101
|
Faienza MF, Farella I, Khalil M, Portincasa P. Converging Pathways between Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Diabetes in Children. Int J Mol Sci 2024; 25:9924. [PMID: 39337412 PMCID: PMC11432101 DOI: 10.3390/ijms25189924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
In the past thirty years, childhood obesity rates have risen significantly worldwide, affecting over 340 million children in affluent nations. This surge is intricately tied to metabolic disorders, notably insulin resistance, type 2 diabetes mellitus (T2DM), and the continually evolving spectrum of metabolic-associated (dysfunction) steatotic liver disease (MASLD). This review underscores the alarming escalation of childhood obesity and delves comprehensively into the evolving and dynamic changes of nomenclature surrounding diverse conditions of hepatic steatosis, from the initial recognition of non-alcoholic fatty liver disease (NAFLD) to the progressive evolution into MASLD. Moreover, it emphasizes the crucial role of pediatric endocrinologists in thoroughly and accurately investigating MASLD onset in children with T2DM, where each condition influences and exacerbates the progression of the other. This review critically highlights the inadequacies of current screening strategies and diagnosis, stressing the need for a paradigm shift. A proposed solution involves the integration of hepatic magnetic resonance imaging assessment into the diagnostic arsenal for children showing insufficient glycemic control and weight loss post-T2DM diagnosis, thereby complementing conventional liver enzyme testing. This holistic approach aims to significantly enhance diagnostic precision, fostering improved outcomes in this vulnerable high-risk pediatric population.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ilaria Farella
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| |
Collapse
|
102
|
Porwal M, Rastogi V, Chandra P, Sharma KK, Varshney P. Significance of Phytoconstituents in Modulating Cell Signalling Pathways for the Treatment of Pancreatic Cancer. REVISTA BRASILEIRA DE FARMACOGNOSIA 2024. [DOI: 10.1007/s43450-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 01/03/2025]
|
103
|
Fu L, Huang L, Gao Y, Zhu W, Cui Y, Wang S, Yan M, Li J, Duan J, Pan J, Li M. Investigating the efficacy of acupuncture in treating patients with metabolic-associated fatty liver disease: a protocol for a randomised controlled clinical trial. BMJ Open 2024; 14:e081293. [PMID: 39277205 PMCID: PMC11733782 DOI: 10.1136/bmjopen-2023-081293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/12/2024] [Indexed: 09/17/2024] Open
Abstract
INTRODUCTION Acupuncture is widely used for metabolic-associated fatty liver disease (MAFLD) treatment; however, the clinical efficacy has not been confirmed due to the lack of high-level evidence-based clinical practice. The purpose of this study is to design a research protocol that will be used to determine the efficacy of acupuncture versus sham acupuncture (SHA) for MAFLD treatment. METHODS AND ANALYSIS This will be a multicentre, randomised and sham-controlled trial. Ninety-eight participants with MAFLD will be enrolled in this trial. Participants will be randomly assigned in a 1:1 ratio to receive acupuncture or SHA for 12 weeks. The primary outcome is the rate of patients with a 30% relative decline in liver fat after 12 weeks of treatment in MRI-proton density fat fraction (MRI-PDFF), which will be obtained by quantitative chemical shift imaging such as the multipoint Dixon method at 0, 12 and 24 weeks. Secondary outcomes include the changes in the relative liver fat content measured by MRI-PDFF, magnetic resonance elastography, liver function, lipid metabolism, homeostatic model assessment for insulin resistance (HOMA-IR) and serum high sensitivity C reactive protein, which will be obtained at 0, 6, 12 and 24 weeks. Body measurement indicators (body mass index, waist circumference, hip circumference and waist-to-hip ratio) will be obtained at 0, 3, 6, 9, 12 and 24 weeks. The alteration in the gut microbiota composition and its metabolism will be assessed by 16S ribosomal RNA sequencing and liquid chromatography-mass spectrometry at 0 and 12 weeks. ETHICS AND DISSEMINATION This study protocol has been approved by the ethics committee of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine (2023-1347-114-01). The results of this study will be published in a peer-reviewed journal and presented at academic conferences. TRIAL REGISTRATION NUMBER ChiCTR2300075701.
Collapse
Affiliation(s)
- Lihong Fu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingying Huang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanchun Zhu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Cui
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shihao Wang
- Shi's Traumatology Medical Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meihua Yan
- Clinical Research Unit, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Acupuncture and Moxibustion, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junyi Duan
- Department of Acupuncture and Moxibustion, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jielu Pan
- Department of Digestive, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Li
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
104
|
Yuan H, Jung ES, Chae SW, Jung SJ, Daily JW, Park S. Biomarkers for Health Functional Foods in Metabolic Dysfunction-Associated Steatotic Liver Disorder (MASLD) Prevention: An Integrative Analysis of Network Pharmacology, Gut Microbiota, and Multi-Omics. Nutrients 2024; 16:3061. [PMID: 39339660 PMCID: PMC11434757 DOI: 10.3390/nu16183061] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disorder (MASLD) is increasingly prevalent globally, highlighting the need for preventive strategies and early interventions. This comprehensive review explores the potential of health functional foods (HFFs) to maintain healthy liver function and prevent MASLD through an integrative analysis of network pharmacology, gut microbiota, and multi-omics approaches. We first examined the biomarkers associated with MASLD, emphasizing the complex interplay of genetic, environmental, and lifestyle factors. We then applied network pharmacology to identify food components with potential beneficial effects on liver health and metabolic function, elucidating their action mechanisms. This review identifies and evaluates strategies for halting or reversing the development of steatotic liver disease in the early stages, as well as biomarkers that can evaluate the success or failure of such strategies. The crucial role of the gut microbiota and its metabolites for MASLD prevention and metabolic homeostasis is discussed. We also cover state-of-the-art omics approaches, including transcriptomics, metabolomics, and integrated multi-omics analyses, in research on preventing MASLD. These advanced technologies provide deeper insights into physiological mechanisms and potential biomarkers for HFF development. The review concludes by proposing an integrated approach for developing HFFs targeting MASLD prevention, considering the Korean regulatory framework. We outline future research directions that bridge the gap between basic science and practical applications in health functional food development. This narrative review provides a foundation for researchers and food industry professionals interested in developing HFFs to support liver health. Emphasis is placed on maintaining metabolic balance and focusing on prevention and early-stage intervention strategies.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - James W. Daily
- Department of R&D, Daily Manufacturing Inc., Rockwell, NC 28138, USA;
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro79bungil, Asan 31499, Republic of Korea
| |
Collapse
|
105
|
Thiele M, Pose E, Juanola A, Mellinger J, Ginès P. Population screening for cirrhosis. Hepatol Commun 2024; 8:e0512. [PMID: 39185917 PMCID: PMC11357699 DOI: 10.1097/hc9.0000000000000512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 08/27/2024] Open
Abstract
In response to the growing health crisis of liver-related morbidity and mortality, screening for liver cirrhosis has emerged as a promising strategy for early detection and timely intervention. By identifying individuals with severe fibrosis or compensated cirrhosis, screening holds the promise of enhancing treatment outcomes, delaying disease progression, and ultimately improving the quality of life of affected individuals. Clinical practice guidelines from international scientific societies currently recommend targeted screening strategies, investigating high-risk populations with known risk factors of liver disease. While there is good evidence that screening increases case finding in the population, and a growing number of studies indicate that screening may motivate beneficial lifestyle changes in patients with steatotic liver disease, there are major gaps in knowledge in need of clarification before screening programs of cirrhosis are implemented. Foremost, randomized trials are needed to ensure that screening leads to improved liver-related morbidity and mortality. If not, screening for cirrhosis could be unethical due to overdiagnosis, overtreatment, increased health care costs, negative psychological consequences of screening, and futile invasive investigations. Moreover, the tests used for screening need to be optimized toward lower false positive rates than the currently used FIB-4 while retaining few false negatives. Finally, barriers to adherence to screening and implementation of screening programs need to be elucidated. This review provides a comprehensive overview of the current landscape of screening strategies for liver cirrhosis and the promises and pitfalls of current methods for early cirrhosis detection.
Collapse
Affiliation(s)
- Maja Thiele
- Department of Gastroenterology and Hepatology, Center for Liver Research, Odense University Hospital, Odense, Denmark
- Department for Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Elisa Pose
- Liver Unit, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
- August Pi I Sunyer Biomedical Research Institute, Barcelona, Catalonia, Spain
- Centro de Investigación En Red de Enfermedades Hepáticas y Digestivas, Spain
- Faculty of Medicine and Health Sciences. University of Barcelona, Barcelona, Catalonia, Spain
| | - Adrià Juanola
- Liver Unit, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
- August Pi I Sunyer Biomedical Research Institute, Barcelona, Catalonia, Spain
- Centro de Investigación En Red de Enfermedades Hepáticas y Digestivas, Spain
- Faculty of Medicine and Health Sciences. University of Barcelona, Barcelona, Catalonia, Spain
| | - Jessica Mellinger
- Institute for Healthcare Policy and Innovation, University of Michigan, Michigan, USA
| | - Pere Ginès
- Liver Unit, Hospital Clínic of Barcelona, Barcelona, Catalonia, Spain
- August Pi I Sunyer Biomedical Research Institute, Barcelona, Catalonia, Spain
- Centro de Investigación En Red de Enfermedades Hepáticas y Digestivas, Spain
- Faculty of Medicine and Health Sciences. University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
106
|
Park HJ, Lee S, Lee JS. Differences in the prevalence of NAFLD, MAFLD, and MASLD according to changes in the nomenclature in a health check-up using MRI-derived proton density fat fraction. Abdom Radiol (NY) 2024; 49:3036-3044. [PMID: 38587630 DOI: 10.1007/s00261-024-04285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE International expert panels proposed new nomenclatures, metabolic dysfunction-associated fatty liver disease (MAFLD) in 2020 and metabolic dysfunction-associated steatotic liver disease (MASLD) in 2023, along with revised diagnostic criteria to replace non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the differences in NAFLD, MAFLD, and MASLD prevalence with changing nomenclature in a health check-up using magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) to assess hepatic steatosis. We also examined the prevalence of the sub-classifications of steatotic liver disease (SLD) and the differences in characteristics among the sub-categories. METHODS We included 844 participants who underwent liver MRI-PDFF at our health check-up clinic between January 2020 and November 2022. Hepatic steatosis was defined as MRI-PDFF ≥ 5%. Participants were categorized according to NAFLD, MAFLD, MASLD, and sub-classifications of SLD. RESULTS The prevalence rates of NAFLD, MAFLD, and MASLD were 25.9%, 29.5%, and 25.2%, respectively. 30.5% of the participants was categorized as SLD. The prevalence rates of the SLD sub-categories were 25.2% for MASLD, 3.7% for MASLD and alcohol-associated liver disease (MetALD), 0.1% for alcohol-associated liver disease, 1.3% for specific etiology SLD, and 0.1% for cryptogenic SLD. Compared with patients in the MASLD group, those in the MetALD group were younger, predominantly male, and exhibited higher levels of serum aspartate aminotransferase, gamma-glutamyl transpeptidase, and triglycerides. CONCLUSION The prevalences of NAFLD and MASLD assessed using MRI-PDFF were similar, with MASLD accounting for 97.3% of the patients with NAFLD. The separate MetALD sub-category may have clinical characteristics that differ from those of MASLD.
Collapse
Affiliation(s)
- Hee Jun Park
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sunyoung Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea.
| | - Jae Seung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| |
Collapse
|
107
|
Pan Z, Derbala M, AlNaamani K, Ghazinian H, Fan JG, Eslam M. MAFLD criteria are better than MASLD criteria at predicting the risk of chronic kidney disease. Ann Hepatol 2024; 29:101512. [PMID: 38710473 DOI: 10.1016/j.aohep.2024.101512] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION AND OBJECTIVES Fatty liver disease is a multisystem disease. Metabolic dysfunction-associated fatty liver disease (MAFLD) is a more accurate indicator of chronic kidney disease (CKD) than nonalcoholic fatty liver disease (NAFLD). However, the relationship between recently defined metabolic dysfunction-associated steatotic liver disease (MASLD) and CKD is currently unclear. The objective of this cross-sectional study was to investigate the prevalence of CKD and albuminuria among individuals diagnosed with either MAFLD or MASLD. PATIENTS AND METHODS This study involved 5,492 participants who provided biochemical marker and liver ultrasound data from the U.S. National Health and Nutrition Examination Survey (2017-2020). Multiple logistic regression analyses were conducted to assess the independent associations of nonoverlapping MAFLD and MASLD with the presence of CKD or albuminuria (urinary albumin-to-creatinine ratio ≥ 3 mg/mmol). RESULTS MAFLD and MASLD were identified in 47% and 44.5% of the participants, respectively. Individuals with MAFLD-only had a greater prevalence of CKD (24.7% vs. 8.3 %, P < 0.006) and albuminuria (18.6% vs. 5%, P < 0.01) than did those with MASLD-only. Importantly, after adjusting for factors such as sex, age, ethnicity, and alcohol use, it was demonstrated that individuals in the MAFLD-only group had a 4.73-fold greater likelihood of having prevalent CKD than those in the MASLD-only group (P < 0.03). CONCLUSIONS The MAFLD criteria better identify patients with CKD than do the MASLD criteria. Therefore, it is suggested that the MASLD criteria be reconsidered, as currently, the justification for changing from MAFLD to MASLD criteria may not be appropriate.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Moutaz Derbala
- Gastroenterology and Hepatology Department, Hamad Medical Corporation, Doha, Qatar
| | - Khalid AlNaamani
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Armed Forces Hospital, Muscat, Oman
| | - Hasmik Ghazinian
- Gastroenterology and Hepatology Department, Medical Scientific Center, Yerevan, Armenia
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
108
|
A new Korean nomenclature for steatotic liver disease. Clin Mol Hepatol 2024; 30:S214-S216. [PMID: 38946461 PMCID: PMC11493363 DOI: 10.3350/cmh.2024.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/02/2024] Open
|
109
|
A new Korean nomenclature for steatotic liver disease. Clin Mol Hepatol 2024; 30:S214-S216. [PMID: 38946461 PMCID: PMC11391133 DOI: 10.5009/gnl240278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024] Open
|
110
|
Emara MH, Soliman H, Said EM, Elbatae H, Elazab M, Elhefnawy S, Zaher TI, Abdel-Razik A, Elnadry M. Intermittent fasting and the liver: Focus on the Ramadan model. World J Hepatol 2024; 16:1070-1083. [PMID: 39221099 PMCID: PMC11362902 DOI: 10.4254/wjh.v16.i8.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Intermittent fasting (IF) is an intervention that involves not only dietary modifications but also behavioral changes with the main core being a period of fasting alternating with a period of controlled feeding. The duration of fasting differs from one regimen to another. Ramadan fasting (RF) is a religious fasting for Muslims, it lasts for only one month every one lunar year. In this model of fasting, observers abstain from food and water for a period that extends from dawn to sunset. The period of daily fasting is variable (12-18 hours) as Ramadan rotates in all seasons of the year. Consequently, longer duration of daily fasting is observed during the summer. In fact, RF is a peculiar type of IF. It is a dry IF as no water is allowed during the fasting hours, also there are no calorie restrictions during feeding hours, and the mealtime is exclusively nighttime. These three variables of the RF model are believed to have a variable impact on different liver diseases. RF was evaluated by different observational and interventional studies among patients with non-alcoholic fatty liver disease and it was associated with improvements in anthropometric measures, metabolic profile, and liver biochemistry regardless of the calorie restriction among lean and obese patients. The situation is rather different for patients with liver cirrhosis. RF was associated with adverse events among patients with liver cirrhosis irrespective of the underlying etiology of cirrhosis. Cirrhotic patients developed new ascites, ascites were increased, had higher serum bilirubin levels after Ramadan, and frequently developed hepatic encephalopathy and acute upper gastrointestinal bleeding. These complications were higher among patients with Child class B and C cirrhosis, and some fatalities occurred due to fasting. Liver transplant recipients as a special group of patients, are vulnerable to dehydration, fluctuation in blood immunosuppressive levels, likelihood of deterioration and hence observing RF without special precautions could represent a real danger for them. Patients with Gilbert syndrome can safely observe RF despite the minor elevations in serum bilirubin reported during the early days of fasting.
Collapse
Affiliation(s)
- Mohamed H Emara
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
- Department of Medicine, Alyousif Hospital, Alkhobar 34622, Saudi Arabia.
| | - Hanan Soliman
- Department of Tropical Medicine and Infectious Diseases, Tanta University, Tanta 31512, Egypt
| | - Ebada M Said
- Department of Hepatology, Gastroenterology and Infectious Diseases, Benha University, Benha 13511, Egypt
| | - Hassan Elbatae
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Mostafa Elazab
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Shady Elhefnawy
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Tarik I Zaher
- Department of Tropical Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Abdel-Razik
- Department of Tropical Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Elnadry
- Department of Hepato-Gastroenterology and Infectious Diseases, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
111
|
Xu M, Zhan Y, Gao G, Zhu L, Wu T, Xin G. Associations of five dietary indices with metabolic dysfunction-associated steatotic liver disease and liver fibrosis among the United States population. Front Nutr 2024; 11:1446694. [PMID: 39221157 PMCID: PMC11363712 DOI: 10.3389/fnut.2024.1446694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aims The role of dietary factors in metabolic dysfunction-associated steatotic liver disease (MASLD)-which represents a new definition of liver steatosis and metabolic dysfunction- remains unclear. This study aimed to explore the relationships between dietary indices and MASLD. Methods We analyzed data from the United States National Health and Nutrition Examination Survey (NHANES) 2017-2020 cycle, including 4,690 participants with complete vibration-controlled transient elastography (VCTE) data. Multivariate logistic regression models adjusted for covariates were used to assess the association between dietary indices, MASLD, and MASLD-associated liver fibrosis (MASLD-LF). Restricted cubic spline (RCS) models and subgroup analyses were also performed. Results The Alternative Healthy Eating Index (AHEI), Healthy Eating Index-2020 (HEI-2020), Dietary Approaches to Stop Hypertension Index (DASHI), and Mediterranean Diet Index (MEDI) were found to be negatively associated with MASLD risk, while the Dietary Inflammatory Index (DII) had a positive association. The highest quartile of MEDI was linked to a 44% reduction in MASLD risk [Q1 vs. Q4 odds ratio (OR): 0.56; 95% confidence interval (CI): 0.34-0.94, P for trend: 0.012]. DASHI was uniquely associated with a reduced risk of MASLD-LF (continuous OR: 0.79; 95% CI: 0.64-0.97; p for trend: 0.003). Our RCS curves indicated a nonlinear association with DASHI-MASLD (p-overall: 0.0001, p-nonlinear: 0.0066). Subgroup analyses showed robust associations among the non-Hispanic White and highly educated populations. Conclusion Specific dietary patterns were associated with reduced risks of MASLD and MASLD-LF. The DASHI, in particular, showed a significant protective effect against MASLD-LF. These findings suggest potential dietary interventions for managing MASLD and MASLD-LF, although large-scale randomized controlled trials are warranted to validate these findings.
Collapse
Affiliation(s)
- Min Xu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Yamei Zhan
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Guohui Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Li Zhu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Tong Wu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Guijie Xin
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
112
|
Ivancovsky Wajcman D, Byrne CJ, Dillon JF, Brennan PN, Villota-Rivas M, Younossi ZM, Allen AM, Crespo J, Gerber LH, Lazarus JV. A narrative review of lifestyle management guidelines for metabolic dysfunction-associated steatotic liver disease. Hepatology 2024:01515467-990000000-00998. [PMID: 39167567 DOI: 10.1097/hep.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease management guidelines have been published worldwide; we aimed to summarize, categorize, and compare their lifestyle intervention recommendations. APPROACH AND RESULTS We searched metabolic dysfunction-associated steatotic liver disease/NAFLD management guidelines published between January 1, 2013, and June 31, 2024, through databases including PubMed/MEDLINE, Cochrane, and CINAHL. In total, 35 qualifying guidelines were included in the final analysis. Guideline recommendations were categorized into 5 domains (ie, weight reduction goals, physical activity, nutrition, alcohol, and tobacco smoking) and were ranked based on how frequently they appeared. A recommendation was defined as widely adopted if recommended in ≥24 (≥66.6%) of the guidelines. These included increasing physical activity; reducing body weight by 7%-10% to improve steatohepatitis and/or fibrosis; restricting caloric intake; undertaking 150-300 or 75-150 minutes/week of moderate or vigorous-intensity physical activity, respectively; and decreasing consumption of commercially produced fructose. The least mentioned topics, in ≤9 of the guidelines, evaluated environmental determinants of health, mental health, referring patients for psychological or cognitive behavioral therapy, using digital health interventions, and assessing patients' social determinants of health. CONCLUSIONS Most guidelines recommend weight reduction through physical activity and improving nutrition, as these have proven positive effects on health outcomes when sustained. However, gaps regarding mental health and the social and environmental determinants of metabolic dysfunction-associated steatotic liver disease were found. To optimize behavioral modifications and treatment, we recommend carrying out studies that will provide further evidence on social support, environmental factors, and mental health, as well as further exploring digital health interventions.
Collapse
Affiliation(s)
- Dana Ivancovsky Wajcman
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- The Global NASH Council, Washington, District of Columbia, USA
| | - Christopher J Byrne
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Paul N Brennan
- The Global NASH Council, Washington, District of Columbia, USA
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Marcela Villota-Rivas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Zobair M Younossi
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Javier Crespo
- Liver Unit, Digestive Disease Department, Marqués de Valdecilla University Hospital, Santander, Cantabria University, Spain
| | - Lynn H Gerber
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- The Global NASH Council, Washington, District of Columbia, USA
- Department of Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York, New York, USA
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
113
|
Yang J, Huang LJ, Ren TY, Zeng J, Shi YW, Fan JG. Insight into the therapeutic effects of artesunate in relieving metabolic-associated steatohepatitis from transcriptomic and lipidomics analyses. J Dig Dis 2024; 25:490-503. [PMID: 39252399 DOI: 10.1111/1751-2980.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES Artesunate (ART) is a water-soluble derivative of artemisinin, which has shown anti-inflammatory, anti-tumor, and immunomodulating effects. We aimed to investigate the potential therapeutic effects and mechanisms of ART in metabolic dysfunction-associated steatohepatitis (MASH). METHODS The mice were randomly divided into the control group, high-fat, high-cholesterol diet-induced MASH group, and the MASH treated with ART (30 mg/kg once daily) group. Liver enzymes, lipids, and histological features were compared among groups. The molecular mechanisms were studied by transcriptomic and lipidomics analyses of liver tissues. RESULTS The mice of the MASH group had significantly increased hepatic fat deposition and inflammation in terms of biochemical indicators and pathological manifestations than the control group. The ART-treated group had improved plasma liver enzymes and hepatic cholesterol, especially at week 4 of intervention (p < 0.05). A total of 513 differentially expressed genes and 59 differentially expressed lipids were identified in the MASH group and the MASH+ART group. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment test showed that ART regulated glycerolipid metabolism pathway and enhanced fatty acid degradation. Peroxisome proliferator-activated receptor (PPAR)-α acted as a key transcription factor in the treatment of MASH with ART, which was confirmed by cell experiment. CONCLUSIONS ART significantly improved fat deposition and inflammatory manifestations in MASH mice, with potential therapeutic effects. The mechanism of artemisinin treatment for MASH may involve extensive regulation of downstream genes by upstream transcription factors, such as PPAR-α, to restore hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lei Jie Huang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Tian Yi Ren
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yi Wen Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jian Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
114
|
Vaz K, Kemp W, Majeed A, Lubel J, Magliano DJ, Glenister KM, Bourke L, Simmons D, Roberts SK. NAFLD and MAFLD independently increase the risk of major adverse cardiovascular events (MACE): a 20-year longitudinal follow-up study from regional Australia. Hepatol Int 2024; 18:1135-1143. [PMID: 39008030 PMCID: PMC11297804 DOI: 10.1007/s12072-024-10706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND AND AIMS The association between fatty liver disease (FLD) and cardiovascular disease (CVD) in an Australian context has yet to be defined. The primary aim of this study was to investigate the association between FLD and 3-point major adverse cardiovascular events (MACE). METHODS This was a longitudinal follow-up study of a randomly sampled adult cohort from regional Australia between 2001 and 2003. Baseline covariates included demographic details, anthropometry, health and lifestyle data, and laboratory tests. Non-alcoholic fatty liver disease (NAFLD) and metabolic-(dysfunction) associated fatty liver disease (MAFLD) were diagnosed in participants with fatty liver index (FLI) ≥ 60 and meeting other standard criteria. ICD-10 codes were used to define clinical outcomes linked to hospitalisations. Three-point MACE defined as non-fatal myocardial infarction (MI) and cerebrovascular accident (CVA) and CVD death. RESULTS In total, 1324 and 1444 participants met inclusion criteria for NAFLD and MAFLD analysis, respectively. Over 23,577 and 25,469 person-years follow-up, NAFLD and MAFLD were independent predictors for 3-point MACE, adjusting for demographic covariates and known cardiometabolic risk factors, whilst considering non-CVD death as a competing event (NAFLD: sub-hazard ratio [sHR] 1.56, 95% confidence interval [CI 1.12-2.19]; MAFLD: sHR 1.51, 95% CI 1.11-2.06). The results held true on several sensitivity analyses. CONCLUSIONS Both forms of FLD increase the risk for CVD independent of traditional cardiometabolic risk factors.
Collapse
Affiliation(s)
- Karl Vaz
- Department of Gastroenterology and Hepatology, Alfred Health, Ground Floor Alfred Centre 55 Commercial Road, VIC 3004, Melbourne, Australia.
- Central Clinical School, Monash University, Melbourne, Australia.
| | - William Kemp
- Department of Gastroenterology and Hepatology, Alfred Health, Ground Floor Alfred Centre 55 Commercial Road, VIC 3004, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
| | - Ammar Majeed
- Department of Gastroenterology and Hepatology, Alfred Health, Ground Floor Alfred Centre 55 Commercial Road, VIC 3004, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
| | - John Lubel
- Department of Gastroenterology and Hepatology, Alfred Health, Ground Floor Alfred Centre 55 Commercial Road, VIC 3004, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
| | - Dianna J Magliano
- Diabetes and Population Health, Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Lisa Bourke
- Department of Rural Health, University of Melbourne, Melbourne, Australia
| | - David Simmons
- Department of Rural Health, University of Melbourne, Melbourne, Australia
- Macarthur Clinical School, School of Medicine, Western Sydney University, Penrith, Australia
| | - Stuart K Roberts
- Department of Gastroenterology and Hepatology, Alfred Health, Ground Floor Alfred Centre 55 Commercial Road, VIC 3004, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
115
|
Miao L, Targher G, Byrne CD, Cao YY, Zheng MH. Current status and future trends of the global burden of MASLD. Trends Endocrinol Metab 2024; 35:697-707. [PMID: 38429161 DOI: 10.1016/j.tem.2024.02.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 207.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most common chronic liver disease globally, affecting more than a third of the world's adult population. This comprehensive narrative review summarizes the global incidence and prevalence rates of MASLD and its related adverse hepatic and extrahepatic outcomes. We also discuss the substantial economic burden of MASLD on healthcare systems, thus further highlighting the urgent need for global efforts to tackle this common and burdensome liver condition. We emphasize the clinical relevance of early interventions and a holistic approach that includes public health strategies to reduce the global impact of MASLD.
Collapse
Affiliation(s)
- Lei Miao
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research, Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Ying-Ying Cao
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
116
|
Cho SH, Kim S, Oh R, Kim JY, Lee YB, Jin SM, Hur KY, Kim G, Kim JH. Metabolic dysfunction-associated fatty liver disease and heavy alcohol consumption increase mortality:A nationwide study. Hepatol Int 2024; 18:1168-1177. [PMID: 38806774 DOI: 10.1007/s12072-024-10671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/17/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The effects of excessive alcohol consumption on the prognosis of metabolic dysfunction-associated fatty liver disease (MAFLD) remain unclear. We investigated all-cause and cause-specific mortality according to the amount of alcohol consumed by Asian individuals with MAFLD. METHODS This nationwide retrospective study included 996,508 adults aged 40-79 years who underwent health check-ups between 2009 and 2012. Participants were categorized by the alcohol consumption-non-alcohol, moderate alcohol, and heavy alcohol group (≥ 30 g/day for men, ≥ 20 g/day for women) and by the combination of the presence or absence of MAFLD. Hepatic steatosis was defined as the fatty liver index ≥ 30. Cox analyses were used to analyze the association between alcohol consumption and MAFLD and all-cause and cause-specific mortality. RESULTS MAFLD significantly increased all-cause, liver-, and cancer-related mortality. Individuals with both MAFLD and heavy alcohol consumption expressed the highest mortality risk in liver-related mortality compared to non-MAFLD and non-alcohol group (adjusted hazard ratio (HR), 9.8; 95% confidence interval (CI), 8.20-12.29). Regardless of MAFLD, heavy alcohol consumption increased the risk of liver- and cancer-related mortality. CONCLUSIONS MAFLD and heavy alcohol consumption increased all-cause, liver-, and cancer-related mortality. Heavy alcohol consumption and MAFLD synergistically increase liver-related mortality.
Collapse
Affiliation(s)
- So Hyun Cho
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Seohyun Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Rosa Oh
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Ji Yoon Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - You-Bin Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Sang-Man Jin
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Gyuri Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| | - Jae Hyeon Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
| |
Collapse
|
117
|
Nonalcoholic Fatty Liver Disease (NAFLD) Nomenclature Revision Consensus Task Force on behalf of the Korean Association for the Study of the Liver (KASL). [A New Korean Nomenclature for Steatotic Liver Disease]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:1-2. [PMID: 39049458 DOI: 10.4166/kjg.2024.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
|
118
|
Zhang W, Li MY, Li ZQ, Diao YK, Liu XK, Guo HW, Wu XC, Wang H, Wang SY, Zhou YH, Lu J, Lin KY, Gu WM, Chen TH, Li J, Liang YJ, Yao LQ, Wang MD, Li C, Yin DX, Pawlik TM, Lau WY, Shen F, Chen Z, Yang T. Long-term outcomes following hepatectomy in patients with lean non-alcoholic fatty liver disease-associated hepatocellular carcinoma versus overweight and obese counterparts: A multicenter analysis. Asian J Surg 2024:S1015-9584(24)01459-3. [PMID: 39054140 DOI: 10.1016/j.asjsur.2024.07.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND & AIMS With the rising prevalence of non-alcoholic fatty liver disease (NAFLD) as a significant etiology for hepatocellular carcinoma (HCC), lean NAFLD-HCC has emerged as a specific distinct subtype. This study sought to investigate long-term outcomes following curative-intent hepatectomy for early-stage NAFLD-HCC among lean patients compared with overweight and obese individuals. METHODS A multicenter retrospective analysis was used to assess early-stage NAFLD-HCC patients undergoing curative-intent hepatectomy between 2009 and 2022. Patients were stratified by preoperative body mass index (BMI) into the lean (<23.0 kg/m2), overweight (23.0-27.4 kg/m2) and obese (≥27.5 kg/m2) groups. Study endpoints were overall survival (OS) and recurrence-free survival (RFS), which were compared among groups. RESULTS Among 309 patients with NAFLD-HCC, 66 (21.3 %), 176 (57.0 %), and 67 (21.7 %) were lean, overweight, and obese, respectively. The three groups were similar relative to most liver, tumor, and surgery-related variables. Compared with overweight patients (71.3 % and 55.6 %), the lean individuals had a worse 5-year OS and RFS (55.4 % and 35.1 %, P = 0.017 and 0.002, respectively), which were comparable to obese patients (48.5 % and 38.2 %, P = 0.939 and 0.442, respectively). After adjustment for confounding factors, multivariable Cox-regression analysis identified that lean bodyweight was independently associated with decreased OS (hazard ratio: 1.69; 95 % confidence interval: 1.06-2.71; P = 0.029) and RFS (hazard ratio: 1.72; 95 % confidence interval: 1.17-2.52; P = 0.006) following curative-intent hepatectomy for early-stage NAFLD-HCC. CONCLUSIONS Compared with overweight patients, individuals with lean NAFLD-HCC had inferior long-term oncological survival after hepatectomy for early-stage NAFLD-HCC. These data highlight the need for examination of the distinct carcinogenic pathways of lean NAFLD-HCC and its potential consequences in HCC recurrence.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Min-Yu Li
- Department of Special Care Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zi-Qiang Li
- Department of Liver Transplantation and Hepatic Surgery, First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yong-Kang Diao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Hong-Wei Guo
- The 2nd Department of General Surgery, The Second People's Hospital of Changzhi, Changzhi, China
| | - Xiao-Chang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Hong Wang
- Department of General Surgery, Liuyang People's Hospital, Liuyang, China
| | - Si-Yuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Ya-Hao Zhou
- Department of Hepatobiliary Surgery, Pu'er People's Hospital, Pu'er, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Kong-Ying Lin
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wei-Min Gu
- The First Department of General Surgery, The Fourth Hospital of Harbin, Harbin, China
| | - Ting-Hao Chen
- Department of General Surgery, Ziyang First People's Hospital, Ziyang, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Fuyang People's Hospital, Fuyang, China
| | - Ying-Jian Liang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lan-Qing Yao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Dong-Xu Yin
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Timothy M Pawlik
- Department of Surgery, Ohio State University, Wexner Medical Center, Columbus, OH, United States
| | - Wan Yee Lau
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
119
|
Wang J, Li H, Wang X, Shi R, Hu J, Zeng X, Luo H, Yang P, Luo H, Cao Y, Cai X, Chen S, Wang D. Association between triglyceride to high-density lipoprotein cholesterol ratio and nonalcoholic fatty liver disease and liver fibrosis in American adults: an observational study from the National Health and Nutrition Examination Survey 2017-2020. Front Endocrinol (Lausanne) 2024; 15:1362396. [PMID: 39081791 PMCID: PMC11286417 DOI: 10.3389/fendo.2024.1362396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This study investigated the link between triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio and nonalcoholic fatty liver disease (NAFLD) and liver fibrosis in American adults. Methods Information for 6495 participants from the National Health and Nutrition Examination Survey (NHANES) 2017-2020.03 was used for this cross-sectional study. The link between TG/HDL-C ratios and NAFLD and liver fibrosis was assessed by multiple linear regression before evaluating nonlinear correlations based on smoothed curve fitting models. Stratification analysis was then applied to confirm whether the dependent and independent variables displayed a stable association across populations. Results TG/HDL-C ratios were positively correlated with NAFLD, with higher ratios being linked to increased prevalence of NAFLD. After adjusting for potential confounders, the odds ratios (OR) for NAFLD patients in the fourth TG/HDL-C quartile were 3.61 (95% confidence interval [CI], 2.94-4.38) (P for trend < 0.001) in comparison with those in the first quartile after adjusting for clinical variables. However, no statistical significance was noted for the ratio for liver fibrosis after adjusting for potential confounders (P for trend = 0.07). A nonlinear correlation between TG/HDL-C ratios and NAFLD was observed based on smoothed curve fitting models. However, a nonlinear relationship between the ratios and liver fibrosis was not established. In subgroup analyses, there was an interaction between smoking status and TG/HDL-C ratio in relation to the prevalence of liver fibrosis (P for interaction < 0.001). Conclusions Among American adults, the TG/HDL-C ratio was noted to be nonlinearly positively associated with the prevalence of NAFLD; however, this relationship was not present in liver fibrosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Han Li
- Department of Cardiology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Xiaoyi Wang
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Ruizi Shi
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Junchao Hu
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xintao Zeng
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hua Luo
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pei Yang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xianfu Cai
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Sirui Chen
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
120
|
Chen S, Huang J, Huang Y, Zhou C, Wang N, Zhang L, Zhang Z, Li B, He X, Wang K, Zhi Y, Lv G, Shen S. Metabolomics analyses reveal the liver-protective mechanism of Wang's metabolic formula on metabolic-associated fatty liver disease. Heliyon 2024; 10:e33418. [PMID: 39040343 PMCID: PMC11261804 DOI: 10.1016/j.heliyon.2024.e33418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Wang's metabolic formula (WMF) is a traditional Chinese medicine formula developed under the guidance of Professor Kungen Wang. WMF has been clinically utilized for several years. However, the therapeutic mechanism of WMF in treating metabolic-associated fatty liver disease (MAFLD) remains unclear. In this study, we performed phytochemical analysis on WMF using LC-MS. To study the role of WMF in MAFLD, we orally administered WMF (20.6 g/kg) to male MAFLD mice induced by a high-cholesterol high-fat diet (HCHFD). Then pathological, biochemical, and metabolomic analyses were performed. The main components of WMF are chlorogenic acid, geniposide, albiflorin, paeoniflorin, and calycosin-7-O-glucoside. MAFLD mice treated with WMF exhibited significant improvements in obesity, abnormal lipid metabolism, inflammation, and liver pathology. WMF decreased aspartate aminotransferase (AST), alanine aminotransferase (ALT), and triglyceride (TG) levels in the serum of MAFLD mice while increasing high-density lipoprotein cholesterol (HDL-c) levels. WMF lowered liver TG levels and inflammatory factors (IL-1β, IL-6, TNF-α, and NF-κB). Metabolomic analysis of the liver annotated 78 differentially regulated metabolites enriched in four pathways: glycerophospholipid metabolism, retinol metabolism, PPAR signaling pathway, and choline metabolism. Western blot experiments showed that WMF increased the expression of PPAR-α, PPAR-β, and RXR in the liver while decreasing the expression of RAR. The study demonstrates that WMF has a solid preventive and therapeutic effect on MAFLD. The anti-inflammatory and regulation of abnormal liver metabolism activities of WMF involve retinol metabolism and the PPAR signaling pathway.
Collapse
Affiliation(s)
- Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Jiahui Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Yuzhen Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Chengliang Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Ning Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Linnan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Zehua Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, Zhejiang 313200, China
| | - Kungen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
- Kungen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China
| | - Yihui Zhi
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
- Kungen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Shuhua Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
- Kungen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
121
|
Zhao Y, Peng Y, Wang M, Zhao Y, He Y, Zhang L, Liu J, Zheng S. Exposure to PM 2.5 and its constituents is associated with metabolic dysfunction-associated fatty liver disease: a cohort study in Northwest of China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:304. [PMID: 39002087 DOI: 10.1007/s10653-024-02071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Accumulating animal studies have demonstrated associations between ambient air pollution (AP) and metabolic dysfunction-associated fatty liver disease (MAFLD), but relevant epidemiological evidence is limited. We evaluated the association of long-term exposure to AP with the risk of incident MAFLD in Northwest China. The average AP concentration between baseline and follow-up was used to assess individual exposure levels. Cox proportional hazard models and restricted cubic spline functions (RCS) were used to estimate the association of PM2.5 and its constituents with the risk of MAFLD and the dose-response relationship. Quantile g-computation was used to assess the joint effects of mixed exposure to air pollutants on MAFLD and the weights of the various pollutants. We observed 1516 cases of new-onset MAFLD, with an incidence of 10.89%. Increased exposure to pollutants was significantly associated with increased odds of MAFLD, with hazard ratios (HRs) of 2.93 (95% CI: 1.22, 7.00), 2.86 (1.44, 5.66), 7.55 (3.39, 16.84), 4.83 (1.89, 12.38), 3.35 (1.35, 8.34), 1.89 (1.02, 1.62) for each interquartile range increase in PM2.5, SO42-, NO3-, NH4+, OM, and BC, respectively. Stratified analyses suggested that females, frequent exercisers and never-drinkers were more susceptible to MAFLD associated with ambient PM2.5 and its constituents. Mixed exposure to SO42-, NO3-, NH4+, OM and BC was associated with an increased risk of MAFLD, and the weight of BC had the strongest effect on MAFLD. Exposure to ambient PM2.5 and its constituents increased the risk of MAFLD.
Collapse
Affiliation(s)
- Yamin Zhao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yindi Peng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Minzhen Wang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| | - Yanan Zhao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yingqian He
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Lulu Zhang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Liu
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Shan Zheng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
122
|
Zou H, Ma X, Pan W, Xie Y. Comparing similarities and differences between NAFLD, MAFLD, and MASLD in the general U.S. population. Front Nutr 2024; 11:1411802. [PMID: 39040926 PMCID: PMC11260733 DOI: 10.3389/fnut.2024.1411802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Background Recently, the multisociety Delphi consensus renamed non-alcoholic fatty liver disease (NAFLD) terminology [previously renamed metabolic-associated fatty liver disease (MAFLD)] as metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to compare the similarities and differences between NAFLD, MAFLD, and MASLD and to clarify the impact of this new name change. Methods A cross-sectional study of 3,035 general subjects with valid vibration-controlled transient elastography data was conducted based on data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020. NAFLD, MAFLD, and MASLD were defined according to the corresponding consensus criteria. Results Using controlled attenuation parameter (CAP) ≥274 dB/m and liver stiffness measurements (LSM) ≥9.7 kPa as the cutoff values for the presence of hepatic steatosis and advanced liver fibrosis (ALF), the prevalence of NAFLD, MAFLD, and MASLD were 38.01% (95% CI 35.78-40.29%), 41.09% (39.09-43.12%), and 37.9% (35.70-40.14%), respectively, and the corresponding prevalence of ALF was 10.21% (7.09-14.48%), 10.13% (7.06-14.35%), and 10.24% (7.11-14.53%), respectively. The kappa values for the three definitions were above 0.9. The prevalence and severity of the three definitions remained similar when the sensitivity analyses were performed using different CAP thresholds. The prevalence of NAFLD, MAFLD, MASLD, and ALF increased as the number of cardiometabolic risk factors (CMRF) increased. Conclusions Our findings highlight the consistency among the three definitions, especially between NAFLD and MASLD, so that the new consensus will not disturb the original NAFLD-related findings. Additionally, more attention should be paid to patients with a high number of CMRFs.
Collapse
Affiliation(s)
- Haoxuan Zou
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaopu Ma
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Pan
- Department of Health Management Center, The Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Yan Xie
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
123
|
Chang ML, Tai J, Cheng JS, Chen WT, Yang SS, Chiu CH, Chien RN. Factors associated with treatment responses to pioglitazone in patients with steatotic liver disease: A 3-year prospective cohort study. Diabetes Obes Metab 2024; 26:2969-2978. [PMID: 38685616 DOI: 10.1111/dom.15622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
AIM The response rate to pioglitazone and the predictive factors for its effects on improving liver biochemistry in patients with steatotic liver disease (SLD) remain elusive, so we aimed to investigate these issues. METHODS A 3-year prospective cohort study of 126 Taiwanese patients with SLD treated with pioglitazone (15-30 mg/day) was conducted. Phospholipase domain-containing protein 3 I148M rs738409, methylenetetrahydrofolate reductase rs1801133, aldehyde dehydrogenase 2 (ALDH2) rs671 and lipoprotein lipase rs10099160 single nucleotide polymorphisms were assessed in the patients. RESULTS Of 126 patients, 78 (61.9%) were men, and the mean and median ages were 54.3 and 56.5 years, respectively. Pioglitazone responders were defined as those with decreased alanine aminotransferase (ALT) levels at 6 months post-treatment, and 105 (83.3%) patients were responders. Compared with non-responders, responders were more frequently women and had higher baseline ALT levels. The proportion of patients with the ALDH2 rs671 GG genotype was lower among responders (38.6% vs. 66.6%, p = .028). Female sex [odds ratio (OR): 4.514, p = .023] and baseline ALT level (OR: 1.015, p = .046; cut-off level: ≥82 U/L) were associated with pioglitazone response. Among responders, the liver biochemistry and homeostasis model assessment of insulin resistance improved from 6 to 24 months post-treatment. The total cholesterol levels decreased within 6 months, while increases in high-density lipoprotein cholesterol levels and decreases in triglyceride levels and fibrosis-4 scores were noted only at 24 months post-treatment. The 2-year cumulative incidences of cardiovascular events, cancers and hepatic events were similar between responders and non-responders. CONCLUSIONS Regarding liver biochemistry, over 80% of Taiwanese patients with SLD had a pioglitazone response, which was positively associated with female sex and baseline ALT levels. Insulin resistance improved as early as 6 months post-treatment, while liver fibrosis improvement was not observed until 24 months post-treatment. The link between the pioglitazone response and the ALDH2 genotype warrants further investigation.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jennifer Tai
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jur-Shan Cheng
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rong-Nan Chien
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
124
|
Saravanan S, Shankar EM, Vignesh R, Ganesh PS, Sankar S, Velu V, Smith DM, Balakrishnan P, Viswanathan D, Govindasamy R, Venkateswaran AR. Occult hepatitis B virus infection and current perspectives on global WHO 2030 eradication. J Viral Hepat 2024; 31:423-431. [PMID: 38578122 DOI: 10.1111/jvh.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 04/06/2024]
Abstract
The current World Health Organization (WHO) Hepatitis Elimination Strategy suffers from lack of a target for diagnosing or expunging occult HBV infection. A sizable segment of the global population has an undetected HBV infection, particularly the high-risk populations and those residing in countries like India with intermediate endemicity. There is growing proof that people with hidden HBV infection can infect others, and that these infections are linked to serious chronic hepatic complications, especially hepatocellular carcinoma. Given the current diagnostic infrastructure in low-resource settings, the WHO 2030 objective of obliterating hepatitis B appears to be undeniably challenging to accomplish. Given the molecular basis of occult HBV infection strongly linked to intrahepatic persistence, patients may inexplicably harbour HBV genomes for a prolonged duration without displaying any pronounced clinical or biochemical signs of liver disease, and present histological signs of moderate degree necro-inflammation, diffuse fibrosis, and hence the international strategy to eradicate viral hepatitis warrants inclusion of occult HBV infection.
Collapse
Affiliation(s)
- Shanmugam Saravanan
- Centre for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Ramachandran Vignesh
- Pre-Clinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Davey M Smith
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Pachamuthu Balakrishnan
- Centre for Infectious Diseases, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Dhivya Viswanathan
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Arcot R Venkateswaran
- Department of Medical Gastroenterology and Hepatology, Saveetha Medical College and Hospitals (SMCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
125
|
Chen M, Chen Y, Liu D, Li K, Hu R, Chen J, Jiang X, Lin J. Quality Evaluation of Metabolic-Associated Fatty Liver Disease Guidelines and Expert Consensus. Horm Metab Res 2024; 56:509-516. [PMID: 38286401 DOI: 10.1055/a-2224-1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The purpose of this study is to evaluate and analyze the quality of guidelines and expert consensus on clinical practice regarding metabolically associated fatty liver disease (MAFLD) over the past five years. Data from the websites were retrieved using computers. We evaluated guidelines and expert consensus on MAFLD that were officially published between January 1, 2018 and March 24, 2023. Two evaluators independently examined the literature and extracted data. The included literature on guidelines and expert consensus was then subjected to quality review and analysis using assessment tools from Appraisal of Guidelines for Research and Evaluation (AGREE) II and the Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI) (2016). The intraclass correlation coefficient (ICC) values of all items on the AGREE II scale for the two evaluators were greater than 0.75, indicating a high degree of agreement between their assessments. Scope and purpose (48.90%), participants (49.21%), rigor in the formulation process (56.97%), clarity of expression (90.08%), applicability (66.08%), and independence of file compiling (60.12%) were the AGREE II scoring items with the standardized average scores. Apart from the participants, the average scores of all the scoring items in the guidelines from other countries other than China were higher than those from China (|Z|+>+2.272, p+<+0.05). MAFLD guidelines must be revised to enhance their methodological quality. When creating guidelines, it is recommended that the formulators strictly adhere to the formulation and drafting standards of AGREE II and elevate the quality of the guidelines.
Collapse
Affiliation(s)
- Meijing Chen
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ying Chen
- Department of Nursing, Xiamen Medical College, Xiamen, China
| | - Dun Liu
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ka Li
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Rong Hu
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Jingyi Chen
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xiaoying Jiang
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Jinqing Lin
- Department of Gastroenterology, Fuzhou Second Hospital, Fuzhou, China
| |
Collapse
|
126
|
Yoo TK, Lee SW, Lee MY, Choi H, Sung KC. Influence of MAFLD and NAFLD on arterial stiffness: A longitudinal cohort study. Nutr Metab Cardiovasc Dis 2024; 34:1769-1778. [PMID: 38644081 DOI: 10.1016/j.numecd.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND AND AIMS This cohort study investigated associations of nonalcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) with risk of increase in arterial stiffness (AS), measured as brachial-ankle pulse wave velocity (baPWV). METHODS AND RESULTS Participants who had health examinations between 2006 and 2019 were analyzed for fatty liver and increased baPWV using liver ultrasonography and automatic volume plethysmography device. Participants were classified based on presence of MAFLD or NAFLD and further divided into subgroups: no fatty liver disease (reference), NAFLD-only, MAFLD-only, and both NAFLD and MAFLD. Subgroups were additionally stratified by sex. Cox proportional hazard model was utilized to analyze the risk of developing baPWV ≥1400 cm/s in participants without baseline elevation of the baPWV. The NAFLD and MAFLD groups exhibited higher risks of increased baPWV (NAFLD: adjusted hazard ratio (aHR), 1.35 [95% CI, 1.29-1.42]; MAFLD: aHR, 1.37 [95% CI, 1.31-1.43]) compared to group without the conditions. Incidence of NAFLD or MAFLD were higher in men than in women but aHR of developing the increase in AS was higher in women. In subgroup analysis, the MAFLD-only group presented the strongest associations with increase in AS (aHR, 1.53 [95% CI, 1.43-1.64]), with the trend more pronounced in women than in men (Women, aHR, 1.63 [95% CI, 1.08-2.46]; Men, aHR 1.45 [95% CI, 1.35-1.56]). CONCLUSIONS Both NAFLD and MAFLD are significantly associated with elevated AS. These associations tended to be stronger in MAFLD than in NAFLD, in women than in men.
Collapse
Affiliation(s)
- Tae Kyung Yoo
- Department of Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Seung Wook Lee
- Department of Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hanna Choi
- Walgreens Pharmacy, #6072, Bonston, MA, USA
| | - Ki-Chul Sung
- Division of Cardiology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
127
|
Pan Z, Shiha G, Esmat G, Méndez-Sánchez N, Eslam M. MAFLD predicts cardiovascular disease risk better than MASLD. Liver Int 2024; 44:1567-1574. [PMID: 38641962 DOI: 10.1111/liv.15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND AND AIM Metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed as an alternative for the validated definition of metabolic dysfunction-associated fatty liver disease (MAFLD). We compared the abilities of MAFLD and MASLD to predict the risk of atherosclerotic cardiovascular disease (ASCVD). METHODS Six thousand and ninety six participants from the 2017 to 2020 National Health and Nutrition Examination Survey cohort who received a thorough medical health check-up were chosen for the study. The associations between fatty liver status and coronary risk surrogates, such as 10-year ASCVD risk and self-reported cardiovascular events, were analysed. RESULTS MAFLD and MASLD were identified in 2911 (47.7%) and 2758 (45.2%) patients, respectively. MAFLD (odds ratio [OR]: 2.14, 95% confidence interval [CI], 1.78-2.57, p < .001) was more strongly independently associated with high ASCVD risk than MASLD (OR: 1.82, 95% CI, 1.52-2.18, p < .001) was in comparison with the absence of each condition. However, compared with MAFLD, MASLD alone was not associated with increased ASCVD risk. Multiple logistic regression revealed that MAFLD alone was significantly more strongly associated with a high risk of ASCVD (OR: 2.82; 95% CI: 1.13-7.01; p < .03) than MASLD alone. CONCLUSIONS Although both MAFLD and MASLD were associated with different ASCVD risks, MAFLD predicted the ASCVD risk better than MASLD. The higher predictive ability of MAFLD compared to MASLD was attributed to metabolic dysfunction rather than moderate alcohol use.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Gamal Shiha
- Gastroenterology and Hepatology Department, Egyptian Liver Research Institute and Hospital, Mansoura, Egypt
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Gamal Esmat
- Departement of Endemic Medicine and Hepatogastrenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nahum Méndez-Sánchez
- Gastroenterology and Hepatology Department, Liver Research Unit, Medica Sur Clinic Foundation, Mexico City, Mexico
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
128
|
Thiele M, Kamath PS, Graupera I, Castells A, de Koning HJ, Serra-Burriel M, Lammert F, Ginès P. Screening for liver fibrosis: lessons from colorectal and lung cancer screening. Nat Rev Gastroenterol Hepatol 2024; 21:517-527. [PMID: 38480849 DOI: 10.1038/s41575-024-00907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Many countries have incorporated population screening programmes for cancer, such as colorectal and lung cancer, into their health-care systems. Cirrhosis is more prevalent than colorectal cancer and has a comparable age-standardized mortality rate to lung cancer. Despite this fact, there are no screening programmes in place for early detection of liver fibrosis, the precursor of cirrhosis. In this Perspective, we use insights from colorectal and lung cancer screening to explore the benefits, challenges, implementation strategies and pathways for future liver fibrosis screening initiatives. Several non-invasive methods and referral pathways for early identification of liver fibrosis exist, but in addition to accurate detection, screening programmes must also be cost-effective and demonstrate benefit through a reduction in liver-related mortality. Randomized controlled trials are needed to confirm this. Future randomized screening trials should evaluate not only the screening tests, but also interventions used to halt disease progression in individuals identified through screening.
Collapse
Affiliation(s)
- Maja Thiele
- Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Isabel Graupera
- Liver Unit Hospital Clínic, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Catalonia, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Antoni Castells
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Catalonia, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain
- Department of Gastroenterology, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Harry J de Koning
- Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Miquel Serra-Burriel
- Epidemiology, Statistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
- Hannover Medical School (MHH), Hannover, Germany
| | - Pere Ginès
- Liver Unit Hospital Clínic, Barcelona, Catalonia, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Catalonia, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
129
|
Ferenc K, Jarmakiewicz-Czaja S, Sokal-Dembowska A, Stasik K, Filip R. Common Denominator of MASLD and Some Non-Communicable Diseases. Curr Issues Mol Biol 2024; 46:6690-6709. [PMID: 39057041 PMCID: PMC11275402 DOI: 10.3390/cimb46070399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, steatohepatitis has been designated as metabolic dysfunction-associated steatohepatitis (MASLD). MASLD risk factors mainly include metabolic disorders but can also include genetic, epigenetic, and environmental factors. Disease entities such as obesity, diabetes, cardiovascular disease, and MASLD share similar pathomechanisms and risk factors. Moreover, a bidirectional relationship is observed between the occurrence of certain chronic diseases and MASLD. These conditions represent a global public health problem that is responsible for poor quality of life and high mortality. It seems that paying holistic attention to these problems will not only help increase the chances of reducing the incidence of these diseases but also assist in the prevention, treatment, and support of patients.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (S.J.-C.); (A.S.-D.)
| | - Katarzyna Stasik
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
- IBD Unit, Department of Gastroenterology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (K.F.)
- IBD Unit, Department of Gastroenterology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
130
|
Yin H, Fan Y, Yu J, Xiong B, Zhou B, Sun Y, Wang L, Zhu Y, Xu H. Quantitative US fat fraction for noninvasive assessment of hepatic steatosis in suspected metabolic-associated fatty liver disease. Insights Imaging 2024; 15:159. [PMID: 38902550 PMCID: PMC11190099 DOI: 10.1186/s13244-024-01728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/19/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVES To evaluate the agreement between quantitative ultrasound system fat fraction (USFF) and proton magnetic resonance spectroscopy (1H-MRS) and the diagnostic value of USFF in assessing metabolic-associated fatty liver disease (MAFLD). METHODS The participants with or suspected of MAFLD were prospectively recruited and underwent 1H-MRS, USFF, and controlled attenuation parameter (CAP) measurements. The correlation between USFF and 1H-MRS was assessed using Pearson correlation coefficients. The USFF diagnostic performance for different grades of steatosis was evaluated using receiver operating characteristic curve analysis (ROC) and was compared with CAP, visual hepatic steatosis grade (VHSG). RESULTS A total of 113 participants (mean age 44.79 years ± 13.56 (SD); 71 males) were enrolled, of whom 98 (86.73%) had hepatic steatosis (1H-MRS ≥ 5.56%). USFF showed a good correlation (Pearson r = 0.76) with 1H-MRS and showed a linear relationship, which was superior to the correlation between CAP and 1H-MRS (Pearson r = 0.61). The USFF provided high diagnostic performance for different grades of hepatic steatosis, with ROC from 0.84 to 0.98, and the diagnostic performance was better than that of the CAP and the VHSG. The cut-off values of the USFF were different for various grades of steatosis, and the cut-off values for S1, S2, and S3 were 12.01%, 19.98%, and 22.22%, respectively. CONCLUSIONS There was a good correlation between USFF and 1H-MRS. Meanwhile, USFF had good diagnostic performance for hepatic steatosis and was superior to CAP and VHSG. USFF represents a superior method for noninvasive quantitative assessment of MAFLD. CRITICAL RELEVANCE STATEMENT Quantitative ultrasound system fat fraction (USFF) accurately assesses liver fat content and has a good correlation with magnetic resonance spectroscopy (1H-MRS) for the assessment of metabolic-associated fatty liver disease (MAFLD), as well as for providing an accurate quantitative assessment of hepatic steatosis. KEY POINTS Current diagnostic and monitoring modalities for metabolic-associated fatty liver disease have limitations. USFF correlated well with 1H-MRS and was superior to the CAP. USFF has good diagnostic performance for steatosis, superior to CAP and VHSG.
Collapse
Affiliation(s)
- Haohao Yin
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Yunling Fan
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Jifeng Yu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Bing Xiong
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, China
| | - Boyang Zhou
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Yikang Sun
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Lifan Wang
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China
| | - Yuli Zhu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
131
|
Lara-Romero C, Romero-Gómez M. Treatment Options and Continuity of Care in Metabolic-associated Fatty Liver Disease: A Multidisciplinary Approach. Eur Cardiol 2024; 19:e06. [PMID: 38983581 PMCID: PMC11231815 DOI: 10.15420/ecr.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 07/11/2024] Open
Abstract
The terms non-alcoholic fatty liver disease and non-alcoholic steatohepatitis have some limitations as they use exclusionary confounder terms and the use of potentially stigmatising language. Recently, a study with content experts and patients has been set to change this nomenclature. The term chosen to replace non-alcoholic fatty liver disease was metabolic dysfunction-associated steatotic liver disease (MASLD), which avoids stigmatising and helps improve awareness and patient identification. MASLD is the most common cause of chronic liver disease with an increasing prevalence, accounting for 25% of the global population. It is considered the hepatic manifestation of the metabolic syndrome with lifestyle playing a fundamental role in its physiopathology. Diet change and physical activity are the cornerstones of treatment, encompassing weight loss and healthier behaviours and a holistic approach. In Europe, there is no approved drug for MASLD to date and there is a substantial unmet medical need for effective treatments for patients with MASLD. This review not only provides an update on advances in evidence for nutrition and physical activity interventions but also explores the different therapeutic options that are being investigated and whose development focuses on the restitution of metabolic derangements and halting inflammatory and fibrogenic pathways.
Collapse
Affiliation(s)
- Carmen Lara-Romero
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| | - Manuel Romero-Gómez
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| |
Collapse
|
132
|
Niu Z, Chen J, Wang H, Wang R, Peng H, Duan S, Yao S. Predictive Value of the Chinese Visceral Adiposity Index for Metabolic Dysfunction-Associated Fatty Liver Disease and Elevated Alanine Aminotransferase Levels in Nonobese Chinese Adults: A Cross-Sectional Study. J Inflamm Res 2024; 17:3893-3913. [PMID: 38915805 PMCID: PMC11194174 DOI: 10.2147/jir.s468093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024] Open
Abstract
PURPOSE It is unclear how the Chinese Visceral Adiposity Index (cVAI) relates to metabolic dysfunction-associated fatty liver disease (MAFLD) and alanine aminotransferase (ALT) in nonobese individuals. In this study, we evaluated the ability of the cVAI to predict MAFLD and elevated ALT in nonobese participants. METHODS This cross-sectional study recruited 541 nonobese subjects from March 2019 to January 2022 with the age range of 18-80 years. Hepatic steatosis was diagnosed by ultrasound. Participants were divided into four groups according to cVAI quartiles. To assess the associations between cVAI and MAFLD and elevated ALT, multivariate logistic regression was used. Receiver operating characteristic (ROC) curves were generated to evaluate the ability of the cVAI to predict MAFLD and elevated ALT. RESULTS Compared to the group with the lowest cVAI, the group with the highest cVAI was positively associated with nonobese MAFLD [16.173 (4.082-64.073), P < 0.001] and elevated ALT [8.463 (2.859-25.049), P < 0.001]. The area under the ROC curve (AUC) of the cVAI was greater than that of WC, waist-to-height ratio, or BMI for predicting nonobese MAFLD in the male, female, > 38 and ≤ 38 years old subgroups (P < 0.05), respectively. In addition, the ability of the cVAI to predict MAFLD was better in females, young individuals, and individuals with a higher education level (P < 0.05). The cVAI also had good predictive ability for elevated ALT levels [0.655 (0.602-0.708)], particularly in females, young people, and highly educated participants. Furthermore, the cVAI was strongly positively correlated with the liver fibrosis score (P < 0.05) and was also a strong indicator of concomitant metabolic syndrome in nonobese MAFLD patients [AUC = 0.688 (0.612-0.763)]. CONCLUSION The cVAI was strongly related to nonobese MAFLD and elevated ALT. The cVAI may be a reliable and accessible predictor of nonobese MAFLD and elevated ALT.
Collapse
Affiliation(s)
- Zuohu Niu
- Department of Infections, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Jialiang Chen
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Huijing Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Rongrui Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Hongye Peng
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shaojie Duan
- Department of Geriatrics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, People’s Republic of China
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
133
|
Kaewdech A, Assawasuwannakit S, Churuangsuk C, Chamroonkul N, Sripongpun P. Effect of smartphone-assisted lifestyle intervention in MASLD patients: a randomized controlled trial. Sci Rep 2024; 14:13961. [PMID: 38886203 PMCID: PMC11183044 DOI: 10.1038/s41598-024-64988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging globally as a significant problem. The mainstay of treatment is lifestyle intervention (LSI). We hypothesized that providing information regarding LSI and MASLD through a social media application generally used in the respective society would improve clinical outcomes in MASLD more than standard of care (SOC). This is a randomized controlled study in noncirrhotic MASLD patients aged 18-65 years in Thailand. Eligible patients were randomly assigned to either the control (SOC) or intervention arm. Patients in both groups received standard LSI advice. Infographics about MASLD and LSI information were sent to the intervention group every 3-7 days via the LINE official account. The outcomes are changes in liver steatosis and liver stiffness by FIBROSCAN at 24 weeks, as well as weight loss, body composition, and serum alanine aminotransferase (ALT) level between the two groups. A total of 122 patients were enrolled. The median age of eligible participants was 53 years, 64.7% were female, and median body mass index was 27.3 kg/m2. After a complete 24-week study period, both groups had an improvement in weight, ALT level, liver steatosis, and fat mass, but the differences in those changes between groups were not statistically significant. Interestingly, a significant improvement in liver stiffness was observed in the intervention group than in the control group (- 0.7 ± 1.8 kPa vs. 0.1 ± 2.4 kPa, P = 0.035). Encouraging LSI and delivering MASLD information via a social media application (LINE official account) to patients with MASLD demonstrated a better outcome of liver stiffness measurement than SOC.Clinical trial number: TCTR20210304002 (04/03/2021) ( http://www.thaiclinicaltrials.org/show/TCTR20210304002 ).
Collapse
Affiliation(s)
- Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Suraphon Assawasuwannakit
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, 11120, Thailand
| | - Chaitong Churuangsuk
- Clinical Nutrition and Obesity Medicine Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Naichaya Chamroonkul
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Pimsiri Sripongpun
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
134
|
Liu Z, Jin P, Liu Y, Zhang Z, Wu X, Weng M, Cao S, Wang Y, Zeng C, Yang R, Liu C, Sun P, Tian C, Li N, Zeng Q. A comprehensive approach to lifestyle intervention based on a calorie-restricted diet ameliorates liver fat in overweight/obese patients with NAFLD: a multicenter randomized controlled trial in China. Nutr J 2024; 23:64. [PMID: 38872173 PMCID: PMC11170812 DOI: 10.1186/s12937-024-00968-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a globally increasing health epidemic. Lifestyle intervention is recommended as the main therapy for NAFLD. However, the optimal approach is still unclear. This study aimed to evaluate the effects of a comprehensive approach of intensive lifestyle intervention (ILI) concerning enhanced control of calorie-restricted diet (CRD), exercise, and personalized nutrition counseling on liver steatosis and extrahepatic metabolic status in Chinese overweight and obese patients with NAFLD. METHODS This study was a multicenter randomized controlled trial (RCT) conducted across seven hospitals in China. It involved 226 participants with a body mass index (BMI) above 25. These participants were randomly assigned to two groups: the ILI group, which followed a low carbohydrate, high protein CRD combined with exercise and intensive counseling from a dietitian, and a control group, which adhered to a balanced CRD along with exercise and standard counseling. The main measure of the study was the change in the fat attenuation parameter (FAP) from the start of the study to week 12, analyzed within the per-protocol set. Secondary measures included changes in BMI, liver stiffness measurement (LSM), and the improvement of various metabolic indexes. Additionally, predetermined subgroup analyses of the FAP were conducted based on variables like gender, age, BMI, ethnicity, hyperlipidemia, and hypertension. RESULTS A total of 167 participants completed the whole study. Compared to the control group, ILI participants achieved a significant reduction in FAP (LS mean difference, 16.07 [95% CI: 8.90-23.25] dB/m) and BMI (LS mean difference, 1.46 [95% CI: 1.09-1.82] kg/m2) but not in LSM improvement (LS mean difference, 0.20 [95% CI: -0.19-0.59] kPa). The ILI also substantially improved other secondary outcomes (including ALT, AST, GGT, body fat mass, muscle mass and skeletal muscle mass, triglyceride, fasting blood glucose, fasting insulin, HbA1c, HOMA-IR, HOMA-β, blood pressure, and homocysteine). Further subgroup analyses showed that ILI, rather than control intervention, led to more significant FAP reduction, especially in patients with concurrent hypertension (p < 0.001). CONCLUSION In this RCT, a 12-week intensive lifestyle intervention program led to significant improvements in liver steatosis and other metabolic indicators in overweight and obese Chinese patients suffering from nonalcoholic fatty liver disease. Further research is required to confirm the long-term advantages and practicality of this approach. TRIAL REGISTRATION This clinical trial was registered on ClinicalTrials.gov (registration number: NCT03972631) in June 2019.
Collapse
Affiliation(s)
- Zhong Liu
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Piaopiao Jin
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuping Liu
- Department of Health Management, Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Zhimian Zhang
- Health Management Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiangming Wu
- Zhejiang Nutriease Health Technology Company Limited, Hangzhou, 311121, China
| | - Min Weng
- Department of Nutrition, The First Affiliated Hospital, Kunming Medical University, Kunming, 650034, China
| | - Suyan Cao
- Health Management Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Wang
- Health Management Center, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Rui Yang
- Healthcare Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenbing Liu
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ping Sun
- Department of Health Management, Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Cuihuan Tian
- Health Management Center, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Nan Li
- Health Management Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiang Zeng
- Health Management Institute, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
135
|
Yin J, Zhang N, Feng Y, Meng Q, Zhang T, Hong R, Zhang X. Exposure to famine during early life and the risk of MAFLD during adulthood: evidence from the China Multi-Ethnic Cohort (CMEC) study. BMJ PUBLIC HEALTH 2024; 2:e000114. [PMID: 40018122 PMCID: PMC11812743 DOI: 10.1136/bmjph-2023-000114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/04/2024] [Indexed: 03/01/2025]
Abstract
Background Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease, affecting nearly one-third of the global population. The relationship between early-life famine exposure and MAFLD remains unclear in the multiethnic region of less-developed southwest China. Methods A total of 18 558 participants who came from the baseline survey of the China Multi-Ethnic Cohort Study in Yunnan were included. Participants were divided into four groups according to birth year, including non-exposed (1962-1978 and 1939-1943), fetal exposed (1959-1961), childhood exposed (1949-1958) and adolescence exposed (1943-1949). Logistic regression analysis was used to explore the relationship between famine exposure in early life and the risk of MAFLD in adulthood. Results Experiencing the shock of early-life exposure to famine would affect adulthood MAFLD. Exposure to famine during fetal life and childhood increased the risk of MAFLD in adulthood, with this association being particularly pronounced in Bai populations. Moreover, famine exposure in males during fetal life raised the risk of MAFLD in adulthood. Conclusion We suggest that adequate nutrition in early life may be beneficial in preventing MAFLD in adulthood. The prevention of chronic liver disease should adopt a whole-life strategy by extending the prevention window beginning from fetal life.
Collapse
Affiliation(s)
- Jianzhong Yin
- Baoshan College of Traditional Chinese Medicine, Baoshan, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Nichang Zhang
- Baoshan College of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Yuemei Feng
- Kunming Medical University, Kunming, Yunnan, China
| | - Qiong Meng
- Kunming Medical University, Kunming, Yunnan, China
| | - Teng Zhang
- Baoshan College of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Rudan Hong
- Kunming Medical University, Kunming, Yunnan, China
| | - Xuehui Zhang
- Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
136
|
Portincasa P, Baffy G. Metabolic dysfunction-associated steatotic liver disease: Evolution of the final terminology. Eur J Intern Med 2024; 124:35-39. [PMID: 38653634 DOI: 10.1016/j.ejim.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The medical term nonalcoholic fatty liver disease (NAFLD) was coined in 1986 for a condition that has since become the most prevalent liver disorder worldwide. In the last 3 years, the global professional community launched 2 consecutive efforts to purge NAFLD from the medical dictionary and recommended new terms based on disease pathophysiology rather than distinction from similar conditions featuring liver steatosis. A consensus by renowned clinical scholars primarily residing in the Asian-Pacific region introduced metabolic dysfunction-associated fatty liver disease (MAFLD) as a new name to replace NAFLD in 2020. In 2023, a nomenclature and classification resulting in the term metabolic dysfunction-associated steatotic liver disease (MASLD) was developed by a large expert panel under the auspices of leading liver societies from Europe and Americas. These marked and rapid shifts in nomenclature have garnered the attention of many researchers and clinicians across the globe due to the multilevel impact of a frequent and potentially progressive chronic liver disease in both adult and pediatric populations. The proposed terminologies differ in several ways but they have more in common than differences. They both capture key features of liver disease associated with cardiometabolic risk factors and with significant impact on all-cause and liver-related mortality. The framework of MASLD has incorporated many innovative aspects of MAFLD and while several conceptual disparities remain a work in progress, global efforts should focus on new insights into disease pathogenesis, outcome trajectories, prevention, and treatment. Here, some of these challenges are discussed to facilitate this process.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari 70124, Italy.
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA; Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
137
|
Han AL, Lee HK, Shin SR. Diagnostic Performance of Insulin Resistance Indices for Identifying Metabolic Dysfunction-Associated Fatty Liver Disease. Metab Syndr Relat Disord 2024; 22:402-409. [PMID: 38574322 DOI: 10.1089/met.2023.0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Background/objectives: Insulin resistance (IR) plays an important role in metabolic dysfunction-associated fatty liver disease (MAFLD) pathogenesis. A modified triglyceride-glucose (TyG) index, including TyG-body mass index (TyG-BMI) and TyG-waist circumference (TyG-WC), has been introduced to represent IR. This study aimed to investigate the diagnostic abilities of IR indices in MAFLD, in which fatty liver was diagnosed using computed tomography (CT). Subjects/methods: We retrospectively analyzed the clinical data and images of 852 adults aged ≥19 years who underwent abdominal CT. MAFLD was diagnosed based on the appearance of fatty liver on CT alongside at least one of the following three criteria: being overweight or obese, at least two metabolic risk abnormalities, and/or diabetes mellitus. IR indices were calculated by examining the following variables: homeostasis model assessment-IR, TyG index, TyG-BMI, TyG-WC, and visceral adiposity index. The diagnostic accuracy was evaluated using the area under the receiver operating characteristic curve. Results: For all patients, the area under the curve (AUC) of the TyG index, TyG-BMI, and TyG-WC were 0.834, 0.938, and 0.942, respectively. In men, the AUC of the TyG index, TyG-BMI, and TyG-WC were 0.812, 0.928, and 0.934, respectively. In women, the AUC of the TyG index was 0.841, and TyG-BMI and TyG-WC were 0.940 and 0.953, respectively. The AUC values tended to increase in the following order: TyG index < TyG-BMI < TyG-WC. Women showed a higher AUC than men in all items, and the TyG-WC of women showed the highest value with AUC 0.953 (95% confidence interval [CI]: 0.892-1.000, P < 0.0001). The AUC of the TyG index was 0.858 (95% CI: 0.828-0.888, P < 0.0001). Conclusions: In conclusion, TyG-WC is a powerful surrogate marker for identifying MAFLD in clinical settings.
Collapse
Affiliation(s)
- A Lum Han
- Department of Family Medicine, Wonkwang University Hospital, Iksan, Korea
| | - Hee Kyung Lee
- Department of Family Medicine, Wonkwang University Hospital, Iksan, Korea
| | - Sae Ron Shin
- Department of Family Medicine, Wonkwang University Hospital, Iksan, Korea
| |
Collapse
|
138
|
Shao C, Ye J, Dong Z, Liao B, Feng S, Hu S, Zhong B. Phospholipid metabolism-related genotypes of PLA2R1 and CERS4 contribute to nonobese MASLD. Hepatol Commun 2024; 8:e0388. [PMID: 38836837 PMCID: PMC11155565 DOI: 10.1097/hc9.0000000000000388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/02/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Abnormal phospholipid metabolism is linked to metabolic dysfunction-associated steatotic liver disease (MASLD) development and progression. We aimed to clarify whether genetic variants of phospholipid metabolism modify these relationships. METHODS This case-control study consecutively recruited 600 patients who underwent MRI-based proton density fat fraction examination (240 participants with serum metabonomics analysis, 128 biopsy-proven cases) as 3 groups: healthy control, nonobese MASLD, and obese MASLD, (n = 200 cases each). Ten variants of phospholipid metabolism-related genes [phospholipase A2 Group VII rs1805018, rs76863441, rs1421378, and rs1051931; phospholipase A2 receptor 1 (PLA2R1) rs35771982, rs3828323, and rs3749117; paraoxonase-1 rs662 and rs854560; and ceramide synthase 4 (CERS4) rs17160348)] were genotyped using SNaPshot. RESULTS The T-allele of CERS4 rs17160348 was associated with a higher risk of both obese and nonobese MASLD (OR: 1.95, 95% CI: 1.20-3.15; OR: 1.76, 95% CI: 1.08-2.86, respectively). PLA2R1 rs35771982-allele is a risk factor for nonobese MASLD (OR: 1.66, 95% CI: 1.11-1.24), moderate-to-severe steatosis (OR: 3.24, 95% CI: 1.96-6.22), and steatohepatitis (OR: 2.61, 95% CI: 1.15-3.87), while the paraoxonase-1 rs854560 T-allele (OR: 0.50, 95% CI: 0.26-0.97) and PLA2R1 rs3749117 C-allele (OR: 1.70, 95% CI: 1.14-2.52) are closely related to obese MASLD. After adjusting for sphingomyelin level, the effect of the PLA2R1 rs35771982CC allele on MASLD was attenuated. Furthermore, similar effects on the association between the CERS4 rs17160348 C allele and MASLD were observed for phosphatidylcholine, phosphatidic acid, sphingomyelin, and phosphatidylinositol. CONCLUSIONS The mutations in PLA2R1 rs35771982 and CERS4 rs17160348 presented detrimental impact on the risk of occurrence and disease severity in nonobese MASLD through altered phospholipid metabolism.
Collapse
Affiliation(s)
- Congxiang Shao
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Dong
- Department of Radiology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liao
- Department of Pathology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiting Feng
- Department of Radiology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shixian Hu
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Precision Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bihui Zhong
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
139
|
Pan Z, Al-Busafi SA, Abdulla M, Fouad Y, Sebastiani G, Eslam M. MAFLD identifies patients with significant hepatic fibrosis better than MASLD. Hepatol Int 2024; 18:964-972. [PMID: 38717690 DOI: 10.1007/s12072-024-10673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND AIMS Diagnostic criteria for metabolic dysfunction-associated steatotic liver disease (MASLD) have been proposed but not yet validated. This study aimed to compare the diagnostic accuracy of the MASLD definition with the existing criteria for metabolic dysfunction-associated fatty liver disease (MAFLD) in identifying patients with significant fibrosis. METHODS The analysis included a total of 8317 individuals who had complete biochemical and liver ultrasonography data from the National Health and Nutrition Examination Survey (2017-2020). In this study, significant fibrosis (≥ F2) was determined by a median liver stiffness of ≥ 8.0 kPa. To identify independent factors associated with significant fibrosis, multivariable logistic regression analyses were applied. RESULTS MAFLD (OR 3.44; 95% CI 2.88-4.12; P < 0.0001) has a trend for stronger and independent association with significant fibrosis compared to MASLD (OR 2.63; 95% CI 2.22-3.11; P < 0.0001). Non-MASLD MAFLD is independently associated with a 14.28-fold higher odds of significant fibrosis compared to non-MAFLD MASLD. The sensitivity for detecting significant fibrosis for MAFLD and MASLD was 76.23% vs 69.94%, respectively. The performance of MAFLD remains consistent in a sub-analysis of patients with no or mild alcohol intake. CONCLUSIONS The definition of MAFLD provides a more precise identification of individuals who have both fatty liver and significant fibrosis, assessed by non-invasive tests.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, 2145, Australia
| | - Said A Al-Busafi
- Gastroenterology and Hepatology Unit, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Maheeba Abdulla
- Department of Internal Medicine, Ibn Al Nafees Hospital, Manama, 54533, Bahrain
| | - Yasser Fouad
- Department of Endemic Medicine and Gastroenterology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital, 1001 Blvd. Décarie, Montreal, Canada
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, 2145, Australia.
| |
Collapse
|
140
|
Wang SW, Hsieh TH, Cheng YM, Wang CC, Kao JH. Liver and atherosclerotic risks of patients with cryptogenic steatotic liver disease. Hepatol Int 2024; 18:943-951. [PMID: 38227142 DOI: 10.1007/s12072-023-10624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND AND AIMS In 2023, a new nomenclature of "metabolic associated steatotic liver disease" (MASLD) has emerged by incorporating cardio-metabolic criteria to redefine "non-alcoholic fatty liver disease" (NAFLD). Among steatotic liver disease (SLD), those having no known causes and without any one of cardio-metabolic criteria are deemed to have cryptogenic SLD. This study aims to compare the liver and atherosclerotic risks between MASLD and cryptogenic SLD patients. APPROACH We analyzed participants with liver ultrasound data from the Taiwan Bio-Bank cohort, excluding those with positive HBsAg, positive anti-HCV, or "frequent drinker". MASLD involves hepatic steatosis and any of five cardiometabolic risk factors, whereas cryptogenic SLD features hepatic steatosis without these risk factors. Liver fibrosis severity was assessed by using NAFLD fibrosis score (NFS), while atherosclerosis was determined by carotid plaques on duplex ultrasound. RESULTS Among 17,595 subjects (age 55.47 ± 10.41; males 31.8%), 7538 participants (42.8%) had SLD, comprising 96.5% of MASLD and 3.5% of cryptogenic SLD. Cryptogenic SLD patients are younger and had a lower percentage of male than those with MASLD. After propensity score matching for age and sex, patients with cryptogenic SLD exhibited milder glucose and lipid profiles, fewer carotid plaques, lower liver steatosis, inflammation, and fibrosis markers than those with MASLD. CONCLUSIONS In this large population-based study, cryptogenic SLD, the excluded group, occupy only 3.5% in NAFLD patients. It has lower liver and atherosclerotic risks than MASLD, supporting its exclusion from NAFLD and justifying the rationale for the new disease name and diagnostic criteria of MASLD.
Collapse
Affiliation(s)
- Shao-Wen Wang
- Department of Education, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Tsung-Han Hsieh
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yu-Ming Cheng
- Department of Gastroenterology and Hepatology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chia-Chi Wang
- Department of Gastroenterology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, New Taipei City and Hualien, Taiwan.
- Medical Department, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, 289 Jianguo Rd., Xindian Area, New Taipei City, 23142, Taiwan.
| | - Jia-Horng Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
141
|
Ma X, Zhu Y, Yeo YH, Fan Z, Xu X, Rui F, Ni W, Gu Q, Tong X, Yin S, Qi X, Shi J, Wu C, Li J. The impact of an increased Fibrosis-4 index and the severity of hepatic steatosis on mortality in individuals living with diabetes. Hepatol Int 2024; 18:952-963. [PMID: 38252365 DOI: 10.1007/s12072-023-10625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND AIMS Data on the effects of liver fibrosis and hepatic steatosis on outcomes in individuals living with diabetes are limited. Therefore, we investigated the predictive value of the fibrosis and the severity of hepatic steatosis for all-cause mortality in individuals living with diabetes. METHODS A total of 1903 patients with diabetes from the Third National Health and Nutrition Examination Survey (NHANES III) dataset were enrolled. Presumed hepatic fibrosis was evaluated with Fibrosis-4 index (FIB-4). The mortality risk and corresponding hazard ratio (HR) were analyzed with the Kaplan-Meier method and multivariable Cox proportional hazard models. RESULTS Over a median follow-up of 19.4 years, all-cause deaths occurred in 69.6%. FIB-4 ≥ 1.3 was an independent predictor of mortality in individuals living with diabetes (HR 1.219, 95% confidence interval [CI]: 1.067-1.392, p = 0.004). Overall, FIB-4 ≥ 1.3 without moderate-severe steatosis increased the mortality risk (HR 1.365; 95%CI 1.147-1.623, p < 0.001). The similar results were found in individuals living with diabetes with metabolic dysfunction-associated fatty liver disease (MAFLD) (HR 1.499; 95%CI 1.065-2.110, p = 0.020), metabolic syndrome (MetS) (HR 1.397; 95%CI 1.086-1.796, p = 0.009) or abdominal obesity (HR 1.370; 95%CI 1.077-1.742, p = 0.010). CONCLUSIONS Liver fibrosis, as estimated by FIB-4, may serve as a more reliable prognostic indicator for individuals living with diabetes than hepatic steatosis. Individuals living with diabetes with FIB-4 ≥ 1.3 without moderate-severe steatosis had a significantly increased all-cause mortality risk. These findings highlight the importance of identifying and monitoring those individuals, as they may benefit from further evaluation and risk stratification.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yixuan Zhu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90001, USA
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xiaoming Xu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Wenjing Ni
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Qi Gu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xiaolong Qi
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210008, Jiangsu, China
| | - Junping Shi
- Department of Hepatology, The Affiliated Hospital and Institute of Hepatology and Metabolic Disease, Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China.
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
142
|
Fouad Y, Alboraie M, Gomaa A, Zheng MH, Lonardo A. Could controversies in the arena of fatty liver disease be a potential gate for the democratization of science. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The term “democratization of science” describes the process of more evenly allocating epistemic authority between scientists, members of dominant civilizations, and the academic community at large, or members of less dominant societies. This means that it includes initiatives aimed at democratizing the decision-making process by acknowledging the presence of diverse types of “wisdom of crowd” and so reducing the barriers between the various stakeholders. Our purpose is to separate influence from involvement that contributes to the breakdown of conventional closed-circuit authority structures and to prevent future abuses of power by academic institutions, scientific societies, and even individual opinion leaders. A conceptual framework for comprehending the idea of the democratization of science is presented in this perspective piece. Our considerations are pertinent to the politics of widespread academic engagement in scientific decision-making, even though they were spurred by the discussion surrounding the definitions of fatty liver disease.
Collapse
|
143
|
Pan Z, Khatry MA, Yu ML, Choudhury A, Sebastiani G, Alqahtani SA, Eslam M. MAFLD: an ideal framework for understanding disease phenotype in individuals of normal weight. Ther Adv Endocrinol Metab 2024; 15:20420188241252543. [PMID: 38808010 PMCID: PMC11131400 DOI: 10.1177/20420188241252543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is significant, impacting almost one-third of the global population. MAFLD constitutes a primary cause of end-stage liver disease, liver cancer and the need for liver transplantation. Moreover, it has a strong association with increased mortality rates due to various extrahepatic complications, notably cardiometabolic diseases. While MAFLD is typically correlated with obesity, not all individuals with obesity develop the disease and a significant percentage of MAFLD occurs in patients without obesity, termed lean MAFLD. The clinical features, progression and underlying physiological mechanisms of patients with lean MAFLD remain inadequately characterized. The present review aims to provide a comprehensive summary of current knowledge on lean MAFLD and offer a perspective on defining MAFLD in individuals with normal weight. Key to this process is the concept of metabolic health and flexibility, which links states of dysmetabolism to the development of lean MAFLD. This perspective offers a more nuanced understanding of MAFLD and its underlying mechanisms and highlights the importance of considering the broader metabolic context in which the disease occurs. It also bridges the knowledge gap and offers insights that can inform clinical practice.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Maryam Al Khatry
- Department of Gastroenterology, Obaidullah Hospital, Emirates Health Services, Ministry of Health, Ras Al Khaimah, United Arab Emirates
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, 176 Hawkesbury Road, Westmead 2145, NSW, Australia
| |
Collapse
|
144
|
张 宁, 张 圆, 魏 君, 向 毅, 胡 逸, 肖 雄. [Hypothetical Alcohol Consumption Interventions and Hepatic Steatosis: A Longitudinal Study in a Large Cohort]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:653-661. [PMID: 38948274 PMCID: PMC11211800 DOI: 10.12182/20240560503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 07/02/2024]
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) and alcohol-associated fatty liver disease (ALD) are the most common chronic liver diseases. Hepatic steatosis is an early histological subtype of both NAFLD and ALD. Excessive alcohol consumption is widely known to lead to hepatic steatosis and subsequent liver damage. However, reported findings concerning the association between moderate alcohol consumption and hepatic steatosis remain inconsistent. Notably, alcohol consumption as a modifiable lifestyle behavior is likely to change over time, but most previous studies covered alcohol intake only once at baseline. These inconsistent findings from existing studies do not inform decision-making concerning policies and clinical guidelines, which are of greater interest to health policymakers and clinician-scientists. Additionally, recommendations on the types of alcoholic beverages are not available. Usually, assessing the effects of two or more hypothetical alcohol consumption interventions on hepatic steatosis provides answers to questions concerning the population risk of hepatic steatosis if everyone changes from heavy drinking to abstinence, or if everyone keeps on drinking moderately, or if everyone of the drinking population switches from red wine to beer? Thus, we simulated a target trial to estimate the effects of several hypothetical interventions, including changes in the amount of alcohol consumption or the types of alcoholic beverages consumed, on hepatic steatosis using longitudinal data, to inform decisions about alcohol-related policymaking and clinical care. Methods This longitudinal study included 12687 participants from the UK Biobank (UKB), all of whom participated in both baseline and repeat surveys. We excluded participants with missing data related to components of alcohol consumption and fatty liver index (FLI) in the baseline and the repeat surveys, as well as those who had reported liver diseases or cancer at the baseline survey. We used FLI as an outcome indicator and divided the participants into non-, moderate, and heavy drinkers. The surrogate marker FLI has been endorsed by many international organizations' guidelines, such as the European Association for the Study of the Liver. The calculation of FLI was based on laboratory and anthropometric data, including triglyceride, gamma-glutamyl transferase, body mass index, and waist circumference. Participants responded to questions about the types of alcoholic beverages, which were defined in 5 categories, including red wine, white wine/fortified wine/champagne, beer or cider, spirits, and mixed liqueurs, along with the average weekly or monthly amounts of alcohol consumed. Alcohol consumption was defined as pure alcohol consumed per week and was calculated according to the amount of alcoholic beverages consumed per week and the average ethanol content by volume in each alcoholic beverage. Participants were categorized as non-drinkers, moderate drinkers, and heavy drinkers according to the amount of their alcohol consumption. Moderate drinking was defined as consuming no more than 210 g of alcohol per week for men and 140 g of alcohol per week for women. We defined the following hypothetical interventions for the amount of alcohol consumed: sustaining a certain level of alcohol consumption from baseline to the repeat survey (e.g., none to none, moderate to moderate, heavy to heavy) and changing from one alcohol consumption level to another (e.g., none to moderate, moderate to heavy). The hypothetical interventions for the types of alcoholic beverages were defined in a similar way to those for the amount of alcohol consumed (e.g., red wine to red wine, red wine to beer/cider). We applied the parametric g-formula to estimate the effect of each hypothetical alcohol consumption intervention on the FLI. To implement the parametric g-formula, we first modeled the probability of time-varying confounders and FLI conditional on covariates. We then used these conditional probabilities to estimate the FLI value if the alcohol consumption level of each participant was under a specific hypothetical intervention. The confidence interval was obtained by 200 bootstrap samples. Results For the alcohol consumption from baseline to the repeat surveys, 6.65% of the participants were sustained non-drinkers, 63.68% were sustained moderate drinkers, and 14.74% were sustained heavy drinkers, while 8.39% changed from heavy drinking to moderate drinking. Regarding the types of alcoholic beverages from baseline to the repeat surveys, 27.06% of the drinkers sustained their intake of red wine. Whatever the baseline alcohol consumption level, the hypothetical interventions for increasing alcohol consumption from the baseline alcohol consumption were associated with a higher FLI than that of the sustained baseline alcohol consumption level. When comparing sustained non-drinking with the hypothetical intervention of changing from non-drinking to moderate drinking, the mean ratio of FLI was 1.027 (95% confidence interval [CI]: 0.997-1.057). When comparing sustained non-drinking with the hypothetical intervention of changing from non-drinking to heavy drinking, the mean ratio of FLI was 1.075 (95% CI: 1.042-1.108). When comparing sustained heavy drinking with the hypothetical intervention of changing from heavy drinking to moderate drinking, the mean ratio of FLI was 0.953 (95% CI: 0.938-0.968). The hypothetical intervention of changing to red wine in the UKB was associated with lower FLI levels, compared with sustained consumption of other types of alcoholic beverages. For example, when comparing sustaining spirits with the hypothetical intervention of changing from spirits to red wine, the mean ratio of FLI was 0.981 (95% CI: 0.948-1.014). Conclusions Regardless of the current level of alcohol consumption, interventions that increase alcohol consumption could raise the risk of hepatic steatosis in Western populations. The findings of this study could inform the formulation of future practice guidelines and health policies. If quitting drinking is challenging, red wine may be a better option than other types of alcoholic beverages in Western populations.
Collapse
Affiliation(s)
- 宁 张
- 四川大学华西公共卫生学院/四川大学华西第四医院 流行病与卫生统计学系 (成都 610041)Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - 圆 张
- 四川大学华西公共卫生学院/四川大学华西第四医院 流行病与卫生统计学系 (成都 610041)Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - 君 魏
- 四川大学华西公共卫生学院/四川大学华西第四医院 流行病与卫生统计学系 (成都 610041)Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - 毅 向
- 四川大学华西公共卫生学院/四川大学华西第四医院 流行病与卫生统计学系 (成都 610041)Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - 逸凡 胡
- 四川大学华西公共卫生学院/四川大学华西第四医院 流行病与卫生统计学系 (成都 610041)Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - 雄 肖
- 四川大学华西公共卫生学院/四川大学华西第四医院 流行病与卫生统计学系 (成都 610041)Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
145
|
Sartorio A, Dal Pont C, Romano S. Standard and New Echocardio Techniques, Such as Global Longitudinal Strain, to Monitor the Impact of Diets on Cardiovascular Diseases and Heart Function. Nutrients 2024; 16:1471. [PMID: 38794710 PMCID: PMC11124322 DOI: 10.3390/nu16101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
"The Seven Countries Study", published in 1984, was the first study to find a correlation between diet and mortality related to cardiovascular diseases (CVDs). Since then, many investigations have addressed the relationship between type of diet, or specific nutrients, and CVDs. Based on these findings, some traditional dietary models, such as the Mediterranean or Nordic diet, are recommended to prevent CVDs. Meanwhile, new diets have been proposed for optimal nutrition therapy, for example, the Dietary Approaches to Stop Hypertension (DASH) and the Mediterranean-DASH Intervention Diet for Neurodegenerative Delay (MIND). The main outcomes evaluated after implementing these dietary models are as follows: CVD-related death; the development of specific CVDs, such as myocardial infarction and hypertension; or biochemical parameters related to CVDs, i.e., non-HDL cholesterol, C-reactive protein (CPR) and homocysteine. However, the early impact of diet on heart functionality is less evaluated. Recently, the echographic measurement of left ventricle (LV) deformation by global longitudinal strain (GLS) has been introduced as a novel marker of clinical and subclinical cardiac dysfunction. This technology allows a subclinical evaluation of heart functionality since, differently from the traditional evaluation of left ventricle ejection fraction (LVEF), it is capable of detecting early myocardial dysfunction. In this review, we analyzed the available studies that correlate dietetic regimens to cardiovascular diseases, focusing on the relevance of LV strain to detect subclinical myocardial alteration related to diet. Evidence is presented that DASH and MIND can have a positive impact on heart functionality and that myocardial strain is useful for early detection of diet-related changes in cardiac function.
Collapse
Affiliation(s)
| | | | - Simone Romano
- Division of Internal Medicine C, Department of Internal Medicine, University of Verona, 37134 Verona, Italy; (A.S.); (C.D.P.)
| |
Collapse
|
146
|
Feng C, Yang B, Wang Z, Zhang J, Fu Y, Yu B, Dong S, Ma H, Liu H, Zeng H, Reinhardt JD, Yang S. Relationship of long-term exposure to air pollutant mixture with metabolic-associated fatty liver disease and subtypes: A retrospective cohort study of the employed population of Southwest China. ENVIRONMENT INTERNATIONAL 2024; 188:108734. [PMID: 38744043 DOI: 10.1016/j.envint.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND While evidence suggests that PM2.5 is associated with overall prevalence of Metabolic (dysfunction)-Associated Fatty Liver Disease (MAFLD), effects of comprehensive air pollutant mixture on MAFLD and its subtypes remain unclear. OBJECTIVE To investigate individual and joint effects of long-term exposure to comprehensive air pollutant mixture on MAFLD and its subtypes. METHODS Data of 27,699 participants of the Chinese Cohort of Working Adults were analyzed. MAFLD and subtypes, including overweight/obesity, lean, and diabetes MAFLD, were diagnosed according to clinical guidelines. Concentrations of NO3-, SO42-, NH4+, organic matter (OM), black carbon (BC), PM2.5, SO2, NO2, O3 and CO were estimated as a weighted average over participants' residential and work addresses for the three years preceding outcome assessment. Logistic regression and weighted quantile sum regression were used to estimate individual and joint effects of air pollutant mixture on presence of MAFLD. RESULTS Overall prevalence of MAFLD was 26.6 % with overweight/obesity, lean, and diabetes MAFLD accounting for 92.0 %, 6.4 %, and 1.6 %, respectively. Exposure to SO42-, NO3-, NH4+, BC, PM2.5, NO2, O3and CO was significantly associated with overall MAFLD, overweight/obesity MAFLD, or lean MAFLD in single pollutant models. Joint effects of air pollutant mixture were observed for overall MAFLD (OR = 1.10 [95 % CI: 1.03, 1.17]), overweight/obesity (1.09 [1.02, 1.15]), and lean MAFLD (1.63 [1.28, 2.07]). Contributions of individual air pollutants to joint effects were dominated by CO in overall and overweight/obesity MAFLD (Weights were 42.31 % and 45.87 %, respectively), while SO42- (36.34 %), SO2 (21.00 %) and BC (12.38 %) were more important in lean MAFLD. Being male, aged above 45 years and smoking increased joint effects of air pollutant mixture on overall MAFLD. CONCLUSIONS Air pollutant mixture was associated with MAFLD, particularly the lean MAFLD subtype. CO played a pivotal role in both overall and overweight/obesity MAFLD, whereas SO42- were associated with lean MAFLD.
Collapse
Affiliation(s)
- Chuanteng Feng
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Zihang Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyun Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Honglian Zeng
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; Department of Rehabilitation Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing 210009, China; Department of Health Sciences and Medicine, University of Lucerne, Lucerne 6002, Switzerland.
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan 430079, China.
| |
Collapse
|
147
|
Qi X, Li J, Caussy C, Teng GJ, Loomba R. Epidemiology, screening, and co-management of type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease. Hepatology 2024:01515467-990000000-00875. [PMID: 38722246 DOI: 10.1097/hep.0000000000000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as NAFLD, is increasingly recognized as a prevalent global burden. Type 2 diabetes mellitus (T2DM), another important metabolic disease, is considered a major contributor to the development of MASLD. MASLD and T2DM have a strong association with each other due to shared pathogenic mechanisms. The co-existence of the 2 diseases increases the risk of liver-related adverse outcomes and imposes a heavier burden on extrahepatic outcomes, representing a substantial public health issue. Effective assessment and management of T2DM combined with MASLD necessitate a multidisciplinary approach. The emergence of numerous RCTs has shed light on the treatment of T2DM combined with MASLD. This review uncovers the epidemiology of the intertwined T2DM and MASLD, offers insights into the evaluation of hepatic fibrosis in patients with T2DM, glucose monitoring in the MASLD population, and provides comprehensive co-management strategies for addressing both diseases.
Collapse
Affiliation(s)
- Xiaolong Qi
- Department of Radiology, Center of Portal Hypertension, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology (Southeast University), Nanjing, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China; State Key Laboratory of Digital Medical Engineering, Nanjing, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cyrielle Caussy
- Faculté de Médecine Lyon Sud, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, California, USA
| | - Gao-Jun Teng
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China; State Key Laboratory of Digital Medical Engineering, Nanjing, China
- Department of Radiology, Center of Interventional Radiology and Vascular Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, California, USA
- School of Public Health, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
148
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
149
|
Tang LJ, Sun DQ, Song SJ, Yip TCF, Wong GLH, Zhu PW, Chen SD, Karsdal M, Leeming DJ, Jiang P, Wang C, Chen Q, Byrne CD, Targher G, Eslam M, George J, Wong VWS, Zheng MH. Serum PRO-C3 is useful for risk prediction and fibrosis assessment in MAFLD with chronic kidney disease in an Asian cohort. Liver Int 2024; 44:1129-1141. [PMID: 38426611 DOI: 10.1111/liv.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is an emerging risk factor for chronic kidney disease (CKD). N-terminal propeptide of collagen type 3 (PRO-C3) is a biomarker of advanced fibrosis in MAFLD and PRO-C3 may be involved in renal fibrosis. We aimed to use PRO-C3 measurements to generate a new algorithmic score to test the prediction of MAFLD with chronic kidney disease (MAFLD-CKD). METHODS A derivation and independent validation cohort of 750 and 129 Asian patients with biopsy-confirmed MAFLD were included. Serum PRO-C3 concentration was measured and regression analyses were performed to examine associations with MAFLD-CKD. A derivative algorithm for MAFLD-CKD risk prediction was evaluated with receiver operator characteristic (ROC) curve analysis. RESULTS The study included two Asian cohorts (n = 180 with MAFLD-CKD; mean-eGFR: 94.93 mL/min/1.73 m2; median-urinary albumin-to-creatinine ratio: 6.58 mg/mmol). PRO-C3 was associated with the severity of MAFLD-CKD and independently associated with MAFLD-CKD (adjusted odds ratio = 1.16, 95% confidence interval [CI]: 1.08-1.23, p < .001). A new non-invasive score (termed PERIOD) including PRO-C3 efficiently predicted MAFLD-CKD (AUROC = .842, 95% CI: .805-.875). Accuracy, specificity and negative predictive values were 80.2%, 85.1% and 88.4%, respectively. In the validation cohort, the PERIOD score had good diagnostic performance (AUROC = .807, 95% CI: .691-.893) with similar results in all patient subgroups. In the MAFLD-CKD subgroup, the accuracy for identifying advanced fibrosis was further improved by combining the PRO-C3-based ADAPT with the Agile 3+ scores (AUROC = .90, 95% CI: .836-.964). CONCLUSIONS The PERIOD score is helpful for accurately predicting the risk of MAFLD-CKD. PRO-C3 can also be used to assess liver fibrosis in people with MAFLD-CKD.
Collapse
Affiliation(s)
- Liang-Jie Tang
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dan-Qin Sun
- Department of Nephrology, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Sherlot Juan Song
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Terry Cheuk-Fung Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sui-Dan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Morten Karsdal
- Nordic Bioscience Biomarkers and Research A/S, Herlev, Denmark
| | | | - Pei Jiang
- Fosun Diagnostics (Shanghai) Co., Ltd, Shanghai, China
| | - Cong Wang
- Fosun Diagnostics (Shanghai) Co., Ltd, Shanghai, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research, Biomedical Research Centre, University of Southampton and University Hospital Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
150
|
Dang HNN, Luong TV, Tran TT, Hoang TA. The correlation between liver fibrosis and the 10-year estimated risk of cardiovascular disease in adults with metabolic-associated fatty liver disease: A cross-sectional study in Vietnam. Health Sci Rep 2024; 7:e2102. [PMID: 38725561 PMCID: PMC11079443 DOI: 10.1002/hsr2.2102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND AND AIMS Metabolic-associated fatty liver disease (MAFLD) emerged as a novel term replacing nonalcoholic fatty liver disease (NAFLD) in 2020. While most MAFLD patients are asymptomatic, long-term hepatic fat accumulation may lead to liver fibrosis and cardiovascular disease (CVD). Nevertheless, the relationship between MAFLD and cardiovascular (CV) risk factors remains unclear. This study aimed to assess the 10-year estimated CVD risk in individuals diagnosed with MAFLD. METHODS Between January 2022 and August 2023, this cross-sectional study enrolled 139 MAFLD patients. We employed the systematic coronary risk evaluation 2 (SCORE2) and the systematic coronary risk evaluation 2-older persons (SCORE2-OP) scoring systems to evaluate and categorize the 10-year CV risk. Liver fibrosis was assessed using biochemical parameters (FIB-4, AST/ALT, and APRI), and their correlation with CV risk was examined. RESULTS Most MAFLD patients were categorized as having high or very high CV risk based on the SCORE2 and SCORE2-OP. Liver fibrosis, measured by the FIB-4 score, significantly differed among the various CV risk groups. Moreover, FIB-4 correlated positively with SCORE2 and SCORE2-OP (r = 0.588, p < 0.001), indicating its substantial predictive ability for identifying individuals at very high CV risk (AUC = 0.765, 95% CI: 0.686-0.845, p < 0.001). A FIB-4 score of 1.275 demonstrated 81% sensitivity and 64% specificity in predicting very high CV risk among MAFLD patients. CONCLUSION Patients with MAFLD predominantly face high or very high CV risks, with elevated liver fibrosis associated with increased 10-year estimated CVD risk. The FIB-4 score exhibits promising predictive value for identifying MAFLD patients at very high risk of CV disease.
Collapse
Affiliation(s)
- Hai Nguyen Ngoc Dang
- Faculty of MedicineDuy Tan UniversityDa NangVietnam
- Cardiovascular CenterHue Central HospitalHueViet Nam
| | - Thang Viet Luong
- Department of Internal MedicineHue University of Medicine and PharmacyHueVietnam
| | | | - Tien Anh Hoang
- Department of Internal MedicineHue University of Medicine and PharmacyHueVietnam
| |
Collapse
|