101
|
Tu F, Pan L, Wu W, Cai Y, Li J, Wang X, Lai X, Chen Z, Ye L, Wang S. Recombinant GM-CSF enhances the bactericidal ability of PMNs by increasing intracellular IL-1β and improves the prognosis of secondary Pseudomonas aeruginosa pneumonia in sepsis. J Leukoc Biol 2023; 114:443-458. [PMID: 37490847 DOI: 10.1093/jleuko/qiad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
This study tested the hypothesis that recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances polymorphonuclear neutrophils (PMNs) via interleukin (IL)-1β to improve the prognosis of secondary infection in sepsis. The latter stage of sepsis is prone to induce immunosuppression, resulting in secondary fatal infections. Recombinant GM-CSF has become a way for sepsis-induced immunosuppression due to its immunomodulatory effect. However, the functional impact of GM-CSF on PMNs in sepsis remains obscure. This study aimed to study the role of recombinant GM-CSF on the bactericidal ability of PMNs in septic mice, assessing its effect on the prognosis of secondary pneumonia, and explore the mechanism of recombinant GM-CSF by intervening PMNs in patients with sepsis. The C57BL/6J sepsis mouse model was induced by cecal ligation and puncture. Recombinant murine GM-CSF (rmGM-CSF) was used in vivo when mice developed immunosuppression, which was characterized by abnormal bactericidal function of PMNs in peripheral blood. rmGM-CSF improved the prognosis of secondary pneumonia and reversed the function of PMNs. PMNs isolated by Percoll from septic patients were treated by recombinant human GM-CSF (rhGM-CSF) in vitro. The expression of CD11b, reactive oxygen species, phagocytosis, and neutrophil extracellular trap release in PMNs were enhanced by rhGM-CSF treatments. Whole-transcriptomic sequencing of mouse PMNs indicated that recombinant GM-CSF increased the expression of Il1b gene in PMNs. Blocking and inhibiting IL-1β release effectively counteracted the enhancing effect of GM-CSF on the bactericidal function of PMNs. rmGM-CSF enhances the bactericidal function of PMNs in vivo and improves the prognosis of secondary pneumonia in septic mice, and recombinant GM-CSF increases IL-1β precursor reserves, which, if stimulated, can rapidly enhance the bactericidal capacity of PMNs.
Collapse
Affiliation(s)
- Fuquan Tu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Department of Emergency Intensive Care Unit, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Lili Pan
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Wenwei Wu
- Department of Emergency Intensive Care Unit, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Yuanhua Cai
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Jinggang Li
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xuechun Wang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Xiaolin Lai
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Zhixiang Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Luya Ye
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| | - Shaoyuan Wang
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Department of Emergency Intensive Care Unit, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, Fujian, China
- Union Clinical Medical Colleges, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, Fujian, China
| |
Collapse
|
102
|
Ludwig K, Chichelnitskiy E, Kühne JF, Wiegmann B, Iske J, Ledwoch N, Ius F, Beushausen K, Keil J, Iordanidis S, Rojas SV, Salman J, Knoefel AK, Haverich A, Warnecke G, Falk CS. CD14 highCD16 + monocytes are the main producers of Interleukin-10 following clinical heart transplantation. Front Immunol 2023; 14:1257526. [PMID: 37936714 PMCID: PMC10627027 DOI: 10.3389/fimmu.2023.1257526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Following heart transplantation, a cascade of immunological responses is initiated influencing the clinical outcome and long-term survival of the transplanted patients. The anti-inflammatory cytokine interleukin-10 (IL-10) was shown to be elevated in the blood of heart transplant recipients directly after transplantation but the releasing cell populations and the composition of lymphocyte subsets following transplantation have not been thoroughly studied. Methods We identified immune cells by immunophenotyping and analyzed intracellular IL-10 production in peripheral blood mononuclear cells (PBMC) of heart transplanted patients (n= 17) before, directly after and 24h post heart transplantation. The cells were stimulated with lipopolysaccharide or PMA/Ionomycin to enhance cytokine production within leukocytes in vitro. Results and discussion We demonstrate that intermediate monocytes (CD14highCD16+), but not CD8+ T cells, CD4+ T cells, CD56+ NK cells or CD20+ B cells appeared to be the major IL-10 producers within patients PBMC following heart transplantation. Consequently, the absolute monocyte count and the ratio of intermediate monocytes to classical monocytes (CD14+CD16-) were specifically increased in comparison to pre transplant levels. Hence, this population of monocytes, which has not been in the focus of heart transplantation so far, may be an important modulator of clinical outcome and long-term survival of heart transplant recipients. Alteration of blood-circulating monocytes towards a CD14highCD16+ phenotype could therefore shift the pro-inflammatory immune response towards induction of graft tolerance, and may pave the way for the optimization of immunosuppression.
Collapse
Affiliation(s)
- Kristina Ludwig
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- Department of Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Jenny F. Kühne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
- DZL, German Center for Lung Diseases, BREATH site, Hannover, Germany
| | - Jasper Iske
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Nadine Ledwoch
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- DZL, German Center for Lung Diseases, BREATH site, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Susanne Iordanidis
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Sebastian V. Rojas
- Heart and Diabetes Center Nordrhein-Westfalen, University Hospital Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Jawad Salman
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knoefel
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- DZL, German Center for Lung Diseases, BREATH site, Hannover, Germany
- DZIF, German Center for Infection Research, TTU-IICH, Hannover, Germany
| |
Collapse
|
103
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
104
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
105
|
You Y, Yuan H, Min H, Li C, Chen J. Fibroblast-derived CXCL14 aggravates crystalline silica-induced pulmonary fibrosis by mediating polarization and recruitment of interstitial macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132489. [PMID: 37688871 DOI: 10.1016/j.jhazmat.2023.132489] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Exposure to crystalline silica (CS) particles in worksites and dwellings can lead to silicosis due to excessive fibroblast activation. Considering their immuno-regulatory activities, the contribution of pulmonary fibroblasts in the progression of silicosis has not been thoroughly characterized. Here, we demonstrate that exposure of the lung to CS particles leads to the upregulation of fibroblast-derived C-X-C motif chemokine ligand 14 (CXCL14). By employing an in vitro co-culture system, we demonstrated activated fibroblasts recruited bone marrow-derived macrophages (BMDMs) and favored alternative macrophage polarization (M2) mediated by CXCL14. Furthermore, in vivo studies echoed that systemic CXCL14 neutralizing or fibroblast-specific Cxcl14 knockout proved CXCL14 was indispensable for the recruitment and phenotype alteration of lung macrophages, especially interstitial macrophages (IMs), under stimulation by CS particles. Mechanistically, we showed that GLI2 and p21-mediated cellular senescence were mediators of CXCL14 production following CS exposure. Accordingly, GLI2 blockage and countering cellular senescence by reviving PINK1-mediated mitophagy may be efficient strategies to reduce CXCL14 expression in activated fibroblasts during silicosis. Our findings emphasize the immuno-regulatory function of fibroblasts in silicosis via CXCL14, providing intervention targets for CS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| |
Collapse
|
106
|
Rosado-Sánchez I, Haque M, Salim K, Speck M, Fung VC, Boardman DA, Mojibian M, Raimondi G, Levings MK. Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection. JCI Insight 2023; 8:e167215. [PMID: 37669115 PMCID: PMC10619441 DOI: 10.1172/jci.insight.167215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Tregs expressing chimeric antigen receptors (CAR-Tregs) are a promising tool to promote transplant tolerance. The relationship between CAR structure and Treg function was studied in xenogeneic, immunodeficient mice, revealing advantages of CD28-encoding CARs. However, these models could underrepresent interactions between CAR-Tregs, antigen-presenting cells (APCs), and donor-specific Abs. We generated Tregs expressing HLA-A2-specific CARs with different costimulatory domains and compared their function in vitro and in vivo using an immunocompetent model of transplantation. In vitro, the CD28-encoding CAR had superior antigen-specific suppression, proliferation, and cytokine production. In contrast, in vivo, Tregs expressing CARs encoding CD28, ICOS, programmed cell death 1, and GITR, but not 4-1BB or OX40, all extended skin allograft survival. To reconcile in vitro and in vivo data, we analyzed effects of a CAR encoding CD3ζ but no costimulatory domain. These data revealed that exogenous costimulation from APCs can compensate for the lack of a CAR-encoded CD28 domain. Thus, Tregs expressing a CAR with or without CD28 are functionally equivalent in vivo, mediating similar extension of skin allograft survival and controlling the generation of anti-HLA-A2 alloantibodies. This study reveals a dimension of CAR-Treg biology and has important implications for the design of CARs for clinical use in Tregs.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
| | - Manjurul Haque
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madeleine Speck
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian C.W. Fung
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A. Boardman
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Megan K. Levings
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
107
|
Galván-Hernández AK, Gómez-Gaviria M, Martínez-Duncker I, Martínez-Álvarez JA, Mora-Montes HM. Differential Recognition of Clinically Relevant Sporothrix Species by Human Granulocytes. J Fungi (Basel) 2023; 9:986. [PMID: 37888242 PMCID: PMC10607474 DOI: 10.3390/jof9100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Sporotrichosis is a cutaneous mycosis that affects humans and animals and has a worldwide distribution. This infection is mainly caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. Current research about anti-Sporothrix immunity has been mainly focused on S. schenckii and S. brasiliensis, using different types of human or animal immune cells. Granulocytes are a group of cells relevant for cytokine production, with the capacity for phagocytosis and the generation of neutrophil extracellular traps (NETs). Considering their importance, this study aimed to compare the capacity of human granulocytes to stimulate cytokines, uptake, and form NETs when interacting with different Sporothrix species. We found that conidia, germlings, and yeast-like cells from S. schenckii, S. brasiliensis, and S. globosa play an important role in the interaction with these immune cells, establishing morphology- and species-specific cytokine profiles. S. brasil-iensis tended to stimulate an anti-inflammatory cytokine profile, whilst the other two species had a proinflammatory one. S. globosa cells were the most phagocytosed cells, which occurred through a dectin-1-dependent mechanism, while the uptake of S. brasiliensis mainly occurred via TLR4 and CR3. Cell wall N-linked and O-linked glycans, along with β-1,3-glucan, played a significant role in the interaction of these Sporothrix species with human granulocytes. Finally, this study indicates that conidia and yeast-like cells are capable of inducing NETs, with the latter being a better stimulant. To the best of our knowledge, this is the first study that reports the cytokine profiles produced by human granulocytes interacting with Sporothrix cells.
Collapse
Affiliation(s)
- Ana K. Galván-Hernández
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico;
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, Mexico; (A.K.G.-H.); (M.G.-G.); (J.A.M.-Á.)
| |
Collapse
|
108
|
Yuan H, You Y, He Y, Wei Y, Zhang Y, Min H, Li C, Chen J. Crystalline Silica-Induced Proinflammatory Interstitial Macrophage Recruitment through Notch3 Signaling Promotes the Pathogenesis of Silicosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14502-14514. [PMID: 37721423 DOI: 10.1021/acs.est.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Crystalline silica (CS) particles are ubiquitous in the environment, especially in occupational conditions, and exposure to respirable CS causes silicosis. The initial response to CS is mediated by innate immunity, where pulmonary macrophages act as central orchestrators. However, the repercussions of CS on functionally distinct macrophage subsets remain to be inconclusive. Herein, to study the effects of inhaled CS, we divided macrophages into three subsets: circulating monocytes, interstitial macrophages (IMs), and alveolar macrophages (AMs). CS-induced massive IMs increase in the lung, the phenotype and function of which differed from those of tissue-resident AMs and circulating monocytes. The augmented IMs were driven by recruitment of circulating macrophages rather than cell proliferation in situ. Moreover, the IMs predominantly exerted a classic activated (M1) phenotype and expressed proinflammatory cytokines, contributing to CS-induced lung injury. Notably, we demonstrated that IMs augmented Notch3 expression. Mechanistically, using myeloid-specific Notch3-knockout mice, we demonstrated that Notch3 signaling not only promoted IMs recruitment by regulating CCR2 expression but also manipulated the proinflammatory phenotype. Mice with conditional Notch3-knockout exhibited alleviation of CS-induced inflammation and fibrosis in lung. Overall, our study identifies IMs as critical mediators in response to CS and highlights the role of Notch3 in IMs recruitment and activation, providing new insights into CS toxicological effects in the lung.
Collapse
Affiliation(s)
- Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yangyang He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yungeng Wei
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuting Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, (China Medical University), Ministry of Education, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| |
Collapse
|
109
|
Hargarten JC, Hu G, Elsegeiny W, Williamson PR. Measurement of SQSTM1 by flow cytometry. Autophagy 2023; 19:2789-2799. [PMID: 37335017 PMCID: PMC10472860 DOI: 10.1080/15548627.2023.2224074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Macroautophagy/autophagy is a regulated cellular degradation process essential as a pro-survival mechanism and integral to the regulation of diverse cellular processes in eukaryotes. During cellular stress and nutrient sensing, SQSTM1/p62 (sequestosome 1) functions as a key receptor for selective autophagy by shuttling ubiquitinated cargoes toward autophagic degradation making it a useful marker for monitoring autophagic flux. We present a straightforward and rapid flow cytometric assay for the quantitative measurement of intracellular SQSTM1 with improved sensitivity to conventional immunoblotting and with the benefit of higher throughput and reduced requirements for starting cellular materials for adequate analysis. We demonstrate that flow cytometry is able to detect similar trends in the measurement of intracellular SQSTM1 levels following serum starvation, genetic manipulations, and bafilomycin A1/chloroquine treatments. The assays utilizes readily available reagents and equipment without the need for transfection and utilizes standard flow cytometry equipment. In the present studies, expression of reporter proteins was applied to a range of SQSTM1 expression levels generated by genetic and chemical manipulation in both mouse as well as human cells. In combination with appropriate controls and attention to cautionary issues, this assay offers the ability to assess an important measure of autophagic capacity and flux.Abbreviations: ATG5: autophagy related 5 ATG7: autophagy related 7 BafA: bafilomycin A1 BMDM: bone marrow-derived macrophages CQ: chloroquine EBV: Epstein-Barr Virus EDTA: ethylenediaminetetraacetic acid FBS: fetal bovine serum gMFI: geometric mean fluorescent intensity HD: healthy donor MAP1LC3/LC3/Atg8: microtubule associated protein 1 light chain 3 MedianFI: median fluorescent intensity NTC: non-target control PBMC: peripheral blood mononuclear cells RPMI: Roswell Park Memorial Institution SQSTM1/p62: sequestosome 1 WT: wild type.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guowu Hu
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Elsegeiny
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter R. Williamson
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
110
|
Penndorf P, Jabs J. A new approach to making scientific research more efficient - rethinking sustainability. FEBS Lett 2023; 597:2371-2374. [PMID: 37737013 DOI: 10.1002/1873-3468.14736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
As interest in sustainability grows, many researchers raise questions about changing scientific practices. To enable effective change, we reconceptualize sustainability as an approach that optimizes the efficiency of procedures, thereby benefiting scientists and minimizing environmental footprints. Since the implementation of sustainable approaches can be challenging, we describe the 6R concept as a framework to arrive at actionable steps.
Collapse
Affiliation(s)
- Patrick Penndorf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
111
|
Herppich S, Hoenicke L, Kern F, Kruse F, Smout J, Greweling-Pils MC, Geffers R, Burton OT, Liston A, Keller A, Floess S, Huehn J. Zfp362 potentiates murine colonic inflammation by constraining Treg cell function rather than promoting Th17 cell differentiation. Eur J Immunol 2023; 53:e2250270. [PMID: 37366299 DOI: 10.1002/eji.202250270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/02/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Mucosal barrier integrity and pathogen clearance is a complex process influenced by both Th17 and Treg cells. Previously, we had described the DNA methylation profile of Th17 cells and identified Zinc finger protein (Zfp)362 to be uniquely demethylated. Here, we generated Zfp362-/- mice to unravel the role of Zfp362 for Th17 cell biology. Zfp362-/- mice appeared clinically normal, showed no phenotypic alterations in the T-cell compartment, and upon colonization with segmented filamentous bacteria, no effect of Zfp362 deficiency on Th17 cell differentiation was observed. By contrast, Zfp362 deletion resulted in increased frequencies of colonic Foxp3+ Treg cells and IL-10+ and RORγt+ Treg cell subsets in mesenteric lymph nodes. Adoptive transfer of naïve CD4+ T cells from Zfp362-/- mice into Rag2-/- mice resulted in a significantly lower weight loss when compared with controls receiving cells from Zfp362+/+ littermates. However, this attenuated weight loss did not correlate with alterations of Th17 cells but instead was associated with an increase of effector Treg cells in mesenteric lymph nodes. Together, these results suggest that Zfp362 plays an important role in promoting colonic inflammation; however, this function is derived from constraining the effector function of Treg cells rather than directly promoting Th17 cell differentiation.
Collapse
Affiliation(s)
- Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Hoenicke
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Fabian Kern
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics, Saarland University, Homburg, Germany
| | - Friederike Kruse
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Justine Smout
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver T Burton
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Adrian Liston
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Andreas Keller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics, Saarland University, Homburg, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
112
|
Fan K, Wei Y, Ou Y, Gong J. Integrated analysis of multiple methods reveals characteristics of the immune microenvironment in medulloblastoma. Brain Tumor Pathol 2023; 40:191-203. [PMID: 37558814 DOI: 10.1007/s10014-023-00467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
To explore the characteristics of the immune microenvironment (IME) of medulloblastoma (MB) by four methods: flow cytometry (FCM), immunohistochemical (IHC), bulk RNA expression and single cell RNA sequencing (scRNA-seq), we collected the intraoperative specimens of MB, ependymoma (EPN), high-grade glioma (HGG), and low-grade glioma (LGG) to make a cross-cancer comparison. The specimens were subjected to FCM and IHC respectively, and deconvolution from bulk RNA expression data and scRNA-seq analysis were performed in MB from the GEO database. FCM and IHC analysis found that the proportion of lymphocytes (LC) and T cells between MB and other brain tumors were significantly different. The deconvolution of bulk RNA expression data showed that only the proportion of cell types in MCPCOUNTER changed greatly. scRNA-seq found that the proportion of various immune cells in the IME of MB differed between different subtypes. Techniques such as FCM, IHC, bulk RNA expression, and scRNA-seq can sort out different immune cell subsets to a certain extent and quantify their proportions. The four methods have their own strengthens and limitations, but for highly heterogeneous tumor such as MB, integrated analysis of multiple methods is a better choice.
Collapse
Affiliation(s)
- Kaiyu Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yifan Wei
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunwei Ou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Neurosurgical Institute, Beijing, 100070, China
| | - Jian Gong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Beijing, 100070, China.
| |
Collapse
|
113
|
Fischer AAM, Schatz L, Baaske J, Römer W, Weber W, Thuenauer R. Real-time monitoring of cell surface protein arrival with split luciferases. Traffic 2023; 24:453-462. [PMID: 37403269 DOI: 10.1111/tra.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Each cell in a multicellular organism permanently adjusts the concentration of its cell surface proteins. In particular, epithelial cells tightly control the number of carriers, transporters and cell adhesion proteins at their plasma membrane. However, sensitively measuring the cell surface concentration of a particular protein of interest in live cells and in real time represents a considerable challenge. Here, we introduce a novel approach based on split luciferases, which uses one luciferase fragment as a tag on the protein of interest and the second fragment as a supplement to the extracellular medium. Once the protein of interest arrives at the cell surface, the luciferase fragments complement and generate luminescence. We compared the performance of split Gaussia luciferase and split Nanoluciferase by using a system to synchronize biosynthetic trafficking with conditional aggregation domains. The best results were achieved with split Nanoluciferase, for which luminescence increased more than 6000-fold upon recombination. Furthermore, we showed that our approach can separately detect and quantify the arrival of membrane proteins at the apical and basolateral plasma membrane in single polarized epithelial cells by detecting the luminescence signals with a microscope, thus opening novel avenues for characterizing the variations in trafficking in individual epithelial cells.
Collapse
Affiliation(s)
- Alexandra A M Fischer
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Larissa Schatz
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, Hamburg, Germany
| | - Julia Baaske
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Winfried Römer
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Signaling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, Hamburg, Germany
- Technology Platform Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
114
|
Scopelliti F, Dimartino V, Cattani C, Cavani A. Functional TRPA1 Channels Regulate CD56 dimCD16 + NK Cell Cytotoxicity against Tumor Cells. Int J Mol Sci 2023; 24:14736. [PMID: 37834182 PMCID: PMC10572725 DOI: 10.3390/ijms241914736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channels are expressed on the surface of different cell types, including immune cells. However, TRPA1's role in the context of innate and adaptive immune responses has not been fully elucidated so far. In this study, we aimed at investigating the expression and function of TRPA1 channels on NK cells. Among NK cells, TRPA1 was highly expressed by the CD56dimCD16+ subpopulation, but not by CD56brightCD16- cells, as detected by FACS. TRPA1 activation with the potent ligand allyl isothiocyanate (AITC) induces intracellular calcium flux in CD56dimCD16+ cells, which was prevented by the TRPA1 antagonist HC-030031. AITC treatment increased the membrane around NKp44 and strongly decreased CD16 and CD8 expression, while CD158a, CD159a, NKG2d, NKp46 were substantially unaffected. Importantly, AITC increased the granzyme production and CD107 expression and increased NK cell-mediated cytotoxicity towards the K562 cell line and two different melanoma cell lines. In parallel, TRPA1 activation also plays regulatory roles by affecting the survival of NK cells to limit uncontrolled and prolonged NK cell-mediated cytotoxicity. Our results indicate that the activation of TRPA1 is an important regulatory signal for NK cells, and agonists of TRPA1 could be used to strengthen the tumor response of the immune system.
Collapse
Affiliation(s)
- Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| | - Valentina Dimartino
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Caterina Cattani
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| |
Collapse
|
115
|
Chowdhury S, Fried KD, Iwakiri Y, Brancale J, Vilarinho S. Protocol for enrichment, purification, and cytocentrifugation of mouse liver endothelial cells. STAR Protoc 2023; 4:102480. [PMID: 37515764 PMCID: PMC10400957 DOI: 10.1016/j.xpro.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/31/2023] Open
Abstract
Liver endothelial cells (LECs) are critical in maintaining liver homeostasis. To understand the mechanistic processes occurring in these cells, high-quality isolation protocols must be in place. Here, we present a protocol for LEC enrichment, subsequent LEC purification using fluorescence-assisted cell sorting, and cytocentrifugation of sorted LECs for imaging. We describe steps for isolation of LEC-enriched population from mouse livers, immunolabeling and sorting, and cytospin and immunostaining. We then mention procedures for downstream analysis. For complete details on the use and execution of this protocol, please refer to Drzewiecki et al. (2021).1.
Collapse
Affiliation(s)
- Shanin Chowdhury
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06519, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kaela Drzewiecki Fried
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06519, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06519, USA
| | - Joseph Brancale
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06519, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06519, USA
| | - Sílvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT 06519, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
116
|
Wang Q, Feng C, Chen Y, Peng T, Li Y, Wu K, Pu X, Chen H, Liu J. Evaluation of CD47 in the Suppressive Tumor Microenvironment and Immunotherapy in Prostate Cancer. J Immunol Res 2023; 2023:2473075. [PMID: 37719086 PMCID: PMC10505079 DOI: 10.1155/2023/2473075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Background CD47 has high levels of expression in malignant cancer cells, which binds to SIRP-α to release the "don't eat me" signal and prevents mononuclear macrophages from phagocytosing the cells. Resistance to drugs and metastases are potential barriers for prostate cancer endocrine therapy. Although immunotherapy for tumors has developed rapidly in the last few decades, its effectiveness in treating prostate cancer is unsatisfactory. Prostate cancer has a high-expression level of CD47. Therefore, a novel approach for potential immunotherapy may be provided by investigating the relationship among CD47 and the infiltration of immune cells in the prostate carcinoma. Methods The GEPIA database was utilized to compare the abundance of CD47 in malignant tissues with tissues that were normal. Furthermore, the function of CD47 in prostate carcinoma was assessed by CancerSEA. The association among CD47 and the tumor microenvironment was assessed utilizing the TISCH single cell data database. By using TIMER, the connection among CD47 and immunological invasion of prostate cancer was explored. Moreover, macrophages were cocultured with mouse prostate cancer cell RM-1 blocked by CD47 antibody to observe the changes in phagocytosis efficiency in vitro. Results Expression level of CD47 is upregulated in prostate carcinoma, and it is closely connected with prostate cancer's inadequate immune invasion. CD47 antibody blocking promotes macrophage phagocytosis of RM-1. Conclusion Our research demonstrates a closely relationship among CD47 and the immunological microenvironment of prostate cancer, and blocking CD47 can promote macrophages to phagocytosis of prostate cancer cells. Therefore, CD47 may provide novel strategies for potential immunotherapy of prostate cancer.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Urology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chunxaing Feng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuchun Chen
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tianming Peng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yong Li
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Kunlin Wu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hanzhong Chen
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jiumin Liu
- Department of Urology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
117
|
Schulz AR, Fiebig L, Hirseland H, Diekmann LM, Reinke S, Hardt S, Niedobitek A, Mei HE. SARS-CoV-2 specific plasma cells acquire long-lived phenotypes in human bone marrow. EBioMedicine 2023; 95:104735. [PMID: 37556944 PMCID: PMC10432952 DOI: 10.1016/j.ebiom.2023.104735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND SARS-CoV-2 specific antibody-secreting plasma cells (PC) mediating specific humoral immunity have been identified in the human bone marrow (BM) after COVID-19 or vaccination against SARS-CoV-2. However, it remained unclear whether or not they acquire phenotypes of human memory plasma cells. METHODS SARS-CoV-2-specific human bone marrow plasma cells (BMPC) were characterised by tetramer-based, antigen-specific flow cytometry and FluoroSpot assay. FINDINGS SARS-CoV-2 spike-S1-specific PC were detectable in all tested BM samples of previously vaccinated individuals, representing 0.22% of total BMPC. The majority of SARS-CoV-2-specific BMPC expressed IgG and their specificity for the spike S1 protein indicated emergence from a systemic vaccination response. Of note, one-fifth of SARS-CoV-2-specific BMPC showed the phenotype of memory plasma cells, i.e., downregulated CD19 and present or absent CD45 expression. INTERPRETATION Our data indicate the establishment of phenotypically diverse SARS-CoV-2-specific PC in the human BM after basic mRNA immunization, including the formation of memory phenotypes. These results suggest the induction of durable humoral immunity after basic mRNA vaccination against SARS-CoV-2. FUNDING The study was supported by funding by the DFG grants TRR130 TP24, ME 3644/8-1, and the Berlin Senate. SR received funding from DFGSFB-1444 C01 Central Service Project.
Collapse
Affiliation(s)
- Axel R Schulz
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Leonard Fiebig
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Heike Hirseland
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Lisa-Marie Diekmann
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Simon Reinke
- Cell Harvesting Core, Berlin Institute of Health, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum Berlin, A Leibniz Institute, Berlin, Germany.
| |
Collapse
|
118
|
Garcia-Gasalla M, Berman-Riu M, Rodriguez A, Iglesias A, Fraile-Ribot PA, Toledo-Pons N, Pol-Pol E, Ferré-Beltrán A, Artigues-Serra F, Martin-Pena ML, Pons J, Murillas J, Oliver A, Riera M, Ferrer JM. Elevated complement C3 and increased CD8 and type 1 helper lymphocyte T populations in patients with post-COVID-19 condition. Cytokine 2023; 169:156295. [PMID: 37453328 DOI: 10.1016/j.cyto.2023.156295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Biological markers associated to post-COVID-19 condition (PCC) have not been clearly identified. METHODS Eighty-two patients attending our post-COVID-19 outpatient clinic were recruited and classified as fully recovered (40.2%) or presenting with PCC (59.8%). Clinical and radiological data, laboratory markers, cytokines, and lymphocyte populations were analyzed. RESULTS Median number of days after hospitalization was 78.5 [p25-p75: 60-93] days. PCC was significantly more frequent in women, in patients with a previously critical COVID-19, and in those with two or more comorbidities. No differences were found in lymphocyte counts, ferritin, C-reactive protein, D-dimer or sCD25, IL-1β, IL-1Ra, IL-6, CXCL8, IL-17A, IL-18, IL-22, IFN-γ, TNF-α, and IL-10 cytokines levels. PCC patients showed significantly higher levels of complement factor C3 than fully recovered patients: median C3 128 mg/dL [p25-p75:107-135] vs 111 mg/dL [p25-p75: 100-125] (p =.005), respectively. In the flow cytometry assessment of peripheral blood lymphocyte subpopulations, PCC patients showed significantly increased CD8 populations compared to fully recovered patients: median CD8: 529 [p25-p75: 384-683] vs 370/mm3 [p25-p75:280-523], p =.007. When type 1, 2, 17/22, and 17.1 helper and follicular T lymphocyte subpopulations were analyzed, the frequency of Th1 was significantly higher in PCC patients compared to fully recovered patients (30% vs 38.5%, p =.028). CONCLUSION Patients with a post-COVID-19 condition showed significantly increased immunological parameters of inflammation (complement factor C3 and CD8 and Th1 T lymphocyte populations) compared to fully recovered patients. These parameters could be used as biological markers of this condition.
Collapse
Affiliation(s)
- Mercedes Garcia-Gasalla
- Department of Internal Medicine, Hospital Universitari Son Espases, Palma, Spain; Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Universitat de les Illes Balears. Palma de Mallorca, Illes Balears, Spain.
| | - Maria Berman-Riu
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Universitat de les Illes Balears. Palma de Mallorca, Illes Balears, Spain
| | - Adrian Rodriguez
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Department of Internal Medicine, Hospital Universitari Son Llàtzer, Palma, Spain
| | - Amanda Iglesias
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Centro de Investigación Biomedica en Red (CIBER) de Enfermedades Respiratorias, Hospital Universitari Son Espases, Palma, Spain
| | - Pablo A Fraile-Ribot
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Department of Microbiology, Hospital Universitari Son Espases, Palma, Spain
| | - Nuria Toledo-Pons
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Department of Pneumology, Hospital Universitari Son Espases, Palma, Spain
| | - Elisabet Pol-Pol
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
| | - Adrian Ferré-Beltrán
- Department of Internal Medicine, Hospital Universitari Son Espases, Palma, Spain
| | | | - M Luisa Martin-Pena
- Department of Internal Medicine, Hospital Universitari Son Espases, Palma, Spain; Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Jaime Pons
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Centro de Investigación Biomedica en Red (CIBER) de Enfermedades Respiratorias, Hospital Universitari Son Espases, Palma, Spain; Department of Immunology, Hospital Universitari Son Espases, Palma, Spain
| | - Javier Murillas
- Department of Internal Medicine, Hospital Universitari Son Espases, Palma, Spain; Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Universitat de les Illes Balears. Palma de Mallorca, Illes Balears, Spain
| | - Antonio Oliver
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Department of Microbiology, Hospital Universitari Son Espases, Palma, Spain; Universitat de les Illes Balears. Palma de Mallorca, Illes Balears, Spain
| | - Melchor Riera
- Department of Internal Medicine, Hospital Universitari Son Espases, Palma, Spain; Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Universitat de les Illes Balears. Palma de Mallorca, Illes Balears, Spain
| | - Joana M Ferrer
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain; Department of Immunology, Hospital Universitari Son Espases, Palma, Spain; Universitat de les Illes Balears. Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
119
|
Silvestri Y, Clemente F, Moschetti G, Maioli S, Carelli E, Espadas de Arias A, Torelli R, Longhi E, De Feo T, Crosti M, Sarnicola ML, Salvi M, Mantovani G, Arosio M, Bombaci M, Pesce E, Grifantini R, Abrignani S, Geginat J, Muller I. SARS-COV-2 specific t-cells in patients with thyroid disorders related to COVID-19 are enriched in the thyroid and acquire a tissue-resident memory phenotype. Clin Immunol 2023; 254:109684. [PMID: 37451415 DOI: 10.1016/j.clim.2023.109684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND SARS-CoV-2 infections have been associated with the onset of thyroid disorders like classic subacute thyroiditis (SAT) or atypical SAT upon severe COVID disease (COV-A-SAT). Little is known about thyroid anti-viral immune responses. OBJECTIVES To define the role of T-cells in COV-A-SAT. METHODS T-cells from COV-A-SAT patients were analyzed by multi-dimensional flow cytometry, UMAP and DiffusionMap dimensionality reduction and FlowSOM clustering. T-cells from COVID-naïve healthy donors, patients with autoimmune thyroiditis (ATD) and with SAT following COVID vaccination were analyzed as controls. T-cells were analyzed four and eight months post-infection in peripheral blood and in thyroid specimen obtained by ultrasound-guided fine needle aspiration. SARS-COV2-specific T-cells were identified by cytokine production induced by SARS-COV2-derived peptides and with COVID peptide-loaded HLA multimers after HLA haplotyping. RESULTS COV-A-SAT was associated with HLA-DRB1*13 and HLA-B*57. COV-A-SAT patients contained activated Th1- and cytotoxic CD4+ and CD8+ effector cells four months post-infection, which acquired a quiescent memory phenotype after eight months. Anti-SARS-CoV-2-specific T-cell responses were readily detectable in peripheral blood four months post-infection, but were reduced after eight months. CD4+ and CD8+ tissue-resident memory cells (TRM) were present in the thyroid, and circulating CXCR3+T-cells identified as their putative precursors. SARS-CoV-2-specific T-cells were enriched in the thyroid, and acquired a TRM phenotype eight months post-infection. CONCLUSIONS The association of COV-A-SAT with specific HLA haplotypes suggests a genetic predisposition and a key role for T-cells. COV-A-SAT is characterized by a prolonged systemic anti-viral effector T-cell response and the late generation of COVID-specific TRM in the thyroid target tissue.
Collapse
Affiliation(s)
- Ylenia Silvestri
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Francesca Clemente
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Giorgia Moschetti
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Sara Maioli
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Elena Carelli
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Alejandro Espadas de Arias
- S.C. Trapianti Lombardia - NITp, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Sforza 35 c/o INGM, 20122 Milano, Iraly
| | - Rosanna Torelli
- S.C. Trapianti Lombardia - NITp, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Sforza 35 c/o INGM, 20122 Milano, Iraly
| | - Elena Longhi
- S.C. Trapianti Lombardia - NITp, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Sforza 35 c/o INGM, 20122 Milano, Iraly
| | - Tullia De Feo
- S.C. Trapianti Lombardia - NITp, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Sforza 35 c/o INGM, 20122 Milano, Iraly
| | | | | | - Mario Salvi
- Struttura Complessa Endocrinologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy; Struttura Complessa Endocrinologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maura Arosio
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy; Struttura Complessa Endocrinologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Bombaci
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Elisa Pesce
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Jens Geginat
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Ilaria Muller
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy; Struttura Complessa Endocrinologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
120
|
Mermans F, Mattelin V, Van den Eeckhoudt R, García-Timermans C, Van Landuyt J, Guo Y, Taurino I, Tavernier F, Kraft M, Khan H, Boon N. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems. Front Microbiol 2023; 14:1233705. [PMID: 37692384 PMCID: PMC10486927 DOI: 10.3389/fmicb.2023.1233705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yuting Guo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Leuven Institute of Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Hira Khan
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
121
|
Peixoto MM, Soares-da-Silva F, Bonnet V, Ronteix G, Santos RF, Mailhe MP, Feng X, Pereira JP, Azzoni E, Anselmi G, de Bruijn M, Baroud CN, Pinto-do-Ó P, Cumano A. Spatiotemporal dynamics of cytokines expression dictate fetal liver hematopoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554612. [PMID: 37662317 PMCID: PMC10473721 DOI: 10.1101/2023.08.24.554612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
During embryogenesis, yolk-sac and intra-embryonic-derived hematopoietic progenitors, comprising the precursors of adult hematopoietic stem cells, converge into the fetal liver. With a new staining strategy, we defined all non-hematopoietic components of the fetal liver and found that hepatoblasts are the major producers of hematopoietic growth factors. We identified mesothelial cells, a novel component of the stromal compartment, producing Kit ligand, a major hematopoietic cytokine. A high-definition imaging dataset analyzed using a deep-learning based pipeline allowed the unambiguous identification of hematopoietic and stromal populations, and enabled determining a neighboring network composition, at the single cell resolution. Throughout active hematopoiesis, progenitors preferentially associate with hepatoblasts, but not with stellate or endothelial cells. We found that, unlike yolk sac-derived progenitors, intra-embryonic progenitors respond to a chemokine gradient created by CXCL12-producing stellate cells. These results revealed that FL hematopoiesis is a spatiotemporal dynamic process, defined by an environment characterized by low cytokine concentrations.
Collapse
|
122
|
Hecker M, Fitzner B, Boxberger N, Putscher E, Engelmann R, Bergmann W, Müller M, Ludwig-Portugall I, Schwartz M, Meister S, Dudesek A, Winkelmann A, Koczan D, Zettl UK. Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy. J Neuroinflammation 2023; 20:181. [PMID: 37533036 PMCID: PMC10394872 DOI: 10.1186/s12974-023-02859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease that leads to irreversible damage to the brain and spinal cord. The goal of so-called "immune reconstitution therapies" (IRTs) is to achieve long-term disease remission by eliminating a pathogenic immune repertoire through intense short-term immune cell depletion. B cells are major targets for effective immunotherapy in MS. OBJECTIVES The aim of this study was to analyze the gene expression pattern of B cells before and during IRT (i.e., before B-cell depletion and after B-cell repopulation) to better understand the therapeutic effects and to identify biomarker candidates of the clinical response to therapy. METHODS B cells were obtained from blood samples of patients with relapsing-remitting MS (n = 50), patients with primary progressive MS (n = 13) as well as healthy controls (n = 28). The patients with relapsing MS received either monthly infusions of natalizumab (n = 29) or a pulsed IRT with alemtuzumab (n = 15) or cladribine (n = 6). B-cell subpopulation frequencies were determined by flow cytometry, and transcriptome profiling was performed using Clariom D arrays. Differentially expressed genes (DEGs) between the patient groups and controls were examined with regard to their functions and interactions. We also tested for differences in gene expression between patients with and without relapse following alemtuzumab administration. RESULTS Patients treated with alemtuzumab or cladribine showed on average a > 20% lower proportion of memory B cells as compared to before IRT. This was paralleled by profound transcriptome shifts, with > 6000 significant DEGs after adjustment for multiple comparisons. The top DEGs were found to regulate apoptosis, cell adhesion and RNA processing, and the most highly connected nodes in the network of encoded proteins were ESR2, PHB and RC3H1. Higher mRNA levels of BCL2, IL13RA1 and SLC38A11 were seen in patients with relapse despite IRT, though these differences did not pass the false discovery rate correction. CONCLUSIONS We show that B cells circulating in the blood of patients with MS undergoing IRT present a distinct gene expression signature, and we delineated the associated biological processes and gene interactions. Moreover, we identified genes whose expression may be an indicator of relapse risk, but further studies are needed to verify their potential value as biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Nina Boxberger
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Robby Engelmann
- Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | | | - Margit Schwartz
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
123
|
Pircher H, Pinschewer DD, Boehm T. MHC I tetramer staining tends to overestimate the number of functionally relevant self-reactive CD8 T cells in the preimmune repertoire. Eur J Immunol 2023; 53:e2350402. [PMID: 37179469 DOI: 10.1002/eji.202350402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/19/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Previous studies that used peptide-MHC (pMHC) tetramers (tet) to identify self-specific T cells have questioned the effectiveness of thymic-negative selection. Here, we used pMHCI tet to enumerate CD8 T cells specific for the immunodominant gp33 epitope of lymphocytic choriomeningitis virus glycoprotein (GP) in mice transgenically engineered to express high levels of GP as a self-antigen in the thymus. In GP-transgenic mice (GP+ ), monoclonal P14 TCR+ CD8 T cells that express a GP-specific TCR could not be detected by gp33/Db -tet staining, indicative of their complete intrathymic deletion. By contrast, in the same GP+ mice, substantial numbers of polyclonal CD8 T cells identifiable by gp33/Db -tet were present. The gp33-tet staining profiles of polyclonal T cells from GP+ and GP-negative (GP- ) mice were overlapping, but mean fluorescence intensities were ∼15% lower in cells from GP+ mice. Remarkably, the gp33-tet+ T cells in GP+ mice failed to clonally expand after lymphocytic choriomeningitis virus infection, whereas those of GP- mice did so. In Nur77GFP -reporter mice, dose-dependent responses to gp33 peptide-induced TCR stimulation revealed that gp33-tet+ T cells with high ligand sensitivity are lacking in GP+ mice. Hence, pMHCI tet staining identifies self-specific CD8 T cells but tends to overestimate the number of truly self-reactive cells.
Collapse
Affiliation(s)
- Hanspeter Pircher
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
124
|
Gómez-Gaviria M, Martínez-Duncker I, García-Carnero LC, Mora-Montes HM. Differential Recognition of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa by Human Monocyte-Derived Macrophages and Dendritic Cells. Infect Drug Resist 2023; 16:4817-4834. [PMID: 37520448 PMCID: PMC10386844 DOI: 10.2147/idr.s419629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background Sporotrichosis is a mycosis frequently caused by Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The cell wall is a species-specific fungal structure with a direct role in activating the host's immune response. The current knowledge about anti-Sporothrix immunity comes from studies using S. schenckii or S. brasiliensis and murine cells. Macrophages and dendritic cells detect and eliminate pathogens, and although the function of these cells links innate with adaptive immunity, little is known about their interaction with Sporothrix spp. Methods S. schenckii, S. brasiliensis, and S. globosa conidia or yeast-like cells were co-incubated with human monocyte-derived macrophages or dendritic cells, and the phagocytosis and cytokine stimulation were assessed. These interactions were also performed in the presence of specific blocking agents of immune receptors or fungal cells with altered walls to analyze the contribution of these molecules to the immune cell-fungus interaction. Results Both types of immune cells phagocytosed S. globosa conidia and yeast-like cells to a greater extent, followed by S. brasiliensis and S. schenckii. Furthermore, when the wall internal components were exposed, the phagocytosis level increased for S. schenckii and S. brasiliensis, in contrast to S. globosa. Thus, the cell wall components have different functions during the interaction with macrophages and dendritic cells. S. globosa stimulated an increased proinflammatory response when compared to the other species. In macrophages, this was a dectin-1-, mannose receptor-, and TLR2-dependent response, but dectin-1- and TLR2-dependent stimulation in dendritic cells. For S. schenckii and S. brasiliensis, cytokine production was dependent on the activation of TLR4, CR3, and DC-SIGN. Conclusion The results of this study indicate that these species are recognized by immune cells differently and that this may depend on both the structure and cell wall organization of the different morphologies.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, GuanajuatoMéxico
| |
Collapse
|
125
|
Gu Y, Yang J, He C, Zhao T, Lu R, Liu J, Mo X, Wen F, Shi H. Incorporation of a Toll-like receptor 2/6 agonist potentiates mRNA vaccines against cancer and infectious diseases. Signal Transduct Target Ther 2023; 8:273. [PMID: 37455272 DOI: 10.1038/s41392-023-01479-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
mRNA vaccines have emerged rapidly in recent years as a prophylactic and therapeutic agent against various diseases including cancer and infectious diseases. Improvements of mRNA vaccines have been underway, among which boosting of efficacy is of great importance. Pam2Cys, a simple synthetic metabolizable lipoamino acid that signals through Toll-like receptor (TLR) 2/6 pathway, eliciting both humoral and cellular adaptive immune responses, is an interesting candidate adjuvant. To investigate the enhancement of the efficacies of mRNA vaccines by Pam2Cys, the adjuvant was incorporated into mRNA-lipid nanoparticles (LNPs) to achieve co-delivery with mRNA. Immunization with the resulting mRNA-LNPs (Pam2Cys) shaped up the immune milieu in the draining lymph nodes (dLNs) through the induction of IL-12 and IL-17, among other cytokines. Antigen presentation was carried out mainly by migratory and dLN-resident conventional type 2 DCs (cDC2s) and significantly more potent antitumor responses were triggered in both prophylactic and therapeutic tumor models in a CD4+ and CD8+ T cell-dependent fashion. Accompanying memory antitumor immunity was also established. Moreover, the vaccine also stimulated much more robust humoral and cellular immunity in a surrogate COVID-19 prophylactic model. Last but not the least, the new vaccines exhibited good preliminary safety profiles in murine models. These facts warrant future development of Pam2Cys-incorporated mRNA vaccines or relevant mRNA therapeutics for clinical application.
Collapse
Affiliation(s)
- Yangzhuo Gu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jingyun Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Cai He
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Tingmei Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Ran Lu
- Laboratory of Stem Cell Biology and Department of Pediatric Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Jian Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology and Department of Pediatric Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy and Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
126
|
Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP. High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.13.23292633. [PMID: 37502836 PMCID: PMC10370238 DOI: 10.1101/2023.07.13.23292633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Thomas Mawson
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Johana Coronel
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Allen Chung
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Sebastian Ho
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York
| | - Robert C Bauer
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance
- Karolinksa Institute, Department of Medicine
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
127
|
Moneta GM, Bracaglia C, Caiello I, Farroni C, Pires Marafon D, Carlomagno R, Hiraki L, Vivarelli M, Gianviti A, Carbogno S, Ferlin W, de Min C, Silverman E, Carsetti R, De Benedetti F, Marasco E. Persistently active interferon-γ pathway and expansion of T-bet + B cells in a subset of patients with childhood-onset systemic lupus erythematosus. Eur J Immunol 2023; 53:e2250319. [PMID: 37204055 DOI: 10.1002/eji.202250319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease causing significant morbidity and mortality, despite important improvements in its management in the last decades. The objective of this work is to investigate the role of IFN-γ in the pathogenesis of childhood-onset systemic lupus erythematosus (cSLE), evaluating the crosstalk between IFN-α and IFN-γ and the expression of T-bet, a transcription factor induced by IFN-γ, in B cells of patients with cSLE. Expression levels of both IFN-α and IFN-γ-induced genes were upregulated in patients with cSLE. We found increased serum levels of CXCL9 and CXCL10 in patients with cSLE. Type I IFN score decreased with initiation of immunosuppressive treatment; conversely, type II IFN score and levels of CXCL9 were not significantly affected by immunosuppressive treatment. Type II IFN score and CXCL9 were significantly higher in patients with lupus nephritis. We observed the expansion of a population of naïve B cells expressing T-bet in a cluster of patients with cSLE. IFN-γ, but not IFN-α, induced the expression of T-bet in B cells. Our data suggest that IFN-γ is hyperactive in cSLE, especially in patients with lupus nephritis, and it is not modulated by therapy. Our data reinforce the potential of IFN-γ as a therapeutic target in SLE.
Collapse
Affiliation(s)
- Gian Marco Moneta
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Claudia Bracaglia
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Ivan Caiello
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Chiara Farroni
- B Cell Physiopathology Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | - Linda Hiraki
- Division of Rheumatology, SickKids Hospital, Toronto, Canada
| | - Marina Vivarelli
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Alessandra Gianviti
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Simone Carbogno
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Walter Ferlin
- Light Chain Bioscience - Novimmune SA, Plan-Les-Ouates Geneva, Switzerland
| | | | - Earl Silverman
- Division of Rheumatology, SickKids Hospital, Toronto, Canada
| | - Rita Carsetti
- B Cell Physiopathology Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Emiliano Marasco
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| |
Collapse
|
128
|
Iske J, Wiegmann B, Ius F, Chichelnitskiy E, Ludwig K, Kühne JF, Hitz AM, Beushausen K, Keil J, Iordanidis S, Rojas SV, Sommer W, Salman J, Haverich A, Warnecke G, Falk CS. Immediate major dynamic changes in the T- and NK-cell subset composition after cardiac transplantation. Eur J Immunol 2023; 53:e2250097. [PMID: 37119053 DOI: 10.1002/eji.202250097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/23/2023] [Accepted: 04/28/2023] [Indexed: 04/30/2023]
Abstract
Early kinetics of lymphocyte subsets involved in tolerance and rejection following heart transplantation (HTx) are barely defined. Here, we aimed to delineate the early alloimmune response immediately after HTx. Therefore, blood samples from 23 heart-transplanted patients were collected before (pre-), immediately (T0), 24 hours (T24), and 3 weeks (3 wks) after HTx. Immunophenotyping was performed using flow cytometry. A significant increase was detected for terminally differentiated (TEMRA) CD4+ or CD8+ T cells and CD56dim CD16+ NK cells immediately after HTx linked to a decrease in naïve CD8+ and CM CD4+ T as well as CD56bright CD16- NK cells, returning to baseline levels at T24. More detailed analyses revealed increased CD69+ CD25- and diminished CD69- CD25- CD4+ or CD8+ T-cell proportions at T0 associated with decreasing S1PR1 expression. Passenger T and NK cells were found at low frequencies only in several patients at T0 and did not correlate with lymphocyte alterations. Collectively, these results suggest an immediate, transient shift toward memory T and NK cells following HTx. Opposite migratory properties of naïve versus memory T and NK cells occurring in the early phase after HTx could underlie these observations and may impinge on the development of allo-specific immune responses.
Collapse
Affiliation(s)
- Jasper Iske
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
| | | | - Kristina Ludwig
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jenny F Kühne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Anna Maria Hitz
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Susanne Iordanidis
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Sebastián V Rojas
- Heart and Diabetes Center Nordrhein-Westfalen, University Hospital Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Wiebke Sommer
- Department of Cardiac Surgery, University Hospital Heidelberg UK-HD, Heidelberg, Germany
| | - Jawad Salman
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery, University Hospital Heidelberg UK-HD, Heidelberg, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, BREATH, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, TTU-IICH Hannover-Braunschweig site, Germany
| |
Collapse
|
129
|
Bergantini L, d'Alessandro M, Pianigiani T, Cekorja B, Bargagli E, Cameli P. Benralizumab affects NK cell maturation and proliferation in severe asthmatic patients. Clin Immunol 2023; 253:109680. [PMID: 37380086 DOI: 10.1016/j.clim.2023.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
INTRODUCTION The mechanism of action of benralizumab is determined by its afucosylated constant fragment that binds CD16a receptors on the membrane of natural killer cells. Here we analysed changes in Natural Killer and T-cells in Severe asthmatic patients, before and after benralizumab.. METHODS Natural Killer and T-cell subsets were detected through multiparametric flow cytometry. The concentrations of serum cytokines levels were detected through multiplex assay. Functional proliferation assay was performed in follow-up samples in severe asthmatic patients. RESULTS At baseline, severe asthmatic patients showed higher percentages of immature Natural Killer cells when compared with healthy controls. We demonstrate the proliferative capacity of these cells and their activation after benralizumab administration. Benralizumab shifted Natural Killer cell phenotypes towards maturity. Correlation between the Natural Killer cells and functional parameters and with steroid-sparing was observed. CONCLUSION Together this data contributes to our understanding of the mechanisms of action of benralizumab in the resolution of inflammation in severe asthma patients.
Collapse
Affiliation(s)
- Laura Bergantini
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy.
| | - Miriana d'Alessandro
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Tommaso Pianigiani
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Behar Cekorja
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Elena Bargagli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| | - Paolo Cameli
- Respiratory Disease Unit, Department of Medical Sciences, University Hospital of Siena (Azienda Ospedaliera Universitaria Senese, AOUS), Viale Bracci, 53100 Siena, Italy
| |
Collapse
|
130
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
131
|
Kratzer B, Grabmeier-Pfistershammer K, Trapin D, Körmöczi U, Rottal A, Feichter M, Waidhofer-Söllner P, Smogavec M, Laccone F, Hauser M, Winkler S, Pickl WF, Lechner AM. Mycobacterium avium Complex Infections: Detailed Phenotypic and Functional Immunological Work-Up Is Required despite Genetic Analyses. Int Arch Allergy Immunol 2023; 184:914-931. [PMID: 37279717 DOI: 10.1159/000530844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023] Open
Abstract
INTRODUCTION Cervical scrofulous lymphadenitis due to Mycobacterium avium complex (MAC) in immunocompetent adults is a rare disease. The presence of MAC infections demands meticulous clinical evaluation of patients along with detailed phenotypic and functional evaluation of their immune system including next-generation sequencing (NGS) analyses of target genes. METHODS Exact clinical histories of the index patients both suffering from retromandibular/cervical scrofulous lymphadenitis were obtained along with phenotypic and functional immunological evaluations of leukocyte populations followed by targeted NGS-based sequencing of candidate genes. RESULTS Immunological investigations showed normal serum immunoglobulin and complement levels, but lymphopenia, which was caused by significantly reduced CD3+CD4+CD45RO+ memory T-cell and CD19+ B-cell numbers. Despite normal T-cell proliferation to a number of accessory cell-dependent and -independent stimuli, the PBMC of both patients elaborated clearly reduced levels of a number of cytokines, including IFN-γ, IL-10, IL-12p70, IL-1α, IL-1β, and TNF-α upon TCR-dependent T-cell stimulation with CD3-coated beads but also superantigens. The IFN-γ production deficiency was confirmed for CD3+CD4+ helper and CD4+CD8+ cytotoxic T cells on the single-cell level by multiparametric flow cytometry irrespective of whether PMA/ionomycin-stimulated whole blood cells or gradient-purified PBMC was analyzed. In the female patient L1, targeted NGS-based sequencing revealed a homozygous c.110T>C mutation in the interferon-γ receptor type 1 (IFNGR1) leading to significantly reduced receptor expression on both CD14+ monocytes and CD3+ T cells. Patient S2 presented with normal IFNGR1 expression on CD14+ monocytes but significantly reduced IFNGR1 expression on CD3+ T cells, despite the absence of detectable homozygous mutations in the IFNGR1 itself or disease-related target genes. Exogenous addition of increasing doses of IFN-γ resulted in proper upregulation of high-affinity FcγRI (CD64) on monocytes from patient S2, whereas monocytes from patient L1 showed only partial induction of CD64 expression after incubation with high doses of IFN-γ. CONCLUSION A detailed phenotypic and functional immunological examination is urgently required to determine the cause of a clinically relevant immunodeficiency, despite detailed genetic analyses.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Doris Trapin
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Ulrike Körmöczi
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Arno Rottal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Melanie Feichter
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Mateja Smogavec
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Franco Laccone
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Michael Hauser
- Paris Lodron University Salzburg, Division of Allergy and Immunology, Department of Biosciences, Salzburg, Austria
| | - Stefan Winkler
- Medical University of Vienna, Department of Medicine I, Division of Infectious Diseases and Tropical Medicine Vienna, Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
- Karl Landsteiner University, Krems, Austria
| | - Arno M Lechner
- Paracelsus University Salzburg, University Institute for Clinical Microbiology and Hygiene, Salzburg, Austria
| |
Collapse
|
132
|
Belgiovine C, Pellegrino L, Bulgarelli A, Lauta FC, Di Claudio A, Ciceri R, Cancellara A, Calcaterra F, Mavilio D, Grappiolo G, Chiappetta K, Loppini M, Rusconi R. Interaction of Bacteria, Immune Cells, and Surface Topography in Periprosthetic Joint Infections. Int J Mol Sci 2023; 24:ijms24109028. [PMID: 37240374 DOI: 10.3390/ijms24109028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The incidence of periprosthetic joint infections (PJIs) is ~2% of total procedures and it is expected to rise due to an ageing population. Despite the large burden PJI has on both the individual and society, the immune response to the most commonly isolated pathogens, i.e., Staphylococcus aureus and Staphylococcus epidermidis, remains incompletely understood. In this work, we integrate the analysis of synovial fluids from patients undergoing hip and knee replacement surgery with in-vitro experimental data obtained using a newly developed platform, mimicking the environment of periprosthetic implants. We found that the presence of an implant, even in patients undergoing aseptic revisions, is sufficient to induce an immune response, which is significantly different between septic and aseptic revisions. This difference is confirmed by the presence of pro- and anti-inflammatory cytokines in synovial fluids. Moreover, we discovered that the immune response is also dependent on the type of bacteria and the topography of the implant surface. While S. epidermidis seems to be able to hide better from the attack of the immune system when cultured on rough surfaces (indicative of uncemented prostheses), S. aureus reacts differently depending on the contact surface it is exposed to. The experiments we performed in-vitro also showed a higher biofilm formation on rough surfaces compared to flat ones for both species, suggesting that the topography of the implant could influence both biofilm formation and the consequent immune response.
Collapse
Affiliation(s)
- Cristina Belgiovine
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Luca Pellegrino
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Alberto Bulgarelli
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | | | - Alessia Di Claudio
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Roberta Ciceri
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Unit of Clinical and Experimental Immunology, Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Rozzano, Italy
| | - Assunta Cancellara
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Unit of Clinical and Experimental Immunology, Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Rozzano, Italy
| | - Francesca Calcaterra
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Unit of Clinical and Experimental Immunology, Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Rozzano, Italy
| | - Domenico Mavilio
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Unit of Clinical and Experimental Immunology, Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Rozzano, Italy
| | - Guido Grappiolo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Fondazione Livio Sciutto Onlus, Università Degli Studi Di Genova, 17100 Savona, Italy
| | - Katia Chiappetta
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Fondazione Livio Sciutto Onlus, Università Degli Studi Di Genova, 17100 Savona, Italy
| | - Mattia Loppini
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Fondazione Livio Sciutto Onlus, Università Degli Studi Di Genova, 17100 Savona, Italy
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
133
|
De Biasi S, Mattioli M, Meschiari M, Lo Tartaro D, Paolini A, Borella R, Neroni A, Fidanza L, Busani S, Girardis M, Coppi F, Mattioli AV, Guaraldi G, Mussini C, Cossarizza A, Gibellini L. Prognostic immune markers identifying patients with severe COVID-19 who respond to tocilizumab. Front Immunol 2023; 14:1123807. [PMID: 37215114 PMCID: PMC10196248 DOI: 10.3389/fimmu.2023.1123807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction A growing number of evidences suggest that the combination of hyperinflammation, dysregulated T and B cell response and cytokine storm play a major role in the immunopathogenesis of severe COVID-19. IL-6 is one of the main pro-inflammatory cytokines and its levels are increased during SARS-CoV-2 infection. Several observational and randomized studies demonstrated that tocilizumab, an IL-6R blocker, improves survival in critically ill patients both in infectious disease and intensive care units. However, despite transforming the treatment options for COVID-19, IL-6R inhibition is still ineffective in a fraction of patients. Methods In the present study, we investigated the impact of two doses of tocilizumab in patients with severe COVID-19 who responded or not to the treatment by analyzing a panel of cytokines, chemokines and other soluble factors, along with the composition of peripheral immune cells, paying a particular attention to T and B lymphocytes. Results We observed that, in comparison with non-responders, those who responded to tocilizumab had different levels of several cytokines and different T and B cells proportions before starting therapy. Moreover, in these patients, tocilizumab was further able to modify the landscape of the aforementioned soluble molecules and cellular markers. Conclusions We found that tocilizumab has pleiotropic effects and that clinical response to this drug remain heterogenous. Our data suggest that it is possible to identify patients who will respond to treatment and that the administration of tocilizumab is able to restore the immune balance through the re-establishment of different cell populations affected by SARS-COV-2 infection, highlighting the importance of temporal examination of the pathological features from the diagnosis.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lucia Fidanza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Stefano Busani
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Coppi
- Department of Metabolic Sciences and Neurosciences, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Vittoria Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, Azienda Ospedaliera Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| |
Collapse
|
134
|
Muir A, Bennett A, Smith H, Logunova L, Wolfenden A, Fenn J, Lowe AE, Brass A, Grainger JR, Konkel JE, Bradley JE, Mair I, Else KJ. The wild mouse bone marrow has a unique myeloid and lymphoid composition and phenotype. DISCOVERY IMMUNOLOGY 2023; 2:kyad005. [PMID: 38567065 PMCID: PMC10917185 DOI: 10.1093/discim/kyad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/04/2024]
Abstract
The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.
Collapse
Affiliation(s)
- Andrew Muir
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alex Bennett
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew Wolfenden
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jonathan Fenn
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann E Lowe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andy Brass
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kathryn J Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
135
|
Fitzpatrick KS, Degefu HN, Poljakov K, Bibby MG, Remington AJ, Searles TG, Gray MD, Boonyaratanakornkit J, Rosato PC, Taylor JJ. Validation of Ligand Tetramers for the Detection of Antigen-Specific Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1156-1165. [PMID: 36883850 PMCID: PMC10073333 DOI: 10.4049/jimmunol.2200934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
The study of Ag-specific lymphocytes has been a key advancement in immunology over the past few decades. The development of multimerized probes containing Ags, peptide:MHC complexes, or other ligands was one innovation allowing the direct study of Ag-specific lymphocytes by flow cytometry. Although these types of study are now common and performed by thousands of laboratories, quality control and assessment of probe quality are often minimal. In fact, many of these types of probe are made in-house, and protocols vary between laboratories. Although peptide:MHC multimers can often be obtained from commercial sources or core facilities, few such services exist for Ag multimers. To ensure high quality and consistency with ligand probes, we have developed an easy and robust multiplexed approach using commercially available beads able to bind Abs specific for the ligand of interest. Using this assay, we have sensitively assessed the performance of peptide:MHC and Ag tetramers and have found considerable batch-to-batch variability in performance and stability over time more easily than using murine or human cell-based assays. This bead-based assay can also reveal common production errors such as miscalculation of Ag concentration. This work could set the stage for the development of standardized assays for all commonly used ligand probes to limit laboratory-to-laboratory technical variation and experimental failure caused by probe underperformance.
Collapse
Affiliation(s)
- Kristin S Fitzpatrick
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular Medicine and Mechanisms of Disease PhD Program, University of Washington, Seattle, WA
| | - Hanna N Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Katrina Poljakov
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Madeleine G Bibby
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Allison J Remington
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA
| | - Tyler G Searles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Matthew D Gray
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jim Boonyaratanakornkit
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Pamela C Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH
| | - Justin J Taylor
- Immunology and Vaccine Development Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Department of Global Health, University of Washington, Seattle, WA
| |
Collapse
|
136
|
Qi J, Hong L, Wang Z, Liu Y, Shen L, Su B. Analysis and purification of innate lymphoid cells in human intestine and blood by flow cytometry. STAR Protoc 2023; 4:102180. [PMID: 36943862 PMCID: PMC10033740 DOI: 10.1016/j.xpro.2023.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
The role of innate lymphoid cells (ILCs)-including natural killer cells, helper-like ILC1s, ILC2s, ILC3s, and lymphoid tissue inducers-in human cancer is still poorly understood due to the scarcity of cell number. To address this, we present a protocol to analyze or purify ILCs from human blood, adjacent intestine, and colorectal tumor tissue. We describe steps for tissue and blood treatment, density centrifugation, antibody staining, and cell sorting. For complete details on the use and execution of this protocol, please refer to Qi et al. (2021).1.
Collapse
Affiliation(s)
- Jingjing Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Shanghai Institute of Cancer Biology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Liwen Hong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingbin Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Shanghai Institute of Cancer Biology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Shanghai Institute of Cancer Biology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and Shanghai Institute of Cancer Biology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
137
|
Xiao L, Yi Q. Isolation of adoptively transferred CD8 + T cells in mouse tumor tissues for lipid peroxidation detection. STAR Protoc 2023; 4:101945. [PMID: 36525345 PMCID: PMC9792557 DOI: 10.1016/j.xpro.2022.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The lipid peroxidation level of tumor-infiltrating CD8+ T cells is crucial for its activity and longevity. Here, we describe a protocol for effective and epitope-preserving dissociation of mouse tumors and subsequent leukocyte purification and lipid peroxidation staining of adoptively transferred CD8+ T cells. We use BODIPY 581/591 C11 to monitor the cellular lipid peroxidation level and detect its fluorescent change by flow cytometry, followed by analysis in FlowJo. This protocol is adaptable to intrinsic CD8+ T cells in tumors as well. For complete details on the use and execution of this protocol, please refer to Xiao et al. (2022)1 and Ma et al. (2021).2.
Collapse
Affiliation(s)
- Liuling Xiao
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
138
|
Singh KP, Pallett LJ, Singh H, Chen A, Otano I, Duriez M, Rombouts K, Pinzani M, Crane M, Fusai G, Avihingsanon A, Lewin SR, Maini MK. Pro-fibrogenic role of alarmin high mobility group box 1 in HIV-hepatitis B virus coinfection. AIDS 2023; 37:401-411. [PMID: 36384811 DOI: 10.1097/qad.0000000000003435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Liver disease is accelerated in people with HIV (PWH) with hepatitis B virus (HBV) coinfection. We hypothesized that liver fibrosis in HIV-HBV is triggered by increased hepatocyte apoptosis, microbial translocation and/or HIV/HBV viral products. DESIGN Sera from PWH with HBV coinfection versus from those with HBV only or putative mediators were used to examine the pathogenesis of liver disease in HIV-HBV. METHODS We applied sera from PWH and HBV coinfection versus HBV alone, or putative mediators (including HMGB1), to primary human hepatic stellate cells (hHSC) and examined pro-fibrogenic changes at the single cell level using flow cytometry. High mobility group box 1 (HMGB1) levels in the applied sera were assessed according to donor fibrosis stage. RESULTS Quantitative flow cytometric assessment of pro-fibrogenic and inflammatory changes at the single cell level revealed an enhanced capacity for sera from PWH with HBV coinfection to activate hHSC. This effect was recapitulated by lipopolysaccharide, HIV-gp120, hepatocyte conditioned-media and the alarmin HMGB1. Induction of hepatocyte cell death increased their pro-fibrogenic potential, an effect blocked by HMGB1 antagonist glycyrrhizic acid. Consistent with a role for this alarmin, HMGB1 levels were elevated in sera from PWH and hepatitis B coinfection compared to HBV alone and higher in those with HIV-HBV with liver fibrosis compared to those without. CONCLUSIONS Sera from PWH and HBV coinfection have an enhanced capacity to activate primary hHSC. We identified an increase in circulating HMGB1 which, in addition to HIV-gp120 and translocated microbial products, drove pro-fibrogenic changes in hHSC, as mechanisms contributing to accelerated liver disease in HIV-HBV.
Collapse
Affiliation(s)
- Kasha P Singh
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Laura J Pallett
- Division of Infection and Immunity, University College London, London, UK
| | - Harsimran Singh
- Division of Infection and Immunity, University College London, London, UK
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Antony Chen
- Division of Infection and Immunity, University College London, London, UK
| | - Itziar Otano
- Division of Infection and Immunity, University College London, London, UK
| | - Marion Duriez
- Division of Infection and Immunity, University College London, London, UK
| | - Krista Rombouts
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Megan Crane
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
| | - Giuseppe Fusai
- Institute for Liver and Digestive Health, University College London, London, UK
| | | | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
139
|
Agrati C, Cossarizza A, Mazzotta V, Grassi G, Casetti R, De Biasi S, Pinnetti C, Gili S, Mondi A, Cristofanelli F, Lo Tartaro D, Notari S, Maffongelli G, Gagliardini R, Gibellini L, Aguglia C, Lanini S, D'Abramo A, Matusali G, Fontana C, Nicastri E, Maggi F, Girardi E, Vaia F, Antinori A. Immunological signature in human cases of monkeypox infection in 2022 outbreak: an observational study. THE LANCET. INFECTIOUS DISEASES 2023; 23:320-330. [PMID: 36356606 PMCID: PMC9761565 DOI: 10.1016/s1473-3099(22)00662-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND An unprecedented global monkeypox outbreak started in May, 2022. No data are yet available about the dynamics of the immune response against monkeypox virus. The aim of this study was to describe kinetics of T-cell response, inflammatory profile, and pox-specific T-cell induction in patients with laboratory-confirmed monkeypox. METHODS 17 patients with laboratory-confirmed monkeypox admitted at the Lazzaro Spallanzani National Institute for Infectious Diseases (Rome, Italy), from May 19, to July 7, 2022, were tested for differentiation and activation profile of CD4 and CD8 T (expression of CD38, PD-1, and CD57 assessed by flow cytometry), frequency of pox-specific T cells (by standard interferon-γ ELISpot), and release of interleukin (IL)-1β, IL-6, IL-8, and tumour necrosis factor (TNF) in plasma (by ELISA). All patients were tested 10-12 days after symptoms onset. In a subgroup of nine patients with a laboratory-confirmed monkeypox, the kinetics of the immune response were analysed longitudinally according to timing from symptoms onset and compared with ten healthy donors (ie, health-care workers recruited from the same institution). FINDINGS Among the 17 patients, ten were HIV negative and seven HIV positive, all with good viro-immunological status. On days 0-3 from symptom onset, patients with laboratory-confirmed monkeypox were characterised by a statistically significant reduction in CD4+ T cells (p=0·0011) and a concurrent increase of CD8+ T cells (p=0·0057) compared with healthy donors. A lower proportion of naive (CD45RA+CD27+) CD4+ T cells was observed in six (67%) of nine patients and a concomitant higher proportion of effector memory (CD45RA-CD27-) CD4+ T cells in all patients; this skewed immune profile tended to normalise over time. A similar differentiated profile was also observed in CD8+ T cells with a consistent expansion of terminally differentiated CD8+ T cells. Patients with monkeypox had a higher proportion of CD4+CD38+ and CD38+CD8+ T-cells than healthy donors, which normalised after 12-20 days from symptom onset. The expression of PD-1 and CD57 on CD4+ and CD8+ T-cells showed kinetics similar to that observed for CD38. Furthermore, the inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF) were higher in patients with monkeypox than in healthy donors and, although they decreased over time, they remained elevated after recovery. Almost all patients (15 [94%] of 16) developed a pox-specific Th1 response. No differences in immune cells profile were observed between patients with and without HIV, whereas paucysimptomatic patients (without systemic symptoms, with less than five skin lesions, and no other mucosal localisation of monkeypox) showed a less perturbed immune profile early after symptom onset. INTERPRETATION Our data showed the immunological signature of monkeypox virus infection, characterised by an early expansion of activated effector CD4+ and CD8+ T cells that persisted over time. Almost all patients, even regardless of HIV infection, developed a poxvirus-specific Th1 cell response. These results might have implications on the expected immunogenicity of monkeypox vaccination, suggesting that it might not be necessary to vaccinate people who have already been infected. FUNDING Italian Ministry of Health. TRANSLATION For the Italian translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy; National Institute for Cardiovascular Research, Bologna, Italy
| | - Valentina Mazzotta
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy.
| | - Germana Grassi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Rita Casetti
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Carmela Pinnetti
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Simona Gili
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Annalisa Mondi
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Flavia Cristofanelli
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Gaetano Maffongelli
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Roberta Gagliardini
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Camilla Aguglia
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Simone Lanini
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Alessandra D'Abramo
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Carla Fontana
- Laboratoy of Microbiology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Emanuele Nicastri
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Francesco Vaia
- General Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Andrea Antinori
- Clinical and Research Department, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| |
Collapse
|
140
|
Rouse P, Henderson T, Venkateswaran S, Sweetman J, Duffy C, Bradley M, Blackburn CC. An induced thymic epithelial cell-based high throughput screen for thymus extracellular matrix mimetics. Eur J Immunol 2023; 53:e2249934. [PMID: 36645212 DOI: 10.1002/eji.202249934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/07/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
Thymic epithelial cells (TECs) are key effectors of the thymic stroma and are critically required for T-cell development. TECs comprise a diverse set of related but functionally distinct cell types that are scarce and difficult to isolate and handle. This has precluded TEC-based screening assays. We previously described induced thymic epithelial cells (iTECs), an artificial cell type produced in vitro by direct reprogramming, raising the possibility that iTECs might provide the basis for functional screens related to TEC biology. Here, we present an iTEC-based three-stage medium/high-throughput in vitro assay for synthetic polymer mimics of thymic extracellular matrix (ECM). Using this assay, we identified, from a complex library, four polymers that bind iTEC as well as or better than gelatin but do not bind mesenchymal cells. We show that these four polymers also bind and maintain native mouse fetal TECs and native human fetal TECs. Finally, we show that the selected polymers do not interfere with iTEC function or T-cell development. Collectively, our data establish that iTECs can be used to screen for TEC-relevant compounds in at least some medium/high-throughput assays and identify synthetic polymer ECM mimics that can replace gelatin or ECM components in TEC culture protocols.
Collapse
Affiliation(s)
- Paul Rouse
- Centre for Regenerative Medicine, School of Biological Sciences, Institute for Stem Cell Research, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Timothy Henderson
- Centre for Regenerative Medicine, School of Biological Sciences, Institute for Stem Cell Research, 5 Little France Drive, Edinburgh, EH16 4UU, UK
- Australian National University Medical School, The Canberra Hospital, Garran, ACT 2605, Australia
| | | | - Joanna Sweetman
- Centre for Regenerative Medicine, School of Biological Sciences, Institute for Stem Cell Research, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Cairnan Duffy
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH8 9YL, UK
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, EH8 9YL, UK
| | - C Clare Blackburn
- Centre for Regenerative Medicine, School of Biological Sciences, Institute for Stem Cell Research, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
141
|
Lo Tartaro D, Paolini A, Mattioli M, Swatler J, Neroni A, Borella R, Santacroce E, Di Nella A, Gozzi L, Busani S, Cuccorese M, Trenti T, Meschiari M, Guaraldi G, Girardis M, Mussini C, Piwocka K, Gibellini L, Cossarizza A, De Biasi S. Detailed characterization of SARS-CoV-2-specific T and B cells after infection or heterologous vaccination. Front Immunol 2023; 14:1123724. [PMID: 36845156 PMCID: PMC9947839 DOI: 10.3389/fimmu.2023.1123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
The formation of a robust long-term antigen (Ag)-specific memory, both humoral and cell-mediated, is created following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination. Here, by using polychromatic flow cytometry and complex data analyses, we deeply investigated the magnitude, phenotype, and functionality of SARS-CoV-2-specific immune memory in two groups of healthy subjects after heterologous vaccination compared to a group of subjects who recovered from SARS-CoV-2 infection. We find that coronavirus disease 2019 (COVID-19) recovered patients show different long-term immunological profiles compared to those of donors who had been vaccinated with three doses. Vaccinated individuals display a skewed T helper (Th)1 Ag-specific T cell polarization and a higher percentage of Ag-specific and activated memory B cells expressing immunoglobulin (Ig)G compared to those of patients who recovered from severe COVID-19. Different polyfunctional properties characterize the two groups: recovered individuals show higher percentages of CD4+ T cells producing one or two cytokines simultaneously, while the vaccinated are distinguished by highly polyfunctional populations able to release four molecules, namely, CD107a, interferon (IFN)-γ, tumor necrosis factor (TNF), and interleukin (IL)-2. These data suggest that functional and phenotypic properties of SARS-CoV-2 adaptive immunity differ in recovered COVID-19 individuals and vaccinated ones.
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Julian Swatler
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Alessia Di Nella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Licia Gozzi
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| |
Collapse
|
142
|
Hao J, Shen X, Lu K, Xu Y, Chen Y, Liu J, Shao X, Zhu C, Ding Y, Xie X, Wu J, Yang Q. Costunolide alleviated DDC induced ductular reaction and inflammatory response in murine model of cholestatic liver disease. J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
143
|
von Borstel A, Nguyen TH, Rowntree LC, Ashhurst TM, Allen LF, Howson LJ, Holmes NE, Smibert OC, Trubiano JA, Gordon CL, Cheng AC, Kent SJ, Rossjohn J, Kedzierska K, Davey MS. Circulating effector γδ T cell populations are associated with acute coronavirus disease 19 in unvaccinated individuals. Immunol Cell Biol 2023; 101:321-332. [PMID: 36698330 DOI: 10.1111/imcb.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe coronavirus disease 2019 (COVID-19) in a small proportion of infected individuals. The immune system plays an important role in the defense against SARS-CoV-2, but our understanding of the cellular immune parameters that contribute to severe COVID-19 disease is incomplete. Here, we show that populations of effector γδ T cells are associated with COVID-19 in unvaccinated patients with acute disease. We found that circulating CD27neg CD45RA+ CX3CR1+ Vδ1effector cells expressing Granzymes (Gzms) were enriched in COVID-19 patients with acute disease. Moreover, higher frequencies of GzmB+ Vδ2+ T cells were observed in acute COVID-19 patients. SARS-CoV-2 infection did not alter the γδ T cell receptor repertoire of either Vδ1+ or Vδ2+ subsets. Our work demonstrates an association between effector populations of γδ T cells and acute COVID-19 in unvaccinated individuals.
Collapse
Affiliation(s)
- Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute and University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lauren J Howson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Critical Care, University of Melbourne, Parkville, VIC, Australia.,Data Analytics Research and Evaluation (DARE) Centre, Austin Health and University of Melbourne, Heidelberg, VIC, Australia.,Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia.,Department of Medicine (Austin Health), University of Melbourne, Heidelberg, VIC, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | - Allen C Cheng
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Martin S Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
144
|
Wang Y, Sun Y, Zheng Y, Yang Y, He L, Qu P, Zhou F, Xu X, Bai X, Chen X, Yuan Y, Liu M, Pan Q. Bacillus Calmette-Guérin-induced interleukin-10 inhibits S100A8/A9 production and hinders development of T helper type 1 memory in mice. Eur J Immunol 2023; 53:e2250204. [PMID: 36681386 DOI: 10.1002/eji.202250204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (M.tb) is one of the main causes of human death in the world. Bacillus Calmette-Guérin (BCG) provides limited protection in adolescents and adults. To explore the factors reducing efficacy of BCG vaccine, we assess the impacts of interleukin (IL)-10 and alarmins S100A8/A9 on T-cell memory. We found that BCG-induced IL-10 inhibited production of S100A8/A9 in human peripheral blood mononuclear cells (PBMCs) and murine splenocytes. S100A9 deficiency inhibited IFN-γ production by CD4+ T cells in the early phase of BCG immunization and hindered the development of effector memory T helper type 1 (Th1) cells, while IL-10 deficiency promoted Th1 memory and blocking IL-10 signaling enhanced Th1 protective recall response against M.tb. IL-10 inhibited the binding of transcription factor CCAAT enhancer binding protein beta to S100a8/a9 promoter leading to S100A8/A9 reduction. S100A8/A9 heterodimer enhanced the IFN-γ production via receptor for advanced glycation end products signaling in CD4+ T cells. Our results demonstrate a hurdle to development of Th1 memory after BCG immunization and clarify the mechanism of the regulation of Th1 memory by IL-10 and S100A8/A9.
Collapse
Affiliation(s)
- Yaping Wang
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.,Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Yuehua Sun
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yong Zheng
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuling Yang
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Liu He
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Peijie Qu
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Fangting Zhou
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - XiaoXu Xu
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xuanchang Bai
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xin Chen
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yangxuan Yuan
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Min Liu
- Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Qin Pan
- Hubei Province Key Laboratory of Allergy and Immunology and Department of Anatomy, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| |
Collapse
|
145
|
Terrén I, Astarloa-Pando G, Amarilla-Irusta A, Borrego F. P815-based redirected degranulation assay to study human NK cell effector functions. Methods Cell Biol 2023; 173:33-48. [PMID: 36653084 DOI: 10.1016/bs.mcb.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural killer (NK) cells are part of the innate immune system, the classic cytotoxic population of innate lymphoid cells (ILCs). They can directly kill virus-infected or tumor cells through different mechanisms without prior sensitization using their lytic functions in response to different signals (target cell ligands and/or inflammatory cytokines) and secreting cytokines, such as interferon gamma (IFNγ) and tumor necrosis factor (TNF). NK cells use antibody-dependent cell-mediated cytotoxicity (ADCC) to recognize and kill cells expressing target antigens when they are antibody coated. Redirected cytotoxicity is a technique used to target cells that do not per se activate NK cells. Here, we use redirected degranulation, a surrogate technique that correlates with redirected lysis. The P815 cell line (mouse mastocytoma) express fragment crystallizable gamma receptor II (FcγRII) and therefore could bind the Fc portion of mouse IgG antibodies, which through their fragment antigen-binding (Fab) may recognize NK cells activating receptors leading to target cell lysis. This technique could be used to determine the inhibitory or activating capacity of different receptors or isoforms and in immunotherapy using T cell and NK cell activators.
Collapse
Affiliation(s)
- Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | | | | | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
146
|
Florio R, De Filippis B, Veschi S, di Giacomo V, Lanuti P, Catitti G, Brocco D, di Rienzo A, Cataldi A, Cacciatore I, Amoroso R, Cama A, De Lellis L. Resveratrol Derivative Exhibits Marked Antiproliferative Actions, Affecting Stemness in Pancreatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24031977. [PMID: 36768301 PMCID: PMC9916441 DOI: 10.3390/ijms24031977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies, with an increasing incidence and limited response to current therapeutic options. Therefore, more effective and low-toxic agents are needed to improve PC patients' outcomes. Resveratrol (RSV) is a natural polyphenol with multiple biological properties, including anticancer effects. In this study, we explored the antiproliferative activities of newly synthetized RSV analogues in a panel of PC cell lines and evaluated the physicochemical properties of the most active compound. This derivative exhibited marked antiproliferative effects in PC cells through mechanisms involving DNA damage, apoptosis induction, and interference in cell cycle progression, as assessed using flow cytometry and immunoblot analysis of cell cycle proteins, PARP cleavage, and H2AX phosphorylation. Notably, the compound induced a consistent reduction in the PC cell subpopulation with a CD133+EpCAM+ stem-like phenotype, paralleled by dramatic effects on cell clonogenicity. Moreover, the RSV derivative had negligible toxicity against normal HFF-1 cells and, thus, good selectivity index values toward PC cell lines. Remarkably, its higher lipophilicity and stability in human plasma, as compared to RSV, might ensure a better permeation along the gastrointestinal tract. Our results provide insights into the mechanisms of action contributing to the antiproliferative activity of a synthetic RSV analogue, supporting its potential value in the search for effective and safe agents in PC treatment.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara De Filippis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (C.A.S.T.), University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Annalisa di Rienzo
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| | - Laura De Lellis
- Department of Pharmacy, University “G. D’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (A.C.); (L.D.L.)
| |
Collapse
|
147
|
Ge P, Li H, Ya X, Xu Y, Ma L, He Q, Wang R, Liu Z, Zhang Q, Zhang Y, Wang W, Zhang D, Zhao J. Single-cell atlas reveals different immune environments between stable and vulnerable atherosclerotic plaques. Front Immunol 2023; 13:1085468. [PMID: 36741406 PMCID: PMC9889979 DOI: 10.3389/fimmu.2022.1085468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Regardless of the degree of stenosis, vulnerable plaque is an important cause of ischemic stroke and thrombotic complications. The changes of the immune microenvironment within plaques seem to be an important factor affecting the characteristics of the plaque. However, the differences of immune microenvironment between stable and vulnerable plaques were remained unknown. Methods In this study, RNA-sequencing was performed on superficial temporal arteries from 5 traumatic patients and plaques from 3 atherosclerotic patients to preliminary identify the key immune response processes in plaques. Mass cytometry (CyTOF) technology was used to explore differences in immune composition between 9 vulnerable plaques and 12 stable plaques. Finally, immunofluorescence technique was used to validate our findings in the previous analysis. Results Our results showed that more CD86+CD68+ M1 pro-inflammatory macrophages were found in vulnerable plaques, while CD4+T memory cells were mainly found in stable plaques. In addition, a CD11c+ subset of CD4+T cells with higher IFN-r secretion was found within the vulnerable plaque. In two subsets of B cells, CD19+CD20-B cells in vulnerable plaques secreted more TNF-a and IL-6, while CD19-CD20+B cells expressed more PD-1 molecules. Conclusion In conclusion, our study suggested that M1-like macrophages are the major cell subset affecting plaque stability, while functional B cells may also contribute to plaque stability.
Collapse
Affiliation(s)
- Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yiqiao Xu
- Capital Medical University, Beijing, China
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zechen Liu
- Department of Biostatistics, Harvard School of Public Health, Huntington Avenue, Boston, MA, United States
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China,*Correspondence: Wenjing Wang, ; Dong Zhang, ; Jizong Zhao,
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,Department of Neurosurgery, Beijing Hospital, Beijing, China,*Correspondence: Wenjing Wang, ; Dong Zhang, ; Jizong Zhao,
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,*Correspondence: Wenjing Wang, ; Dong Zhang, ; Jizong Zhao,
| |
Collapse
|
148
|
Roy G, Fernández-Bañares F, Corzo M, Gómez-Aguililla S, García-Hoz C, Núñez C. Intestinal and blood lymphograms as new diagnostic tests for celiac disease. Front Immunol 2023; 13:1081955. [PMID: 36713361 PMCID: PMC9875591 DOI: 10.3389/fimmu.2022.1081955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Accurate celiac disease (CD) diagnosis is still challenging for some specific patients or circumstances. Thus, much effort has been expended last decades focused on seronegative or low grade enteropathy CD and, especially, on enable early diagnosis of individuals on a gluten-free diet (GFD). We discuss here two diagnostic approaches based on immunophenotyping by flow cytometry that we expect to reduce the persistent low diagnostic rates and the common diagnostic delay. The intraepithelial lymphogram is based on determining the percentage of TCRγδ+ and surface CD3- lymphocytes in the intestinal epithelium. The concomitant increase in TCRγδ+ and decrease in surface CD3- intraepithelial lymphocytes has been termed the celiac lymphogram and has been proved to be discriminative in seronegative, low grade enteropathy and potential CD, as well as in most CD patients on a GFD. A blood lymphogram based on the analysis of activated gut-homing CD8+ T cells combined with a 3-day gluten challenge is also considered, which has shown high sensitivity and specificity to diagnose seropositive Marsh 1 and Marsh 3 CD in individuals following a GFD. In addition, flow cytometry can be extremely useful in cases of refractory CD type II to identify aberrant cells. Those approaches represent highly accurate methods for CD diagnosis, being simple, fast, highly reproducible and of easy implementation in clinical practice.
Collapse
Affiliation(s)
- Garbiñe Roy
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Terrassa, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - María Corzo
- Laboratorio de Investigación en Genética de enfermedades complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Sara Gómez-Aguililla
- Laboratorio de Investigación en Genética de enfermedades complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Carlota García-Hoz
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concepción Núñez
- Laboratorio de Investigación en Genética de enfermedades complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
149
|
Freitas SC, Sanderson D, Caspani S, Magalhães R, Cortés-Llanos B, Granja A, Reis S, Belo JH, Azevedo J, Gómez-Gaviro MV, de Sousa CT. New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy. Cancers (Basel) 2023; 15:383. [PMID: 36672333 PMCID: PMC9856291 DOI: 10.3390/cancers15020383] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.
Collapse
Affiliation(s)
- Sara C. Freitas
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sofia Caspani
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Magalhães
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Horta Belo
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Azevedo
- Colorectal Surgery—Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Célia Tavares de Sousa
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
150
|
Santinon F, Young YK, Del Rincón SV, Mann KK. Analyzing the Tumor-Immune Microenvironment by Flow Cytometry. Methods Mol Biol 2023; 2614:17-36. [PMID: 36587116 DOI: 10.1007/978-1-0716-2914-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Flow cytometry is an essential tool for studying the tumor-immune microenvironment. It allows us to quickly quantify and identify multiple cell types in a heterogeneous sample. This chapter provides an overview of the flow cytometry instrumentation and a discussion of the appropriate considerations and steps in building a reproducible flow cytometry staining panel. We present an updated lymphoid tissue and solid tumor-infiltrating leucocyte flow cytometry staining protocol and an example of flow cytometry data analysis.
Collapse
Affiliation(s)
- François Santinon
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada.
| | - Yoon Kow Young
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|