101
|
Strike LT, Hansell NK, Chuang KH, Miller JL, de Zubicaray GI, Thompson PM, McMahon KL, Wright MJ. The Queensland Twin Adolescent Brain Project, a longitudinal study of adolescent brain development. Sci Data 2023; 10:195. [PMID: 37031232 PMCID: PMC10082846 DOI: 10.1038/s41597-023-02038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 04/10/2023] Open
Abstract
We describe the Queensland Twin Adolescent Brain (QTAB) dataset and provide a detailed methodology and technical validation to facilitate data usage. The QTAB dataset comprises multimodal neuroimaging, as well as cognitive and mental health data collected in adolescent twins over two sessions (session 1: N = 422, age 9-14 years; session 2: N = 304, 10-16 years). The MRI protocol consisted of T1-weighted (MP2RAGE), T2-weighted, FLAIR, high-resolution TSE, SWI, resting-state fMRI, DWI, and ASL scans. Two fMRI tasks were added in session 2: an emotional conflict task and a passive movie-watching task. Outside of the scanner, we assessed cognitive function using standardised tests. We also obtained self-reports of symptoms for anxiety and depression, perceived stress, sleepiness, pubertal development measures, and risk and protective factors. We additionally collected several biological samples for genomic and metagenomic analysis. The QTAB project was established to promote health-related research in adolescence.
Collapse
Affiliation(s)
- Lachlan T Strike
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia.
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, QLD, 4006, Brisbane, Australia.
| | - Narelle K Hansell
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Kai-Hsiang Chuang
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
- The University of Queensland, Centre for Advanced Imaging, Brisbane, QLD 4072, Australia
| | - Jessica L Miller
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Katie L McMahon
- School of Clinical Sciences, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Margaret J Wright
- The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4072, Australia
- The University of Queensland, Centre for Advanced Imaging, Brisbane, QLD 4072, Australia
| |
Collapse
|
102
|
Navarri X, Vosberg DE, Shin J, Richer L, Leonard G, Pike GB, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Pausova Z, Paus T. A biologically informed polygenic score of neuronal plasticity moderates the association between cognitive aptitudes and cortical thickness in adolescents. Dev Cogn Neurosci 2023; 60:101232. [PMID: 36963244 PMCID: PMC10064237 DOI: 10.1016/j.dcn.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Although many studies of the adolescent brain identified positive associations between cognitive abilities and cortical thickness, little is known about mechanisms underlying such brain-behavior relationships. With experience-induced plasticity playing an important role in shaping the cerebral cortex throughout life, it is likely that some of the inter-individual variations in cortical thickness could be explained by genetic variations in relevant molecular processes, as indexed by a polygenic score of neuronal plasticity (PGS-NP). Here, we studied associations between PGS-NP, cognitive abilities, and thickness of the cerebral cortex, estimated from magnetic resonance images, in the Saguenay Youth Study (SYS, 533 females, 496 males: age=15.0 ± 1.8 years of age; cross-sectional), and the IMAGEN Study (566 females, 556 males; between 14 and 19 years; longitudinal). Using Gene Ontology, we first identified 199 genes implicated in neuronal plasticity, which mapped to 155,600 single nucleotide polymorphisms (SNPs). Second, we estimated their effect sizes from an educational attainment meta-GWAS to build a PGS-NP. Third, we examined a possible moderating role of PGS-NP in the relationship between performance intelligence quotient (PIQ), and its subtests, and the thickness of 34 cortical regions. In SYS, we observed a significant interaction between PGS-NP and object assembly vis-à-vis thickness in male adolescents (p = 0.026). A median-split analysis showed that, in males with a 'high' PGS-NP, stronger associations between object assembly and thickness were found in regions with larger age-related changes in thickness (r = 0.55, p = 0.00075). Although the interaction between PIQ and PGS-NP was non-significant (p = 0.064), we performed a similar median-split analysis. Again, in the high PGS-NP males, positive associations between PIQ and thickness were observed in regions with larger age-related changes in thickness (r = 0.40, p = 0.018). In the IMAGEN cohort, we did not replicate the first set of results (interaction between PGS-NP and cognitive abilities via-a-vis cortical thickness) while we did observe the same relationship between the brain-behaviour relationship and (longitudinal) changes in cortical thickness (Matrix reasoning: r = 0.63, p = 6.5e-05). No statistically significant results were observed in female adolescents in either cohort. Overall, these cross-sectional and longitudinal results suggest that molecular mechanisms involved in neuronal plasticity may contribute to inter-individual variations of cortical thickness related to cognitive abilities during adolescence in a sex-specific manner.
Collapse
Affiliation(s)
- Xavier Navarri
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Daniel E Vosberg
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada
| | - Jean Shin
- Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Louis Richer
- Department of Health Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Gabriel Leonard
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales & psychiatrie", University Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS; Centre Borelli, Gif-sur-Yvette, France; and AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany; Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Zdenka Pausova
- Departments of Physiology and Nutritional Sciences, Hospital for Sick Children, University of Toronto, Peter Gilgan Centre for Research and Learning, Toronto, ON M5G 0A4, Canada
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Université de Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON M5S3G3, Canada.
| |
Collapse
|
103
|
Kennedy KG, Islam AH, Karthikeyan S, Metcalfe AWS, McCrindle BW, MacIntosh BJ, Black S, Goldstein BI. Differential association of endothelial function with brain structure in youth with versus without bipolar disorder. J Psychosom Res 2023; 167:111180. [PMID: 36764023 DOI: 10.1016/j.jpsychores.2023.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mood symptoms and disorders are associated with impaired endothelial function, a marker of early atherosclerosis. Given the increased vascular burden and neurostructural differences among individuals with mood disorders, we investigated the endothelial function and brain structure interface in relation to youth bipolar disorder (BD). METHODS This cross-sectional case-controlled study included 115 youth, ages 13-20 years (n = 66 BD; n = 49 controls [CG]). Cortical thickness and volume for regions of interest (ROI; insular cortex, ventrolateral prefrontal cortex [vlPFC], temporal lobe) were acquired from FreeSurfer processed T1-weighted MRI images. Endothelial function was assessed using pulse amplitude tonometry, yielding a reactive hyperemia index (RHI). ROI and vertex-wise analyses controlling for age, sex, obesity, and intracranial volume investigated for RHI-neurostructural associations, and RHI-by-diagnosis interactions. RESULTS In ROI analyses, higher RHI (i.e., better endothelial function) was associated with lower thickness in the insular cortex (β = -0.19, pFDR = 0.03), vlPFC (β = -0.30, pFDR = 0.003), and temporal lobe (β = -0.22, pFDR = 0.01); and lower temporal lobe volume (β = -0.16, pFDR = 0.01) in the overall sample. In vertex-wise analyses, higher RHI was associated with lower cortical thickness and volume in the insular cortex, prefrontal cortex (e.g., vlPFC), and temporal lobe. Additionally, higher RHI was associated with lower vlPFC and temporal lobe volume to a greater extent in youth with BD vs. CG. CONCLUSIONS Better endothelial function was associated with lower regional brain thickness and volume, contrasting the hypothesized associations. Additionally, we found evidence that this pattern was exaggerated in youth with BD. Future studies examining the direction of the observed associations and underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Alvi H Islam
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sudhir Karthikeyan
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada.
| | - Arron W S Metcalfe
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - Brian W McCrindle
- Faculty of Medicine, University of Toronto, Toronto, Canada; Hospital for Sick Children, Toronto, Canada; Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Computational Radiology & Artificial Intelligence (CRAI) Unit, Dept of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.
| | - Sandra Black
- Faculty of Medicine, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada.
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
104
|
Hu Y, Li Q, Qiao K, Zhang X, Chen B, Yang Z. PhiPipe: A multi-modal MRI data processing pipeline with test-retest reliability and predicative validity assessments. Hum Brain Mapp 2023; 44:2062-2084. [PMID: 36583399 PMCID: PMC9980895 DOI: 10.1002/hbm.26194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/20/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022] Open
Abstract
Magnetic resonance imaging (MRI) has been one of the primary instruments to measure the properties of the human brain non-invasively in vivo. MRI data generally needs to go through a series of processing steps (i.e., a pipeline) before statistical analysis. Currently, the processing pipelines for multi-modal MRI data are still rare, in contrast to single-modal pipelines. Furthermore, the reliability and validity of the output of the pipelines are critical for the MRI studies. However, the reliability and validity measures are not available or adequate for almost all pipelines. Here, we present PhiPipe, a multi-modal MRI processing pipeline. PhiPipe could process T1-weighted, resting-state BOLD, and diffusion-weighted MRI data and generate commonly used brain features in neuroimaging. We evaluated the test-retest reliability of PhiPipe's brain features by computing intra-class correlations (ICC) in four public datasets with repeated scans. We further evaluated the predictive validity by computing the correlation of brain features with chronological age in three public adult lifespan datasets. The multivariate reliability and predictive validity of the PhiPipe results were also evaluated. The results of PhiPipe were consistent with previous studies, showing comparable or better reliability and validity when compared with two popular single-modality pipelines, namely DPARSF and PANDA. The publicly available PhiPipe provides a simple-to-use solution to multi-modal MRI data processing. The accompanied reliability and validity assessments could help researchers make informed choices in experimental design and statistical analysis. Furthermore, this study provides a framework for evaluating the reliability and validity of image processing pipelines.
Collapse
Affiliation(s)
- Yang Hu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kaini Qiao
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bing Chen
- Jing Hengyi School of EducationHangzhou Normal UniversityZhejiangChina
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Psychological and Behavioral SciencesShanghai Jiao Tong UniversityShanghaiChina
- Brain Science and Technology Research CenterShanghai Jiao Tong UniversityShanghaiChina
- Beijing University of Posts and TelecommunicationsBeijingChina
| |
Collapse
|
105
|
Iglesias JE, Schleicher R, Laguna S, Billot B, Schaefer P, McKaig B, Goldstein JN, Sheth KN, Rosen MS, Kimberly WT. Quantitative Brain Morphometry of Portable Low-Field-Strength MRI Using Super-Resolution Machine Learning. Radiology 2023; 306:e220522. [PMID: 36346311 PMCID: PMC9968773 DOI: 10.1148/radiol.220522] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022]
Abstract
Background Portable, low-field-strength (0.064-T) MRI has the potential to transform neuroimaging but is limited by low spatial resolution and low signal-to-noise ratio. Purpose To implement a machine learning super-resolution algorithm that synthesizes higher spatial resolution images (1-mm isotropic) from lower resolution T1-weighted and T2-weighted portable brain MRI scans, making them amenable to automated quantitative morphometry. Materials and Methods An external high-field-strength MRI data set (1-mm isotropic scans from the Open Access Series of Imaging Studies data set) and segmentations for 39 regions of interest (ROIs) in the brain were used to train a super-resolution convolutional neural network (CNN). Secondary analysis of an internal test set of 24 paired low- and high-field-strength clinical MRI scans in participants with neurologic symptoms was performed. These were part of a prospective observational study (August 2020 to December 2021) at Massachusetts General Hospital (exclusion criteria: inability to lay flat, body habitus preventing low-field-strength MRI, presence of MRI contraindications). Three well-established automated segmentation tools were applied to three sets of scans: high-field-strength (1.5-3 T, reference standard), low-field-strength (0.064 T), and synthetic high-field-strength images generated from the low-field-strength data with the CNN. Statistical significance of correlations was assessed with Student t tests. Correlation coefficients were compared with Steiger Z tests. Results Eleven participants (mean age, 50 years ± 14; seven men) had full cerebrum coverage in the images without motion artifacts or large stroke lesion with distortion from mass effect. Direct segmentation of low-field-strength MRI yielded nonsignificant correlations with volumetric measurements from high field strength for most ROIs (P > .05). Correlations largely improved when segmenting the synthetic images: P values were less than .05 for all ROIs (eg, for the hippocampus [r = 0.85; P < .001], thalamus [r = 0.84; P = .001], and whole cerebrum [r = 0.92; P < .001]). Deviations from the model (z score maps) visually correlated with pathologic abnormalities. Conclusion This work demonstrated proof-of-principle augmentation of portable MRI with a machine learning super-resolution algorithm, which yielded highly correlated brain morphometric measurements to real higher resolution images. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Ertl-Wagner amd Wagner in this issue. An earlier incorrect version appeared online. This article was corrected on February 1, 2023.
Collapse
Affiliation(s)
- Juan Eugenio Iglesias
- From the Athinoula A. Martinos Center for Biomedical Imaging (J.E.I.,
M.S.R.), Department of Radiology (J.E.I., P.S., M.S.R.), Department of Neurology
and Center for Genomic Medicine (R.S., W.T.K.), and Department of Emergency
Medicine (B.M., J.N.G.), Massachusetts General Hospital and Harvard Medical
School, 55 Fruit St, Boston, MA 02114; Centre for Medical Image Computing,
Department of Medical Physics and Biomedical Engineering, University College
London, London, UK (J.E.I., B.B.); Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass (J.E.I.);
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (S.L.);
Department of Neurology, Yale New Haven Hospital, New Haven, Conn (K.N.S.); and
Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Riana Schleicher
- From the Athinoula A. Martinos Center for Biomedical Imaging (J.E.I.,
M.S.R.), Department of Radiology (J.E.I., P.S., M.S.R.), Department of Neurology
and Center for Genomic Medicine (R.S., W.T.K.), and Department of Emergency
Medicine (B.M., J.N.G.), Massachusetts General Hospital and Harvard Medical
School, 55 Fruit St, Boston, MA 02114; Centre for Medical Image Computing,
Department of Medical Physics and Biomedical Engineering, University College
London, London, UK (J.E.I., B.B.); Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass (J.E.I.);
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (S.L.);
Department of Neurology, Yale New Haven Hospital, New Haven, Conn (K.N.S.); and
Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Sonia Laguna
- From the Athinoula A. Martinos Center for Biomedical Imaging (J.E.I.,
M.S.R.), Department of Radiology (J.E.I., P.S., M.S.R.), Department of Neurology
and Center for Genomic Medicine (R.S., W.T.K.), and Department of Emergency
Medicine (B.M., J.N.G.), Massachusetts General Hospital and Harvard Medical
School, 55 Fruit St, Boston, MA 02114; Centre for Medical Image Computing,
Department of Medical Physics and Biomedical Engineering, University College
London, London, UK (J.E.I., B.B.); Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass (J.E.I.);
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (S.L.);
Department of Neurology, Yale New Haven Hospital, New Haven, Conn (K.N.S.); and
Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Benjamin Billot
- From the Athinoula A. Martinos Center for Biomedical Imaging (J.E.I.,
M.S.R.), Department of Radiology (J.E.I., P.S., M.S.R.), Department of Neurology
and Center for Genomic Medicine (R.S., W.T.K.), and Department of Emergency
Medicine (B.M., J.N.G.), Massachusetts General Hospital and Harvard Medical
School, 55 Fruit St, Boston, MA 02114; Centre for Medical Image Computing,
Department of Medical Physics and Biomedical Engineering, University College
London, London, UK (J.E.I., B.B.); Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass (J.E.I.);
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (S.L.);
Department of Neurology, Yale New Haven Hospital, New Haven, Conn (K.N.S.); and
Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Pamela Schaefer
- From the Athinoula A. Martinos Center for Biomedical Imaging (J.E.I.,
M.S.R.), Department of Radiology (J.E.I., P.S., M.S.R.), Department of Neurology
and Center for Genomic Medicine (R.S., W.T.K.), and Department of Emergency
Medicine (B.M., J.N.G.), Massachusetts General Hospital and Harvard Medical
School, 55 Fruit St, Boston, MA 02114; Centre for Medical Image Computing,
Department of Medical Physics and Biomedical Engineering, University College
London, London, UK (J.E.I., B.B.); Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass (J.E.I.);
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (S.L.);
Department of Neurology, Yale New Haven Hospital, New Haven, Conn (K.N.S.); and
Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Brenna McKaig
- From the Athinoula A. Martinos Center for Biomedical Imaging (J.E.I.,
M.S.R.), Department of Radiology (J.E.I., P.S., M.S.R.), Department of Neurology
and Center for Genomic Medicine (R.S., W.T.K.), and Department of Emergency
Medicine (B.M., J.N.G.), Massachusetts General Hospital and Harvard Medical
School, 55 Fruit St, Boston, MA 02114; Centre for Medical Image Computing,
Department of Medical Physics and Biomedical Engineering, University College
London, London, UK (J.E.I., B.B.); Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass (J.E.I.);
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (S.L.);
Department of Neurology, Yale New Haven Hospital, New Haven, Conn (K.N.S.); and
Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Joshua N. Goldstein
- From the Athinoula A. Martinos Center for Biomedical Imaging (J.E.I.,
M.S.R.), Department of Radiology (J.E.I., P.S., M.S.R.), Department of Neurology
and Center for Genomic Medicine (R.S., W.T.K.), and Department of Emergency
Medicine (B.M., J.N.G.), Massachusetts General Hospital and Harvard Medical
School, 55 Fruit St, Boston, MA 02114; Centre for Medical Image Computing,
Department of Medical Physics and Biomedical Engineering, University College
London, London, UK (J.E.I., B.B.); Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass (J.E.I.);
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (S.L.);
Department of Neurology, Yale New Haven Hospital, New Haven, Conn (K.N.S.); and
Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | - Kevin N. Sheth
- From the Athinoula A. Martinos Center for Biomedical Imaging (J.E.I.,
M.S.R.), Department of Radiology (J.E.I., P.S., M.S.R.), Department of Neurology
and Center for Genomic Medicine (R.S., W.T.K.), and Department of Emergency
Medicine (B.M., J.N.G.), Massachusetts General Hospital and Harvard Medical
School, 55 Fruit St, Boston, MA 02114; Centre for Medical Image Computing,
Department of Medical Physics and Biomedical Engineering, University College
London, London, UK (J.E.I., B.B.); Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, Mass (J.E.I.);
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (S.L.);
Department of Neurology, Yale New Haven Hospital, New Haven, Conn (K.N.S.); and
Department of Physics, Harvard University, Cambridge, Mass (M.S.R.)
| | | | | |
Collapse
|
106
|
Ge R, Sassi R, Yatham LN, Frangou S. Neuroimaging profiling identifies distinct brain maturational subtypes of youth with mood and anxiety disorders. Mol Psychiatry 2023; 28:1072-1078. [PMID: 36577839 PMCID: PMC10005933 DOI: 10.1038/s41380-022-01925-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Mood and anxiety disorders typically begin in adolescence and have overlapping clinical features but marked inter-individual variation in clinical presentation. The use of multimodal neuroimaging data may offer novel insights into the underlying brain mechanisms. We applied Heterogeneity Through Discriminative Analysis (HYDRA) to measures of regional brain morphometry, neurite density, and intracortical myelination to identify subtypes of youth, aged 9-10 years, with mood and anxiety disorders (N = 1931) compared to typically developing youth (N = 2823). We identified three subtypes that were robust to permutation testing and sample composition. Subtype 1 evidenced a pattern of imbalanced cortical-subcortical maturation compared to the typically developing group, with subcortical regions lagging behind prefrontal cortical thinning and myelination and greater cortical surface expansion globally. Subtype 2 displayed a pattern of delayed cortical maturation indicated by higher cortical thickness and lower cortical surface area expansion and myelination compared to the typically developing group. Subtype 3 showed evidence of atypical brain maturation involving globally lower cortical thickness and surface coupled with higher myelination and neural density. Subtype 1 had superior cognitive function in contrast to the other two subtypes that underperformed compared to the typically developing group. Higher levels of parental psychopathology, family conflict, and social adversity were common to all subtypes, with subtype 3 having the highest burden of adverse exposures. These analyses comprehensively characterize pre-adolescent mood and anxiety disorders, the biopsychosocial context in which they arise, and lay the foundation for the examination of the longitudinal evolution of the subtypes identified as the study sample transitions through adolescence.
Collapse
Affiliation(s)
- Ruiyang Ge
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Roberto Sassi
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital, Vancouver, BC, Canada
| | - Lakshmi N Yatham
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Sophia Frangou
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
107
|
Haddad E, Pizzagalli F, Zhu AH, Bhatt RR, Islam T, Ba Gari I, Dixon D, Thomopoulos SI, Thompson PM, Jahanshad N. Multisite test-retest reliability and compatibility of brain metrics derived from FreeSurfer versions 7.1, 6.0, and 5.3. Hum Brain Mapp 2023; 44:1515-1532. [PMID: 36437735 PMCID: PMC9921222 DOI: 10.1002/hbm.26147] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Automatic neuroimaging processing tools provide convenient and systematic methods for extracting features from brain magnetic resonance imaging scans. One tool, FreeSurfer, provides an easy-to-use pipeline to extract cortical and subcortical morphometric measures. There have been over 25 stable releases of FreeSurfer, with different versions used across published works. The reliability and compatibility of regional morphometric metrics derived from the most recent version releases have yet to be empirically assessed. Here, we used test-retest data from three public data sets to determine within-version reliability and between-version compatibility across 42 regional outputs from FreeSurfer versions 7.1, 6.0, and 5.3. Cortical thickness from v7.1 was less compatible with that of older versions, particularly along the cingulate gyrus, where the lowest version compatibility was observed (intraclass correlation coefficient 0.37-0.61). Surface area of the temporal pole, frontal pole, and medial orbitofrontal cortex, also showed low to moderate version compatibility. We confirm low compatibility between v6.0 and v5.3 of pallidum and putamen volumes, while those from v7.1 were compatible with v6.0. Replication in an independent sample showed largely similar results for measures of surface area and subcortical volumes, but had lower overall regional thickness reliability and compatibility. Batch effect correction may adjust for some inter-version effects when most sites are run with one version, but results vary when more sites are run with different versions. Age associations in a quality controlled independent sample (N = 106) revealed version differences in results of downstream statistical analysis. We provide a reference to highlight the regional metrics that may yield recent version-related inconsistencies in published findings. An interactive viewer is provided at http://data.brainescience.org/Freesurfer_Reliability/.
Collapse
Affiliation(s)
- Elizabeth Haddad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA.,Department of Neurosciences, University of Turin, Turin, Italy
| | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Ravi R Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Tasfiya Islam
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Iyad Ba Gari
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Daniel Dixon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| |
Collapse
|
108
|
Cheng Q, Roth A, Halgren E, Klein D, Chen JK, Mayberry RI. Restricted language access during childhood affects adult brain structure in selective language regions. Proc Natl Acad Sci U S A 2023; 120:e2215423120. [PMID: 36745780 PMCID: PMC9963327 DOI: 10.1073/pnas.2215423120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 02/08/2023] Open
Abstract
Due to the ubiquitous nature of language in the environment of infants, how it affects the anatomical structure of the brain language system over the lifespan is not well understood. In this study, we investigated the effects of early language experience on the adult brain by examining anatomical features of individuals born deaf with typical or restricted language experience in early childhood. Twenty-two deaf adults whose primary language was American Sign Language and were first immersed in it at ages ranging from birth to 14 y participated. The control group was 21 hearing non-signers. We acquired T1-weighted magnetic resonance images and used FreeSurfer [B. Fischl, Neuroimage 62, 774-781(2012)] to reconstruct the brain surface. Using an a priori regions of interest (ROI) approach, we identified 17 language and 19 somatomotor ROIs in each hemisphere from the Human Connectome Project parcellation map [M. F. Glasser et al., Nature 536, 171-178 (2016)]. Restricted language experience in early childhood was associated with negative changes in adjusted grey matter volume and/or cortical thickness in bilateral fronto-temporal regions. No evidence of anatomical differences was observed in any of these regions when deaf signers with infant sign language experience were compared with hearing speakers with infant spoken language experience, showing that the effects of early language experience on the brain language system are supramodal.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Linguistics, University of Washington, Seattle, WA98195
| | - Austin Roth
- Department of Linguistics, University of California San Diego, San Diego, CA92093
| | - Eric Halgren
- Department of Radiology, University of California San Diego, San Diego, CA92093
- Department of Neuroscience, University of California San Diego, San Diego, CA92093
| | - Denise Klein
- Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealH3A 2B4Canada
| | - Jen-Kai Chen
- Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealH3A 2B4Canada
| | - Rachel I. Mayberry
- Department of Linguistics, University of California San Diego, San Diego, CA92093
| |
Collapse
|
109
|
Cortical profiles of numerous psychiatric disorders and normal development share a common pattern. Mol Psychiatry 2023; 28:698-709. [PMID: 36380235 DOI: 10.1038/s41380-022-01855-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
The neurobiological bases of the association between development and psychopathology remain poorly understood. Here, we identify a shared spatial pattern of cortical thickness (CT) in normative development and several psychiatric and neurological disorders. Principal component analysis (PCA) was applied to CT of 68 regions in the Desikan-Killiany atlas derived from three large-scale datasets comprising a total of 41,075 neurotypical participants. PCA produced a spatially broad first principal component (PC1) that was reproducible across datasets. Then PC1 derived from healthy adult participants was compared to the pattern of CT differences associated with psychiatric and neurological disorders comprising a total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working groups, normative maturation and aging comprising a total of 17,697 scans from the ABCD Study® and the IMAGEN developmental study, and 17,075 participants from the ENIGMA Lifespan working group, as well as gene expression maps from the Allen Human Brain Atlas. Results revealed substantial spatial correspondences between PC1 and widespread lower CT observed in numerous psychiatric disorders. Moreover, the PC1 pattern was also correlated with the spatial pattern of normative maturation and aging. The transcriptional analysis identified a set of genes including KCNA2, KCNS1 and KCNS2 with expression patterns closely related to the spatial pattern of PC1. The gene category enrichment analysis indicated that the transcriptional correlations of PC1 were enriched to multiple gene ontology categories and were specifically over-represented starting at late childhood, coinciding with the onset of significant cortical maturation and emergence of psychopathology during the prepubertal-to-pubertal transition. Collectively, the present study reports a reproducible latent pattern of CT that captures interregional profiles of cortical changes in both normative brain maturation and a spectrum of psychiatric disorders. The pubertal timing of the expression of PC1-related genes implicates disrupted neurodevelopment in the pathogenesis of the spectrum of psychiatric diseases emerging during adolescence.
Collapse
|
110
|
Schilling KG, Archer D, Yeh FC, Rheault F, Cai LY, Shafer A, Resnick SM, Hohman T, Jefferson A, Anderson AW, Kang H, Landman BA. Short superficial white matter and aging: a longitudinal multi-site study of 1293 subjects and 2711 sessions. AGING BRAIN 2023; 3:100067. [PMID: 36817413 PMCID: PMC9937516 DOI: 10.1016/j.nbas.2023.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is estimated that short association fibers running immediately beneath the cortex may make up as much as 60% of the total white matter volume. However, these have been understudied relative to the long-range association, projection, and commissural fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which is the primary methodology used to non-invasively study the white matter connections. Inspired by recent anatomical considerations and methodological improvements in superficial white matter (SWM) tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, which provide insight into the biological foundation of age-related cognitive changes, and a better understanding of how age-related pathology differs from healthy aging. To do this, we used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features and length/volume features of several SWM systems. We find that axial, radial, and mean diffusivities show positive associations with age, while fractional anisotropy has negative associations with age in SWM throughout the entire brain. These associations were most pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM volume and length decrease with age in a heterogenous manner across the brain, with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range white matter pathways. These features, and their variations with age, provide the background for characterizing normal aging, and, in combination with larger association pathways and gray matter microstructural features, may provide insight into fundamental mechanisms associated with aging and cognition.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Derek Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Leon Y Cai
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Andrea Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Timothy Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Angela Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
111
|
Bogdan R, Hatoum AS, Johnson EC, Agrawal A. The Genetically Informed Neurobiology of Addiction (GINA) model. Nat Rev Neurosci 2023; 24:40-57. [PMID: 36446900 PMCID: PMC10041646 DOI: 10.1038/s41583-022-00656-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Addictions are heritable and unfold dynamically across the lifespan. One prominent neurobiological theory proposes that substance-induced changes in neural circuitry promote the progression of addiction. Genome-wide association studies have begun to characterize the polygenic architecture undergirding addiction liability and revealed that genetic loci associated with risk can be divided into those associated with a general broad-spectrum liability to addiction and those associated with drug-specific addiction risk. In this Perspective, we integrate these genomic findings with our current understanding of the neurobiology of addiction to propose a new Genetically Informed Neurobiology of Addiction (GINA) model.
Collapse
Affiliation(s)
- Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
112
|
Fazlollahi A, Lee S, Coleman F, McCann E, Cloos MA, Bourgeat P, Nestor PJ. Increased Resolution of Structural MRI at 3T Improves Estimation of Regional Cortical Degeneration in Individual Dementia Patients Using Surface Thickness Maps. J Alzheimers Dis 2023; 95:1253-1262. [PMID: 37661879 DOI: 10.3233/jad-230030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Objective measurement of regional cortical atrophy in individual patients would be a highly desirable adjunct for diagnosis of degenerative dementias. OBJECTIVE We hypothesized that increasing the resolution of magnetic resonance scans would improve the sensitivity of cortical atrophy detection for individual patients. METHODS 46 participants including 8 semantic-variant primary progressive aphasia (svPPA), seven posterior cortical atrophy (PCA), and 31 cognitively unimpaired participants underwent clinical assessment and 3.0T brain scans. SvPPA and PCA were chosen because there is overwhelming prior knowledge of the expected atrophy pattern. Two sets of T1-weighted images with 0.8 mm3 (HighRes) and conventional 1.0 mm3 (ConvRes) resolution were acquired. The cortical ribbon was segmented using FreeSurfer software to obtain surface-based thickness maps. Inter-sequence performance was assessed in terms of cortical thickness and sub-cortical volume reproducibility, signal-to-noise and contrast-to-noise ratios. For clinical cases, diagnostic effect size (Cohen's d) and lesion distribution (z-score and t-value maps) were compared between HighRes and ConvRes scans. RESULTS The HighRes scans produced higher image quality scores at 90 seconds extra scan time. The effect size of cortical thickness differences between patients and cognitively unimpaired participants was 15-20% larger for HighRes scans. HighRes scans showed more robust patterns of atrophy in expected regions in each and every individual patient. CONCLUSIONS HighRes T1-weighted scans showed superior precision for identifying the severity of cortical atrophy in individual patients, offering a proof-of-concept for clinical translation. Studying svPPA and PCA, two syndromes with well-defined focal atrophy patterns, offers a method to clinically validate and contrast automated algorithms.
Collapse
Affiliation(s)
- Amir Fazlollahi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Soohyun Lee
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Felicia Coleman
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Emily McCann
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT), University of Queensland, Brisbane, Queensland, Australia
| | - Pierrick Bourgeat
- The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, Queensland, Australia
| | - Peter J Nestor
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
- Mater Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
113
|
Angelo BC, DeFendis A, Yau A, Alves JM, Thompson PM, Xiang AH, Page KA, Luo S. Relationships between physical activity, healthy eating and cortical thickness in children and young adults. Brain Imaging Behav 2022; 16:2690-2704. [DOI: 10.1007/s11682-022-00728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 12/03/2022]
|
114
|
Pina-Camacho L, Martinez K, Diaz-Caneja CM, Mezquida G, Cuesta MJ, Moreno C, Amoretti S, González-Pinto A, Arango C, Vieta E, Castro-Fornieles J, Lobo A, Fraguas D, Bernardo M, Janssen J, Parellada M, Madero S, Gómez-Ramiro M, Rodriguez-Toscano E, Santonja J, Zorrilla I, González-Ortega I, Fayed N, Santabárbara J, Berge D, Toll A, Nacher J, Martí GG, Sague-Vilavella M, Sanchez-Moreno J, de la Serna E, Baeza I, Saiz-Masvidal C, Contreras F, González-Blanco L, Bobes-Bascarán T, Dompablo M, Rodriguez-Jimenez R, Usall J, Butjosa A, Pomarol-Clotet E, Sarró S, PEPs Group. Cortical thinning over two years after first-episode psychosis depends on age of onset. SCHIZOPHRENIA 2022; 8:20. [PMID: 35277520 PMCID: PMC8917180 DOI: 10.1038/s41537-021-00196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022]
Abstract
AbstractFirst-episode psychosis (FEP) patients show structural brain abnormalities at the first episode. Whether the cortical changes that follow a FEP are progressive and whether age at onset modulates these changes remains unclear. This is a multicenter MRI study in a deeply phenotyped sample of 74 FEP patients with a wide age range at onset (15–35 years) and 64 neurotypical healthy controls (HC). All participants underwent two MRI scans with a 2-year follow-up interval. We computed the longitudinal percentage of change (PC) for cortical thickness (CT), surface area (CSA) and volume (CV) for frontal, temporal, parietal and occipital lobes. We used general linear models to assess group differences in PC as a function of age at FEP. We conducted post-hoc analyses for metrics where PC differed as a function of age at onset. We found a significant age-by-diagnosis interaction effect for PC of temporal lobe CT (d = 0.54; p = 002). In a post-hoc-analysis, adolescent-onset (≤19 y) FEP showed more severe longitudinal cortical thinning in the temporal lobe than adolescent HC. We did not find this difference in adult-onset FEP compared to adult HC. Our study suggests that, in individuals with psychosis, CT changes that follow the FEP are dependent on the age at first episode, with those with an earlier onset showing more pronounced cortical thinning in the temporal lobe.
Collapse
|
115
|
Modabbernia A, Whalley HC, Glahn DC, Thompson PM, Kahn RS, Frangou S. Systematic evaluation of machine learning algorithms for neuroanatomically-based age prediction in youth. Hum Brain Mapp 2022; 43:5126-5140. [PMID: 35852028 PMCID: PMC9812239 DOI: 10.1002/hbm.26010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain-age). The choice of the ML approach in estimating brain-age in youth is important because age-related brain changes in this age-group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5-22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9-10 years and another comprising 594 individuals aged 5-21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross-validation folds, number of extreme outliers, and sample size. Tree-based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain-age in youth.
Collapse
Affiliation(s)
| | - Heather C. Whalley
- Division of PsychiatryUniversity of Edinburgh, Kennedy Tower, Royal Edinburgh HospitalEdinburghUK
| | - David C. Glahn
- Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rene S. Kahn
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
116
|
Brain network architecture constrains age-related cortical thinning. Neuroimage 2022; 264:119721. [PMID: 36341953 DOI: 10.1016/j.neuroimage.2022.119721] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Age-related cortical atrophy, approximated by cortical thickness measurements from magnetic resonance imaging, follows a characteristic pattern over the lifespan. Although its determinants remain unknown, mounting evidence demonstrates correspondence between the connectivity profiles of structural and functional brain networks and cortical atrophy in health and neurological disease. Here, we performed a cross-sectional multimodal neuroimaging analysis of 2633 individuals from a large population-based cohort to characterize the association between age-related differences in cortical thickness and functional as well as structural brain network topology. We identified a widespread pattern of age-related cortical thickness differences including "hotspots" of pronounced age effects in sensorimotor areas. Regional age-related differences were strongly correlated within the structurally defined node neighborhood. The overall pattern of thickness differences was found to be anchored in the functional network hierarchy as encoded by macroscale functional connectivity gradients. Lastly, the identified difference pattern covaried significantly with cognitive and motor performance. Our findings indicate that connectivity profiles of functional and structural brain networks act as organizing principles behind age-related cortical thinning as an imaging surrogate of cortical atrophy.
Collapse
|
117
|
Associations between digital media use and brain surface structural measures in preschool-aged children. Sci Rep 2022; 12:19095. [PMID: 36351968 PMCID: PMC9645312 DOI: 10.1038/s41598-022-20922-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
The American Academy of Pediatrics recommends limits on digital media use ("screen time"), citing cognitive-behavioral risks. Media use in early childhood is ubiquitous, though few imaging-based studies have been conducted to quantify impacts on brain development. Cortical morphology changes dynamically from infancy through adulthood and is associated with cognitive-behavioral abilities. The current study involved 52 children who completed MRI and cognitive testing at a single visit. The MRI protocol included a high-resolution T1-weighted anatomical scan. The child's parent completed the ScreenQ composite measure of media use. MRI measures included cortical thickness (CT) and sulcal depth (SD) across the cerebrum. ScreenQ was applied as a predictor of CT and SD first in whole-brain regression analyses and then for regions of interest (ROIs) identified in a prior study of screen time involving adolescents, controlling for sex, age and maternal education. Higher ScreenQ scores were correlated with lower CT in right-lateralized occipital, parietal, temporal and fusiform areas, and also lower SD in right-lateralized inferior temporal/fusiform areas, with substantially greater statistical significance in ROI-based analyses. These areas support primary visual and higher-order processing and align with prior findings in adolescents. While differences in visual areas likely reflect maturation, those in higher-order areas may suggest under-development, though further studies are needed.
Collapse
|
118
|
Arend I, Yuen K, Yizhar O, Chebat DR, Amedi A. Gyrification in relation to cortical thickness in the congenitally blind. Front Neurosci 2022; 16:970878. [DOI: 10.3389/fnins.2022.970878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Greater cortical gyrification (GY) is linked with enhanced cognitive abilities and is also negatively related to cortical thickness (CT). Individuals who are congenitally blind (CB) exhibits remarkable functional brain plasticity which enables them to perform certain non-visual and cognitive tasks with supranormal abilities. For instance, extensive training using touch and audition enables CB people to develop impressive skills and there is evidence linking these skills to cross-modal activations of primary visual areas. There is a cascade of anatomical, morphometric and functional-connectivity changes in non-visual structures, volumetric reductions in several components of the visual system, and CT is also increased in CB. No study to date has explored GY changes in this population, and no study has explored how variations in CT are related to GY changes in CB. T1-weighted 3D structural magnetic resonance imaging scans were acquired to examine the effects of congenital visual deprivation in cortical structures in a healthy sample of 11 CB individuals (6 male) and 16 age-matched sighted controls (SC) (10 male). In this report, we show for the first time an increase in GY in several brain areas of CB individuals compared to SC, and a negative relationship between GY and CT in the CB brain in several different cortical areas. We discuss the implications of our findings and the contributions of developmental factors and synaptogenesis to the relationship between CT and GY in CB individuals compared to SC. F.
Collapse
|
119
|
Sun D, Rakesh G, Haswell CC, Logue M, Baird CL, O'Leary EN, Cotton AS, Xie H, Tamburrino M, Chen T, Dennis EL, Jahanshad N, Salminen LE, Thomopoulos SI, Rashid F, Ching CRK, Koch SBJ, Frijling JL, Nawijn L, van Zuiden M, Zhu X, Suarez-Jimenez B, Sierk A, Walter H, Manthey A, Stevens JS, Fani N, van Rooij SJH, Stein M, Bomyea J, Koerte IK, Choi K, van der Werff SJA, Vermeiren RRJM, Herzog J, Lebois LAM, Baker JT, Olson EA, Straube T, Korgaonkar MS, Andrew E, Zhu Y, Li G, Ipser J, Hudson AR, Peverill M, Sambrook K, Gordon E, Baugh L, Forster G, Simons RM, Simons JS, Magnotta V, Maron-Katz A, du Plessis S, Disner SG, Davenport N, Grupe DW, Nitschke JB, deRoon-Cassini TA, Fitzgerald JM, Krystal JH, Levy I, Olff M, Veltman DJ, Wang L, Neria Y, De Bellis MD, Jovanovic T, Daniels JK, Shenton M, van de Wee NJA, Schmahl C, Kaufman ML, Rosso IM, Sponheim SR, Hofmann DB, Bryant RA, Fercho KA, Stein DJ, Mueller SC, Hosseini B, Phan KL, McLaughlin KA, Davidson RJ, Larson CL, May G, Nelson SM, Abdallah CG, Gomaa H, Etkin A, Seedat S, Harpaz-Rotem I, Liberzon I, van Erp TGM, Quidé Y, Wang X, Thompson PM, Morey RA. A comparison of methods to harmonize cortical thickness measurements across scanners and sites. Neuroimage 2022; 261:119509. [PMID: 35917919 PMCID: PMC9648725 DOI: 10.1016/j.neuroimage.2022.119509] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Results of neuroimaging datasets aggregated from multiple sites may be biased by site-specific profiles in participants' demographic and clinical characteristics, as well as MRI acquisition protocols and scanning platforms. We compared the impact of four different harmonization methods on results obtained from analyses of cortical thickness data: (1) linear mixed-effects model (LME) that models site-specific random intercepts (LMEINT), (2) LME that models both site-specific random intercepts and age-related random slopes (LMEINT+SLP), (3) ComBat, and (4) ComBat with a generalized additive model (ComBat-GAM). Our test case for comparing harmonization methods was cortical thickness data aggregated from 29 sites, which included 1,340 cases with posttraumatic stress disorder (PTSD) (6.2-81.8 years old) and 2,057 trauma-exposed controls without PTSD (6.3-85.2 years old). We found that, compared to the other data harmonization methods, data processed with ComBat-GAM was more sensitive to the detection of significant case-control differences (Χ2(3) = 63.704, p < 0.001) as well as case-control differences in age-related cortical thinning (Χ2(3) = 12.082, p = 0.007). Both ComBat and ComBat-GAM outperformed LME methods in detecting sex differences (Χ2(3) = 9.114, p = 0.028) in regional cortical thickness. ComBat-GAM also led to stronger estimates of age-related declines in cortical thickness (corrected p-values < 0.001), stronger estimates of case-related cortical thickness reduction (corrected p-values < 0.001), weaker estimates of age-related declines in cortical thickness in cases than controls (corrected p-values < 0.001), stronger estimates of cortical thickness reduction in females than males (corrected p-values < 0.001), and stronger estimates of cortical thickness reduction in females relative to males in cases than controls (corrected p-values < 0.001). Our results support the use of ComBat-GAM to minimize confounds and increase statistical power when harmonizing data with non-linear effects, and the use of either ComBat or ComBat-GAM for harmonizing data with linear effects.
Collapse
Affiliation(s)
- Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.; Department of Veteran Affairs (VA) Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA.; Department of Psychology, The Education University of Hong Kong, Hong Kong, China
| | - Gopalkumar Rakesh
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.; Department of Veteran Affairs (VA) Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.; Department of Veteran Affairs (VA) Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Mark Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA.; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.; Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA.; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.; Department of Veteran Affairs (VA) Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Hong Xie
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | | | - Tian Chen
- Department of Psychiatry, University of Toledo, Toledo, OH, USA.; Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - Emily L Dennis
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.; Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA.; Department of Neurology, University of Utah, Salt Lake City, UT, USA.; Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Faisal Rashid
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.; Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.; Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.; New York State Psychiatric Institute, New York, NY, USA
| | - Benjamin Suarez-Jimenez
- Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.; New York State Psychiatric Institute, New York, NY, USA
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Murray Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jessica Bomyea
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kyle Choi
- Health Services Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Steven J A van der Werff
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | | - Julia Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.; Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA, USA
| | - Justin T Baker
- Institute for Technology in Psychiatry, McLean Hospital, Harvard University, Belmont, MA, USA
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.; Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Elpiniki Andrew
- Department of Psychology, University of Sydney, Westmead, NSW, Australia
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kelly Sambrook
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Evan Gordon
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Lee Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA.; Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA.; Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Gina Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA.; Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA.; Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA.; Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Jeffrey S Simons
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA.; Department of Psychology, University of South Dakota, Vermillion, SD, USA
| | - Vincent Magnotta
- Department of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA.; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA.; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Daniel W Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Terri A deRoon-Cassini
- Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - John H Krystal
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA.; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ifat Levy
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA.; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.; ARQ National Psychotrauma Centre, Diemen, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Center, location VUMC, Amsterdam, The Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.; New York State Psychiatric Institute, New York, NY, USA
| | - Michael D De Bellis
- Healthy Childhood Brain Development Developmental Traumatology Research Program, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, The Netherlands
| | - Martha Shenton
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA.; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Nic J A van de Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.; Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.; Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA.; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - David Bernd Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA.; Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA.; Sioux Falls VA Health Care System, Sioux Falls, SD, USA.; Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Bobak Hosseini
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.; Mental Health Service Line, Jesse Brown VA Chicago Health Care System, Chicago, IL, USA
| | | | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA.; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.; Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA.; Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA.; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.; Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Steven M Nelson
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA.; Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA.; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.; Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Chadi G Abdallah
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA.; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hassaan Gomaa
- Department of Psychiatry and Behavioral Health, Pennsylvania State University, Hershey, PA, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.; VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, CT, USA.; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University, College Station, TX, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA.; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Yann Quidé
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia.; Neuroscience Research Australia, Randwick, NSW, Australia
| | - Xin Wang
- Department of Mathematics and Statistics, University of Toledo, Toledo, OH, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.; Department of Veteran Affairs (VA) Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, NC, USA..
| |
Collapse
|
120
|
Gu D, Shi F, Hua R, Wei Y, Li Y, Zhu J, Zhang W, Zhang H, Yang Q, Huang P, Jiang Y, Bo B, Li Y, Zhang Y, Zhang M, Wu J, Shi H, Liu S, He Q, Zhang Q, Zhang X, Wei H, Liu G, Xue Z, Shen D, the Consortium of Chinese Brain Molecular and Functional Mapping (CBMFM). An artificial-intelligence-based age-specific template construction framework for brain structural analysis using magnetic resonance images. Hum Brain Mapp 2022; 44:861-875. [PMID: 36269199 PMCID: PMC9875934 DOI: 10.1002/hbm.26126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/23/2022] [Accepted: 10/01/2022] [Indexed: 01/28/2023] Open
Abstract
It is an essential task to construct brain templates and analyze their anatomical structures in neurological and cognitive science. Generally, templates constructed from magnetic resonance imaging (MRI) of a group of subjects can provide a standard reference space for analyzing the structural and functional characteristics of the group. With recent development of artificial intelligence (AI) techniques, it is desirable to explore AI registration methods for quantifying age-specific brain variations and tendencies across different ages. In this article, we present an AI-based age-specific template construction (called ASTC) framework for longitudinal structural brain analysis using T1-weighted MRIs of 646 subjects from 18 to 82 years old collected from four medical centers. Altogether, 13 longitudinal templates were constructed at a 5-year age interval using ASTC, and tissue segmentation and substructure parcellation were performed for analysis across different age groups. The results indicated consistent changes in brain structures along with aging and demonstrated the capability of ASTC for longitudinal neuroimaging study.
Collapse
Affiliation(s)
- Dongdong Gu
- Shanghai United Imaging Intelligence Co., Ltd.ShanghaiChina
| | - Feng Shi
- Shanghai United Imaging Intelligence Co., Ltd.ShanghaiChina
| | - Rui Hua
- Shanghai United Imaging Intelligence Co., Ltd.ShanghaiChina
| | - Ying Wei
- Shanghai United Imaging Intelligence Co., Ltd.ShanghaiChina
| | - Yufei Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- School of Mathematics and Computer ScienceChifeng UniversityChifengChina
| | - Jiayu Zhu
- Shanghai United Imaging Healthcare Co., Ltd.ShanghaiChina
| | - Weijun Zhang
- Shanghai United Imaging Healthcare Co., Ltd.ShanghaiChina
| | - Han Zhang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
- Institute of Brain‐Intelligence TechnologyZhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Center of Brain‐Intelligence EngineeringShanghaiChina
| | - Qing Yang
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
- Institute of Brain‐Intelligence TechnologyZhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Center of Brain‐Intelligence EngineeringShanghaiChina
| | - Peiyu Huang
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yi Jiang
- Institute of Brain‐Intelligence TechnologyZhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Center of Brain‐Intelligence EngineeringShanghaiChina
| | - Bin Bo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yao Li
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yaoyu Zhang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Minming Zhang
- Department of RadiologyThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery DepartmentHuashan HospitalShanghaiChina
- Medical CollegeFudan UniversityShanghaiChina
| | - Hongcheng Shi
- Department of Nuclear MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Siwei Liu
- Department of Nuclear MedicineZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Qiang He
- Shanghai United Imaging Healthcare Co., Ltd.ShanghaiChina
- United Imaging Research Institute of Innovative Medical EquipmentShenzhenChina
| | - Qiang Zhang
- Shanghai United Imaging Healthcare Co., Ltd.ShanghaiChina
| | - Xu Zhang
- Institute of Brain‐Intelligence TechnologyZhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai Center of Brain‐Intelligence EngineeringShanghaiChina
| | - Hongjiang Wei
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | | | - Zhong Xue
- Shanghai United Imaging Intelligence Co., Ltd.ShanghaiChina
| | - Dinggang Shen
- Shanghai United Imaging Intelligence Co., Ltd.ShanghaiChina
- School of Biomedical EngineeringShanghaiTech UniversityShanghaiChina
- Shanghai Clinical Research and Trial CenterShanghaiChina
| | | |
Collapse
|
121
|
Sanford N, Ge R, Antoniades M, Modabbernia A, Haas SS, Whalley HC, Galea L, Popescu SG, Cole JH, Frangou S. Sex differences in predictors and regional patterns of brain age gap estimates. Hum Brain Mapp 2022; 43:4689-4698. [PMID: 35790053 PMCID: PMC9491279 DOI: 10.1002/hbm.25983] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
The brain-age-gap estimate (brainAGE) quantifies the difference between chronological age and age predicted by applying machine-learning models to neuroimaging data and is considered a biomarker of brain health. Understanding sex differences in brainAGE is a significant step toward precision medicine. Global and local brainAGE (G-brainAGE and L-brainAGE, respectively) were computed by applying machine learning algorithms to brain structural magnetic resonance imaging data from 1113 healthy young adults (54.45% females; age range: 22-37 years) participating in the Human Connectome Project. Sex differences were determined in G-brainAGE and L-brainAGE. Random forest regression was used to determine sex-specific associations between G-brainAGE and non-imaging measures pertaining to sociodemographic characteristics and mental, physical, and cognitive functions. L-brainAGE showed sex-specific differences; in females, compared to males, L-brainAGE was higher in the cerebellum and brainstem and lower in the prefrontal cortex and insula. Although sex differences in G-brainAGE were minimal, associations between G-brainAGE and non-imaging measures differed between sexes with the exception of poor sleep quality, which was common to both. While univariate relationships were small, the most important predictor of higher G-brainAGE was self-identification as non-white in males and systolic blood pressure in females. The results demonstrate the value of applying sex-specific analyses and machine learning methods to advance our understanding of sex-related differences in factors that influence the rate of brain aging and provide a foundation for targeted interventions.
Collapse
Affiliation(s)
- Nicole Sanford
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ruiyang Ge
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Shalaila S. Haas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Liisa Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - James H. Cole
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Dementia Research Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sophia Frangou
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
122
|
Rappe A, McWilliams TG. Mitophagy in the aging nervous system. Front Cell Dev Biol 2022; 10:978142. [PMID: 36303604 PMCID: PMC9593040 DOI: 10.3389/fcell.2022.978142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2024] Open
Abstract
Aging is characterised by the progressive accumulation of cellular dysfunction, stress, and inflammation. A large body of evidence implicates mitochondrial dysfunction as a cause or consequence of age-related diseases including metabolic disorders, neuropathies, various forms of cancer and neurodegenerative diseases. Because neurons have high metabolic demands and cannot divide, they are especially vulnerable to mitochondrial dysfunction which promotes cell dysfunction and cytotoxicity. Mitophagy neutralises mitochondrial dysfunction, providing an adaptive quality control strategy that sustains metabolic homeostasis. Mitophagy has been extensively studied as an inducible stress response in cultured cells and short-lived model organisms. In contrast, our understanding of physiological mitophagy in mammalian aging remains extremely limited, particularly in the nervous system. The recent profiling of mitophagy reporter mice has revealed variegated vistas of steady-state mitochondrial destruction across different tissues. The discovery of patients with congenital autophagy deficiency provokes further intrigue into the mechanisms that underpin neural integrity. These dimensions have considerable implications for targeting mitophagy and other degradative pathways in age-related neurological disease.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
123
|
Liu T, Shi Z, Zhang J, Wang K, Li Y, Pei G, Wang L, Wu J, Yan T. Individual functional parcellation revealed compensation of dynamic limbic network organization in healthy ageing. Hum Brain Mapp 2022; 44:744-761. [PMID: 36214186 PMCID: PMC9842897 DOI: 10.1002/hbm.26096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023] Open
Abstract
Using group-level functional parcellations and constant-length sliding window analysis, dynamic functional connectivity studies have revealed network-specific impairment and compensation in healthy ageing. However, functional parcellation and dynamic time windows vary across individuals; individual-level ageing-related brain dynamics are uncertain. Here, we performed individual parcellation and individual-length sliding window clustering to characterize ageing-related dynamic network changes. Healthy participants (n = 637, 18-88 years) from the Cambridge Centre for Ageing and Neuroscience dataset were included. An individual seven-network parcellation, varied from group-level parcellation, was mapped for each participant. For each network, strong and weak cognitive brain states were revealed by individual-length sliding window clustering and canonical correlation analysis. The results showed negative linear correlations between age and change ratios of sizes in the default mode, frontoparietal, and salience networks and a positive linear correlation between age and change ratios of size in the limbic network (LN). With increasing age, the occurrence and dwell time of strong states showed inverted U-shaped patterns or a linear decreasing pattern in most networks but showed a linear increasing pattern in the LN. Overall, this study reveals a compensative increase in emotional networks (i.e., the LN) and a decline in cognitive and primary sensory networks in healthy ageing. These findings may provide insights into network-specific and individual-level targeting during neuromodulation in ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Zhongyan Shi
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Jian Zhang
- Intelligent Robotics Institute, School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
| | - Kexin Wang
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Yuanhao Li
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Guangying Pei
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Li Wang
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Jinglong Wu
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Tianyi Yan
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| |
Collapse
|
124
|
Beyer M, Liebig J, Sylvester T, Braun M, Heekeren HR, Froehlich E, Jacobs AM, Ziegler JC. Structural gray matter features and behavioral preliterate skills predict future literacy - A machine learning approach. Front Neurosci 2022; 16:920150. [PMID: 36248649 PMCID: PMC9558903 DOI: 10.3389/fnins.2022.920150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
When children learn to read, their neural system undergoes major changes to become responsive to print. There seem to be nuanced interindividual differences in the neurostructural anatomy of regions that later become integral parts of the reading network. These differences might affect literacy acquisition and, in some cases, might result in developmental disorders like dyslexia. Consequently, the main objective of this longitudinal study was to investigate those interindividual differences in gray matter morphology that might facilitate or hamper future reading acquisition. We used a machine learning approach to examine to what extent gray matter macrostructural features and cognitive-linguistic skills measured before formal literacy teaching could predict literacy 2 years later. Forty-two native German-speaking children underwent T1-weighted magnetic resonance imaging and psychometric testing at the end of kindergarten. They were tested again 2 years later to assess their literacy skills. A leave-one-out cross-validated machine-learning regression approach was applied to identify the best predictors of future literacy based on cognitive-linguistic preliterate behavioral skills and cortical measures in a priori selected areas of the future reading network. With surprisingly high accuracy, future literacy was predicted, predominantly based on gray matter volume in the left occipito-temporal cortex and local gyrification in the left insular, inferior frontal, and supramarginal gyri. Furthermore, phonological awareness significantly predicted future literacy. In sum, the results indicate that the brain morphology of the large-scale reading network at a preliterate age can predict how well children learn to read.
Collapse
Affiliation(s)
- Moana Beyer
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Johanna Liebig
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Teresa Sylvester
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Mario Braun
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Hauke R. Heekeren
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
- Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Eva Froehlich
- Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Arthur M. Jacobs
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Johannes C. Ziegler
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université and Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
125
|
Atanasova T, Laganaro M. Word Production Changes through Adolescence: A Behavioral and ERP Investigation of Referential and Inferential Naming. Dev Neuropsychol 2022; 47:295-313. [PMID: 35997517 DOI: 10.1080/87565641.2022.2112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Changes in word production occur across the lifespan, with adolescence representing a knot point between children's and adults' performance and underlying brain processes. Previous studies on referential word production using picture naming tasks have shown a completely adult-like pattern in 17-year-old adolescents and an intermediate pattern between children and adults in adolescents aged 14-16 years old, suggesting a possible involvement of visuo-conceptual processes in the transition from childhood to adulthood. Given the visual nature of the picture naming task, it is unclear whether changes in visuo-conceptual processes are specifically related to the referential word production or if overall changes in conceptual to lexical processes drive maturation. To answer this question, we turned to an inferential word production task, i.e., naming from auditory definitions, involving different conceptual to lexical processes relative to referential naming. Behavior and electroencephalographic Event-Related Potentials (ERP) in a (visual) referential word production task and an (auditory) inferential word production task were recorded and compared in three groups of adolescents (respectively, aged 10 to 13, 14 to 16, and 17 to 18). Only the youngest group displayed longer production latencies and lower accuracy than the two older groups of adolescents who performed similarly on both tasks. Crucially, ERP waveform analysis and topographic pattern analysis revealed significant intergroup differences on both tasks. Changes across ages are not merely linked to the visual-conceptual processes of a picture naming task but are rather related to lexical-semantic processes involved in word production.
Collapse
Affiliation(s)
- Tanja Atanasova
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Marina Laganaro
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
126
|
Ahmad S, Nan F, Wu Y, Wu Z, Lin W, Wang L, Li G, Wu D, Yap PT. Harmonization of Multi-site Cortical Data Across the Human Lifespan. MACHINE LEARNING IN MEDICAL IMAGING. MLMI (WORKSHOP) 2022; 13583:220-229. [PMID: 37126478 PMCID: PMC10134963 DOI: 10.1007/978-3-031-21014-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neuroimaging data harmonization has become a prerequisite in integrative data analytics for standardizing a wide variety of data collected from multiple studies and enabling interdisciplinary research. The lack of standardized image acquisition and computational procedures introduces non-biological variability and inconsistency in multi-site data, complicating downstream statistical analyses. Here, we propose a novel statistical technique to retrospectively harmonize multi-site cortical data collected longitudinally and cross-sectionally between birth and 100 years. We demonstrate that our method can effectively eliminate non-biological disparities from cortical thickness and myelination measurements, while preserving biological variation across the entire lifespan. Our harmonization method will foster large-scale population studies by providing comparable data required for investigating developmental and aging processes.
Collapse
Affiliation(s)
- Sahar Ahmad
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA
| | - Fang Nan
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA
| | - Di Wu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC, USA
- Division of Oral and Craniofacial Health Research, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
127
|
Cortical and subcortical grey matter atrophy in Amyotrophic Lateral Sclerosis correlates with measures of disease accumulation independent of disease aggressiveness. Neuroimage Clin 2022; 36:103162. [PMID: 36067613 PMCID: PMC9460837 DOI: 10.1016/j.nicl.2022.103162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
There is a growing demand for reliable biomarkers to monitor disease progression in Amyotrophic Lateral Sclerosis (ALS) that also take the heterogeneity of ALS into account. In this study, we explored the association between Magnetic Resonance Imaging (MRI)-derived measures of cortical thickness (CT) and subcortical grey matter (GM) volume with D50 model parameters. T1-weighted MRI images of 72 Healthy Controls (HC) and 100 patients with ALS were analyzed using Surface-based Morphometry for cortical structures and Voxel-based Morphometry for subcortical Region-Of-Interest analyses using the Computational Anatomy Toolbox (CAT12). In Inter-group contrasts, these parameters were compared between patients and HC. Further, the D50 model was used to conduct subgroup-analyses, dividing patients by a) Phase of disease covered at the time of MRI-scan and b) individual overall disease aggressiveness. Finally, correlations between GM and D50 model-derived parameters were examined. Inter-group analyses revealed ALS-related cortical thinning compared to HC located mainly in frontotemporal regions and a decrease in GM volume in the left hippocampus and amygdala. A comparison of patients in different phases showed further cortical and subcortical GM atrophy along with disease progression. Correspondingly, regression analyses identified negative correlations between cortical thickness and individual disease covered. However, there were no differences in CT and subcortical GM between patients with low and high disease aggressiveness. By application of the D50 model, we identified correlations between cortical and subcortical GM atrophy and ALS-related functional disability, but not with disease aggressiveness. This qualifies CT and subcortical GM volume as biomarkers representing individual disease covered to monitor therapeutic interventions in ALS.
Collapse
|
128
|
Moukaddam N, Sano A, Salas R, Hammal Z, Sabharwal A. Turning data into better mental health: Past, present, and future. Front Digit Health 2022; 4:916810. [PMID: 36060543 PMCID: PMC9428351 DOI: 10.3389/fdgth.2022.916810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this mini-review, we discuss the fundamentals of using technology in mental health diagnosis and tracking. We highlight those principles using two clinical concepts: (1) cravings and relapse in the context of addictive disorders and (2) anhedonia in the context of depression. This manuscript is useful for both clinicians wanting to understand the scope of technology use in psychiatry and for computer scientists and engineers wishing to assess psychiatric frameworks useful for diagnosis and treatment. The increase in smartphone ownership and internet connectivity, as well as the accelerated development of wearable devices, have made the observation and analysis of human behavior patterns possible. This has, in turn, paved the way to understand mental health conditions better. These technologies have immense potential in facilitating the diagnosis and tracking of mental health conditions; they also allow the implementation of existing behavioral treatments in new contexts (e.g., remotely, online, and in rural/underserved areas), and the possibility to develop new treatments based on new understanding of behavior patterns. The path to understand how to best use technology in mental health includes the need to match interdisciplinary frameworks from engineering/computer sciences and psychiatry. Thus, we start our review by introducing bio-behavioral sensing, the types of information available, and what behavioral patterns they may reflect and be related to in psychiatric diagnostic frameworks. This information is linked to the use of functional imaging, highlighting how imaging modalities can be considered "ground truth" for mental health/psychiatric dimensions, given the heterogeneity of clinical presentations, and the difficulty of determining what symptom corresponds to what disease. We then discuss how mental health/psychiatric dimensions overlap, yet differ from, psychiatric diagnoses. Using two clinical examples, we highlight the potential agreement areas in assessment/management of anhedonia and cravings. These two dimensions were chosen because of their link to two very prevalent diseases worldwide: depression and addiction. Anhedonia is a core symptom of depression, which is one of the leading causes of disability worldwide. Cravings, the urge to use a substance or perform an action (e.g., shopping, internet), is the leading step before relapse. Lastly, through the manuscript, we discuss potential mental health dimensions.
Collapse
Affiliation(s)
- Nidal Moukaddam
- Department of Psychiatry, Baylor College of Medicine, Houston Texas, United States
| | - Akane Sano
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States
| | - Ramiro Salas
- Department of Psychiatry, Baylor College of Medicine, The Menninger Clinic, Michael E DeBakey VA Medical Center, Houston, Texas, United States
| | - Zakia Hammal
- The Robotics Institute Department in the School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ashutosh Sabharwal
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States
| |
Collapse
|
129
|
Patel R, Mackay CE, Jansen MG, Devenyi GA, O'Donoghue MC, Kivimäki M, Singh-Manoux A, Zsoldos E, Ebmeier KP, Chakravarty MM, Suri S. Inter- and intra-individual variation in brain structural-cognition relationships in aging. Neuroimage 2022; 257:119254. [PMID: 35490915 PMCID: PMC9393406 DOI: 10.1016/j.neuroimage.2022.119254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 01/21/2023] Open
Abstract
The sources of inter- and intra-individual variability in age-related cognitive decline remain poorly understood. We examined the association between 20-year trajectories of cognitive decline and multimodal brain structure and morphology in older age. We used the Whitehall II Study, an extensively characterised cohort with 3T brain magnetic resonance images acquired at older age (mean age = 69.52 ± 4.9) and 5 repeated cognitive performance assessments between mid-life (mean age = 53.2 ±4.9 years) and late-life (mean age = 67.7 ± 4.9). Using non-negative matrix factorization, we identified 10 brain components integrating cortical thickness, surface area, fractional anisotropy, and mean and radial diffusivities. We observed two latent variables describing distinct brain-cognition associations. The first describes variations in 5 structural components associated with low mid-life performance across multiple cognitive domains, decline in reasoning, but maintenance of fluency abilities. The second describes variations in 6 structural components associated with low mid-life performance in fluency and memory, but retention of multiple abilities. Expression of latent variables predicts future cognition 3.2 years later (mean age = 70.87 ± 4.9). This data-driven approach highlights brain-cognition relationships wherein individuals degrees of cognitive decline and maintenance across diverse cognitive functions are both positively and negatively associated with markers of cortical structure.
Collapse
Affiliation(s)
- Raihaan Patel
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Clare E Mackay
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Michelle G Jansen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Psychiatry, McGill University, Montréal, Québec, H3A 1A1, Canada
| | - M Clare O'Donoghue
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, WC1E 6BT, London, United Kingdom
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, University College London, WC1E 6BT, London, United Kingdom; Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, 7501020, Paris, France
| | - Enikő Zsoldos
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Klaus P Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, H3A 2B4, Canada; Department of Psychiatry, McGill University, Montréal, Québec, H3A 1A1, Canada
| | - Sana Suri
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom.
| |
Collapse
|
130
|
Jiang R, Scheinost D, Zuo N, Wu J, Qi S, Liang Q, Zhi D, Luo N, Chung Y, Liu S, Xu Y, Sui J, Calhoun V. A Neuroimaging Signature of Cognitive Aging from Whole-Brain Functional Connectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201621. [PMID: 35811304 PMCID: PMC9403648 DOI: 10.1002/advs.202201621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/02/2022] [Indexed: 05/14/2023]
Abstract
Cognitive decline is amongst one of the most commonly reported complaints during normal aging. Despite evidence that age and cognition are linked with similar neural correlates, no previous studies have directly ascertained how these two constructs overlap in the brain in terms of neuroimaging-based prediction. Based on a long lifespan healthy cohort (CamCAN, aged 19-89 years, n = 567), it is shown that both cognitive function (domains spanning executive function, emotion processing, motor function, and memory) and human age can be reliably predicted from unique patterns of functional connectivity, with models generalizable in two external datasets (n = 533 and n = 453). Results show that cognitive decline and normal aging both manifest decrease within-network connections (especially default mode and ventral attention networks) and increase between-network connections (somatomotor network). Whereas dorsal attention network is an exception, which is highly predictive on cognitive ability but is weakly correlated with aging. Further, the positively weighted connections in predicting fluid intelligence significantly mediate its association with age. Together, these findings offer insights into why normal aging is often associated with cognitive decline in terms of brain network organization, indicating a process of neural dedifferentiation and compensational theory.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenCT06520USA
- Department of Statistics and Data ScienceYale UniversityNew HavenCT06520USA
- Child Study CenterYale School of MedicineNew HavenCT06510USA
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jing Wu
- Department of Medical OncologyBeijing You‐An HospitalCapital Medical UniversityBeijing100069P. R. China
| | - Shile Qi
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Qinghao Liang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
| | - Dongmei Zhi
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Young‐Chul Chung
- Department of PsychiatryJeonbuk National University Medical SchoolJeonju54907Republic of Korea
- Department of PsychiatryChonbuk National University HospitalJeonju54907Republic of Korea
| | - Sha Liu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Yong Xu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| |
Collapse
|
131
|
Liu N, Jia G, Li H, Zhang S, Wang Y, Niu H, Liu L, Qian Q. The potential shared brain functional alterations between adults with ADHD and children with ADHD co-occurred with disruptive behaviors. Child Adolesc Psychiatry Ment Health 2022; 16:54. [PMID: 35761295 PMCID: PMC9238266 DOI: 10.1186/s13034-022-00486-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Many previous studies have shown that the comorbid status of disruptive behaviour disorders (DBD) was a predictor for ADHD persistence into adulthood. However, the brain mechanisms underlying such a relationship remain unclear. Thus, we aim to investigate whether the brain functional alteration in adults with ADHD could also be detected in children with ADHD co-occurring with disruptive behaviours from both quantitative and categorical dimensions. METHODS A total of 172 children with ADHD (cADHD), 98 adults with ADHD (aADHD), 77 healthy control children (cHC) and 40 healthy control adults (aHC) were recruited. The whole-brain spontaneous fluctuations in brain activity of each participant were recorded using functional near-infrared spectroscopy (fNIRS), and the functional connectivities (FCs) were calculated. We first compared the FC differences between aADHD and aHC. Then, for the regions with significantly abnormal FCs in aADHD, we further compared these features between cADHD and cHC. In addition, the correlation between these FCs and the conduct disorder (CD)/oppositional defiant disorder (ODD) symptoms were analysed in cADHD. Moreover, to render the results readily interpretable, we compared the FC differences among ADHDCD-, subthreshold ADHDCD+ and cHC groups, and among ADHDODD-, ADHDODD+ and cHC groups. Finally, we repeated the above analysis after controlling for other comorbidities and core symptoms to diminish the potential confounding effects. RESULTS We found that compared with aHC, aADHD showed significantly increased FCs in the VN, DMN, SMN, and DAN. The aforementioned abnormal FCs were also detected in cADHD, however, in an opposite orientation. Notably, these abnormal FCs were positively correlated with CD symptoms. Finally, the subthreshold ADHDCD+ group even exhibited a tendency of adult-like increased FCs compared with the cHC. The results held after controlling for other comorbidities and core symptoms. CONCLUSION This study provides functional neuroimaging evidence that CD might be a risk factor for ADHD persistence into adulthood. Our work highlights the importance of differentiating ADHDCD+ from ADHD and inspiring further understanding of brain development in ADHD.
Collapse
Affiliation(s)
- Ningning Liu
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191 China ,grid.459847.30000 0004 1798 0615NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Gaoding Jia
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| | - Haimei Li
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191 China ,grid.459847.30000 0004 1798 0615NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Shiyu Zhang
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191 China ,grid.459847.30000 0004 1798 0615NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Yufeng Wang
- grid.11135.370000 0001 2256 9319Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191 China ,grid.459847.30000 0004 1798 0615NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China. .,NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
132
|
Razzaq FA, Bringas Vega ML, Ontiveiro-Ortega M, Riaz U, Valdes-Sosa PA. Causal effects of cingulate morphology on executive functions in healthy young adults. Hum Brain Mapp 2022; 43:4370-4382. [PMID: 35665983 PMCID: PMC9435009 DOI: 10.1002/hbm.25960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/11/2022] [Accepted: 05/08/2022] [Indexed: 11/11/2022] Open
Abstract
In this study, we want to explore evidence for the causal relationship between the anatomical descriptors of the cingulate cortex (surface area, mean curvature-corrected thickness, and volume) and the performance of cognitive tasks such as Card Sort, Flanker, List Sort used as instruments to measure the executive functions of flexibility, inhibitory control, and working memory. We have performed this analysis in a cross-sectional sample of 899 healthy young subjects of the Human Connectome Project. To the best of our knowledge, this is the first study using causal inference to explain the relationship between cingulate morphology and the performance of executive tasks in healthy subjects. We have tested the causal model under a counterfactual framework using stabilized inverse probability of treatment weighting and marginal structural models. The results showed that the posterior cingulate surface area has a positive causal effect on inhibition (Flanker task) and cognitive flexibility (Card Sort). A unit increase (+1 mm2 ) in the posterior cingulate surface area will cause a 0.008% and 0.009% increase from the National Institute of Health (NIH) normative mean in Flankers (p-value <0.001), and Card Sort (p-value 0.005), respectively. Furthermore, a unit increase (+1 mm2 ) in the anterior cingulate surface area will cause a 0.004% (p-value <0.001) and 0.005% (p-value 0.001) increase from the NIH normative mean in Flankers and Card Sort. In contrast, the curvature-corrected-mean thickness only showed an association for anterior cingulate with List Sort (p = 0.034) but no causal effect.
Collapse
Affiliation(s)
- Fuleah A Razzaq
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Maria L Bringas Vega
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Usama Riaz
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Cuban Neuroscience Center, Havana, Cuba
| |
Collapse
|
133
|
Zhao Y, Zhang Q, Shah C, Li Q, Sweeney JA, Li F, Gong Q. Cortical Thickness Abnormalities at Different Stages of the Illness Course in Schizophrenia: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022; 79:560-570. [PMID: 35476125 PMCID: PMC9047772 DOI: 10.1001/jamapsychiatry.2022.0799] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
IMPORTANCE Questions of whether and how cortical thickness (CTh) alterations differ over the course of schizophrenia (SCZ) have yet to be resolved. OBJECTIVE To characterize CTh alterations across illness stages in SCZ. DATA SOURCES PubMed, Embase, Web of Science, and Science Direct were screened for CTh studies published before June 15, 2021. STUDY SELECTION Original studies comparing whole-brain CTh alterations from healthy controls in individuals at clinical high-risk (CHR), first episode of psychosis (FEP), and long-term illness stages of SCZ were included. DATA EXTRACTION AND SYNTHESIS This preregistered systematic review and meta-analysis followed PRISMA reporting guidelines. Separate and pooled meta-analyses were performed using seed-based d mapping. Meta-regression analyses were conducted. MAIN OUTCOMES AND MEASURES Cortical thickness differences from healthy control individuals across illness stages. RESULTS Ten studies comprising 859 individuals with CHR (mean [SD] age, 21.02 [2.66] years; male, 573 [66.7%]), 12 studies including 671 individuals with FEP (mean [SD] age, 22.87 [3.99] years; male, 439 [65.4%]), and 10 studies comprising 579 individuals with long-term SCZ (mean [SD] age, 41.58 [6.95] years; male, 396 [68.4%]) were included. Compared with healthy control individuals, individuals with CHR showed cortical thinning in bilateral medial prefrontal cortex (z = -1.01; P < .001). Individuals with FEP showed cortical thinning in right lateral superior temporal cortex (z = -1.34; P < .001), right anterior cingulate cortex (z = -1.44; P < .001), and right insula (z = -1.14; P = .002). Individuals with long-term SCZ demonstrated CTh reductions in right insula (z = -3.25; P < .001), right inferior frontal cortex (z = -2.19; P < .001), and left (z = -2.37; P < .001) and right (z = -1.94; P = .002) temporal pole. There were no significant CTh differences between CHR and FEP. Individuals with long-term SCZ showed greater cortical thinning in right insula (z = -2.58; P < .001), right inferior frontal cortex (z = -2.32; P < .001), left lateral temporal cortex (z = -1.91; P = .002), and right temporal pole (z = -1.82; P = .002) than individuals with FEP. Combining all studies on SCZ, accelerated age-related CTh reductions were found in bilateral lateral middle temporal cortex and right pars orbitalis in inferior frontal cortex. CONCLUSIONS AND RELEVANCE The absence of significant differences between FEP and CHR noted in this systematic review and meta-analysis suggests that the onset of psychosis was not associated with robust CTh reduction. The greater cortical thinning in long-term SCZ compared with FEP with accelerated age-related reduction in CTh suggests progressive neuroanatomic alterations following illness onset. Caution in interpretation is needed because heterogeneity in samples and antipsychotic treatment may confound these results.
Collapse
Affiliation(s)
- Youjin Zhao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Chandan Shah
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Qian Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - John A. Sweeney
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Fei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
134
|
Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, Adler S, Alexopoulos GS, Anagnostou E, Areces-Gonzalez A, Astle DE, Auyeung B, Ayub M, Bae J, Ball G, Baron-Cohen S, Beare R, Bedford SA, Benegal V, Beyer F, Blangero J, Blesa Cábez M, Boardman JP, Borzage M, Bosch-Bayard JF, Bourke N, Calhoun VD, Chakravarty MM, Chen C, Chertavian C, Chetelat G, Chong YS, Cole JH, Corvin A, Costantino M, Courchesne E, Crivello F, Cropley VL, Crosbie J, Crossley N, Delarue M, Delorme R, Desrivieres S, Devenyi GA, Di Biase MA, Dolan R, Donald KA, Donohoe G, Dunlop K, Edwards AD, Elison JT, Ellis CT, Elman JA, Eyler L, Fair DA, Feczko E, Fletcher PC, Fonagy P, Franz CE, Galan-Garcia L, Gholipour A, Giedd J, Gilmore JH, Glahn DC, Goodyer IM, Grant PE, Groenewold NA, Gunning FM, Gur RE, Gur RC, Hammill CF, Hansson O, Hedden T, Heinz A, Henson RN, Heuer K, Hoare J, Holla B, Holmes AJ, Holt R, Huang H, Im K, Ipser J, Jack CR, Jackowski AP, Jia T, Johnson KA, Jones PB, Jones DT, Kahn RS, Karlsson H, Karlsson L, Kawashima R, Kelley EA, Kern S, Kim KW, Kitzbichler MG, Kremen WS, Lalonde F, Landeau B, et alBethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, Adler S, Alexopoulos GS, Anagnostou E, Areces-Gonzalez A, Astle DE, Auyeung B, Ayub M, Bae J, Ball G, Baron-Cohen S, Beare R, Bedford SA, Benegal V, Beyer F, Blangero J, Blesa Cábez M, Boardman JP, Borzage M, Bosch-Bayard JF, Bourke N, Calhoun VD, Chakravarty MM, Chen C, Chertavian C, Chetelat G, Chong YS, Cole JH, Corvin A, Costantino M, Courchesne E, Crivello F, Cropley VL, Crosbie J, Crossley N, Delarue M, Delorme R, Desrivieres S, Devenyi GA, Di Biase MA, Dolan R, Donald KA, Donohoe G, Dunlop K, Edwards AD, Elison JT, Ellis CT, Elman JA, Eyler L, Fair DA, Feczko E, Fletcher PC, Fonagy P, Franz CE, Galan-Garcia L, Gholipour A, Giedd J, Gilmore JH, Glahn DC, Goodyer IM, Grant PE, Groenewold NA, Gunning FM, Gur RE, Gur RC, Hammill CF, Hansson O, Hedden T, Heinz A, Henson RN, Heuer K, Hoare J, Holla B, Holmes AJ, Holt R, Huang H, Im K, Ipser J, Jack CR, Jackowski AP, Jia T, Johnson KA, Jones PB, Jones DT, Kahn RS, Karlsson H, Karlsson L, Kawashima R, Kelley EA, Kern S, Kim KW, Kitzbichler MG, Kremen WS, Lalonde F, Landeau B, Lee S, Lerch J, Lewis JD, Li J, Liao W, Liston C, Lombardo MV, Lv J, Lynch C, Mallard TT, Marcelis M, Markello RD, Mathias SR, Mazoyer B, McGuire P, Meaney MJ, Mechelli A, Medic N, Misic B, Morgan SE, Mothersill D, Nigg J, Ong MQW, Ortinau C, Ossenkoppele R, Ouyang M, Palaniyappan L, Paly L, Pan PM, Pantelis C, Park MM, Paus T, Pausova Z, Paz-Linares D, Pichet Binette A, Pierce K, Qian X, Qiu J, Qiu A, Raznahan A, Rittman T, Rodrigue A, Rollins CK, Romero-Garcia R, Ronan L, Rosenberg MD, Rowitch DH, Salum GA, Satterthwaite TD, Schaare HL, Schachar RJ, Schultz AP, Schumann G, Schöll M, Sharp D, Shinohara RT, Skoog I, Smyser CD, Sperling RA, Stein DJ, Stolicyn A, Suckling J, Sullivan G, Taki Y, Thyreau B, Toro R, Traut N, Tsvetanov KA, Turk-Browne NB, Tuulari JJ, Tzourio C, Vachon-Presseau É, Valdes-Sosa MJ, Valdes-Sosa PA, Valk SL, van Amelsvoort T, Vandekar SN, Vasung L, Victoria LW, Villeneuve S, Villringer A, Vértes PE, Wagstyl K, Wang YS, Warfield SK, Warrier V, Westman E, Westwater ML, Whalley HC, Witte AV, Yang N, Yeo B, Yun H, Zalesky A, Zar HJ, Zettergren A, Zhou JH, Ziauddeen H, Zugman A, Zuo XN, Bullmore ET, Alexander-Bloch AF. Brain charts for the human lifespan. Nature 2022; 604:525-533. [PMID: 35388223 PMCID: PMC9021021 DOI: 10.1038/s41586-022-04554-y] [Show More Authors] [Citation(s) in RCA: 793] [Impact Index Per Article: 264.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/16/2022] [Indexed: 02/02/2023]
Abstract
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data ( http://www.brainchart.io/ ). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
Collapse
Affiliation(s)
- R A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - J Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA.
| | - S R White
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - J W Vogel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Informatics & Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - K M Anderson
- Department of Psychology, Yale University, New Haven, CT, USA
| | - C Adamson
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Adler
- UCL Great Ormond Street Institute for Child Health, London, UK
| | - G S Alexopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, USA
| | - E Anagnostou
- Department of Pediatrics University of Toronto, Toronto, Canada
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - A Areces-Gonzalez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
- University of Pinar del Río "Hermanos Saiz Montes de Oca", Pinar del Río, Cuba
| | - D E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - B Auyeung
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - M Ayub
- Queen's University, Department of Psychiatry, Centre for Neuroscience Studies, Kingston, Ontario, Canada
- University College London, Mental Health Neuroscience Research Department, Division of Psychiatry, London, UK
| | - J Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea
| | - G Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - S Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridge Lifetime Asperger Syndrome Service (CLASS), Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - R Beare
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - S A Bedford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - V Benegal
- Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - F Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - J Blangero
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - M Blesa Cábez
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - J P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - M Borzage
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J F Bosch-Bayard
- McGill Centre for Integrative Neuroscience, Ludmer Centre for Neuroinformatics and Mental Health, Montreal Neurological Institute, Montreal, Quebec, Canada
- McGill University, Montreal, Quebec, Canada
| | - N Bourke
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research and Technology Centre, Dementia Research Institute, London, UK
| | - V D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - M M Chakravarty
- McGill University, Montreal, Quebec, Canada
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - C Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Chertavian
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - G Chetelat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Y S Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - J H Cole
- Centre for Medical Image Computing (CMIC), University College London, London, UK
- Dementia Research Centre (DRC), University College London, London, UK
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Costantino
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Undergraduate program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - E Courchesne
- Department of Neuroscience, University of California, San Diego, San Diego, CA, USA
- Autism Center of Excellence, University of California, San Diego, San Diego, CA, USA
| | - F Crivello
- Institute of Neurodegenerative Disorders, CNRS UMR5293, CEA, University of Bordeaux, Bordeaux, France
| | - V L Cropley
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - J Crosbie
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - N Crossley
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Instituto Milenio Intelligent Healthcare Engineering, Santiago, Chile
| | - M Delarue
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - R Delorme
- Child and Adolescent Psychiatry Department, Robert Debré University Hospital, AP-HP, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - S Desrivieres
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - G A Devenyi
- Cerebral Imaging Centre, McGill Department of Psychiatry, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - M A Di Biase
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, London, UK
| | - K A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - G Donohoe
- Center for Neuroimaging, Cognition & Genomics (NICOG), School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - K Dunlop
- Weil Family Brain and Mind Research Institute, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - A D Edwards
- Centre for the Developing Brain, King's College London, London, UK
- Evelina London Children's Hospital, London, UK
- MRC Centre for Neurodevelopmental Disorders, London, UK
| | - J T Elison
- Institute of Child Development, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - C T Ellis
- Department of Psychology, Yale University, New Haven, CT, USA
- Haskins Laboratories, New Haven, CT, USA
| | - J A Elman
- Department of Psychiatry, Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - L Eyler
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, Los Angeles, CA, USA
| | - D A Fair
- Institute of Child Development, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - E Feczko
- Institute of Child Development, Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - P C Fletcher
- Department of Psychiatry, University of Cambridge, and Wellcome Trust MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - P Fonagy
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Anna Freud National Centre for Children and Families, London, UK
| | - C E Franz
- Department of Psychiatry, Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | | | - A Gholipour
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA
| | - J Giedd
- Department of Child and Adolescent Psychiatry, University of California, San Diego, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - J H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - D C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - I M Goodyer
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - P E Grant
- Division of Newborn Medicine and Neuroradiology, Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - N A Groenewold
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - F M Gunning
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - R E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - R C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - C F Hammill
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Mouse Imaging Centre, Toronto, Ontario, Canada
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - T Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Charité Campus Mitte, Berlin, Germany
| | - R N Henson
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - K Heuer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Université de Paris, Paris, France
| | - J Hoare
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - B Holla
- Department of Integrative Medicine, NIMHANS, Bengaluru, India
- Accelerator Program for Discovery in Brain disorders using Stem cells (ADBS), Department of Psychiatry, NIMHANS, Bengaluru, India
| | - A J Holmes
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, USA
| | - R Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - H Huang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Im
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine and Neuroradiology, Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Ipser
- Department of Psychiatry and Mental Health, Clinical Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - C R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - A P Jackowski
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
- National Institute of Developmental Psychiatry, Beijing, China
| | - T Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology and Neuroscience, SGDP Centre, King's College London, London, UK
| | - K A Johnson
- Harvard Medical School, Boston, MA, USA
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - P B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - D T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - R S Kahn
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA
| | - H Karlsson
- Department of Clinical Medicine, Department of Psychiatry and Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - L Karlsson
- Department of Clinical Medicine, Department of Psychiatry and Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - R Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Seiryocho, Aobaku, Sendai, Japan
| | - E A Kelley
- Queen's University, Departments of Psychology and Psychiatry, Centre for Neuroscience Studies, Kingston, Ontario, Canada
| | - S Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - K W Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, South Korea
| | - M G Kitzbichler
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - W S Kremen
- Department of Psychiatry, Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - F Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - B Landeau
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - S Lee
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - J Lerch
- Mouse Imaging Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - J D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - J Li
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - W Liao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - C Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - M V Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - J Lv
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
- School of Biomedical Engineering and Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - C Lynch
- Weil Family Brain and Mind Research Institute, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - T T Mallard
- Department of Psychology, University of Texas, Austin, TX, USA
| | - M Marcelis
- Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, Maastricht, The Netherlands
- Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
| | - R D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S R Mathias
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - B Mazoyer
- Institute of Neurodegenerative Disorders, CNRS UMR5293, CEA, University of Bordeaux, Bordeaux, France
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - P McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - A Mechelli
- Bordeaux University Hospital, Bordeaux, France
| | - N Medic
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - B Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S E Morgan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - D Mothersill
- Department of Psychology, School of Business, National College of Ireland, Dublin, Ireland
- School of Psychology and Center for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - J Nigg
- Department of Psychiatry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - M Q W Ong
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - C Ortinau
- Department of Pediatrics, Washington University in St Louis, St Louis, MO, USA
| | - R Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Lund University, Clinical Memory Research Unit, Lund, Sweden
| | - M Ouyang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - L Palaniyappan
- Robarts Research Institute and The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - L Paly
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - P M Pan
- Department of Psychiatry, Federal University of Sao Poalo (UNIFESP), Sao Poalo, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Sao Poalo, Brazil
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Melbourne School of Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - M M Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - T Paus
- Department of Psychiatry, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Z Pausova
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - D Paz-Linares
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
- Cuban Neuroscience Center, Havana, Cuba
| | - A Pichet Binette
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - K Pierce
- Department of Neuroscience, University of California, San Diego, San Diego, CA, USA
| | - X Qian
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - J Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - A Qiu
- Department of Biomedical Engineering, The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - A Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - T Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A Rodrigue
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - C K Rollins
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - R Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla, Dpto. de Fisiología Médica y Biofísica, Seville, Spain
| | - L Ronan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - M D Rosenberg
- Department of Psychology and Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - D H Rowitch
- Department of Paediatrics and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - G A Salum
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
- National Institute of Developmental Psychiatry (INPD), São Paulo, Brazil
| | - T D Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Informatics & Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - H L Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Juelich, Juelich, Germany
| | - R J Schachar
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - A P Schultz
- Harvard Medical School, Boston, MA, USA
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - G Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
- PONS-Centre, Charite Mental Health, Dept of Psychiatry and Psychotherapy, Charite Campus Mitte, Berlin, Germany
| | - M Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Queen's Square Institute of Neurology, University College London, London, UK
| | - D Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research and Technology Centre, UK Dementia Research Institute, London, UK
| | - R T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - I Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg, Sweden
| | - C D Smyser
- Departments of Neurology, Pediatrics, and Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - R A Sperling
- Harvard Medical School, Boston, MA, USA
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - D J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Dept of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - A Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - J Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - G Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Y Taki
- Institute of Development, Aging and Cancer, Tohoku University, Seiryocho, Aobaku, Sendai, Japan
| | - B Thyreau
- Institute of Development, Aging and Cancer, Tohoku University, Seiryocho, Aobaku, Sendai, Japan
| | - R Toro
- Université de Paris, Paris, France
- Department of Neuroscience, Institut Pasteur, Paris, France
| | - N Traut
- Department of Neuroscience, Institut Pasteur, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - K A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - N B Turk-Browne
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - J J Tuulari
- Department of Clinical Medicine, Department of Psychiatry and Turku Brain and Mind Center, FinnBrain Birth Cohort Study, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Medicine, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
| | - C Tzourio
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France
| | - É Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - P A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, Quebec, Canada
| | - S L Valk
- Institute for Neuroscience and Medicine 7, Forschungszentrum Jülich, Jülich, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - T van Amelsvoort
- Department of Psychiatry and Neurosychology, Maastricht University, Maastricht, The Netherlands
| | - S N Vandekar
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Vasung
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - L W Victoria
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - S Villeneuve
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - P E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - K Wagstyl
- Wellcome Centre for Human Neuroimaging, London, UK
| | - Y S Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- National Basic Science Data Center, Beijing, China
- Research Center for Lifespan Development of Brain and Mind, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - S K Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA
| | - V Warrier
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - E Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - M L Westwater
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - H C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - A V Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
- Faculty of Medicine, CRC 1052 'Obesity Mechanisms', University of Leipzig, Leipzig, Germany
| | - N Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- National Basic Science Data Center, Beijing, China
- Research Center for Lifespan Development of Brain and Mind, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - B Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition and Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - H Yun
- Division of Newborn Medicine and Neuroradiology, Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - H J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - A Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg, Sweden
| | - J H Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - H Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - A Zugman
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD), Sao Poalo, Brazil
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Psychiatry, Escola Paulista de Medicina, São Paulo, Brazil
| | - X N Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- National Basic Science Data Center, Beijing, China
- Research Center for Lifespan Development of Brain and Mind, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Brain and Education, School of Education Science, Nanning Normal University, Nanning, China
| | - E T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - A F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| |
Collapse
|
135
|
Cox SR, Deary IJ. Brain and cognitive ageing: The present, and some predictions (…about the future). AGING BRAIN 2022; 2:100032. [PMID: 36908875 PMCID: PMC9997131 DOI: 10.1016/j.nbas.2022.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Experiencing decline in one's cognitive abilities is among the most feared aspects of growing old [53]. Age-related cognitive decline carries a huge personal, societal, and financial cost both in pathological ageing (such as dementias) and also within the non-clinical majority of the population. A projected 152 million people worldwide will suffer from dementia by 2050 [3]. The early stages of cognitive decline are much more prevalent than dementia, and can still impose serious limitations of performance on everyday activities, independence, and quality of life in older age [5], [60], [80]. Cognitive decline also predicts poorer health, adherence to medical regimens, and financial decision-making, and can herald dementia, illness, and death [6], [40]. Of course, when seeking to understand why some people experience more severe cognitive ageing than others, researchers have turned to the organ of thinking for clues about the nature, possible mechanisms, and determinants that might underpin more and less successful cognitive agers. However, that organ is relatively inaccessible, a limitation partly alleviated by advances in neuroimaging. Here we discuss lessons for cognitive and brain ageing that have come from neuroimaging research (especially structural brain imaging), what neuroimaging still has left to teach us, and our views on possible ways forward in this multidisciplinary field.
Collapse
Affiliation(s)
- Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Ian J. Deary
- Lothian Birth Cohorts, Department of Psychology, The University of Edinburgh, UK
| |
Collapse
|
136
|
Bittner N, Korf HW, Stumme J, Jockwitz C, Moebus S, Schmidt B, Dragano N, Caspers S. Multimodal investigation of the association between shift work and the brain in a population-based sample of older adults. Sci Rep 2022; 12:2969. [PMID: 35194054 PMCID: PMC8863881 DOI: 10.1038/s41598-022-05418-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
Neuropsychological studies reported that shift workers show reduced cognitive performance and circadian dysfunctions which may impact structural and functional brain networks. Here we tested the hypothesis whether night shift work is associated with resting-state functional connectivity (RSFC), cortical thickness and gray matter volume in participants of the 1000BRAINS study for whom information on night shift work and imaging data were available. 13 PRESENT and 89 FORMER night shift workers as well as 430 control participants who had never worked in shift (NEVER) met these criteria and were included in our study. No associations between night shift work, three graph-theoretical measures of RSFC of 7 functional brain networks and brain morphology were found after multiple comparison correction. Preceding multiple comparison correction, our results hinted at an association between more years of shift work and higher segregation of the visual network in PRESENT shift workers and between shift work experience and lower gray matter volume of the left thalamus. Extensive neuropsychological investigations supplementing objective imaging methodology did not reveal an association between night shift work and cognition after multiple comparison correction. Our pilot study suggests that night shift work does not elicit general alterations in brain networks and affects the brain only to a limited extent. These results now need to be corroborated in studies with larger numbers of participants.
Collapse
Affiliation(s)
- Nora Bittner
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, Universitaetsstraße 1, 40225, Duesseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52428, Juelich, Germany.
| | - Horst-Werner Korf
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, Universitaetsstraße 1, 40225, Duesseldorf, Germany
| | - Johanna Stumme
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, Universitaetsstraße 1, 40225, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52428, Juelich, Germany
| | - Christiane Jockwitz
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, Universitaetsstraße 1, 40225, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52428, Juelich, Germany
| | - Susanne Moebus
- Institute of Urban Public Health, University of Duisburg-Essen, 45122, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, 45130, Essen, Germany
| | - Nico Dragano
- Institute of Medical Sociology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, Universitaetsstraße 1, 40225, Duesseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52428, Juelich, Germany
- JARA-BRAIN, Juelich-Aachen Research Alliance, 52427, Juelich, Germany
| |
Collapse
|
137
|
Modabbernia A, Michelini G, Reichenberg A, Kotov R, Barch D, Frangou S. Neural Signatures of Data-Driven Psychopathology Dimensions at the Transition to Adolescence. Eur Psychiatry 2022; 65:e12. [PMID: 35067249 PMCID: PMC8853849 DOI: 10.1192/j.eurpsy.2021.2262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background One of the challenges in human neuroscience is to uncover associations between brain organization and psychopathology in order to better understand the biological underpinnings of mental disorders. Here, we aimed to characterize the neural correlates of psychopathology dimensions obtained using two conceptually different data-driven approaches. Methods Dimensions of psychopathology that were either maximally dissociable or correlated were respectively extracted by independent component analysis (ICA) and exploratory factor analysis (EFA) applied to the Childhood Behavior Checklist items from 9- to 10-year-olds (n = 9983; 47.8% female, 50.8% white) participating in the Adolescent Brain Cognitive Development study. The patterns of brain morphometry, white matter integrity and resting-state connectivity associated with each dimension were identified using kernel-based regularized least squares and compared between dimensions using Spearman’s correlation coefficient. Results ICA identified three psychopathology dimensions, representing opposition–disinhibition, cognitive dyscontrol, and negative affect, with distinct brain correlates. Opposition–disinhibition was negatively associated with cortical surface area, cognitive dyscontrol was negatively associated with anatomical and functional dysconnectivity while negative affect did not show discernable associations with any neuroimaging measure. EFA identified three dimensions representing broad externalizing, neurodevelopmental, and broad Internalizing problems with partially overlapping brain correlates. All EFA-derived dimensions were negatively associated with cortical surface area, whereas measures of functional and structural connectivity were associated only with the neurodevelopmental dimension. Conclusions This study highlights the importance of cortical surface area and global connectivity for psychopathology in preadolescents and provides evidence for dissociable psychopathology dimensions with distinct brain correlates.
Collapse
|
138
|
Doucet GE, Hamlin N, West A, Kruse JA, Moser DA, Wilson TW. Multivariate patterns of brain-behavior associations across the adult lifespan. Aging (Albany NY) 2022; 14:161-194. [PMID: 35013005 PMCID: PMC8791210 DOI: 10.18632/aging.203815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
The nature of brain-behavior covariations with increasing age is poorly understood. In the current study, we used a multivariate approach to investigate the covariation between behavioral-health variables and brain features across adulthood. We recruited healthy adults aged 20–73 years-old (29 younger, mean age = 25.6 years; 30 older, mean age = 62.5 years), and collected structural and functional MRI (s/fMRI) during a resting-state and three tasks. From the sMRI, we extracted cortical thickness and subcortical volumes; from the fMRI, we extracted activation peaks and functional network connectivity (FNC) for each task. We conducted canonical correlation analyses between behavioral-health variables and the sMRI, or the fMRI variables, across all participants. We found significant covariations for both types of neuroimaging phenotypes (ps = 0.0004) across all individuals, with cognitive capacity and age being the largest opposite contributors. We further identified different variables contributing to the models across phenotypes and age groups. Particularly, we found behavior was associated with different neuroimaging patterns between the younger and older groups. Higher cognitive capacity was supported by activation and FNC within the executive networks in the younger adults, while it was supported by the visual networks’ FNC in the older adults. This study highlights how the brain-behavior covariations vary across adulthood and provides further support that cognitive performance relies on regional recruitment that differs between older and younger individuals.
Collapse
Affiliation(s)
- Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA.,Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Noah Hamlin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Anna West
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Jordanna A Kruse
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Dominik A Moser
- Institute of Psychology, University of Bern, Bern, Switzerland.,Child and Adolescent Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA.,Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
139
|
Thompson PM, Jahanshad N, Schmaal L, Turner JA, Winkler AM, Thomopoulos SI, Egan GF, Kochunov P. The Enhancing NeuroImaging Genetics through Meta-Analysis Consortium: 10 Years of Global Collaborations in Human Brain Mapping. Hum Brain Mapp 2022; 43:15-22. [PMID: 34612558 PMCID: PMC8675422 DOI: 10.1002/hbm.25672] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
This Special Issue of Human Brain Mapping is dedicated to a 10-year anniversary of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. It reports updates from a broad range of international neuroimaging projects that pool data from around the world to answer fundamental questions in neuroscience. Since ENIGMA was formed in December 2009, the initiative grew into a worldwide effort with over 2,000 participating scientists from 45 countries, and over 50 working groups leading large-scale studies of human brain disorders. Over the last decade, many lessons were learned on how best to pool brain data from diverse sources. Working groups were created to develop methods to analyze worldwide data from anatomical and diffusion magnetic resonance imaging (MRI), resting state and task-based functional MRI, electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance spectroscopy (MRS). The quest to understand genetic effects on human brain development and disease also led to analyses of brain scans on an unprecedented scale. Genetic roadmaps of the human cortex were created by researchers worldwide who collaborated to perform statistically well-powered analyses of common and rare genetic variants on brain measures and rates of brain development and aging. Here, we summarize the 31 papers in this Special Issue, covering: (a) technical approaches to harmonize analysis of different types of brain imaging data, (b) reviews of the last decade of work by several of ENIGMA's clinical and technical working groups, and (c) new empirical papers reporting large-scale international brain mapping analyses in patients with substance use disorders, schizophrenia, bipolar disorders, major depression, posttraumatic stress disorder, obsessive compulsive disorder, epilepsy, and stroke.
Collapse
Affiliation(s)
- Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Lianne Schmaal
- OrygenParkvilleAustralia
- Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
| | | | - Anderson M. Winkler
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), BethesdaMarylandUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Gary F. Egan
- Monash Biomedical ImagingMonash UniversityMelbourneVictoriaAustralia
- Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research CenterUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
140
|
Buimer EEL, Brouwer RM, Mandl RCW, Pas P, Schnack HG, Hulshoff Pol HE. Adverse childhood experiences and fronto-subcortical structures in the developing brain. Front Psychiatry 2022; 13:955871. [PMID: 36276329 PMCID: PMC9582338 DOI: 10.3389/fpsyt.2022.955871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of adverse childhood experiences (ACEs) differs between individuals and depends on the type and timing of the ACE. The aim of this study was to assess the relation between various recently occurred ACEs and morphology in the developing brain of children between 8 and 11 years of age. We measured subcortical volumes, cortical thickness, cortical surface area and fractional anisotropy in regions of interest in brain scans acquired in 1,184 children from the YOUth cohort. ACEs were based on parent-reports of recent experiences and included: financial problems; parental mental health problems; physical health problems in the family; substance abuse in the family; trouble with police, justice or child protective services; change in household composition; change in housing; bereavement; divorce or conflict in the family; exposure to violence in the family and bullying victimization. We ran separate linear models for each ACE and each brain measure. Results were adjusted for the false discovery rate across regions of interest. ACEs were reported for 83% of children in the past year. Children were on average exposed to two ACEs. Substance abuse in the household was associated with larger cortical surface area in the left superior frontal gyrus, t(781) = 3.724, p FDR = 0.0077, right superior frontal gyrus, t(781) = 3.409, p FDR = 0.0110, left pars triangularis, t(781) = 3.614, p FDR = 0.0077, left rostral middle frontal gyrus, t(781) = 3.163, p FDR = 0.0195 and right caudal anterior cingulate gyrus, t(781) = 2.918, p FDR = 0.0348. Household exposure to violence (was associated with lower fractional anisotropy in the left and right cingulum bundle hippocampus region t(697) = -3.154, p FDR = 0.0101 and t(697) = -3.401, p FDR = 0.0085, respectively. Lower household incomes were more prevalent when parents reported exposure to violence and the mean parental education in years was lower when parents reported substance abuse in the family. No other significant associations with brain structures were found. Longer intervals between adversity and brain measurements and longitudinal measurements may reveal whether more evidence for the impact of ACEs on brain development will emerge later in life.
Collapse
Affiliation(s)
- Elizabeth E L Buimer
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Rachel M Brouwer
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
| | - René C W Mandl
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Pascal Pas
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Experimental Psychology, Utrecht University, Utrecht, Netherlands
| | - Hugo G Schnack
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Languages, Literature and Communication, Faculty of Humanities, Utrecht University, Utrecht, Netherlands
| | - Hilleke E Hulshoff Pol
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
141
|
Hosten N, Bülow R, Völzke H, Domin M, Schmidt CO, Teumer A, Ittermann T, Nauck M, Felix S, Dörr M, Markus MRP, Völker U, Daboul A, Schwahn C, Holtfreter B, Mundt T, Krey KF, Kindler S, Mksoud M, Samietz S, Biffar R, Hoffmann W, Kocher T, Chenot JF, Stahl A, Tost F, Friedrich N, Zylla S, Hannemann A, Lotze M, Kühn JP, Hegenscheid K, Rosenberg C, Wassilew G, Frenzel S, Wittfeld K, Grabe HJ, Kromrey ML. SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center. Healthcare (Basel) 2021; 10:33. [PMID: 35052197 PMCID: PMC8775435 DOI: 10.3390/healthcare10010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The Study of Health in Pomerania (SHIP), a population-based study from a rural state in northeastern Germany with a relatively poor life expectancy, supplemented its comprehensive examination program in 2008 with whole-body MR imaging at 1.5 T (SHIP-MR). We reviewed more than 100 publications that used the SHIP-MR data and analyzed which sequences already produced fruitful scientific outputs and which manuscripts have been referenced frequently. Upon reviewing the publications about imaging sequences, those that used T1-weighted structured imaging of the brain and a gradient-echo sequence for R2* mapping obtained the highest scientific output; regarding specific body parts examined, most scientific publications focused on MR sequences involving the brain and the (upper) abdomen. We conclude that population-based MR imaging in cohort studies should define more precise goals when allocating imaging time. In addition, quality control measures might include recording the number and impact of published work, preferably on a bi-annual basis and starting 2 years after initiation of the study. Structured teaching courses may enhance the desired output in areas that appear underrepresented.
Collapse
Affiliation(s)
- Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Carsten Oliver Schmidt
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Felix
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Amro Daboul
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Christian Schwahn
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17475 Greifswald, Germany; (B.H.); (T.K.)
| | - Torsten Mundt
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Karl-Friedrich Krey
- Department of Orthodontics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Stefan Kindler
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany; (S.K.); (M.M.)
| | - Maria Mksoud
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany; (S.K.); (M.M.)
| | - Stefanie Samietz
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, 17489 Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17475 Greifswald, Germany; (B.H.); (T.K.)
| | - Jean-Francois Chenot
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Andreas Stahl
- Clinic of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany; (A.S.); (F.T.)
| | - Frank Tost
- Clinic of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany; (A.S.); (F.T.)
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephanie Zylla
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Anke Hannemann
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Jens-Peter Kühn
- Institute and Policlinic of Diagnostic and Interventional Radiology, Medical University, Carl-Gustav Carus, 01307 Dresden, Germany;
| | - Katrin Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Christian Rosenberg
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Georgi Wassilew
- Clinic of Orthopedics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Site Greifswald, 17489 Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Site Greifswald, 17489 Greifswald, Germany
| | - Marie-Luise Kromrey
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
- Correspondence:
| |
Collapse
|
142
|
Ott LR, Penhale SH, Taylor BK, Lew BJ, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. Neuroimage 2021; 244:118552. [PMID: 34517128 PMCID: PMC8685767 DOI: 10.1016/j.neuroimage.2021.118552] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While numerous studies have examined the developmental trajectory of task-based neural oscillations during childhood and adolescence, far less is known about the evolution of spontaneous cortical activity during this time period. Likewise, many studies have shown robust sex differences in task-based oscillations during this developmental period, but whether such sex differences extend to spontaneous activity is not understood. METHODS Herein, we examined spontaneous cortical activity in 111 typically-developing youth (ages 9-15 years; 55 male). Participants completed a resting state magnetoencephalographic (MEG) recording and a structural MRI. MEG data were source imaged and the power within five canonical frequency bands (delta, theta, alpha, beta, gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially-specific effects of age, sex, and their interaction. RESULTS We found robust increases in power with age in all frequencies except delta, which decreased over time, with findings largely confined to frontal cortices. Sex effects were distributed across frontal and temporal regions; females tended to have greater delta and beta power, whereas males had greater alpha. Importantly, there was a significant age-by-sex interaction in theta power, such that males exhibited decreasing power with age while females showed increasing power with age in the bilateral superior temporal cortices. DISCUSSION These data suggest that the strength of spontaneous activity undergoes robust change during the transition from childhood to adolescence (i.e., puberty onset), with intriguing sex differences in some cortical areas. Future developmental studies should probe task-related oscillations and spontaneous activity in parallel.
Collapse
Affiliation(s)
- Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samantha H Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
143
|
Siafarikas N, Alnæs D, Monereo-Sanchez J, Lund MJ, Selbaek G, Stylianou-Korsnes M, Persson K, Barca ML, Almdahl IS, Fladby T, Aarsland D, Andreassen OA, Westlye LT. Neuropsychiatric symptoms and brain morphology in patients with mild cognitive impairment and Alzheimer's disease with dementia. Int Psychogeriatr 2021; 33:1217-1228. [PMID: 34399870 DOI: 10.1017/s1041610221000934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present associations between neuropsychiatric symptoms (NPS) and brain morphology in a large sample of patients with mild cognitive impairment (MCI) and Alzheimer's disease with dementia (AD dementia).Several studies assessed NPS factor structure in MCI and AD dementia, but we know of no study that tested for associations between NPS factors and brain morphology. The use of factor scores increases parsimony and power. For transparency, we performed an additional analysis with selected Neuropsychiatric Inventory - Questionnaire (NPI-Q) items. Including regional cortical thickness, cortical and subcortical volumes, we examined associations between NPS and brain morphology across the whole brain in an unbiased fashion. We reported both statistical significance and effect sizes, using linear models adjusted for multiple comparisons by false discovery rate (FDR). Moreover, we included an interaction term for diagnosis and could thereby compare associations of NPS and brain morphology between MCI and AD dementia.We found an association between the factor elation and thicker right anterior cingulate cortex across MCI and AD dementia. Associations between the factors depression to thickness of the banks of the left superior temporal sulcus and psychosis to the left post-central volume depended on diagnosis: in MCI these associations were positive, in AD dementia negative.Our findings indicate that NPS in MCI and AD dementia are not exclusively associated with atrophy and support previous findings of associations between NPS and mainly frontotemporal brain structures. OBJECTIVES Neuropsychiatric symptoms (NPS) are common in mild cognitive impairment (MCI) and Alzheimer’s disease with dementia (AD dementia), but their brain structural correlates are unknown. We tested for associations between NPS and MRI-based cortical and subcortical morphometry in patients with MCI and AD dementia. DESIGN Cross-sectional. SETTINGS Conducted in Norway. PARTICIPANTS Patients with MCI (n = 102) and AD dementia (n = 133) from the Memory Clinic and the Geriatric Psychiatry Unit at Oslo University Hospital. MEASUREMENTS Neuropsychiatric Inventory – Questionnaire (NPI-Q) severity indices were reduced using principal component analysis (PCA) and tested for associations with 170 MRI features using linear models and false discovery rate (FDR) adjustment. We also tested for differences between groups. For transparency, we added analyses with selected NPI-Q items. RESULTS PCA revealed four factors: elation, psychosis, depression, and motor behavior.FDR adjustment revealed a significant positive association (B = 0.20, pFDR < 0.005) between elation and thickness of the right caudal anterior cingulate cortex (ACC) across groups, and significant interactions between diagnosis and psychosis (B = −0.48, pFDR < 0.0010) on the left post-central volume and between diagnosis and depression (B = −0.40, pFDR < 0.005) on the thickness of the banks of the left superior temporal sulcus. Associations of apathy, anxiety, and nighttime behavior to the left temporal lobe were replicated. CONCLUSIONS The positive association between elation and ACC thickness suggests that mechanisms other than atrophy underly elation. Interactions between diagnosis and NPS on MRI features suggest different mechanisms of NPS in our MCI and AD dementia samples. The results contribute to a better understanding of NPS brain mechanisms in MCI and AD dementia.
Collapse
Affiliation(s)
- Nikias Siafarikas
- Department of Geriatric Psychiatry, Akershus University Hospital, Lørenskog, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Jennifer Monereo-Sanchez
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martina J Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Geir Selbaek
- Norwegian National Advisory Unit on Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria Stylianou-Korsnes
- Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin Persson
- Norwegian National Advisory Unit on Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria Lage Barca
- Norwegian National Advisory Unit on Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Ina Selseth Almdahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Old Age Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre of Age-Related Medicine, University Hospital Stavanger, Stavanger, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
144
|
Zugman A, Winkler AM, Pine DS. Recent advances in understanding neural correlates of anxiety disorders in children and adolescents. Curr Opin Psychiatry 2021; 34:617-623. [PMID: 34475352 PMCID: PMC8490291 DOI: 10.1097/yco.0000000000000743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Anxiety disorders are some of the most common psychiatric diagnoses in children and adolescents, but attempts to improve outcome prediction and treatment have stalled. This review highlights recent findings on neural indices related to fear and anxiety that provide novel directions for attempts to create such improvements. RECENT FINDINGS Stimuli capable of provoking fear engage many brain regions, including the amygdala, medial prefrontal cortex, hippocampus, and bed nucleus of the stria terminalis. Studies in rodents suggest that sustained, low-level threats are particularly likely to engage the bed nucleus of the stria terminalis, which appears to malfunction in anxiety disorders. However, anxiety disorders, like most mental illnesses, appear less likely to arise from alterations in isolated brain regions than in distributed brain circuitry. Findings from large-scale studies of brain connectivity may reveal signs of such broadly distributed dysfunction, though available studies report small effect sizes. Finally, we review novel approaches with promise for using such large-scale data to detect clinically relevant, broadly distributed circuitry dysfunction. SUMMARY Recent work maps neural circuitry related to fear and anxiety. This circuitry may malfunction in anxiety disorders. Integrating findings from animal studies, big datasets, and novel analytical approaches may generate clinically relevant insights based on this recent work.
Collapse
Affiliation(s)
- Andre Zugman
- Section on Development and Affective Neuroscience, Emotion and Development Branch. National Institute of Mental Health, National Institutes of Health - Bethesda, MD
| | - Anderson M. Winkler
- Section on Development and Affective Neuroscience, Emotion and Development Branch. National Institute of Mental Health, National Institutes of Health - Bethesda, MD
| | - Daniel S. Pine
- Section on Development and Affective Neuroscience, Emotion and Development Branch. National Institute of Mental Health, National Institutes of Health - Bethesda, MD
| |
Collapse
|
145
|
Fox-Fuller JT, Torrico-Teave H, d'Oleire Uquillas F, Chen K, Su Y, Chen Y, Brickhouse M, Sanchez JS, Aguero C, Jacobs HIL, Hampton O, Guzmán-Vélez E, Vila-Castelar C, Aguirre-Acevedo DC, Baena A, Artola A, Martinez J, Pluim CF, Alvarez S, Ochoa-Escudero M, Reiman EM, Sperling RA, Lopera F, Johnson KA, Dickerson BC, Quiroz YT. Cortical thickness across the lifespan in a Colombian cohort with autosomal-dominant Alzheimer's disease: A cross-sectional study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12233. [PMID: 34541287 PMCID: PMC8438687 DOI: 10.1002/dad2.12233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Cortical thinning is a marker of neurodegeneration in Alzheimer's disease (AD). We investigated the age-related trajectory of cortical thickness across the lifespan (9-59 years) in a Colombian kindred with autosomal dominant AD (ADAD). METHODS Two hundred eleven participants (105 presenilin-1 [PSEN1] E280A mutation carriers, 16 with cognitive impairment; 106 non-carriers) underwent magnetic resonance imaging. A piecewise linear regression identified change-points in the age-related trajectory of cortical thickness in carriers and non-carriers. RESULTS Unimpaired carriers exhibited elevated cortical thickness compared to non-carriers, and thickness more negatively correlated with age and cognition in carriers relative to non-carriers. We found increased cortical thickness in child carriers, after which thickness steadied compared to non-carriers prior to a rapid reduction in the decade leading up to the expected age at cognitive impairment in carriers. DISCUSSION Findings suggest that cortical thickness may fluctuate across the ADAD lifespan, from early-life increased thickness to atrophy proximal to clinical onset.
Collapse
Affiliation(s)
- Joshua T Fox-Fuller
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
- Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Heirangi Torrico-Teave
- Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Federico d'Oleire Uquillas
- Department of Neurology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
- Princeton Neuroscience Institute Princeton University Princeton New Jersey USA
| | - Kewei Chen
- Banner Alzheimer's Institute Phoenix Arizona USA
| | - Yi Su
- Banner Alzheimer's Institute Phoenix Arizona USA
| | - Yinghua Chen
- Banner Alzheimer's Institute Phoenix Arizona USA
| | - Michael Brickhouse
- Department of Neurology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Justin S Sanchez
- Department of Neurology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Cinthya Aguero
- MassGeneral Institute for Neurodegenerative Disease Charlestown Massachusetts USA
| | - Heidi I L Jacobs
- Division of Nuclear Medicine Department of Radiology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
- School for Mental Health and Neuroscience Alzheimer Centre Limburg Maastricht University Maastricht The Netherlands
| | - Olivia Hampton
- Department of Neurology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Edmarie Guzmán-Vélez
- Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Clara Vila-Castelar
- Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | | | - Ana Baena
- Grupo de Neurociencas Universidad de Antioquia Medellín Antioquia Colombia
| | - Arabiye Artola
- Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Jairo Martinez
- Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Celina F Pluim
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
- Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
| | - Sergio Alvarez
- Department of Radiology Hospital Pablo Tobon Uribe Medellín Colombia
| | | | | | - Reisa A Sperling
- Department of Neurology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
- Athinoula A. Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts USA
- Department of Neurology Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Francisco Lopera
- Grupo de Neurociencas Universidad de Antioquia Medellín Antioquia Colombia
| | - Keith A Johnson
- Division of Nuclear Medicine Department of Radiology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
- Athinoula A. Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts USA
| | - Bradford C Dickerson
- Department of Neurology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
- Athinoula A. Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts USA
| | - Yakeel T Quiroz
- Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
- Department of Neurology Massachusetts General Hospital Harvard Medical School Boston Massachusetts USA
- Grupo de Neurociencas Universidad de Antioquia Medellín Antioquia Colombia
- Athinoula A. Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts USA
| |
Collapse
|
146
|
Demir-Lira ÖE, Asaridou SS, Nolte C, Small SL, Goldin-Meadow S. Parent Language Input Prior to School Forecasts Change in Children's Language-Related Cortical Structures During Mid-Adolescence. Front Hum Neurosci 2021; 15:650152. [PMID: 34408634 PMCID: PMC8366586 DOI: 10.3389/fnhum.2021.650152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Children differ widely in their early language development, and this variability has important implications for later life outcomes. Parent language input is a strong experiential factor predicting the variability in children's early language skills. However, little is known about the brain or cognitive mechanisms that underlie the relationship. In addressing this gap, we used longitudinal data spanning 15 years to examine the role of early parental language input that children receive during preschool years in the development of brain structures that support language processing during school years. Using naturalistic parent-child interactions, we measured parental language input (amount and complexity) to children between the ages of 18 and 42 months (n = 23). We then assessed longitudinal changes in children's cortical thickness measured at five time points between 9 and 16 years of age. We focused on specific regions of interest (ROIs) that have been shown to play a role in language processing. Our results support the view that, even after accounting for important covariates such as parental intelligence quotient (IQ) and education, the amount and complexity of language input to a young child prior to school forecasts the rate of change in cortical thickness during the 7-year period from 5½ to 12½ years later. Examining the proximal correlates of change in brain and cognitive differences has the potential to inform targets for effective prevention and intervention strategies.
Collapse
Affiliation(s)
- Ö Ece Demir-Lira
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States.,DeLTA Center, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Salomi S Asaridou
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Collin Nolte
- Department of Biostatistics, University of Iowa, Iowa City, IA, United States
| | - Steven L Small
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | | |
Collapse
|
147
|
Doucet GE, Baker S, Wilson TW, Kurz MJ. Weaker Connectivity of the Cortical Networks Is Linked with the Uncharacteristic Gait in Youth with Cerebral Palsy. Brain Sci 2021; 11:brainsci11081065. [PMID: 34439684 PMCID: PMC8391166 DOI: 10.3390/brainsci11081065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebral palsy (CP) is the most prevalent pediatric neurologic impairment and is associated with major mobility deficiencies. This has led to extensive investigations of the sensorimotor network, with far less research focusing on other major networks. The aim of this study was to investigate the functional connectivity (FC) of the main sensory networks (i.e., visual and auditory) and the sensorimotor network, and to link FC to the gait biomechanics of youth with CP. Using resting-state functional magnetic resonance imaging, we first identified the sensorimotor, visual and auditory networks in youth with CP and neurotypical controls. Our analysis revealed reduced FC among the networks in the youth with CP relative to the controls. Notably, the visual network showed lower FC with both the sensorimotor and auditory networks. Furthermore, higher FC between the visual and sensorimotor cortices was associated with larger step length (r = 0.74, pFDR = 0.04) in youth with CP. These results confirm that CP is associated with functional brain abnormalities beyond the sensorimotor network, suggesting abnormal functional integration of the brain’s motor and primary sensory systems. The significant association between abnormal visuo-motor FC and gait could indicate a link with visuomotor disorders in this patient population.
Collapse
|
148
|
Hagan KE, Bohon C. Subcortical brain volume and cortical thickness in adolescent girls and women with binge eating. Int J Eat Disord 2021; 54:1527-1536. [PMID: 34061404 PMCID: PMC9044118 DOI: 10.1002/eat.23563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Alterations in brain structure have been implicated in the onset and acute phases of several forms of psychopathology. However, there is a dearth of research investigating brain structure in persons with binge eating, contributing to poor understanding of mechanisms associated with binge eating. METHOD Adolescent girls and women (aged 14-35 years) with binge eating (n = 56) and group age-matched girls and women without binge eating (n = 26) completed structural magnetic resonance imaging (MRI) scans and interview-based and self-report assessments of eating disorder and general psychopathology. MRI data were processed using FreeSurfer. Analysis of covariance tested mean differences in subcortical volume and cortical thickness of a priori selected regions of interest between binge-eating and non-binge-eating groups, controlling for age, body mass index, purging frequency, depression, and medication use. Exploratory partial correlations tested associations between brain structure and eating disorder symptoms within participants with binge eating. RESULTS We did not observe differences in regional subcortical volume and cortical thickness between girls and women with and without binge eating. Within participants with binge eating, severity of attitudinal eating disorder symptoms was inversely associated with caudal middle frontal gyrus, right precentral gyrus, right postcentral gyrus, superior parietal, left inferior parietal thickness, and left accumbens volume; however, these associations would not survive multiple-comparison corrections. DISCUSSION Correlations between attitudinal eating disorder symptoms and frontoparietal thinning may represent a state marker of binge eating. Future research could investigate whether frontoparietal thinning worsens with illness duration or persists beyond binge eating cessation.
Collapse
Affiliation(s)
- Kelsey E. Hagan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
149
|
Tsuchida A, Laurent A, Crivello F, Petit L, Joliot M, Pepe A, Beguedou N, Gueye MF, Verrecchia V, Nozais V, Zago L, Mellet E, Debette S, Tzourio C, Mazoyer B. The MRi-Share database: brain imaging in a cross-sectional cohort of 1870 university students. Brain Struct Funct 2021; 226:2057-2085. [PMID: 34283296 DOI: 10.1007/s00429-021-02334-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1870 young healthy adults, aged 18-35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility-weighted (SWI), and resting-state functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In addition, we present preliminary results on associations of some of these brain image-derived phenotypes at the whole brain level with both age and sex, in the subsample of 1722 individuals aged less than 26 years. We demonstrate that the post-adolescence period is characterized by changes in both structural and microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure and function occurring in this critical period at the interface of late maturation and early ageing.
Collapse
Affiliation(s)
- Ami Tsuchida
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Alexandre Laurent
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Antonietta Pepe
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Naka Beguedou
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Marie-Fateye Gueye
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Violaine Verrecchia
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Laure Zago
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Emmanuel Mellet
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Stéphanie Debette
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Christophe Tzourio
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France. .,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France. .,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France. .,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France. .,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France.
| |
Collapse
|
150
|
West A, Hamlin N, Frangou S, Wilson TW, Doucet GE. Person-Based Similarity Index for Cognition and Its Neural Correlates in Late Adulthood: Implications for Cognitive Reserve. Cereb Cortex 2021; 32:397-407. [PMID: 34255824 DOI: 10.1093/cercor/bhab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Healthy aging is typically associated with some level of cognitive decline, but there is substantial variation in such decline among older adults. The mechanisms behind such heterogeneity remain unclear but some have suggested a role for cognitive reserve. In this work, we propose the "person-based similarity index" for cognition (PBSI-Cog) as a proxy for cognitive reserve in older adults, and use the metric to quantify similarity between the cognitive profiles of healthy older and younger participants. In the current study, we computed this metric in 237 healthy older adults (55-88 years) using a reference group of 156 younger adults (18-39 years) taken from the Cambridge Center for Ageing and Neuroscience dataset. Our key findings revealed that PBSI-Cog scores in older adults were: 1) negatively associated with age (rho = -0.25, P = 10-4) and positively associated with higher education (t = 2.4, P = 0.02), 2) largely explained by fluid intelligence and executive function, and 3) predicted more by functional connectivity between lower- and higher-order resting-state networks than brain structural morphometry or education. Particularly, we found that higher segregation between the sensorimotor and executive networks predicted higher PBSI-Cog scores. Our results support the notion that brain network functional organization may underly variability in cognitive reserve in late adulthood.
Collapse
Affiliation(s)
- Anna West
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Noah Hamlin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Sophia Frangou
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| |
Collapse
|