG synthesis in the peri-renal depot.
Collapse
Affiliation(s)
- Fredrik Frick
- Department of Bioscience, AstraZeneca R&D, Pepparedsleden 1, 431 83, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|
993
|
Pandzic Jaksic V, Sucic M. Multiple symmetric lipomatosis - a reflection of new concepts about obesity. Med Hypotheses 2008; 71:99-101. [PMID: 18367347 DOI: 10.1016/j.mehy.2008.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 01/27/2008] [Accepted: 01/30/2008] [Indexed: 01/17/2023]
Abstract
Multiple symmetric lipomatosis (MSL) is characterized by subcutaneous accumulation of nonencapsulated adipose tissue. In type 2 MSL accumulation occurs on proximal limbs, upper back and hips. This sometimes unrecognized disease is similar to an exaggerated female fat distribution and can be confused with simple obesity. Obesity is a heterogeneous disorder and we suppose that type 2 MSL might have a place on the edge of the obesity spectrum. Several contemporary concepts about adipose tissue could be recognized in the model of MSL. Changes in fat distribution among different depots of adipose tissue in obesity have emerged as origin of its metabolic complications. Decreased insulin resistance and raised adiponectin have been found in MSL just as in some other conditions with accumulation of the subcutaneous adipose tissue (SAT). In that context, MSL may present as a model for possible favourable metabolic impact of SAT depots. Adipogenesis in MSL is not a consequence of energy excess but it is an active hyperplastic proliferation of SAT. This kind of behaviour of some adipocytes in several subcutaneous areas in MSL suggests that the energy unrelated adipogenesis could contribute to the expansion of at least a part of SAT depot in obesity in general. Contrary to current concept that the signals for adipogenesis are dependent only on the energy equation, allowing this additional mechanism would imply a new approach to issues of obesity, foremost to differentiate its particular types for which these concepts may be relevant.
Collapse
Affiliation(s)
- V Pandzic Jaksic
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Internal Medicine, University Hospital Dubrava, Av. Gojka Suska 6, Zagreb, Croatia.
| | | |
Collapse
|
994
|
Niemann B, Silber RE, Rohrbach S. Age-specific effects of short- and long-term caloric restriction on the expression of adiponectin and adiponectin receptors: influence of intensity of food restriction. Exp Gerontol 2008; 43:706-713. [PMID: 18434057 DOI: 10.1016/j.exger.2008.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/31/2008] [Accepted: 02/05/2008] [Indexed: 12/21/2022]
Abstract
Hormonal signals from adipose tissue regulate energy homeostasis and may be involved in anti-aging effects of caloric restriction (CR). The adipokine adiponectin is abundantly expressed in adipose tissue and directly sensitizes the body to insulin. The purpose of the current study was to investigate age-dependent effects of different levels of CR (16%, 2 months or 40%, 6 months) on adiponectin and on its receptors AdipoR1 and AdipoR2 in the left ventricle (LV). In young and senescent rats, 2 months of moderate CR reduced serum leptin. The same diet was sufficient to enhance serum adiponectin, adiponectin expression (visceral fat) and left ventricular AdipoR1 expression in young but not in senescent rats. The higher degree of CR, however, resulted in a mild induction of adiponectin expression in adipose tissue and release into plasma together with increased LV AdipoR1 also in old rats, while these effects were more pronounced in young rats. These changes in adiponectin activation were associated with reduced LV triglyceride content, suggesting an adiponectin-mediated reduced ectopic lipid deposition in nonadipose tissues. Thus, aging is associated with a loss of adiponectin inducibility by moderate CR. This reduction can only partially be overcome by increasing the degree and duration of CR.
Collapse
Affiliation(s)
- Bernd Niemann
- Institute of Pathophysiology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06097 Halle, Germany
| | | | | |
Collapse
|
995
|
Boullu-Ciocca S, Achard V, Tassistro V, Dutour A, Grino M. Postnatal programming of glucocorticoid metabolism in rats modulates high-fat diet-induced regulation of visceral adipose tissue glucocorticoid exposure and sensitivity and adiponectin and proinflammatory adipokines gene expression in adulthood. Diabetes 2008; 57:669-77. [PMID: 18057089 DOI: 10.2337/db07-1316] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Alterations of the perinatal environment, which lead to increased prevalence of the metabolic syndrome in adulthood, program an upregulation of systemic and/or adipose tissue glucocorticoid metabolism (11 beta-hydroxysteroid dehydrogenase type 1 [11 beta-HSD-1]-induced corticosterone reactivation). We hypothesized that postnatal programming could modulate high-fat diet-induced adipose tissue dysregulation in adulthood. RESEARCH DESIGN AND METHODS We compared the effects of chronic (since weaning) high- or low-fat diet in postnatally normofed (control) or overfed (programmed) rats. RESULTS Postnatal programming accentuated high-fat diet-induced overweight, insulin resistance, glucose intolerance, and decrease in circulating and epididymal adipose tissue adiponectin. Neither manipulation altered liver function. Postnatal programming or high-fat diet increased systemic corticosterone production, which was not further modified when both manipulations were associated. Postnatal programming suppressed high-fat diet-induced decrease in mesenteric adipose tissue (MAT) glucocorticoid sensitivity and triggered high-fat diet-induced increase in MAT glucocorticoid exposure, subsequent to enhanced MAT 11 beta-HSD-1 gene expression. MAT tumor necrosis factor (TNF)-alpha, TNF-receptor 1, interleukin (IL)-6, resistin, and plasminogen activator inhibitor-1 mRNAs were not changed by high-fat feeding in control rats and showed a large increase in programmed animals, with this effect further enhanced by high-fat diet for TNF-alpha and IL-6. CONCLUSIONS Our data show for the first time that postnatal manipulation programs high-fat diet-induced upregulation of MAT glucocorticoid exposure, sensitivity, and inflammatory status and therefore reveal the pivotal role of the environment during the perinatal period on the development of diet-induced adipose tissue dysregulation in adulthood. They also urge the need for clinical trials with specific 11 beta-HSD-1 inhibitors.
Collapse
|
996
|
Weickert MO, Pfeiffer AFH. Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 2008; 138:439-42. [PMID: 18287346 DOI: 10.1093/jn/138.3.439] [Citation(s) in RCA: 456] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A high dietary fiber (DF) intake is emphasized in the recommendations of most diabetes and nutritional associations. It is accepted that viscous and gel-forming properties of soluble DF inhibit macronutrient absorption, reduce postprandial glucose response, and beneficially influence certain blood lipids. Colonic fermentation of naturally available high fiber foods can also be mainly attributed to soluble DF, whereas no difference between soluble and insoluble DF consumption on the regulation of body weight has been observed. However, in prospective cohort studies, it is primarily insoluble cereal DF and whole grains, and not soluble DF, that is consistently associated with reduced diabetes risk, suggesting that further, unknown mechanisms are likely to be involved. Recent research indicates that DF consumption contributes to a number of unexpected metabolic effects independent from changes in body weight, which include improvement of insulin sensitivity, modulation of the secretion of certain gut hormones, and effects on various metabolic and inflammatory markers that are associated with the metabolic syndrome. In this review, we briefly summarize novel findings from recent interventions and prospective cohort studies. We discuss concepts and potential mechanisms that might contribute to the further understanding of the involved processes.
Collapse
Affiliation(s)
- Martin O Weickert
- Department of Clinical Nutrition, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | | |
Collapse
|
997
|
Oda E. High-sensitivity C-reactive protein (CRP) may be superior to anthropometric parameters as a marker of metabolic consequences due to obesity. Comment on the article by Komatsu et al. Endocr J 2008; 55:229. [PMID: 17984570 DOI: 10.1507/endocrj.k07e-096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
998
|
Abstract
Adipose tissue is unique in that it can undergo significant hypertrophy and atrophy, resulting in wide ranges of obesities and lipodystrophies. At the base of this elasticity is the lipid-filled adipocyte, which can either overfill by storing large amounts of triglycerides or shrink to a tiny cell by depleting its lipids and as such is remarkable in sustaining insults. As a major energy reservoir, the adipocyte may hold considerable calories necessary for survival and reproduction, two functions that are essential for the survival of the species. This review will summarize some of the recent studies that have advanced our understanding of the central and peripheral mechanisms that are initiated by adipocyte-secreted factors such as leptin, adiponectin, resistin, and retinol-binding protein 4. The intersection of obesity and lipodystrophy results in insulin resistance, which may be unlocked by elucidating the roles of these factors in pathways that control insulin sensitivity and glucose uptake.
Collapse
Affiliation(s)
- Farid F Chehab
- University of California, San Francisco, Department of Laboratory Medicine, 185 Berry Street, Suite 290, San Francisco, California 94107-0134, USA.
| |
Collapse
|
999
|
Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J 2008; 409:623-33. [PMID: 18177270 DOI: 10.1042/bj20071492] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adiponectin is an insulin-sensitizing adipokine with anti-diabetic, anti-atherogenic, anti-inflammatory and cardioprotective properties. This adipokine is secreted from adipocytes into the circulation as three oligomeric isoforms, including trimeric, hexameric and the HMW (high-molecular-mass) oligomeric complex consisting of at least 18 protomers. Each oligomeric isoform of adiponectin exerts distinct biological properties in its various target tissues. The HMW oligomer is the major active form mediating the insulin-sensitizing effects of adiponectin, whereas the central actions of this adipokine are attributed primarily to the hexameric and trimeric oligomers. In patients with Type 2 diabetes and coronary heart disease, circulating levels of HMW adiponectin are selectively decreased due to an impaired secretion of this oligomer from adipocytes. The biosynthesis of the adiponectin oligomers is a complex process involving extensive post-translational modifications. Hydroxylation and glycosylation of several conserved lysine residues in the collagenous domain of adiponectin are necessary for the intracellular assembly and stabilization of its high-order oligomeric structures. Secretion of the adiponectin oligomers is tightly controlled by a pair of molecular chaperones in the ER (endoplasmic reticulum), including ERp44 (ER protein of 44 kDa) and Ero1-Lalpha (ER oxidoreductase 1-Lalpha). ERp44 inhibits the secretion of adiponectin oligomers through a thiol-mediated retention. In contrast, Ero1-Lalpha releases HMW adiponectin trapped by ERp44. The PPARgamma (peroxisome-proliferator-activated receptor gamma) agonists thiazolidinediones selectively enhance the secretion of HMW adiponectin through up-regulation of Ero1-Lalpha. In the present review, we discuss the recent advances in our understanding of the structural and biological properties of the adiponectin oligomeric isoforms and highlight the role of post-translational modifications in regulating the biosynthesis of HMW adiponectin.
Collapse
|
1000
|
Ahima RS, Lazar MA. Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol 2008; 22:1023-31. [PMID: 18202144 DOI: 10.1210/me.2007-0529] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adipokines are secreted by adipose tissue and control various physiological systems. Low leptin levels during fasting stimulate feeding, reduce energy expenditure, and modulate neuroendocrine and immune function to conserve energy stores. On the other hand, rising leptin levels in the overfed state prevent weight gain by inhibiting food intake and increasing energy expenditure. These actions are mediated by neuronal circuits in the hypothalamus and brainstem. Leptin also controls glucose and lipid metabolism by targeting enzymes such as AMP-activated protein kinase and stearoyl-coenzyme A desaturase-1 in liver and muscle. Likewise, adiponectin and resistin control energy balance and insulin sensitivity via central and peripheral targets. As highlighted in this review, there are distinct as well as common signaling pathways for adipokines. Understanding adipokine signaling in the brain and other organs will provide insights into the pathogenesis and treatment of obesity, diabetes and various metabolic disorders.
Collapse
Affiliation(s)
- Rexford S Ahima
- Department of Medicine, University of Pennsylvania School of Medicine, Division of Endocrinology, Diabetes and Metabolism, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|