1251
|
L'Imperio V, Morello G, Vegliante MC, Cancila V, Bertolazzi G, Mazzara S, Belmonte B, Mangogna A, Balzarini P, Corral L, Lopez G, Di Napoli A, Facchetti F, Pagni F, Tripodo C. Spatial transcriptome of a germinal center plasmablastic burst hints at MYD88/CD79B mutants-enriched diffuse large B-cell lymphomas. Eur J Immunol 2022; 52:1350-1361. [PMID: 35554927 PMCID: PMC9546146 DOI: 10.1002/eji.202149746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022]
Abstract
The GC reaction results in the selection of B cells acquiring effector Ig secreting ability by progressing toward plasmablastic differentiation. This transition is associated with exclusion from the GC microenvironment. The aberrant expansion of plasmablastic elements within the GC fringes configures an atypical condition, the biological characteristics of which have not been defined yet. We investigated the in situ immunophenotypical and transcriptional characteristics of a nonclonal germinotropic expansion of plasmablastic elements (GEx) occurring in the tonsil of a young patient. Compared to neighboring GC and perifollicular regions, the GEx showed a distinctive signature featuring key regulators of plasmacytic differentiation, cytokine signaling, and cell metabolism. The GEx signature was tested in the setting of diffuse large B‐cell lymphoma (DLBCL) as a prototypical model of lymphomagenesis encompassing transformation at different stages of GC and post‐GC functional differentiation. The signature outlined DLBCL clusters with different immune microenvironment composition and enrichment in genetic subtypes. This report represents the first insight into the transcriptional features of a germinotropic plasmablastic burst, shedding light into the molecular hallmarks of B cells undergoing plasmablastic differentiation and aberrant expansion within the noncanonical setting of the GC microenvironment.
Collapse
Affiliation(s)
- Vincenzo L'Imperio
- Department of Medicine and Surgery, University of Milano-Bicocca, Pathology, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy
| | - Gaia Morello
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | - Valeria Cancila
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giorgio Bertolazzi
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Saveria Mazzara
- Division of Diagnostic Haematopathology, European Institute of Oncology, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Burlo Garofolo", Trieste, 34137, Italy
| | - Piera Balzarini
- Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili 1, Brescia, 25123, Italy
| | - Lilia Corral
- Centro Ricerca Tettamanti, Pediatric Clinic, University of Milan Bicocca, San Gerardo Hospital/Fondazione MBBM, Monza, Italy
| | - Gianluca Lopez
- Pathology Unit, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Arianna Di Napoli
- Pathology Unit, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | | | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Pathology, San Gerardo Hospital, Via G.B. Pergolesi 33, Monza, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy.,the FIRC Institute of Molecular Oncology, Tumor and Microenvironment Histopathology Unit, IFOM, Milan, Italy
| |
Collapse
|
1252
|
Lusk JB, Chua EHZ, Kaur P, Sung ICH, Lim WK, Lam VYM, Harmston N, Tolwinski NS. A non-canonical Raf function is required for dorsal-ventral patterning during Drosophila embryogenesis. Sci Rep 2022; 12:7684. [PMID: 35538124 PMCID: PMC9090920 DOI: 10.1038/s41598-022-11699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Proper embryonic development requires directional axes to pattern cells into embryonic structures. In Drosophila, spatially discrete expression of transcription factors determines the anterior to posterior organization of the early embryo, while the Toll and TGFβ signalling pathways determine the early dorsal to ventral pattern. Embryonic MAPK/ERK signaling contributes to both anterior to posterior patterning in the terminal regions and to dorsal to ventral patterning during oogenesis and embryonic stages. Here we describe a novel loss of function mutation in the Raf kinase gene, which leads to loss of ventral cell fates as seen through the loss of the ventral furrow, the absence of Dorsal/NFκB nuclear localization, the absence of mesoderm determinants Twist and Snail, and the expansion of TGFβ. Gene expression analysis showed cells adopting ectodermal fates much like loss of Toll signaling. Our results combine novel mutants, live imaging, optogenetics and transcriptomics to establish a novel role for Raf, that appears to be independent of the MAPK cascade, in embryonic patterning.
Collapse
Affiliation(s)
- Jay B Lusk
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Prameet Kaur
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Wen Kin Lim
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
| | | | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Nicholas S Tolwinski
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore.
- Yale-NUS College Research Labs @ E6, E6, 5 Engineering Drive 1, #04-02, Singapore, 117608, Singapore.
| |
Collapse
|
1253
|
Kakuta Y, Iwaki H, Umeno J, Kawai Y, Kawahara M, Takagawa T, Shimoyama Y, Naito T, Moroi R, Kuroha M, Shiga H, Watanabe K, Nakamura S, Nakase H, Sasaki M, Hanai H, Fuyuno Y, Hirano A, Matsumoto T, Kudo H, Minegishi N, Nakamura M, Hisamatsu T, Andoh A, Nagasaki M, Tokunaga K, Kinouchi Y, Masamune A. Crohn's Disease and Early Exposure to Thiopurines are Independent Risk Factors for Mosaic Chromosomal Alterations in Patients with Inflammatory Bowel Diseases. J Crohns Colitis 2022; 16:643-655. [PMID: 34751398 DOI: 10.1093/ecco-jcc/jjab199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Mosaic chromosomal alterations [mCAs] increase the risk for haematopoietic malignancies and may be risk factors for several other diseases. Inflammatory bowel diseases [IBDs], including Crohn's disease [CD] and ulcerative colitis [UC], are associated with mCAs, and patients may be at risk for haematopoietic malignancy development and/or modification of IBD phenotypes. In the present study, we screened patients with IBD for the presence of mCAs and explored the possible pathophysiological and genetic risk factors for mCAs. METHODS We analysed mCAs in peripheral blood from 3339 patients with IBD and investigated the clinical and genetic risk factors for mCAs. RESULTS CD and exposure to thiopurines before the age of 20 years were identified as novel independent risk factors for mCAs [odds ratio = 2.15 and 5.68, p = 1.17e-2 and 1.60e-3, respectively]. In contrast, there were no significant associations of disease duration, anti-tumour necrosis factor alpha antibodies, or other clinical factors with mCAs. Gene ontology enrichment analysis revealed that genes specifically located in the mCAs in patients with CD were significantly associated with factors related to mucosal immune responses. A genome-wide association study revealed that ERBIN, CD96, and AC068672.2 were significantly associated with mCAs in patients with CD [p = 1.56e-8, 1.65e-8, and 4.92e-8, respectively]. CONCLUSIONS The difference in mCAs between patients with CD and UC supports the higher incidence of haematopoietic malignancies in CD. Caution should be exercised when using thiopurines in young patients with IBD, particularly CD, in light of possible chromosomal alterations.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideya Iwaki
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yosuke Kawai
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Masahiro Kawahara
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Tetsuya Takagawa
- Center for Inflammatory Bowel Disease, Division of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yusuke Shimoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Watanabe
- Center for Inflammatory Bowel Disease, Division of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shiro Nakamura
- Center for Inflammatory Bowel Disease, Division of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Sasaki
- Division of Gastroenterology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsushi Hirano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Matsumoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | - Hisaaki Kudo
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoko Minegishi
- Department of Biobank, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization [NHO] Nagasaki Medical Center, Omura, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | | | - Yoshitaka Kinouchi
- Student Healthcare Center, Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
1254
|
Cui J, Sachaphibulkij K, Teo WS, Lim HM, Zou L, Ong CN, Alberts R, Chen J, Lim LHK. Annexin-A1 deficiency attenuates stress-induced tumor growth via fatty acid metabolism in mice: an Integrated multiple omics analysis on the stress- microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Theranostics 2022; 12:3794-3817. [PMID: 35664067 PMCID: PMC9131274 DOI: 10.7150/thno.68611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background: High emotional or psychophysical stress levels have been correlated with an increased risk and progression of various diseases. How stress impacts the gut microbiota to influence metabolism and subsequent cancer progression is unclear. Methods: Feces and serum samples from BALB/c ANXA1+/+ and ANXA1-/- mice with or without chronic restraint stress were used for 16S rRNA gene sequencing and GC-MS metabolomics analysis to investigate the effect of stress on microbiome and metabolomics during stress and breast tumorigenesis. Breast tumors samples from stressed and non-stressed mice were used to perform Whole-Genome Bisulfite Sequencing (WGBS) and RNAseq analysis to construct the potential network from candidate hub genes. Finally, machine learning and integrated analysis were used to map the axis from chronic restraint stress to breast cancer development. Results: We report that chronic stress promotes breast tumor growth via a stress-microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Chronic restraint stress in mice alters the microbiome composition and fatty acids metabolism and induces an epigenetic signature in tumors xenografted after stress. Subsequent machine learning and systemic modeling analyses identified a significant correlation among microbiome composition, metabolites, and differentially methylated regions in stressed tumors. Moreover, silencing Annexin-A1 inhibits the changes in the gut microbiome and fatty acid metabolism after stress as well as basal and stress-induced tumor growth. Conclusions: These data support a physiological axis linking the microbiome and metabolites to cancer epigenetics and inflammation. The identification of this axis could propel the next phase of experimental discovery in further understanding the underlying molecular mechanism of tumorigenesis caused by physiological stress.
Collapse
Affiliation(s)
- Jianzhou Cui
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| | - Karishma Sachaphibulkij
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| | - Wen Shiun Teo
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| | - Hong Meng Lim
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| | - Li Zou
- Saw Swee Hock School of Public Health, NUS, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, NUS, Singapore
- NUS Environmental Research Institute, NUS, Singapore
| | - Rudi Alberts
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, NUS, Singapore
| | - Jinmiao Chen
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Lina H. K. Lim
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, NUS, Singapore
- NUS Immunology Program, Life Sciences Institute, NUS, Singapore
| |
Collapse
|
1255
|
Schedel A, Friedrich UA, Morcos MNF, Wagener R, Mehtonen J, Watrin T, Saitta C, Brozou T, Michler P, Walter C, Försti A, Baksi A, Menzel M, Horak P, Paramasivam N, Fazio G, Autry RJ, Fröhling S, Suttorp M, Gertzen C, Gohlke H, Bhatia S, Wadt K, Schmiegelow K, Dugas M, Richter D, Glimm H, Heinäniemi M, Jessberger R, Cazzaniga G, Borkhardt A, Hauer J, Auer F. Recurrent Germline Variant in RAD21 Predisposes Children to Lymphoblastic Leukemia or Lymphoma. Int J Mol Sci 2022; 23:ijms23095174. [PMID: 35563565 PMCID: PMC9106003 DOI: 10.3390/ijms23095174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous RAD21 germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients. While RAD21 p.P298S/A did not disrupt the formation of the cohesin complex, it altered RAD21 gene expression, DNA damage response and primary patient fibroblasts showed increased G2/M arrest after irradiation and Mitomycin-C treatment. Subsequent single-cell RNA-sequencing analysis of healthy human bone marrow confirmed the upregulation of distinct cohesin gene patterns during hematopoiesis, highlighting the importance of RAD21 expression within proliferating B- and T-cells. Our clinical and functional data therefore suggest that RAD21 germline variants can predispose to childhood lymphoblastic leukemia or lymphoma without displaying a CdLS phenotype.
Collapse
Affiliation(s)
- Anne Schedel
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Ulrike Anne Friedrich
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Mina N. F. Morcos
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Titus Watrin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Claudia Saitta
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Pia Michler
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Carolin Walter
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany; (C.W.); (M.D.)
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.F.); (R.J.A.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Arka Baksi
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.B.); (R.J.)
| | - Maria Menzel
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.H.); (S.F.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Grazia Fazio
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
| | - Robert J Autry
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.F.); (R.J.A.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.H.); (S.F.)
| | - Meinolf Suttorp
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Christoph Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (C.G.); (H.G.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (C.G.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Karin Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Faculty of health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Martin Dugas
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany; (C.W.); (M.D.)
- Institute of Medical Informatics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany; (D.R.); (H.G.)
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany; (D.R.); (H.G.)
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.B.); (R.J.)
| | - Gianni Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
- Medical Genetics, Department of Medicine and Surgery, University of Milan Bicocca, 20900 Monza, Italy
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Julia Hauer
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
- German Cancer Consortium (DKTK), 81675 Munich, Germany
- Correspondence: ; Tel.: +49-(89)-3068-3940
| | - Franziska Auer
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
| |
Collapse
|
1256
|
Dainichi T, Nakano Y, Doi H, Nakamizo S, Nakajima S, Matsumoto R, Farkas T, Wong PM, Narang V, Moreno Traspas R, Kawakami E, Guttman-Yassky E, Dreesen O, Litman T, Reversade B, Kabashima K. C10orf99/GPR15L Regulates Proinflammatory Response of Keratinocytes and Barrier Formation of the Skin. Front Immunol 2022; 13:825032. [PMID: 35273606 PMCID: PMC8902463 DOI: 10.3389/fimmu.2022.825032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The epidermis, outermost layer of the skin, forms a barrier and is involved in innate and adaptive immunity in an organism. Keratinocytes participate in all these three protective processes. However, a regulator of keratinocyte protective responses against external dangers and stresses remains elusive. We found that upregulation of the orphan gene 2610528A11Rik was a common factor in the skin of mice with several types of inflammation. In the human epidermis, peptide expression of G protein-coupled receptor 15 ligand (GPR15L), encoded by the human ortholog C10orf99, was highly induced in the lesional skin of patients with atopic dermatitis or psoriasis. C10orf99 gene transfection into normal human epidermal keratinocytes (NHEKs) induced the expression of inflammatory mediators and reduced the expression of barrier-related genes. Gene ontology analyses showed its association with translation, mitogen-activated protein kinase (MAPK), mitochondria, and lipid metabolism. Treatment with GPR15L reduced the expression levels of filaggrin and loricrin in human keratinocyte 3D cultures. Instead, their expression levels in mouse primary cultured keratinocytes did not show significant differences between the wild-type and 2610528A11Rik deficient keratinocytes. Lipopolysaccharide-induced expression of Il1b and Il6 was less in 2610528A11Rik deficient mouse keratinocytes than in wild-type, and imiquimod-induced psoriatic dermatitis was blunted in 2610528A11Rik deficient mice. Furthermore, repetitive subcutaneous injection of GPR15L in mouse ears induced skin inflammation in a dose-dependent manner. These results suggest that C10orf99/GPR15L is a primary inducible regulator that reduces the barrier formation and induces the inflammatory response of keratinocytes.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Faculty of Medicine, Kagawa University, Miki-cho, Japan.,Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuri Nakano
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Doi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nakamizo
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Agency for Science, Technology and Research (ASTAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| | - Saeko Nakajima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Drug Discovery for Inflammatory Skin Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thomas Farkas
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Pui Mun Wong
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| | - Ricardo Moreno Traspas
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| | - Eiryo Kawakami
- Advanced Data Science Project (ADSP), RIKEN, Yokohama, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oliver Dreesen
- Agency for Science, Technology and Research (ASTAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| | - Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Agency for Science, Technology and Research (ASTAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| |
Collapse
|
1257
|
Yasutomi M, Christiaansen AF, Imai N, Martin-Orozco N, Forst CV, Chen G, Ueno H. CD226 and TIGIT Cooperate in the Differentiation and Maturation of Human Tfh Cells. Front Immunol 2022; 13:840457. [PMID: 35273617 PMCID: PMC8902812 DOI: 10.3389/fimmu.2022.840457] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Costimulation pathways play an essential role in T cell activation, differentiation, and regulation. CD155 expressed on antigen-presenting cells (APCs) interacts with TIGIT, an inhibitory costimulatory molecule, and CD226, an activating costimulatory molecule, on T cells. TIGIT and CD226 are expressed at varying levels depending on the T cell subset and activation state. T follicular helper cells in germinal centers (GC-Tfh) in human tonsils express high TIGIT and low CD226. However, the biological role of the CD155/TIGIT/CD226 axis in human Tfh cell biology has not been elucidated. To address this, we analyzed tonsillar CD4+ T cell subsets cultured with artificial APCs constitutively expressing CD155. Here we show that CD226 signals promote the early phase of Tfh cell differentiation in humans. CD155 signals promoted the proliferation of naïve CD4+ T cells and Tfh precursors (pre-Tfh) isolated from human tonsils and upregulated multiple Tfh molecules and decreased IL-2, a cytokine detrimental for Tfh cell differentiation. Blocking CD226 potently inhibited their proliferation and expression of Tfh markers. By contrast, while CD155 signals promoted the proliferation of tonsillar GC-Tfh cells, their proliferation required only weak CD226 signals. Furthermore, attenuating CD226 signals rather increased the expression of CXCR5, ICOS, and IL-21 by CD155-stimulated GC-Tfh cells. Thus, the importance of CD226 signals changes according to the differentiation stage of human Tfh cells and wanes in mature GC-Tfh cells. High TIGIT expression on GC-Tfh may play a role in attenuating the detrimental CD226 signals post GC-Tfh cell maturation.
Collapse
Affiliation(s)
- Motoko Yasutomi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allison F Christiaansen
- EMD Serono Research and Development Institute Inc. (The Healthcare Business of Merck KGaA, Darmstadt, Germany), Billerica, MA, United States
| | - Naoko Imai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natalia Martin-Orozco
- EMD Serono Research and Development Institute Inc. (The Healthcare Business of Merck KGaA, Darmstadt, Germany), Billerica, MA, United States
| | - Christian V Forst
- Department of Genetics and Genomic Sciences, Department of Microbiology, The Icahn Institute for Data Science and Genomic Technology, New York, NY, United States
| | - Gang Chen
- EMD Serono Research and Development Institute Inc. (The Healthcare Business of Merck KGaA, Darmstadt, Germany), Billerica, MA, United States
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,ASHBi Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| |
Collapse
|
1258
|
Son JH, Park JS, Lee JU, Kim MK, Min SA, Park CS, Chang HS. A genome-wide association study on frequent exacerbation of asthma depending on smoking status. Respir Med 2022; 199:106877. [DOI: 10.1016/j.rmed.2022.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
|
1259
|
Li R, Xia Y, Chen X, Li X, Huang G, Peng X, Liu K, Zhang C, Li M, Lin Y, Dong J, Ji L, Lai Y. Identification of a three-miRNA panel in serum for bladder cancer diagnosis by a diagnostic test. Transl Cancer Res 2022; 11:1005-1016. [PMID: 35706801 PMCID: PMC9189164 DOI: 10.21037/tcr-21-2611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/20/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bladder cancer (BC) is the tenth most common cancer in the world. Serum microRNA (miRNA) profiles previously have been reported as non-invasive biomarkers in cancer screening. The non-invasive and reliable diagnostic biomarkers are urgently needed for detecting BC, while cystoscopy is invasive. Our study aimed to identify candidate miRNAs in serum as potential diagnostic biomarkers for BC detection. METHODS This study was including the screening stage, training stage, and validation stage with 137 BC patients and 127 healthy controls (HCs). We identified the expression of 28 serum miRNAs from 5 BC pools and 3 HC pools in the initial screening stage. The other 112 BC patients and 112 HCs were randomly divided into training stage with 30 BC patients and 30 HCs and validation stages with 82 BC patients and 82 HCs. These HCs matched BC patients based on age and gender with P value >0.05. Identified dysregulated miRNAs were further confirmed in the training stage, and validation stages by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of miRNAs was assessed by receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC). Target genes of 3 candidate miRNAs were predicted by bioinformatic analysis. RESULTS Five miRNAs (miR-106a-5p, miR-145-5p, miR-132-3p, miR-7-5p and miR-148b-3p) in serum were obviously dysregulated in BC patients compared to HCs. The ability to diagnose BC of 3 candidate miRNAs was estimated by AUC, with miR-132-3p (AUC =0.781; sensitivity =68.29%, specificity =81.71%), miR-7-5p (AUC =0.778; sensitivity =59.76%, specificity =84.15%) and miR-148b-3p (AUC =0.837; sensitivity =81.71%, specificity =71.95%). Combined application of these candidate miRNAs with parallel test could improve the diagnostic value (AUC =0.922; sensitivity =90.24%, specificity =81.71%). BNC2, GAS7, and NTRK2, considered as target genes of the three-miRNA panel, may play an important role in the process of BC development. CONCLUSIONS A three-miRNA panel in serum was identified for BC diagnosis in our study, which HCs were used for differential diagnosis. The three-miRNA panel (miR-132-3p, miR-7-5p, and miR-148b-3p) might be performed as a non-invasive and convenient diagnostic tool for BC screening and diagnosis.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yong Xia
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Xiqi Peng
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Kaihao Liu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Chunduo Zhang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Mingyang Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yu Lin
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Dong
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ling Ji
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| |
Collapse
|
1260
|
Endurance Training and Consumption of Hydroalcoholic Zingiber Officinale Extract Regulated PPARγ, PGC1-ɑ/TNF-ɑ Expression Level in Myocardial Infarction Rats. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
1261
|
Carmack SA, Vendruscolo JCM, Adrienne McGinn M, Miranda-Barrientos J, Repunte-Canonigo V, Bosse GD, Mercatelli D, Giorgi FM, Fu Y, Hinrich AJ, Jodelka FM, Ling K, Messing RO, Peterson RT, Rigo F, Edwards S, Sanna PP, Morales M, Hastings ML, Koob GF, Vendruscolo LF. Corticosteroid sensitization drives opioid addiction. Mol Psychiatry 2022; 27:2492-2501. [PMID: 35296810 PMCID: PMC10406162 DOI: 10.1038/s41380-022-01501-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
The global crisis of opioid overdose fatalities has led to an urgent search to discover the neurobiological mechanisms of opioid use disorder (OUD). A driving force for OUD is the dysphoric and emotionally painful state (hyperkatifeia) that is produced during acute and protracted opioid withdrawal. Here, we explored a mechanistic role for extrahypothalamic stress systems in driving opioid addiction. We found that glucocorticoid receptor (GR) antagonism with mifepristone reduced opioid addiction-like behaviors in rats and zebrafish of both sexes and decreased the firing of corticotropin-releasing factor neurons in the rat amygdala (i.e., a marker of brain stress system activation). In support of the hypothesized role of glucocorticoid transcriptional regulation of extrahypothalamic GRs in addiction-like behavior, an intra-amygdala infusion of an antisense oligonucleotide that blocked GR transcriptional activity reduced addiction-like behaviors. Finally, we identified transcriptional adaptations of GR signaling in the amygdala of humans with OUD. Thus, GRs, their coregulators, and downstream systems may represent viable therapeutic targets to treat the "stress side" of OUD.
Collapse
Affiliation(s)
- Stephanie A Carmack
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
- Center for Adaptive Systems of Brain-Body Interactions, George Mason University, Fairfax, VA, USA
| | - Janaina C M Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - M Adrienne McGinn
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Jorge Miranda-Barrientos
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel D Bosse
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anthony J Hinrich
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Francine M Jodelka
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience and Neurology, University of Texas, Austin, TX, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Marisela Morales
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Michelle L Hastings
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institute of Health, Baltimore, MD, USA.
| |
Collapse
|
1262
|
Kamath T, Abdulraouf A, Burris SJ, Langlieb J, Gazestani V, Nadaf NM, Balderrama K, Vanderburg C, Macosko EZ. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease. Nat Neurosci 2022; 25:588-595. [PMID: 35513515 PMCID: PMC9076534 DOI: 10.1038/s41593-022-01061-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
The loss of dopamine (DA) neurons within the substantia nigra pars compacta (SNpc) is a defining pathological hallmark of Parkinson's disease (PD). Nevertheless, the molecular features associated with DA neuron vulnerability have not yet been fully identified. Here, we developed a protocol to enrich and transcriptionally profile DA neurons from patients with PD and matched controls, sampling a total of 387,483 nuclei, including 22,048 DA neuron profiles. We identified ten populations and spatially localized each within the SNpc using Slide-seq. A single subtype, marked by the expression of the gene AGTR1 and spatially confined to the ventral tier of SNpc, was highly susceptible to loss in PD and showed the strongest upregulation of targets of TP53 and NR2F2, nominating molecular processes associated with degeneration. This same vulnerable population was specifically enriched for the heritable risk associated with PD, highlighting the importance of cell-intrinsic processes in determining the differential vulnerability of DA neurons to PD-associated degeneration.
Collapse
Affiliation(s)
- Tushar Kamath
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Abdulraouf Abdulraouf
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - S J Burris
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Jonah Langlieb
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Vahid Gazestani
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Naeem M Nadaf
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Karol Balderrama
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Charles Vanderburg
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA.
| |
Collapse
|
1263
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
1264
|
Buthmann J, Huang D, Casaccia P, O’Neill S, Nomura Y, Liu J. Prenatal Exposure to a Climate-Related Disaster Results in Changes of the Placental Transcriptome and Infant Temperament. Front Genet 2022; 13:887619. [PMID: 35571026 PMCID: PMC9099074 DOI: 10.3389/fgene.2022.887619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Maternal stress during pregnancy exerts long-term effects on the mental well-being of the offspring. However, the long-term effect of prenatal exposure on the offspring's mental status is only partially understood. The placenta plays a vital role in connecting the maternal side to the fetus, thereby serving as an important interface between maternal exposure and fetal development. Here, we profiled the placental transcriptome of women who were pregnant during a hurricane (Superstorm Sandy), which struck New York City in 2012. The offspring were followed longitudinally and their temperament was assessed during the first 6-12 months of age. The data identified a significant correlation between a Superstorm Sandy stress factor score and infant temperament. Further, analysis of the placental transcriptomes identified an enrichment of functional pathways related to inflammation, extracellular matrix integrity and sensory perception in the specimen from those infants with "Slow-to-Warm-up" temperament during the first year of life. Together, these findings provide initial evidence that maternal exposure to climate-related disasters results in altered placental transcriptome, which may be related to long-term emotional and behavioral consequences in children.
Collapse
Affiliation(s)
- Jessica Buthmann
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Dennis Huang
- The Graduate Center at the City University of New York, New York, NY, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
| | - Sarah O’Neill
- The Graduate Center at the City University of New York, New York, NY, United States,The City College of New York at the City University of New York, New York, NY, United States
| | - Yoko Nomura
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States,Department of Psychology, Queens College, City University of New York, New York, NY, United States,*Correspondence: Jia Liu, ; Yoko Nomura,
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States,*Correspondence: Jia Liu, ; Yoko Nomura,
| |
Collapse
|
1265
|
Ni N, Fang X, Mullens DA, Cai JJ, Ivanov I, Bartholin L, Li Q. Transcriptomic Profiling of Gene Expression Associated with Granulosa Cell Tumor Development in a Mouse Model. Cancers (Basel) 2022; 14:2184. [PMID: 35565312 PMCID: PMC9105549 DOI: 10.3390/cancers14092184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian granulosa cell tumors (GCTs) are rare sex cord-stromal tumors, accounting for ~5% ovarian tumors. The etiology of GCTs remains poorly defined. Genetically engineered mouse models are potentially valuable for understanding the pathogenesis of GCTs. Mice harboring constitutively active TGFβ signaling (TGFBR1-CA) develop ovarian GCTs that phenocopy several hormonal and molecular characteristics of human GCTs. To determine molecular alterations in the ovary upon TGFβ signaling activation, we performed transcriptomic profiling of gene expression associated with GCT development using ovaries from 1-month-old TGFBR1-CA mice and age-matched controls. RNA-sequencing and bioinformatics analysis coupled with the validation of select target genes revealed dysregulations of multiple cellular events and signaling molecules/pathways. The differentially expressed genes are enriched not only for known GCT-related pathways and tumorigenic events but also for signaling events potentially mediated by neuroactive ligand-receptor interaction, relaxin signaling, insulin signaling, and complements in TGFBR1-CA ovaries. Additionally, a comparative analysis of our data in mice with genes dysregulated in human GCTs or granulosa cells overexpressing a mutant FOXL2, the genetic hallmark of adult GCTs, identified some common genes altered in both conditions. In summary, this study has revealed the molecular signature of ovarian GCTs in a mouse model that harbors the constitutive activation of TGFBR1. The findings may be further exploited to understand the pathogenesis of a class of poorly defined ovarian tumors.
Collapse
Affiliation(s)
- Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Destiny A. Mullens
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - Laurent Bartholin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Lyon 1, F-69000 Lyon, France;
- Centre Léon Bérard, F-69008 Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| |
Collapse
|
1266
|
Oksa L, Mäkinen A, Nikkilä A, Hyvärinen N, Laukkanen S, Rokka A, Haapaniemi P, Seki M, Takita J, Kauko O, Heinäniemi M, Lohi O. Arginine Methyltransferase PRMT7 Deregulates Expression of RUNX1 Target Genes in T-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:2169. [PMID: 35565298 PMCID: PMC9101393 DOI: 10.3390/cancers14092169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with no well-established prognostic biomarkers. We examined the expression of protein arginine methyltransferases across hematological malignancies and discovered high levels of PRMT7 mRNA in T-ALL, particularly in the mature subtypes of T-ALL. The genetic deletion of PRMT7 by CRISPR-Cas9 reduced the colony formation of T-ALL cells and changed arginine monomethylation patterns in protein complexes associated with the RNA and DNA processing and the T-ALL pathogenesis. Among them was RUNX1, whose target gene expression was consequently deregulated. These results suggest that PRMT7 plays an active role in the pathogenesis of T-ALL.
Collapse
Affiliation(s)
- Laura Oksa
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Artturi Mäkinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Atte Nikkilä
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Noora Hyvärinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Saara Laukkanen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
| | - Anne Rokka
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Pekka Haapaniemi
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Masafumi Seki
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-17165 Solna, Sweden;
| | - Junko Takita
- Graduate School of Medicine, Kyoto University, Kyoto JP-606-8501, Japan;
| | - Otto Kauko
- Turku Bioscience Center, University of Turku and Åbo Akademi University, FI-20014 Turku, Finland; (A.R.); (P.H.); (O.K.)
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland;
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland; (A.M.); (A.N.); (N.H.); (S.L.); (O.L.)
- Tays Cancer Center, Tampere University Hospital, FI-33520 Tampere, Finland
| |
Collapse
|
1267
|
Glycation modulates glutamatergic signaling and exacerbates Parkinson's disease-like phenotypes. NPJ Parkinsons Dis 2022; 8:51. [PMID: 35468899 PMCID: PMC9038780 DOI: 10.1038/s41531-022-00314-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 01/17/2023] Open
Abstract
Alpha-synuclein (aSyn) is a central player in the pathogenesis of synucleinopathies due to its accumulation in typical protein aggregates in the brain. However, it is still unclear how it contributes to neurodegeneration. Type-2 diabetes mellitus is a risk factor for Parkinson's disease (PD). Interestingly, a common molecular alteration among these disorders is the age-associated increase in protein glycation. We hypothesized that glycation-induced neuronal dysfunction is a contributing factor in synucleinopathies. Here, we dissected the impact of methylglyoxal (MGO, a glycating agent) in mice overexpressing aSyn in the brain. We found that MGO-glycation potentiates motor, cognitive, olfactory, and colonic dysfunction in aSyn transgenic (Thy1-aSyn) mice that received a single dose of MGO via intracerebroventricular injection. aSyn accumulates in the midbrain, striatum, and prefrontal cortex, and protein glycation is increased in the cerebellum and midbrain. SWATH mass spectrometry analysis, used to quantify changes in the brain proteome, revealed that MGO mainly increase glutamatergic-associated proteins in the midbrain (NMDA, AMPA, glutaminase, VGLUT and EAAT1), but not in the prefrontal cortex, where it mainly affects the electron transport chain. The glycated proteins in the midbrain of MGO-injected Thy1-aSyn mice strongly correlate with PD and dopaminergic pathways. Overall, we demonstrated that MGO-induced glycation accelerates PD-like sensorimotor and cognitive alterations and suggest that the increase of glutamatergic signaling may underly these events. Our study sheds new light into the enhanced vulnerability of the midbrain in PD-related synaptic dysfunction and suggests that glycation suppressors and anti-glutamatergic drugs may hold promise as disease-modifying therapies for synucleinopathies.
Collapse
|
1268
|
Nalbandian M, Zhao M, Kato H, Jonouchi T, Nakajima-Koyama M, Yamamoto T, Sakurai H. Single-cell RNA-seq reveals heterogeneity in hiPSC-derived muscle progenitors and E2F family as a key regulator of proliferation. Life Sci Alliance 2022; 5:5/8/e202101312. [PMID: 35459735 PMCID: PMC9034463 DOI: 10.26508/lsa.202101312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
This study identified and characterized four different populations of muscle progenitor cells derived from human induced pluripotent stem cells. Human pluripotent stem cell-derived muscle progenitor cells (hiPSC-MuPCs) resemble fetal-stage muscle progenitor cells and possess in vivo regeneration capacity. However, the heterogeneity of hiPSC-MuPCs is unknown, which could impact the regenerative potential of these cells. Here, we established an hiPSC-MuPC atlas by performing single-cell RNA sequencing of hiPSC-MuPC cultures. Bioinformatic analysis revealed four cell clusters for hiPSC-MuPCs: myocytes, committed, cycling, and noncycling progenitors. Using FGFR4 as a marker for noncycling progenitors and cycling cells and CD36 as a marker for committed and myocyte cells, we found that FGFR4+ cells possess a higher regenerative capacity than CD36+ cells. We also identified the family of E2F transcription factors are key regulators of hiPSC-MuPC proliferation. Our study provides insights on the purification of hiPSC-MuPCs with higher regenerative potential and increases the understanding of the transcriptional regulation of hiPSC-MuPCs.
Collapse
Affiliation(s)
- Minas Nalbandian
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mingming Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hiroki Kato
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Asahi Kasei Co., Ltd., Tokyo, Japan
| | - Tatsuya Jonouchi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - May Nakajima-Koyama
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Hidetoshi Sakurai
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
1269
|
Genetic Associations and Differential mRNA Expression Levels of Host Genes Suggest a Viral Trigger for Endemic Pemphigus Foliaceus. Viruses 2022; 14:v14050879. [PMID: 35632621 PMCID: PMC9144834 DOI: 10.3390/v14050879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
The long search for the environmental trigger of the endemic pemphigus foliaceus (EPF, fogo selvagem) has not yet resulted in any tangible findings. Here, we searched for genetic associations and the differential expression of host genes involved in early viral infections and innate antiviral defense. Genetic variants could alter the structure, expression sites, or levels of the gene products, impacting their functions. By analyzing 3063 variants of 166 candidate genes in 227 EPF patients and 194 controls, we found 12 variants within 11 genes associated with differential susceptibility (p < 0.005) to EPF. The products of genes TRIM5, TPCN2, EIF4E, EIF4E3, NUP37, NUP50, NUP88, TPR, USP15, IRF8, and JAK1 are involved in different mechanisms of viral control, for example, the regulation of viral entry into the host cell or recognition of viral nucleic acids and proteins. Only two of nine variants were also associated in an independent German cohort of sporadic PF (75 patients, 150 controls), aligning with our hypothesis that antiviral host genes play a major role in EPF due to a specific virus−human interaction in the endemic region. Moreover, CCL5, P4HB, and APOBEC3G mRNA levels were increased (p < 0.001) in CD4+ T lymphocytes of EPF patients. Because there is limited or no evidence that these genes are involved in autoimmunity, their crucial role in antiviral responses and the associations that we observed support the hypothesis of a viral trigger for EPF, presumably a still unnoticed flavivirus. This work opens new frontiers in searching for the trigger of EPF, with the potential to advance translational research that aims for disease prevention and treatment.
Collapse
|
1270
|
Chait M, Yilmaz MM, Shakil S, Ku AW, Dogra P, Connors TJ, Szabo PA, Gray JI, Wells SB, Kubota M, Matsumoto R, Poon MM, Snyder ME, Baldwin MR, Sims PA, Saqi A, Farber DL, Weisberg SP. Immune and epithelial determinants of age-related risk and alveolar injury in fatal COVID-19. JCI Insight 2022; 7:157608. [PMID: 35446789 PMCID: PMC9228710 DOI: 10.1172/jci.insight.157608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/20/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory failure in COVID-19 is characterized by widespread disruption of the lung’s alveolar gas exchange interface. To elucidate determinants of alveolar lung damage, we performed epithelial and immune cell profiling in lungs from 24 COVID-19 autopsies and 43 uninfected organ donors ages 18–92 years. We found marked loss of type 2 alveolar epithelial (T2AE) cells and increased perialveolar lymphocyte cytotoxicity in all fatal COVID-19 cases, even at early stages before typical patterns of acute lung injury are histologically apparent. In lungs from uninfected organ donors, there was also progressive loss of T2AE cells with increasing age, which may increase susceptibility to COVID-19–mediated lung damage in older individuals. In the fatal COVID-19 cases, macrophage infiltration differed according to the histopathological pattern of lung injury. In cases with acute lung injury, we found accumulation of CD4+ macrophages that expressed distinctly high levels of T cell activation and costimulation genes and strongly correlated with increased extent of alveolar epithelial cell depletion and CD8+ T cell cytotoxicity. Together, our results show that T2AE cell deficiency may underlie age-related COVID-19 risk and initiate alveolar dysfunction shortly after infection, and we define immune cell mediators that may contribute to alveolar injury in distinct pathological stages of fatal COVID-19.
Collapse
Affiliation(s)
- Michael Chait
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Mine M Yilmaz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Shanila Shakil
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Amy W Ku
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States of America
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, United States of America
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States of America
| | - Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States of America
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, United States of America
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, United States of America
| | - Maya Ml Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States of America
| | - Mark E Snyder
- Department of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Matthew R Baldwin
- Department of Medicine, Columbia University Iring Medical Ceter, New York, United States of America
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| | - Donna L Farber
- Department of Surgery, Columbia University Irving Medical Center, New York, United States of America
| | - Stuart P Weisberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, United States of America
| |
Collapse
|
1271
|
Mohammadi Ghahhari N, Sznurkowska MK, Hulo N, Bernasconi L, Aceto N, Picard D. Cooperative interaction between ERα and the EMT-inducer ZEB1 reprograms breast cancer cells for bone metastasis. Nat Commun 2022; 13:2104. [PMID: 35440541 PMCID: PMC9018728 DOI: 10.1038/s41467-022-29723-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) has been proposed to contribute to the metastatic spread of breast cancer cells. EMT-promoting transcription factors determine a continuum of different EMT states. In contrast, estrogen receptor α (ERα) helps to maintain the epithelial phenotype of breast cancer cells and its expression is crucial for effective endocrine therapies. Determining whether and how EMT-associated transcription factors such as ZEB1 modulate ERα signaling during early stages of EMT could promote the discovery of therapeutic approaches to suppress metastasis. Here we show that, shortly after induction of EMT and while cells are still epithelial, ZEB1 modulates ERα-mediated transcription induced by estrogen or cAMP signaling in breast cancer cells. Based on these findings and our ex vivo and xenograft results, we suggest that the functional interaction between ZEB1 and ERα may alter the tissue tropism of metastatic breast cancer cells towards bone. The epithelial mesenchymal transition (EMT) is important in the metastatic spread of cancer cells. Here, the authors show that the EMT transcription factor, ZEB1, can modify estrogen receptor α during EMT and facilitate the migration of breast cancer cells to the bone
Collapse
Affiliation(s)
| | - Magdalena K Sznurkowska
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zürich, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de Genève, 1211, Genève 4, Switzerland
| | - Lilia Bernasconi
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zürich, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211, Genève 4, Switzerland.
| |
Collapse
|
1272
|
Rostovskaya M, Andrews S, Reik W, Rugg-Gunn PJ. Amniogenesis occurs in two independent waves in primates. Cell Stem Cell 2022; 29:744-759.e6. [PMID: 35439430 DOI: 10.1016/j.stem.2022.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 01/28/2023]
Abstract
In primates, the amnion emerges through cavitation of the epiblast during implantation, whereas in other species it does so later at gastrulation by the folding of the ectoderm. How the mechanisms of amniogenesis diversified during evolution remains unknown. Unexpectedly, single-cell analysis of primate embryos uncovered two transcriptionally and temporally distinct amniogenesis waves. To study this, we employed the naive-to-primed transition of human pluripotent stem cells (hPSCs) to model peri-implantation epiblast development. Partially primed hPSCs transiently gained the ability to differentiate into cavitating epithelium that transcriptionally and morphologically matched the early amnion, whereas fully primed hPSCs produced cells resembling the late amnion instead, thus recapitulating the two independent differentiation waves. The early wave follows a trophectoderm-like pathway and encompasses cavitation, whereas the late wave resembles an ectoderm-like route during gastrulation. The discovery of two independent waves explains how amniogenesis through cavitation could emerge during evolution via duplication of the pre-existing trophectoderm program.
Collapse
Affiliation(s)
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Altoslabs Cambridge Institute, Cambridge CB21 6GP, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1QR, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Stem Cell Institute, Cambridge CB2 0AW, UK.
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Stem Cell Institute, Cambridge CB2 0AW, UK.
| |
Collapse
|
1273
|
Bramel EE, Creamer TJ, Saqib M, Camejo Nunez WA, Bagirzadeh R, Roker LA, Goff LA, MacFarlane EG. Postnatal Smad3 Inactivation in Murine Smooth Muscle Cells Elicits a Temporally and Regionally Distinct Transcriptional Response. Front Cardiovasc Med 2022; 9:826495. [PMID: 35463747 PMCID: PMC9033237 DOI: 10.3389/fcvm.2022.826495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Heterozygous, loss of function mutations in positive regulators of the Transforming Growth Factor-β (TGF-β) pathway cause hereditary forms of thoracic aortic aneurysm. It is unclear whether and how the initial signaling deficiency triggers secondary signaling upregulation in the remaining functional branches of the pathway, and if this contributes to maladaptive vascular remodeling. To examine this process in a mouse model in which time-controlled, partial interference with postnatal TGF-β signaling in vascular smooth muscle cells (VSMCs) could be assessed, we used a VSMC-specific tamoxifen-inducible system, and a conditional allele, to inactivate Smad3 at 6 weeks of age, after completion of perinatal aortic development. This intervention induced dilation and histological abnormalities in the aortic root, with minor involvement of the ascending aorta. To analyze early and late events associated with disease progression, we performed a comparative single cell transcriptomic analysis at 10- and 18-weeks post-deletion, when aortic dilation is undetectable and moderate, respectively. At the early time-point, Smad3-inactivation resulted in a broad reduction in the expression of extracellular matrix components and critical components of focal adhesions, including integrins and anchoring proteins, which was reflected histologically by loss of connections between VSMCs and elastic lamellae. At the later time point, however, expression of several transcripts belonging to the same functional categories was normalized or even upregulated; this occurred in association with upregulation of transcripts coding for TGF-β ligands, and persistent downregulation of negative regulators of the pathway. To interrogate how VSMC heterogeneity may influence this transition, we examined transcriptional changes in each of the four VSMC subclusters identified, regardless of genotype, as partly reflecting the proximal-to-distal anatomic location based on in situ RNA hybridization. The response to Smad3-deficiency varied depending on subset, and VSMC subsets over-represented in the aortic root, the site most vulnerable to dilation, most prominently upregulated TGF-β ligands and pro-pathogenic factors such as thrombospondin-1, angiotensin converting enzyme, and pro-inflammatory mediators. These data suggest that Smad3 is required for maintenance of focal adhesions, and that loss of contacts with the extracellular matrix has consequences specific to each VSMC subset, possibly contributing to the regional susceptibility to dilation in the aorta.
Collapse
Affiliation(s)
- Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Muzna Saqib
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wendy A. Camejo Nunez
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rustam Bagirzadeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - LaToya Ann Roker
- School of Medicine Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Loyal A. Goff
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
1274
|
Anerillas C, Herman AB, Rossi M, Munk R, Lehrmann E, Martindale JL, Cui CY, Abdelmohsen K, De S, Gorospe M. Early SRC activation skews cell fate from apoptosis to senescence. SCIENCE ADVANCES 2022; 8:eabm0756. [PMID: 35394839 PMCID: PMC8993123 DOI: 10.1126/sciadv.abm0756] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 05/10/2023]
Abstract
Cells responding to DNA damage implement complex adaptive programs that often culminate in one of two distinct outcomes: apoptosis or senescence. To systematically identify factors driving each response, we analyzed human IMR-90 fibroblasts exposed to increasing doses of the genotoxin etoposide and identified SRC as a key kinase contributing early to this dichotomous decision. SRC was activated by low but not high levels of etoposide. With low DNA damage, SRC-mediated activation of p38 critically promoted expression of cell survival and senescence proteins, while SRC-mediated repression of p53 prevented a rise in proapoptotic proteins. With high DNA damage, failure to activate SRC led to elevation of p53, inhibition of p38, and apoptosis. In mice exposed to DNA damage, pharmacologic inhibition of SRC prevented the accumulation of senescent cells in tissues. We propose that inhibiting SRC could be exploited to favor apoptosis over senescence in tissues to improve health outcomes.
Collapse
Affiliation(s)
- Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Chang-Yi Cui
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | |
Collapse
|
1275
|
Brown C, Agosta P, McKee C, Walker K, Mazzella M, Alamri A, Svinarich D, Chaudhry GR. Human primitive mesenchymal stem cell-derived retinal progenitor cells improved neuroprotection, neurogenesis, and vision in rd12 mouse model of retinitis pigmentosa. Stem Cell Res Ther 2022; 13:148. [PMID: 35395806 PMCID: PMC8994263 DOI: 10.1186/s13287-022-02828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 01/05/2023] Open
Abstract
Background Currently, there is no treatment for retinal degenerative diseases (RDD) such as retinitis pigmentosa (RP). Stem cell-based therapies could provide promising opportunities to repair the damaged retina and restore vision. Thus far, primarily adult mesenchymal stem cells (MSCs) have been investigated in preclinical and clinical studies, and the results have not been convincing. We applied a new approach in which primitive (p) MSC-derived retinal progenitor cells (RPCs) were examined to treat retinal degeneration in an rd12 mouse model of RP. Methods Well-characterized pMSCs and RPCs labeled with PKH26 were intravitreally injected into rd12 mice. The vision and retinal function of transplanted animals were analyzed using electroretinography. Animals were killed 4 and 8 weeks after cell transplantation for histological, immunological, molecular, and transcriptomic analyses of the retina. Results Transplanted RPCs significantly improved vision and retinal thickness as well as function in rd12 mice. pMSCs and RPCs homed to distinct retinal layers. pMSCs homed to the retinal pigment epithelium, and RPCs migrated to the neural layers of the retina, where they improved the thickness of the respective layers and expressed cell-specific markers. RPCs induced anti-inflammatory and neuroprotective responses as well as upregulated the expression of genes involved in neurogenesis. The transcriptomic analysis showed that RPCs promoted neurogenesis and functional recovery of the retina through inhibition of BMP and activation of JAK/STAT and MAPK signaling pathways. Conclusions Our study demonstrated that RPCs countered inflammation, provided retinal protection, and promoted neurogenesis resulting in improved retinal structure and physiological function in rd12 mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02828-w.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Patrina Agosta
- Ascension Providence Hospital, Southfield, MI, 48075, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Matteo Mazzella
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Ali Alamri
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | | | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA.
| |
Collapse
|
1276
|
Glinsky GV, Godugu K, Sudha T, Rajabi M, Chittur SV, Hercbergs AA, Mousa SA, Davis PJ. Effects of Anticancer Agent P-bi-TAT on Gene Expression Link the Integrin Thyroid Hormone Receptor to Expression of Stemness and Energy Metabolism Genes in Cancer Cells. Metabolites 2022; 12:metabo12040325. [PMID: 35448512 PMCID: PMC9029602 DOI: 10.3390/metabo12040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Chemically modified forms of tetraiodothyroacetic acid (tetrac), an L-thyroxine derivative, have been shown to exert their anticancer activity at plasma membrane integrin αvβ3 of tumor cells. Via a specific hormone receptor on the integrin, tetrac-based therapeutic agents modulate expression of genes relevant to cancer cell proliferation, survival and energy metabolism. P-bi-TAT, a novel bivalent tetrac-containing synthetic compound has anticancer activity in vitro and in vivo against glioblastoma multiforme (GBM) and other types of human cancers. In the current study, microarray analysis was carried out on a primary culture of human GBM cells exposed to P-bi-TAT (10−6 tetrac equivalent) for 24 h. P-bi-TAT significantly affected expression of a large panel of genes implicated in cancer cell stemness, growth, survival and angiogenesis. Recent interest elsewhere in ATP synthase as a target in GBM cells caused us to focus attention on expression of genes involved in energy metabolism. Significantly downregulated transcripts included multiple energy-metabolism-related genes: electron transport chain genes ATP5A1 (ATP synthase 1), ATP51, ATP5G2, COX6B1 (cytochrome c oxidase subunit 6B1), NDUFA8 (NADH dehydrogenase (ubiquinone) FA8), NDUFV2I and other NDUF genes. The NDUF and ATP genes are also relevant to control of oxidative phosphorylation and transcription. Qualitatively similar actions of P-bi-TAT on expression of subsets of energy-metabolism-linked genes were also detected in established human GBM and pancreatic cancer cell lines. In conclusion, acting at αvβ3 integrin, P-bi-TAT caused downregulation in human cancer cells of expression of a large number of genes involved in electron transport and oxidative phosphorylation. These observations suggest that cell surface thyroid hormone receptors on αvβ3 regulate expression of genes relevant to tumor cell stemness and energy metabolism.
Collapse
Affiliation(s)
- Gennadi V. Glinsky
- Institute of Engineering in Medicine, University of California San Diego, San Diego, CA 92037, USA
- Correspondence: (G.V.G.); (P.J.D.); Tel.: +1-858-401-3470 (G.V.G.); +1-518-428-7848 (P.J.D.); Fax: +1-518-694-7567 (P.J.D.)
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA; (K.G.); (T.S.); (M.R.); (S.A.M.)
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA; (K.G.); (T.S.); (M.R.); (S.A.M.)
| | - Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA; (K.G.); (T.S.); (M.R.); (S.A.M.)
| | - Sridar V. Chittur
- Center for Functional Genomics, University at Albany, Rensselaer, NY 12144, USA;
| | | | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA; (K.G.); (T.S.); (M.R.); (S.A.M.)
| | - Paul J. Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA; (K.G.); (T.S.); (M.R.); (S.A.M.)
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA
- Correspondence: (G.V.G.); (P.J.D.); Tel.: +1-858-401-3470 (G.V.G.); +1-518-428-7848 (P.J.D.); Fax: +1-518-694-7567 (P.J.D.)
| |
Collapse
|
1277
|
Giordano AMS, Luciani M, Gatto F, Abou Alezz M, Beghè C, Della Volpe L, Migliara A, Valsoni S, Genua M, Dzieciatkowska M, Frati G, Tahraoui-Bories J, Giliani SC, Orcesi S, Fazzi E, Ostuni R, D'Alessandro A, Di Micco R, Merelli I, Lombardo A, Reijns MAM, Gromak N, Gritti A, Kajaste-Rudnitski A. DNA damage contributes to neurotoxic inflammation in Aicardi-Goutières syndrome astrocytes. J Exp Med 2022; 219:213058. [PMID: 35262626 PMCID: PMC8916121 DOI: 10.1084/jem.20211121] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 01/09/2023] Open
Abstract
Aberrant induction of type I IFN is a hallmark of the inherited encephalopathy Aicardi-Goutières syndrome (AGS), but the mechanisms triggering disease in the human central nervous system (CNS) remain elusive. Here, we generated human models of AGS using genetically modified and patient-derived pluripotent stem cells harboring TREX1 or RNASEH2B loss-of-function alleles. Genome-wide transcriptomic analysis reveals that spontaneous proinflammatory activation in AGS astrocytes initiates signaling cascades impacting multiple CNS cell subsets analyzed at the single-cell level. We identify accumulating DNA damage, with elevated R-loop and micronuclei formation, as a driver of STING- and NLRP3-related inflammatory responses leading to the secretion of neurotoxic mediators. Importantly, pharmacological inhibition of proapoptotic or inflammatory cascades in AGS astrocytes prevents neurotoxicity without apparent impact on their increased type I IFN responses. Together, our work identifies DNA damage as a major driver of neurotoxic inflammation in AGS astrocytes, suggests a role for AGS gene products in R-loop homeostasis, and identifies common denominators of disease that can be targeted to prevent astrocyte-mediated neurotoxicity in AGS.
Collapse
Affiliation(s)
- Anna Maria Sole Giordano
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Francesca Gatto
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Alessandro Migliara
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Sara Valsoni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Giacomo Frati
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Julie Tahraoui-Bories
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico Mondino Foundation, Pavia, Italy
| | - Elisa Fazzi
- Unit of Child Neurology and Psychiatry, Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili, Brescia, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Martin A M Reijns
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
1278
|
Dynamic genome-wide gene expression and immune cell composition in the developing human placenta. J Reprod Immunol 2022; 151:103624. [DOI: 10.1016/j.jri.2022.103624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
|
1279
|
Na E, Allen E, Baird LA, Odom CV, Korkmaz FT, Shenoy AT, Matschulat AM, Jones MR, Kotton DN, Mizgerd JP, Varelas X, Traber KE, Quinton LJ. Epithelial LIF signaling limits apoptosis and lung injury during bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2022; 322:L550-L563. [PMID: 35137631 PMCID: PMC8957336 DOI: 10.1152/ajplung.00325.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
During bacterial pneumonia, alveolar epithelial cells are critical for maintaining gas exchange and providing antimicrobial as well as pro-immune properties. We previously demonstrated that leukemia inhibitory factor (LIF), an IL-6 family cytokine, is produced by type II alveolar epithelial cells (ATII) and is critical for tissue protection during bacterial pneumonia. However, the target cells and mechanisms of LIF-mediated protection remain unknown. Here, we demonstrate that antibody-induced LIF blockade remodels the lung epithelial transcriptome in association with increased apoptosis. Based on these data, we performed pneumonia studies using a novel mouse model in which LIFR (the unique receptor for LIF) is absent in lung epithelium. Although LIFR is expressed on the surface of epithelial cells, its absence only minimally contributed to tissue protection during pneumonia. Single-cell RNA-sequencing (scRNAseq) was conducted to identify adult murine lung cell types most prominently expressing Lifr, revealing endothelial cells, mesenchymal cells, and ATIIs as major sources of Lifr. Sequencing data indicated that ATII cells were significantly impacted by pneumonia, with additional differences observed in response to LIF neutralization, including but not limited to gene programs related to cell death, injury, and inflammation. Overall, our data suggest that LIF signaling on epithelial cells alters responses in this cell type during pneumonia. However, our results also suggest separate and perhaps more prominent roles of LIFR in other cell types, such as endothelial cells or mesenchymal cells, which provide grounds for future investigation.
Collapse
Affiliation(s)
- Elim Na
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Eri Allen
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Lillia A Baird
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Christine V Odom
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Anukul T Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Adeline M Matschulat
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Darrell N Kotton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Xaralabos Varelas
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
1280
|
Dähling S, Mansilla AM, Knöpper K, Grafen A, Utzschneider DT, Ugur M, Whitney PG, Bachem A, Arampatzi P, Imdahl F, Kaisho T, Zehn D, Klauschen F, Garbi N, Kallies A, Saliba AE, Gasteiger G, Bedoui S, Kastenmüller W. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 2022; 55:656-670.e8. [PMID: 35366396 DOI: 10.1016/j.immuni.2022.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 12/21/2022]
Abstract
Reinvigoration of exhausted CD8+ T (Tex) cells by checkpoint immunotherapy depends on the activation of precursors of exhausted T (Tpex) cells, but the local anatomical context of their maintenance, differentiation, and interplay with other cells is not well understood. Here, we identified transcriptionally distinct Tpex subpopulations, mapped their differentiation trajectories via transitory cellular states toward Tex cells, and localized these cell states to specific splenic niches. Conventional dendritic cells (cDCs) were critical for successful αPD-L1 therapy and were required to mediate viral control. cDC1s were dispensable for Tpex cell expansion but provided an essential niche to promote Tpex cell maintenance, preventing their overactivation and T-cell-mediated immunopathology. Mechanistically, cDC1s insulated Tpex cells via MHC-I-dependent interactions to prevent their activation within other inflammatory environments that further aggravated their exhaustion. Our findings reveal that cDC1s maintain and safeguard Tpex cells within distinct anatomical niches to balance viral control, exhaustion, and immunopathology.
Collapse
Affiliation(s)
- Sabrina Dähling
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ana Maria Mansilla
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany; Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg im Breisgau, Germany
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Anika Grafen
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Paul G Whitney
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Annabell Bachem
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | | | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, 641-8509 Wakayama, Japan
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilian University of Munich, 81675 Munich, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Sammy Bedoui
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
1281
|
Triazole Modified Tetraiodothyroacetic Acid Conjugated to Polyethylene Glycol, a Thyrointegrin αvβ3 Antagonist as a Radio- and Chemo-Sensitizer in Pancreatic Cancer. Biomedicines 2022; 10:biomedicines10040795. [PMID: 35453545 PMCID: PMC9032383 DOI: 10.3390/biomedicines10040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Thyroid hormone L thyroxine stimulates pancreatic carcinoma cell proliferation via thyrointegrin αvβ3 receptors, and antagonist tetraiodothyroacetic acid (tetrac) inhibits cancer cell growth. Chemically modified bis-triazole-tetrac conjugated with polyethylene glycol (P-bi-TAT) has higher binding affinity to αvβ3 receptors compared to tetrac. We investigated the antiproliferation effect of P-bi-TAT in pancreatic cancer cells (SUIT2) and its radio- and chemo-sensitizing roles in a mouse model of pancreatic cancer. P-bi-TAT treatment increased tumor-targeted radiation-induced cell death and decreased tumor size. P-bi-TAT acted as a chemo-sensitizer and enhanced the 5-fluorouracil (5FU) effect in decreasing pancreatic tumor weight compared to 5FU monotherapy. Withdrawal of treatment continued the tumor regression; however, the 5FU group showed tumor regrowth. The mechanisms of the anti-cancer activity of P-bi-TAT on SUIT2 cells were assessed by microarray experiments, and genome-wide profiling identified significant alterations of 1348 genes’ expression. Both down-regulated and up-regulated transcripts suggest that a molecular interference at the signaling pathway-associated gene expression is the prevalent mode of P-bi-TAT anti-cancer activity. Our data indicate that non-cytotoxic P-bi-TAT is not only an anti-cancer agent but also a radio-sensitizer and chemo-sensitizer that acts on the extracellular domain of the cell surface αvβ3 receptor.
Collapse
|
1282
|
Chalise U, Daseke MJ, Kalusche WJ, Konfrst SR, Rodriguez-Paar JR, Flynn ER, Cook LM, Becirovic-Agic M, Lindsey ML. Macrophages secrete murinoglobulin-1 and galectin-3 to regulate neutrophil degranulation after myocardial infarction. Mol Omics 2022; 18:186-195. [PMID: 35230372 PMCID: PMC8963000 DOI: 10.1039/d1mo00519g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 02/03/2023]
Abstract
Inflammation presides early after myocardial infarction (MI) as a key event in cardiac wound healing. Ischemic cardiomyocytes secrete inflammatory cues to stimulate infiltration of leukocytes, predominantly macrophages and neutrophils. Infiltrating neutrophils degranulate to release a series of proteases including matrix metalloproteinase (MMP)-9 to break down extracellular matrix and remove necrotic myocytes to create space for the infarct scar to form. While neutrophil to macrophage communication has been explored, the reverse has been understudied. We used a proteomics approach to catalogue the macrophage secretome at MI day 1. Murinoglobulin-1 (MUG1) was the highest-ranked secreted protein (4.1-fold upregulated at MI day 1 vs. day 0 pre-MI cardiac macrophages, p = 0.004). By transcriptomics evaluation, galectin-3 (Lgals3) was 2.2-fold upregulated (p = 0.008) in MI day 1 macrophages. We explored the direct roles of MUG1 and Lgals3 on neutrophil degranulation. MUG1 blunted while Lgals3 amplified neutrophil degranulation in response to phorbol 12-myristate 13-acetate or interleukin-1β, as measured by MMP-9 secretion. Lgals3 itself also stimulated MMP-9 secretion. To determine if MUG1 regulated Lgals3, we co-stimulated neutrophils with MUG1 and Lgals3. MUG1 limited degranulation stimulated by Lgals3 by 64% (p < 0.001). In vivo, MUG1 was elevated in the infarct region at MI days 1 and 3, while Lgals3 increased at MI day 7. The ratio of MUG1 to Lgals3 positively correlated with infarct wall thickness, revealing that MUG1 attenuated infarct wall thinning. In conclusion, macrophages at MI day 1 secrete MUG1 to limit and Lgals3 to accentuate neutrophil degranulation to regulate infarct wall thinning.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - William J Kalusche
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Jocelyn R Rodriguez-Paar
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| |
Collapse
|
1283
|
Inal-Gultekin G, Gormez Z, Mangir N. Defining Molecular Treatment Targets for Bladder Pain Syndrome/Interstitial Cystitis: Uncovering Adhesion Molecules. Front Pharmacol 2022; 13:780855. [PMID: 35401223 PMCID: PMC8990855 DOI: 10.3389/fphar.2022.780855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
Bladder pain syndrome/interstitial cystitis (BPS/IC) is a debilitating pain syndrome of unknown etiology that predominantly affects females. Clinically, BPS/IC presents in a wide spectrum where all patients report severe bladder pain together with one or more urinary tract symptoms. On bladder examination, some have normal-appearing bladders on cystoscopy, whereas others may have severely inflamed bladder walls with easily bleeding areas (glomerulations) and ulcerations (Hunner’s lesion). Thus, the reported prevalence of BPS/IC is also highly variable, between 0.06% and 30%. Nevertheless, it is rightly defined as a rare disease (ORPHA:37202). The aetiopathogenesis of BPS/IC remains largely unknown. Current treatment is mainly symptomatic and palliative, which certainly adds to the suffering of patients. BPS/IC is known to have a genetic component. However, the genes responsible are not defined yet. In addition to traditional genetic approaches, novel research methodologies involving bioinformatics are evaluated to elucidate the genetic basis of BPS/IC. This article aims to review the current evidence on the genetic basis of BPS/IC to determine the most promising targets for possible novel treatments.
Collapse
Affiliation(s)
- Guldal Inal-Gultekin
- Department of Physiology, Faculty of Medicine, Istanbul Okan University, Tuzla, Turkey
- *Correspondence: Guldal Inal-Gultekin,
| | - Zeliha Gormez
- Department of Applied Bioinformatics, Bingen Technical University of Applied Sciences, Bingen am Rhein, Germany
| | - Naside Mangir
- Department of Urology, Hacettepe University Hospital, Ankara, Turkey
| |
Collapse
|
1284
|
The Long Non-Coding RNA SNHG12 as a Mediator of Carboplatin Resistance in Ovarian Cancer via Epigenetic Mechanisms. Cancers (Basel) 2022; 14:cancers14071664. [PMID: 35406435 PMCID: PMC8996842 DOI: 10.3390/cancers14071664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Epithelial ovarian cancer is a lethal malignancy in which recurrence and therapy resistance are the major causes of death. We investigated the transcriptome and DNA methylation profile of ovarian cancer cell lines sensitive and resistant to carboplatin, aiming to identify genes associated with therapy resistance. We focused on long non-coding RNAs (lncRNAs), known as epigenetic regulators of several cellular and biological processes. We found 11 lncRNAs associated with carboplatin resistance, including SNHG12 (small nucleolar RNA host gene 12), also confirmed in an external dataset (The Cancer Genome Atlas). SNHG12 gene silencing increased the sensitivity to carboplatin, giving evidence that this lncRNA contributes to resistance to carboplatin in ovarian cancer cell lines. We also demonstrated that SNHG12 could control the expression of nearby genes probably by altering epigenetic markers and modifying the transcript levels. Abstract Genetic and epigenetic changes contribute to intratumor heterogeneity and chemotherapy resistance in several tumor types. LncRNAs have been implicated, directly or indirectly, in the epigenetic regulation of gene expression. We investigated lncRNAs that potentially mediate carboplatin-resistance of cell subpopulations, influencing the progression of ovarian cancer (OC). Four carboplatin-sensitive OC cell lines (IGROV1, OVCAR3, OVCAR4, and OVCAR5), their derivative resistant cells, and two inherently carboplatin-resistant cell lines (OVCAR8 and Ovc316) were subjected to RNA sequencing and global DNA methylation analysis. Integrative and cross-validation analyses were performed using external (The Cancer Genome Atlas, TCGA dataset, n = 111 OC samples) and internal datasets (n = 39 OC samples) to identify lncRNA candidates. A total of 4255 differentially expressed genes (DEGs) and 14529 differentially methylated CpG positions (DMPs) were identified comparing sensitive and resistant OC cell lines. The comparison of DEGs between OC cell lines and TCGA-OC dataset revealed 570 genes, including 50 lncRNAs, associated with carboplatin resistance. Eleven lncRNAs showed DMPs, including the SNHG12. Knockdown of SNHG12 in Ovc316 and OVCAR8 cells increased their sensitivity to carboplatin. The results suggest that the lncRNA SNHG12 contributes to carboplatin resistance in OC and is a potential therapeutic target. We demonstrated that SNHG12 is functionally related to epigenetic mechanisms.
Collapse
|
1285
|
Bioinformatics and Network-based Approaches for Determining Pathways, Signature Molecules, and Drug Substances connected to Genetic Basis of Schizophrenia etiology. Brain Res 2022; 1785:147889. [PMID: 35339428 DOI: 10.1016/j.brainres.2022.147889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Knowledge of heterogeneous etiology and pathophysiology of schizophrenia (SZP) is reasonably inadequate and non-deterministic due to its inherent complexity and underlying vast dynamics related to genetic mechanisms. The evolution of large-scale transcriptome-wide datasets and subsequent development of relevant, robust technologies for their analyses show promises toward elucidating the genetic basis of disease pathogenesis, its early risk prediction, and predicting drug molecule targets for therapeutic intervention. In this research, we have scrutinized the genetic basis of SZP through functional annotation and network-based system biology approaches. We have determined 96 overlapping differentially expressed genes (DEGs) from 2 microarray datasets and subsequently identified their interconnecting networks to reveal transcriptome signatures like hub proteins (FYN, RAD51, SOCS3, XIAP, AKAP13, PIK3C2A, CBX5, GATA3, EIF3K, and CDKN2B), transcription factors and miRNAs. In addition, we have employed gene set enrichment to highlight significant gene ontology (e.g., positive regulation of microglial cell activation) and relevant pathways (such as axon guidance and focal adhesion) interconnected to the genes associated with SZP. Finally, we have suggested candidate drug substances like Luteolin HL60 UP as a possible therapeutic target based on these key molecular signatures.
Collapse
|
1286
|
Goldsmith J, Ordureau A, Harper JW, Holzbaur ELF. Brain-derived autophagosome profiling reveals the engulfment of nucleoid-enriched mitochondrial fragments by basal autophagy in neurons. Neuron 2022; 110:967-976.e8. [PMID: 35051374 PMCID: PMC8930448 DOI: 10.1016/j.neuron.2021.12.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
Neurons depend on autophagy to maintain cellular homeostasis, and defects in autophagy are pathological hallmarks of neurodegenerative disease. To probe the role of basal autophagy in the maintenance of neuronal health, we isolated autophagic vesicles from mouse brain tissue and used proteomics to identify the major cargos engulfed within autophagosomes, validating our findings in rodent primary and human iPSC-derived neurons. Mitochondrial proteins were identified as a major cargo in the absence of mitophagy adaptors such as OPTN. We found that nucleoid-associated proteins are enriched compared with other mitochondrial components. In the axon, autophagic engulfment of nucleoid-enriched mitochondrial fragments requires the mitochondrial fission machinery Drp1. We proposed that localized Drp1-dependent fission of nucleoid-enriched fragments in proximity to the sites of autophagosome biogenesis enhances their capture. The resulting efficient autophagic turnover of nucleoids may prevent accumulation of mitochondrial DNA in the neuron, thus mitigating activation of proinflammatory pathways that contribute to neurodegeneration.
Collapse
Affiliation(s)
- Juliet Goldsmith
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alban Ordureau
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
1287
|
Enterina JR, Sarkar S, Streith L, Jung J, Arlian BM, Meyer SJ, Takematsu H, Xiao C, Baldwin TA, Nitschke L, Shlomchick MJ, Paulson JC, Macauley MS. Coordinated changes in glycosylation regulate the germinal center through CD22. Cell Rep 2022; 38:110512. [PMID: 35294874 PMCID: PMC9018098 DOI: 10.1016/j.celrep.2022.110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Germinal centers (GCs) are essential for antibody affinity maturation. GC B cells have a unique repertoire of cell surface glycans compared with naive B cells, yet functional roles for changes in glycosylation in the GC have yet to be ascribed. Detection of GCs by the antibody GL7 reflects a downregulation in ligands for CD22, an inhibitory co-receptor of the B cell receptor. To test a functional role for downregulation of CD22 ligands in the GC, we generate a mouse model that maintains CD22 ligands on GC B cells. With this model, we demonstrate that glycan remodeling plays a critical role in the maintenance of B cells in the GC. Sustained expression of CD22 ligands induces higher levels of apoptosis in GC B cells, reduces memory B cell and plasma cell output, and delays affinity maturation of antibodies. These defects are CD22 dependent, demonstrating that downregulation of CD22 ligands on B cells plays a critical function in the GC.
Collapse
Affiliation(s)
- Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Laura Streith
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Britni M Arlian
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Hiromu Takematsu
- Faculty of Medical Technology, Fujita Health University, Aichi 470-1192, Japan
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Mark J Shlomchick
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
1288
|
Identification of differentially expressed miRNAs derived from serum exosomes associated with gastric cancer by microarray analysis. Clin Chim Acta 2022; 531:25-35. [PMID: 35300960 DOI: 10.1016/j.cca.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
AIMS To explore the differentially expressed microRNAs (DEMs) in serum exosomes between gastric cancer (GC) patients and healthy people to provide new targets for GC diagnosis and treatment. METHODS DEMs in serum exosomes were screened by microarray analysis and verified by RT-qPCR. The target genes of DEMs were predicted using Targetscan and miRTarBase databases and then overlapped with the DEGs of STAD in TCGA database to obtain the common target genes. Biological function and pathway enrichment were analyzed using enrichr database, and a PPI network was constructed using STRING database. The potential target genes of DEMs were identified using the MCODE and cytoHubba plug-ins of Cytoscape software. Survival analysis were conducted using KMP and TCGA databases. The DEMs -target genes-pathways network was established using Cytoscape software. A Cox proportional hazards regression model formed by optimal target genes was used to access the reliability of this prediction process. RESULTS Three serum exosomal microRNAs (exo-miRNAs, has-miR-1273 g-3p, has-miR-4793-3p, has-miR-619-5p) were identified to be highly expressed in GC patients and performed excellent diagnostic ability. A total of 179 common target genes related to GC were predicted. They were mainly involved in 79 GO functional annotations and 6 KEGG pathways. The prognostic model formed by eight optimal target genes (TIMELESS, DNA2, MELK, CHAF1B, DBF4, PAICS, CHEK1 and NCAPG2), which were low-risk genes of GC, also performed perfect prognostic ability. CONCLUSIONS Serum exosomal has-miR-1273 g-3p, has-miR-4793-3p and has-miR-619-5p can be used as new diagnostic biomarkers for GC. Among them, serum exosomal hsa-miR-1273 g-3p / hsa-miR-4793-3p targets MELK and hsa-miR-619-5p targets NCAPG2 were identified as novel mechanisms involved in the development of GC. It provides new targets for the diagnosis and treatment of GC by exo-miRNAs.
Collapse
|
1289
|
Sarma RJ, Subbarayan S, Zohmingthanga J, Chenkual S, Zomuana T, Lalruatfela ST, Pautu JL, Maitra A, Kumar NS. Transcriptome analysis reveals SALL4 as a prognostic key gene in gastric adenocarcinoma. J Egypt Natl Canc Inst 2022; 34:11. [PMID: 35284980 DOI: 10.1186/s43046-022-00108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) dominates 80-90% of gastric cancer (GC). Over the years, it has been realized that the identification of the genes responsible for gastric carcinogenesis is essential to understand the biomarker discovery. METHODS This study aims to identify candidate genes for biomarker discovery in STAD. RNA-Seq was performed on three paired tumor-normal and one unpaired tumor samples from four GC patients and investigated for differentially expressed genes (DEGs) using DESeq2. Gene set enrichment analysis were performed. The DEGs were compared with two STAD microarray datasets available on Gene Expression Omnibus (GEO) database. Survival study (OS) were performed using KM-Plotter on the common genes between all the datasets. RESULTS Totally, 148 DEGs were identified, wherein 55 genes were upregulated and 93 genes were downregulated with |log2foldchange| > 1 and Benjamini-Hochberg (BH) Adjusted P value < 0.01. Cell adhesion molecule (CAM) Pathway was found to be the most significant among the upregulated genes. Gastric acid secretion and mineral absorption pathways were the most significant pathways among the downregulated genes. Comparison with two GEO datasets followed by OS analysis revealed two upregulating genes, APOC1 and SALL4 with prognostic significance. CONCLUSION Upregulation of APOC1 is associated with marginal overall survival (OS) and SALL4 over-expression was associated with the poor OS using KM-Plotter during 5 years data period. Our study suggests that SALL4 could be a promising biomarker candidate in STAD.
Collapse
Affiliation(s)
- Ranjan Jyoti Sarma
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796 004, India
| | | | | | - Saia Chenkual
- Department of Surgery, Civil Hospital Aizawl, Aizawl, Mizoram, 796 001, India
| | - Thomas Zomuana
- Department of Surgery, Civil Hospital Aizawl, Aizawl, Mizoram, 796 001, India
| | | | - Jeremy L Pautu
- Department of Medical Oncology, Mizoram State Cancer Institute, Aizawl, Mizoram, 796017, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India.
| | | |
Collapse
|
1290
|
Key Genes and Biochemical Networks in Various Brain Regions Affected in Alzheimer's Disease. Cells 2022; 11:cells11060987. [PMID: 35326437 PMCID: PMC8946735 DOI: 10.3390/cells11060987] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most complicated progressive neurodegenerative brain disorders, affecting millions of people around the world. Ageing remains one of the strongest risk factors associated with the disease and the increasing trend of the ageing population globally has significantly increased the pressure on healthcare systems worldwide. The pathogenesis of AD is being extensively investigated, yet several unknown key components remain. Therefore, we aimed to extract new knowledge from existing data. Ten gene expression datasets from different brain regions including the hippocampus, cerebellum, entorhinal, frontal and temporal cortices of 820 AD cases and 626 healthy controls were analyzed using the robust rank aggregation (RRA) method. Our results returned 1713 robust differentially expressed genes (DEGs) between five brain regions of AD cases and healthy controls. Subsequent analysis revealed pathways that were altered in each brain region, of which the GABAergic synapse pathway and the retrograde endocannabinoid signaling pathway were shared between all AD affected brain regions except the cerebellum, which is relatively less sensitive to the effects of AD. Furthermore, we obtained common robust DEGs between these two pathways and predicted three miRNAs as potential candidates targeting these genes; hsa-mir-17-5p, hsa-mir-106a-5p and hsa-mir-373-3p. Three transcription factors (TFs) were also identified as the potential upstream regulators of the robust DEGs; ELK-1, GATA1 and GATA2. Our results provide the foundation for further research investigating the role of these pathways in AD pathogenesis, and potential application of these miRNAs and TFs as therapeutic and diagnostic targets.
Collapse
|
1291
|
Saul D, Leite Barros L, Wixom AQ, Gellhaus B, Gibbons HR, Faubion WA, Kosinsky RL. Cell Type-Specific Induction of Inflammation-Associated Genes in Crohn’s Disease and Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063082. [PMID: 35328501 PMCID: PMC8955412 DOI: 10.3390/ijms23063082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
Based on the rapid increase in incidence of inflammatory bowel disease (IBD), the identification of susceptibility genes and cell populations contributing to this condition is essential. Previous studies suggested multiple genes associated with the susceptibility of IBD; however, due to the analysis of whole-tissue samples, the contribution of individual cell populations remains widely unresolved. Single-cell RNA sequencing (scRNA-seq) provides the opportunity to identify underlying cellular populations. We determined the enrichment of Crohn’s disease (CD)-induced genes in a publicly available Crohn’s disease scRNA-seq dataset and detected the strongest induction of these genes in innate lymphoid cells (ILC1), highly activated T cells and dendritic cells, pericytes and activated fibroblasts, as well as epithelial cells. Notably, these genes were highly enriched in IBD-associated neoplasia, as well as sporadic colorectal cancer (CRC). Indeed, the same six cell populations displayed an upregulation of CD-induced genes in a CRC scRNA-seq dataset. Finally, after integrating and harmonizing the CD and CRC scRNA-seq data, we demonstrated that these six cell types display a gradual increase in gene expression levels from a healthy state to an inflammatory and tumorous state. Together, we identified cell populations that specifically upregulate CD-induced genes in CD and CRC patients and could, therefore, contribute to inflammation-associated tumor development.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany;
- Correspondence: (D.S.); (R.L.K.)
| | - Luísa Leite Barros
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
- Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Alexander Q. Wixom
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
| | - Benjamin Gellhaus
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany;
| | - Hunter R. Gibbons
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
| | - William A. Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (L.L.B.); (A.Q.W.); (H.R.G.); (W.A.F.)
- Correspondence: (D.S.); (R.L.K.)
| |
Collapse
|
1292
|
Hybertson BM, Gao B, McCord JM. Effects of the Phytochemical Combination PB123 on Nrf2 Activation, Gene Expression, and the Cholesterol Pathway in HepG2 Cells. OBM INTEGRATIVE AND COMPLIMENTARY MEDICINE 2022; 7. [PMID: 35252766 PMCID: PMC8896855 DOI: 10.21926/obm.icm.2201002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There has been a long history of human usage of the biologically-active phytochemicals in Salvia rosmarinus, Zingiber officinale, and Sophora japonica for health purposes, and we recently reported on a combination of those plant materials as the PB123 dietary supplement. In the present work we extended those studies to evaluate activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and differential gene expression in cultured HepG2 (hepatocellular carcinoma) cells treated with PB123. We determined transcriptome changes using mRNA-seq methods, and analyzed the affected pathways using Ingenuity Pathway Analysis and BioJupies, indicating that primary effects included increasing the Nrf2 pathway and decreasing the cholesterol biosynthesis pathway. Pretreatment of cultured HepG2 cells with PB123 upregulated Nrf2-dependent cytoprotective genes and increased cellular defenses against cumene hydroperoxide-induced oxidative stress. In contrast, pretreatment of cultured HepG2 cells with PB123 downregulated cholesterol biosynthesis genes and decreased cellular cholesterol levels. These findings support the possible beneficial effects of PB123 as a healthspan-promoting dietary supplement.
Collapse
Affiliation(s)
- Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
1293
|
Disatham J, Brennan L, Jiao X, Ma Z, Hejtmancik JF, Kantorow M. Changes in DNA methylation hallmark alterations in chromatin accessibility and gene expression for eye lens differentiation. Epigenetics Chromatin 2022; 15:8. [PMID: 35246225 PMCID: PMC8897925 DOI: 10.1186/s13072-022-00440-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Methylation at cytosines (mCG) is a well-known regulator of gene expression, but its requirements for cellular differentiation have yet to be fully elucidated. A well-studied cellular differentiation model system is the eye lens, consisting of a single anterior layer of epithelial cells that migrate laterally and differentiate into a core of fiber cells. Here, we explore the genome-wide relationships between mCG methylation, chromatin accessibility and gene expression during differentiation of eye lens epithelial cells into fiber cells. Results Whole genome bisulfite sequencing identified 7621 genomic loci exhibiting significant differences in mCG levels between lens epithelial and fiber cells. Changes in mCG levels were inversely correlated with the differentiation state-specific expression of 1285 genes preferentially expressed in either lens fiber or lens epithelial cells (Pearson correlation r = − 0.37, p < 1 × 10–42). mCG levels were inversely correlated with chromatin accessibility determined by assay for transposase-accessible sequencing (ATAC-seq) (Pearson correlation r = − 0.86, p < 1 × 10–300). Many of the genes exhibiting altered regions of DNA methylation, chromatin accessibility and gene expression levels in fiber cells relative to epithelial cells are associated with lens fiber cell structure, homeostasis and transparency. These include lens crystallins (CRYBA4, CRYBB1, CRYGN, CRYBB2), lens beaded filament proteins (BFSP1, BFSP2), transcription factors (HSF4, SOX2, HIF1A), and Notch signaling pathway members (NOTCH1, NOTCH2, HEY1, HES5). Analysis of regions exhibiting cell-type specific alterations in DNA methylation revealed an overrepresentation of consensus sequences of multiple transcription factors known to play key roles in lens cell differentiation including HIF1A, SOX2, and the MAF family of transcription factors. Conclusions Collectively, these results link DNA methylation with control of chromatin accessibility and gene expression changes required for eye lens differentiation. The results also point to a role for DNA methylation in the regulation of transcription factors previously identified to be important for lens cell differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00440-z.
Collapse
Affiliation(s)
- Joshua Disatham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lisa Brennan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc Kantorow
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
1294
|
Roy A, Tolone A, Hilhorst R, Groten J, Tomar T, Paquet-Durand F. Kinase activity profiling identifies putative downstream targets of cGMP/PKG signaling in inherited retinal neurodegeneration. Cell Death Dis 2022; 8:93. [PMID: 35241647 PMCID: PMC8894370 DOI: 10.1038/s41420-022-00897-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022]
Abstract
Inherited retinal diseases (IRDs) are a group of neurodegenerative disorders that lead to photoreceptor cell death and eventually blindness. IRDs are characterised by a high genetic heterogeneity, making it imperative to design mutation-independent therapies. Mutations in a number of IRD disease genes have been associated with a rise of cyclic 3’,5’-guanosine monophosphate (cGMP) levels in photoreceptors. Accordingly, the cGMP-dependent protein kinase (PKG) has emerged as a new potential target for the mutation-independent treatment of IRDs. However, the substrates of PKG and the downstream degenerative pathways triggered by its activity have yet to be determined. Here, we performed kinome activity profiling of different murine organotypic retinal explant cultures (diseased rd1 and wild-type controls) using multiplex peptide microarrays to identify proteins whose phosphorylation was significantly altered by PKG activity. In addition, we tested the downstream effect of a known PKG inhibitor CN03 in these organotypic retina cultures. Among the PKG substrates were potassium channels belonging to the Kv1 family (KCNA3, KCNA6), cyclic AMP-responsive element-binding protein 1 (CREB1), DNA topoisomerase 2-α (TOP2A), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (F263), and the glutamate ionotropic receptor kainate 2 (GRIK2). The retinal expression of these PKG targets was further confirmed by immunofluorescence and could be assigned to various neuronal cell types, including photoreceptors, horizontal cells, and ganglion cells. Taken together, this study confirmed the key role of PKG in photoreceptor cell death and identified new downstream targets of cGMP/PKG signalling that will improve the understanding of the degenerative mechanisms underlying IRDs.
Collapse
Affiliation(s)
- Akanksha Roy
- Division of Toxicology, Wageningen University and Research, 96708 WE, Wageningen, The Netherlands.,PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - Arianna Tolone
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, 72072, Germany
| | - Riet Hilhorst
- PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - John Groten
- Division of Toxicology, Wageningen University and Research, 96708 WE, Wageningen, The Netherlands.,PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - Tushar Tomar
- PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands.
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, 72072, Germany.
| |
Collapse
|
1295
|
Xu G, Grimes TD, Grayson TB, Chen J, Thielen LA, Tse HM, Li P, Kanke M, Lin TT, Schepmoes AA, Swensen AC, Petyuk VA, Ovalle F, Sethupathy P, Qian WJ, Shalev A. Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nat Commun 2022; 13:1159. [PMID: 35241690 PMCID: PMC8894430 DOI: 10.1038/s41467-022-28826-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, no oral medications are available for type 1 diabetes (T1D). While our recent randomized placebo-controlled T1D trial revealed that oral verapamil had short-term beneficial effects, their duration and underlying mechanisms remained elusive. Now, our global T1D serum proteomics analysis identified chromogranin A (CHGA), a T1D-autoantigen, as the top protein altered by verapamil and as a potential therapeutic marker and revealed that verapamil normalizes serum CHGA levels and reverses T1D-induced elevations in circulating proinflammatory T-follicular-helper cell markers. RNA-sequencing further confirmed that verapamil regulates the thioredoxin system and promotes an anti-oxidative, anti-apoptotic and immunomodulatory gene expression profile in human islets. Moreover, continuous use of oral verapamil delayed T1D progression, promoted endogenous beta-cell function and lowered insulin requirements and serum CHGA levels for at least 2 years and these benefits were lost upon discontinuation. Thus, the current studies provide crucial mechanistic and clinical insight into the beneficial effects of verapamil in T1D.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tiffany D Grimes
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Truman B Grayson
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lance A Thielen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hubert M Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peng Li
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,School of Nursing, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Fernando Ovalle
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
1296
|
Schimke LF, Marques AHC, Baiocchi GC, de Souza Prado CA, Fonseca DLM, Freire PP, Rodrigues Plaça D, Salerno Filgueiras I, Coelho Salgado R, Jansen-Marques G, Rocha Oliveira AE, Peron JPS, Cabral-Miranda G, Barbuto JAM, Camara NOS, Calich VLG, Ochs HD, Condino-Neto A, Overmyer KA, Coon JJ, Balnis J, Jaitovich A, Schulte-Schrepping J, Ulas T, Schultze JL, Nakaya HI, Jurisica I, Cabral-Marques O. Severe COVID-19 Shares a Common Neutrophil Activation Signature with Other Acute Inflammatory States. Cells 2022; 11:cells11050847. [PMID: 35269470 PMCID: PMC8909161 DOI: 10.3390/cells11050847] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.
Collapse
Affiliation(s)
- Lena F. Schimke
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Correspondence: (L.F.S.); (O.C.-M.); Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)
| | - Alexandre H. C. Marques
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gabriela Crispim Baiocchi
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Dennyson Leandro M. Fonseca
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Paula Paccielli Freire
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Igor Salerno Filgueiras
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Ranieri Coelho Salgado
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gabriel Jansen-Marques
- Information Systems, School of Arts, Sciences and Humanities, University of Sao Paulo, São Paulo 03828-000, Brazil;
| | - Antonio Edson Rocha Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
| | - Jean Pierre Schatzmann Peron
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Gustavo Cabral-Miranda
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - José Alexandre Marzagão Barbuto
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Laboratory of Medical Investigation in Pathogenesis, Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Niels Olsen Saraiva Camara
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Vera Lúcia Garcia Calich
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Hans D. Ochs
- Department of Pediatrics, Seattle Children’s Research Institute, University of Washington School of Medicine, Seattle, WA 98101, USA;
| | - Antonio Condino-Neto
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
| | - Katherine A. Overmyer
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; (K.A.O.); (J.J.C.)
- Morgridge Institute for Research, Madison, WI 53562, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53562, USA; (K.A.O.); (J.J.C.)
- Morgridge Institute for Research, Madison, WI 53562, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; (J.B.); (A.J.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY 12208, USA; (J.B.); (A.J.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Jonas Schulte-Schrepping
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; (J.S.-S.); (J.L.S.)
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, 53127 Bonn, Germany
| | - Joachim L. Schultze
- Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; (J.S.-S.); (J.L.S.)
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, 53127 Bonn, Germany
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-020, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1L7, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Otávio Cabral-Marques
- Department of Imunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.H.C.M.); (G.C.B.); (P.P.F.); (I.S.F.); (R.C.S.); (J.P.S.P.); (G.C.-M.); (J.A.M.B.); (N.O.S.C.); (V.L.G.C.); (A.C.-N.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (C.A.d.S.P.); (D.L.M.F.); (D.R.P.); (A.E.R.O.); (H.I.N.)
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
- Correspondence: (L.F.S.); (O.C.-M.); Tel.: +55-11-943661555 (L.F.S.); +55-11-974642022 (O.C.-M.)
| |
Collapse
|
1297
|
Tsagiopoulou M, Pechlivanis N, Maniou M, Psomopoulos F. InterTADs: integration of multi-omics data on topologically associated domains, application to chronic lymphocytic leukemia. NAR Genom Bioinform 2022; 4:lqab121. [PMID: 35047813 PMCID: PMC8759567 DOI: 10.1093/nargab/lqab121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
The integration of multi-omics data can greatly facilitate the advancement of research in Life Sciences by highlighting new interactions. However, there is currently no widespread procedure for meaningful multi-omics data integration. Here, we present a robust framework, called InterTADs, for integrating multi-omics data derived from the same sample, and considering the chromatin configuration of the genome, i.e. the topologically associating domains (TADs). Following the integration process, statistical analysis highlights the differences between the groups of interest (normal versus cancer cells) relating to (i) independent and (ii) integrated events through TADs. Finally, enrichment analysis using KEGG database, Gene Ontology and transcription factor binding sites and visualization approaches are available. We applied InterTADs to multi-omics datasets from 135 patients with chronic lymphocytic leukemia (CLL) and found that the integration through TADs resulted in a dramatic reduction of heterogeneity compared to individual events. Significant differences for individual events and on TADs level were identified between patients differing in the somatic hypermutation status of the clonotypic immunoglobulin genes, the core biological stratifier in CLL, attesting to the biomedical relevance of InterTADs. In conclusion, our approach suggests a new perspective towards analyzing multi-omics data, by offering reasonable execution time, biological benchmarking and potentially contributing to pattern discovery through TADs.
Collapse
|
1298
|
Weller JI, Ezra E, Gershoni M. Genetic and genomic analysis of age at first insemination in Israeli dairy cattle. J Dairy Sci 2022; 105:5192-5205. [DOI: 10.3168/jds.2021-21528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022]
|
1299
|
Laufer BI, Neier K, Valenzuela AE, Yasui DH, Schmidt RJ, Lein PJ, LaSalle JM. Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of prenatal PCB exposure. Cell Rep 2022; 38:110442. [PMID: 35235788 PMCID: PMC8941983 DOI: 10.1016/j.celrep.2022.110442] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/19/2021] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kari Neier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA
| | - Anthony E Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA; Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Pamela J Lein
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA; UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA; Perinatal Origins of Disparities Center, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
1300
|
miR-32 promotes MYC-driven prostate cancer. Oncogenesis 2022; 11:11. [PMID: 35228520 PMCID: PMC8885642 DOI: 10.1038/s41389-022-00385-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
miR-32 is an androgen receptor (AR)-regulated microRNA, expression of which is increased in castration-resistant prostate cancer (PC). We have previously shown that overexpression of miR-32 in the prostate of transgenic mice potentiates proliferation in prostate epithelium. Here, we set out to determine whether increased expression of miR-32 influences growth or phenotype in prostate adenocarcinoma in vivo. We studied transgenic mice expressing MYC oncogene (hiMYC mice) to induce tumorigenesis in the mouse prostate and discovered that transgenic overexpression of miR-32 resulted in increased tumor burden as well as a more aggressive tumor phenotype in this model. Elevated expression of miR-32 increased proliferation as assessed by Ki-67 immunohistochemistry, increased nuclear density, and higher mitotic index in the tumors. By gene expression analysis of the tumorous prostate tissue, we confirmed earlier findings that miR-32 expression regulates prostate secretome by modulating expression levels of several PC-related target genes such as Spink1, Spink5, and Msmb. Further, we identified Pdk4 as a tumor-associated miR-32 target in the mouse prostate. Expression analysis of PDK4 in human PC reveals an inverse correlation with miR-32 expression and Gleason score, a decrease in castration-resistant and metastatic tumors compared to untreated primary PC, and an association of low PDK4 expression with a shorter recurrence-free survival of patients. Although decreased PDK4 expression induces the higher metabolic activity of PC cells, induced expression of PDK4 reduces both mitotic respiration and glycolysis rates as well as inhibits cell growth. In conclusion, we show that miR-32 promotes MYC-induced prostate adenocarcinoma and identifies PDK4 as a PC-relevant metabolic target of miR-32-3p.
Collapse
|