101
|
Songsiriritthigul C, Narawongsanont R, Tantitadapitak C, Guan HH, Chen CJ. Structure-function study of AKR4C14, an aldo-keto reductase from Thai jasmine rice (Oryza sativa L. ssp. indica cv. KDML105). ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:472-483. [PMID: 32355043 DOI: 10.1107/s2059798320004313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022]
Abstract
Aldo-keto reductases (AKRs) are NADPH/NADP+-dependent oxidoreductase enzymes that metabolize an aldehyde/ketone to the corresponding alcohol. AKR4C14 from rice exhibits a much higher efficiency in metabolizing malondialdehyde (MDA) than do the Arabidopsis enzymes AKR4C8 and AKR4C9, despite sharing greater than 60% amino-acid sequence identity. This study confirms the role of rice AKR4C14 in the detoxification of methylglyoxal and MDA, and demonstrates that the endogenous contents of both aldehydes in transgenic Arabidopsis ectopically expressing AKR4C14 are significantly lower than their levels in the wild type. The apo structure of indica rice AKR4C14 was also determined in the absence of the cofactor, revealing the stabilized open conformation. This is the first crystal structure in AKR subfamily 4C from rice to be observed in the apo form (without bound NADP+). The refined AKR4C14 structure reveals a stabilized open conformation of loop B, suggesting the initial phase prior to cofactor binding. Based on the X-ray crystal structure, the substrate- and cofactor-binding pockets of AKR4C14 are formed by loops A, B, C and β1α1. Moreover, the residues Ser211 and Asn220 on loop B are proposed as the hinge residues that are responsible for conformational alteration while the cofactor binds. The open conformation of loop B is proposed to involve Phe216 pointing out from the cofactor-binding site and the opening of the safety belt. Structural comparison with other AKRs in subfamily 4C emphasizes the role of the substrate-channel wall, consisting of Trp24, Trp115, Tyr206, Phe216, Leu291 and Phe295, in substrate discrimination. In particular, Leu291 could contribute greatly to substrate selectivity, explaining the preference of AKR4C14 for its straight-chain aldehyde substrate.
Collapse
Affiliation(s)
- Chomphunuch Songsiriritthigul
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Rawint Narawongsanont
- Department of Biochemistry, Faculty of Science, Kasetsart University, Pahonyothin Road, Bangkok 10903, Thailand
| | - Chonticha Tantitadapitak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Pahonyothin Road, Bangkok 10903, Thailand
| | - Hong Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chun Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| |
Collapse
|
102
|
Sun X, Li H, Thapa S, Reddy Sangireddy S, Pei X, Liu W, Jiang Y, Yang S, Hui D, Bhatti S, Zhou S, Yang Y, Fish T, Thannhauser TW. Al-induced proteomics changes in tomato plants over-expressing a glyoxalase I gene. HORTICULTURE RESEARCH 2020; 7:43. [PMID: 32257229 PMCID: PMC7109090 DOI: 10.1038/s41438-020-0264-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. The basal 5 mm root-tips of GlyI plants expressed a significantly higher level of glyoxalase activity under both non-Al-treated and Al-treated conditions compared to the two control lines. Under Al-treated condition, there was a significant increase in MG content in ECtr and WT lines, but not in GlyI line. Quantitative proteomics analysis using tandem mass tags mass spectrometry identified 4080 quantifiable proteins and 201 Al-induced differentially expressed proteins (DEPs) in root-tip tissues from GlyI, and 4273 proteins and 230 DEPs from ECtr. The Al-down-regulated DEPs were classified into molecular pathways of gene transcription, RNA splicing and protein biosynthesis in both GlyI and ECtr lines. The Al-induced DEPs in GlyI associated with tolerance to Al3+ and MG toxicity are involved in callose degradation, cell wall components (xylan acetylation and pectin degradation), oxidative stress (antioxidants) and turnover of Al-damaged epidermal cells, repair of damaged DNA, epigenetics, gene transcription, and protein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
- College of Horticulture, Shandong Agricultural University, Taian, Shandong P.R. China
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Xiaobo Pei
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Wei Liu
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yuping Jiang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Shaolan Yang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Dafeng Hui
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Sarabjit Bhatti
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209 USA
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
103
|
RNAi-mediated down regulation of BADH2 gene for expression of 2-acetyl-1-pyrroline in non-scented indica rice IR-64 ( Oryza sativa L.). 3 Biotech 2020; 10:145. [PMID: 32181107 DOI: 10.1007/s13205-020-2131-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
2-acetyl-1-pyrroline (2AP) is a principal aroma compound in scented rice and a mutation in betaine aldehyde dehydrogenase 2 (OsBADH2) is responsible aroma in scented rice. The present study was aimed at inducing 2AP production in non-scented indica rice cultivar IR-64 by silencing OsBADH2 via RNAi technique. A vector pBSK was used for the construction of RNAi cassette and pRI101ON as a binary vector. Agrobacterium (GV3101)-mediated transformation was done using embryogenic calli of IR-64. The resultant transgenic lines showed up to 14-fold reduction in expression of OsBADH2 gene and 50% inhibition in enzyme activity. Gas chromatography (GC-MS) analyses showed a significant amount of 2AP production in RNAi callus, leaves, and seeds of IR-64. A total 39 volatile compounds were identified from the control and RNAi seeds of IR-64. Among them, octanal and 2-pentylfuron were found to be increased (30-40%) in RNAi seeds of IR-64. The content of precursors, proline, and methylglyoxal increased substantially, whereas GABA content reduced up to 25% in transgenic IR-64 lines. The study demonstrated that RNAi approach could be successfully used for imparting pleasant aroma character in non-scented indica rice cultivars.
Collapse
|
104
|
Singh A, Chaudhari AK, Das S, Dubey NK. Nanoencapsulated Monarda citriodora Cerv. ex Lag. essential oil as potential antifungal and antiaflatoxigenic agent against deterioration of stored functional foods. Journal of Food Science and Technology 2020; 57:2863-2876. [PMID: 32624592 DOI: 10.1007/s13197-020-04318-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
In vitro antifungal activity of the essential oil from Monarda citriodora (MCEO) with possible mode of action was evaluated against A. flavus (AF-LHP-SH1) and 15 other storage molds for controlling postharvest deterioration of stored functional food samples. The chemical profiling of MCEO as done through GC-MS analysis revealed caryophyllene (19.15%) as the major component. The MCEO showed broad spectrum fungitoxicity and completely inhibited the growth of all tested molds and aflatoxin B1 (AFB1) production by AF-LHP-SH1 at 1.40 and 1.20 µL/mL, respectively. Plasma membrane damage and methylglyoxal inhibition was confirmed as the possible antifungal and antiaflatoxigenic mode of action of MCEO. MCEO exhibited remarkable antioxidant activity with IC50 value 2.24 μL/mL as determined through DPPH assay and did not cause adverse effect on seed germination. In addition, the MCEO was encapsulated into chitosan nanoparticle, characterized (SEM, FTIR, XRD) and assessed for their potential against inhibition of growth and AFB1 production. MCEO after encapsulation exhibited enhanced efficacy inhibiting fungal growth and AFB1 production by AF-LHP-SH1 at 0.6 and 0.5 µL/mL, respectively. Encapsulated MCEO may be recommended as novel preservative to extend the shelf life of stored functional food samples.
Collapse
Affiliation(s)
- Akanksha Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
105
|
Bhowal B, Singla-Pareek SL, Sopory SK, Kaur C. From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor. BMC Genomics 2020; 21:145. [PMID: 32041545 PMCID: PMC7011430 DOI: 10.1186/s12864-020-6547-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
Background The glyoxalase pathway is evolutionarily conserved and involved in the glutathione-dependent detoxification of methylglyoxal (MG), a cytotoxic by-product of glycolysis. It acts via two metallo-enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), to convert MG into D-lactate, which is further metabolized to pyruvate by D-lactate dehydrogenases (D-LDH). Since D-lactate formation occurs solely by the action of glyoxalase enzymes, its metabolism may be considered as the ultimate step of MG detoxification. By maintaining steady state levels of MG and other reactive dicarbonyl compounds, the glyoxalase pathway serves as an important line of defence against glycation and oxidative stress in living organisms. Therefore, considering the general role of glyoxalases in stress adaptation and the ability of Sorghum bicolor to withstand prolonged drought, the sorghum glyoxalase pathway warrants an in-depth investigation with regard to the presence, regulation and distribution of glyoxalase and D-LDH genes. Result Through this study, we have identified 15 GLYI and 6 GLYII genes in sorghum. In addition, 4 D-LDH genes were also identified, forming the first ever report on genome-wide identification of any plant D-LDH family. Our in silico analysis indicates homology of putatively active SbGLYI, SbGLYII and SbDLDH proteins to several functionally characterised glyoxalases and D-LDHs from Arabidopsis and rice. Further, these three gene families exhibit development and tissue-specific variations in their expression patterns. Importantly, we could predict the distribution of putatively active SbGLYI, SbGLYII and SbDLDH proteins in at least four different sub-cellular compartments namely, cytoplasm, chloroplast, nucleus and mitochondria. Most of the members of the sorghum glyoxalase and D-LDH gene families are indeed found to be highly stress responsive. Conclusion This study emphasizes the role of glyoxalases as well as that of D-LDH in the complete detoxification of MG in sorghum. In particular, we propose that D-LDH which metabolizes the specific end product of glyoxalases pathway is essential for complete MG detoxification. By proposing a cellular model for detoxification of MG via glyoxalase pathway in sorghum, we suggest that different sub-cellular organelles are actively involved in MG metabolism in plants.
Collapse
Affiliation(s)
- Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
106
|
Kamran M, Xie K, Sun J, Wang D, Shi C, Lu Y, Gu W, Xu P. Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109877. [PMID: 31704320 DOI: 10.1016/j.ecoenv.2019.109877] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 05/07/2023]
Abstract
Salinity represents a serious environmental threat to crop production and by extension, to world food supply, social and economic prosperity of the developing world. Salicylic acid (SA) is an endogenous plant signal molecule involved in regulating various plant responses to stress. In the present study, we characterized the regulatory role of exogenous SA for their ability to ameliorate deleterious effects of salt stress (0, 100, 150, 200 mM NaCl) in choysum plants through coordinated induction of antioxidants, ascorbate glutathione (AsA-GSH) cycle, and the glyoxalase enzymes. An increase in salt stress dramatically declined root and shoot growth, leaf chlorophyll and relative water content (RWC), subsequently increased electrolyte leakage (EL) and osmolytes accumulation in choysum plants. Salt stress disrupted the antioxidant and glyoxalase defense systems which persuaded oxidative damages and carbonyl toxicity, indicated by increased H2O2 generation, lipid peroxidation, and methylglyoxal (MG) content. However, application of SA had an additive effect on the growth of salt-affected choysum plants, which enhanced root length, plant biomass, chlorophyll contents, leaf area, and RWC. Moreover, SA application effectively eliminated the oxidative and carbonyl stress by improving AsA and GSH pool, upregulating the activities of antioxidant enzymes and the enzymes associated with AsA-GSH cycle and glyoxalase system. Overall, SA application completely counteracted the salinity-induced deleterious effects of 100 and 150 mM NaCl and partially mediated that of 200 mM NaCl stress. Therefore, we concluded that SA application induced tolerance to salinity stress in choysum plants due to the synchronized increase in activities of enzymatic and non-enzymatic antioxidants, enhanced efficiency of AsA-GSH cycle and the MG detoxification systems.
Collapse
Affiliation(s)
- Muhammad Kamran
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Kaizhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Jie Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Chaohong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China.
| | - Peizhi Xu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, 510640, China.
| |
Collapse
|
107
|
Li J, Essemine J, Shang C, Zhang H, Zhu X, Yu J, Chen G, Qu M, Sun D. Combined Proteomics and Metabolism Analysis Unravels Prominent Roles of Antioxidant System in the Prevention of Alfalfa ( Medicago sativa L.) against Salt Stress. Int J Mol Sci 2020; 21:E909. [PMID: 32019165 PMCID: PMC7037825 DOI: 10.3390/ijms21030909] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 01/09/2023] Open
Abstract
Alfalfa is the most extensively cultivated forage legume worldwide, and salinity constitutes the main environmental scourge limiting its growth and productivity. To unravel the potential molecular mechanism involved in salt tolerance in alfalfa, we accomplished a combined analysis of parallel reaction monitoring-based proteomic technique and targeted metabolism. Based on proteomic analysis, salt stress induced 226 differentially abundant proteins (DAPs). Among them, 118 DAPs related to the antioxidant system, including glutathione metabolism and oxidation-reduction pathways, were significantly up-regulated. Data are available via ProteomeXchange with identifier PXD017166. Overall, 107 determined metabolites revealed that the tricarboxylic acid (TCA) cycle, especially the malate to oxaloacetate conversion step, was strongly stimulated by salt stress. This leads to an up-regulation by about 5 times the ratio of NADPH/NADP+, as well as about 3 to 5 times in the antioxidant enzymes activities, including those of catalase and peroxidase and proline contents. However, the expression levels of DAPs related to the Calvin-Benson-Bassham (CBB) cycle and photorespiration pathway were dramatically inhibited following salt treatment. Consistently, metabolic analysis showed that the metabolite amounts related to carbon assimilation and photorespiration decreased by about 40% after exposure to 200 mM NaCl for 14 d, leading ultimately to a reduction in net photosynthesis by around 30%. Our findings highlighted also the importance of the supplied extra reducing power, thanks to the TCA cycle, in the well-functioning of glutathione to remove and scavenge the reactive oxygen species (ROS) and mitigate subsequently the oxidative deleterious effect of salt on carbon metabolism including the CBB cycle.
Collapse
Affiliation(s)
- Jikai Li
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (J.L.); (C.S.); (H.Z.)
| | - Jemaa Essemine
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.E.); (G.C.)
| | - Chen Shang
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (J.L.); (C.S.); (H.Z.)
| | - Hailing Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (J.L.); (C.S.); (H.Z.)
| | - Xiaocen Zhu
- Human Phenome Institute, Fudan University, Shanghai 200438, China;
| | - Jialin Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Genyun Chen
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.E.); (G.C.)
| | - Mingnan Qu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.E.); (G.C.)
| | - Dequan Sun
- Institute of Grass Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150080, China; (J.L.); (C.S.); (H.Z.)
| |
Collapse
|
108
|
Abdel-Ghany SE, Ullah F, Ben-Hur A, Reddy ASN. Transcriptome Analysis of Drought-Resistant and Drought-Sensitive Sorghum ( Sorghum bicolor) Genotypes in Response to PEG-Induced Drought Stress. Int J Mol Sci 2020; 21:ijms21030772. [PMID: 31991584 PMCID: PMC7037816 DOI: 10.3390/ijms21030772] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Drought is a major limiting factor of crop yields. In response to drought, plants reprogram their gene expression, which ultimately regulates a multitude of biochemical and physiological processes. The timing of this reprogramming and the nature of the drought-regulated genes in different genotypes are thought to confer differential tolerance to drought stress. Sorghum is a highly drought-tolerant crop and has been increasingly used as a model cereal to identify genes that confer tolerance. Also, there is considerable natural variation in resistance to drought in different sorghum genotypes. Here, we evaluated drought resistance in four genotypes to polyethylene glycol (PEG)-induced drought stress at the seedling stage and performed transcriptome analysis in seedlings of sorghum genotypes that are either drought-resistant or drought-sensitive to identify drought-regulated changes in gene expression that are unique to drought-resistant genotypes of sorghum. Our analysis revealed that about 180 genes are differentially regulated in response to drought stress only in drought-resistant genotypes and most of these (over 70%) are up-regulated in response to drought. Among these, about 70 genes are novel with no known function and the remaining are transcription factors, signaling and stress-related proteins implicated in drought tolerance in other crops. This study revealed a set of drought-regulated genes, including many genes encoding uncharacterized proteins that are associated with drought tolerance at the seedling stage.
Collapse
Affiliation(s)
- Salah E. Abdel-Ghany
- Department of Biology and Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Fahad Ullah
- Computer Science Department, Colorado State University, Fort Collins, CO 80523, USA; (F.U.); (A.B.-H.)
| | - Asa Ben-Hur
- Computer Science Department, Colorado State University, Fort Collins, CO 80523, USA; (F.U.); (A.B.-H.)
| | - Anireddy S. N. Reddy
- Department of Biology and Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Correspondence: ; Tel.: +1-970-491-5773; Fax: +1-970-491-0649
| |
Collapse
|
109
|
Patil S, Shinde M, Prashant R, Kadoo N, Upadhyay A, Gupta V. Comparative Proteomics Unravels the Differences in Salt Stress Response of Own-Rooted and 110R-Grafted Thompson Seedless Grapevines. J Proteome Res 2019; 19:583-599. [PMID: 31808345 DOI: 10.1021/acs.jproteome.9b00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thompson Seedless, a commonly grown table grape variety, is sensitive to salinity when grown on its own roots, and therefore, it is frequently grafted onto salinity-tolerant wild grapevine rootstocks. Rising soil salinity is a growing concern in irrigated agricultural systems. The accumulation of salts near the root zone severely hampers plant growth, leading to a decrease in the productive lifespan of grapevine and causing heavy yield losses to the farmer. In the present study, we investigated the differences in response to salinity between own-rooted Thompson Seedless (TSOR) and 110R-grafted Thompson Seedless (TS110R) grapevines, wherein 110R is reported to be a salt-tolerant rootstock. The grapevines were subjected to salt stress by treating them with a 150 mM NaCl solution. The stress-induced changes in protein abundance were investigated using a label-free shotgun proteomics approach at three time-points viz. 6 h, 48 h, and 7 days of salt treatment. A total of 2793 proteins were identified, of which 246 were differentially abundant at various time-points in TSOR and TS110R vines. The abundance of proteins involved in several biological processes such as photosynthesis, amino acid metabolism, translation, chlorophyll biosynthesis, and generation of precursor metabolites was significantly affected by salt stress in both the vines but at different stages of stress. The results revealed that TSOR vines responded fervently to salt stress, while TS110R vines adopted a preventive approach. The findings of this study add to the knowledge of salinity response in woody and grafted plants and hence open the scope for further studies on salt stress-specific differences induced by grafting.
Collapse
Affiliation(s)
- Sucheta Patil
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | - Manisha Shinde
- ICAR-National Research Centre for Grapes , Pune 412307 , India
| | - Ramya Prashant
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India
| | - Narendra Kadoo
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | | | - Vidya Gupta
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| |
Collapse
|
110
|
Rohman MM, Islam MR, Monsur MB, Amiruzzaman M, Fujita M, Hasanuzzaman M. Trehalose Protects Maize Plants from Salt Stress and Phosphorus Deficiency. PLANTS (BASEL, SWITZERLAND) 2019; 8:E568. [PMID: 31817132 PMCID: PMC6963808 DOI: 10.3390/plants8120568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
This study is undertaken to elucidate the role of trehalose (Tre) in mitigating oxidative stress under salinity and low P in maize. Eight-day-old maize seedlings of two maize varieties, BARI Hybrid Maize-7 and BARI Hybrid Maize-9, were subjected to salinity (150 mM NaCl), low P (5 µM KH2PO4) and their combined stress with or without 10 mM Tre for 15 d. Salinity and combined stress significantly inhibited the shoot length, root length, and root volume, whereas low P increased the root length and volume in both genotypes. Exogenous Tre in the stress treatments increased all of the growth parameters as well as decreased the salinity, low P, and combined stress-mediated Na+/K+, reactive oxygen species (ROS), malondialdehyde (MDA), lipoxygenase (LOX) activity, and methylglyoxal (MG) in both genotypes. Individually, salinity and low P increased superoxide dismutase (SOD) activity in both genotypes, but combined stress decreased the activity. Peroxidase (POD) activity increased in all stress treatments. Interestingly, Tre application enhanced the SOD activity in all the stress treatments but inhibited the POD activity. Both catalase (CAT) and glutathione peroxidase (GPX) activity were increased by saline and low P stress while the activities inhibited in combined stress. Similar results were found for ascorbate peroxidase (APX), glutathione peroxidase (GR), and dehydroascorbate reductase (DHAR) activities in both genotypes. However, monodehydroascorbate reductase (MDHAR) activity was inhibited in all the stresses. Interestingly, Tre enhanced CAT, APX, GPX, GR, MDHAR, and DHAR activities suggesting the amelioration of ROS scavenging in maize under all the stresses. Conversely, increased glyoxalase activities in saline and low P stress in BHM-9 suggested better MG detoxification system because of the down-regulation of glyoxalase-I (Gly-I) activity in BHM-7 in those stresses. Tre also increased the glyoxalase activities in both genotypes under all the stresses. Tre improved the growth in maize seedlings by decreasing Na+/K+, ROS, MDA, and MG through regulating antioxidant and glyoxalase systems.
Collapse
Affiliation(s)
- Md. Motiar Rohman
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Md. Robyul Islam
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Mahmuda Binte Monsur
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Mohammad Amiruzzaman
- Molecular Breeding Lab, Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (M.R.I.); (M.B.M.); (M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress responses, Faculty of Agriculture, Kagawa University, Kagawa 7610795, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| |
Collapse
|
111
|
Soliman M, Alhaithloul HA, Hakeem KR, Alharbi BM, El-Esawi M, Elkelish A. Exogenous Nitric Oxide Mitigates Nickel-Induced Oxidative Damage in Eggplant by Upregulating Antioxidants, Osmolyte Metabolism, and Glyoxalase Systems. PLANTS (BASEL, SWITZERLAND) 2019; 8:E562. [PMID: 31805747 PMCID: PMC6963868 DOI: 10.3390/plants8120562] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) at optimal levels is considered beneficial to plant functioning. The present study was carried out to investigate the role of exogenously applied NO (100 and 150 µM sodium nitropurusside, SNP) in amelioration of nickel (Ni)-mediated oxidative effects in eggplant. Ni stress declined growth and biomass production, relative water content (RWC), and chlorophyll pigment synthesis, thereby affecting the photosynthetic efficiency. Exogenously applied SNP proved beneficial in mitigating the Ni-mediated growth restrictions. NO-treated seedlings exhibited improved photosynthesis, stomatal conductance, and chlorophyll content with the effect of being apparent at lower concentration (100 µM SNP). SNP upregulated the antioxidant system mitigating the oxidative damage on membranes due to Ni stress. The activity of superoxide dismutase, catalase, glutathione S-transferase, ascorbate peroxidase, and glutathione reductase was upregulated due to SNP which also increased the ascorbate and reduced glutathione content. SNP-supplied seedlings also showed higher proline and glycine betaine accumulation, thereby improving RWC and antioxidant system. Glyoxalase I activity was induced due to SNP application declining the accumulation of methylglyoxal. NO-mediated mitigation of Ni toxicity was confirmed using NO scavenger (PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), which reversed the influence of SNP almost entirely on the parameters studied. Uptake of nitrogen (N), potassium (K), and calcium (Ca) was increased due to SNP application and Ni was reduced significantly. Therefore, this study revealed the efficiency of exogenous SNP in enhancing Ni stress tolerance through upregulating antioxidant and glyoxalase systems.
Collapse
Affiliation(s)
- Mona Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Haifa A. Alhaithloul
- Department of Biology, College of science, Jouf University, Sakaka 2014, Saudi Arabia;
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
- Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mohamed El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
112
|
Chen L, Bao F, Tang S, Zuo E, Lv Q, Zhang D, Hu Y, Wang X, He Y. PpAKR1A, a Novel Aldo-Keto Reductase from Physcomitrella Patens, Plays a Positive Role in Salt Stress. Int J Mol Sci 2019; 20:ijms20225723. [PMID: 31739643 PMCID: PMC6888457 DOI: 10.3390/ijms20225723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
The moss Physcomitrella patens is tolerant of highly saline environments. In plants, salinity stress may induce the production of toxic reactive carbonyl species (RCS) and oxidative damage. Aldo-keto reductases (AKRs) are a large group of NADP-dependent oxidoreductases involved in RCS detoxification. However, many members in this superfamily remain uncharacterized. In this study, we cloned and characterised a putative AKR1 from P. patens, named PpAKR1A. Notably, the transcription level of PpAKR1A was induced by salt and methylglyoxal (MG) stress, and the recombinant PpAKR1A protein catalysed the reduction of toxic aldehydes. PpAKR1A knockout mutants of P. patens (ppakr1a) were sensitive to NaCl and MG treatment, as indicated by much lower concentrations of chlorophyll and much higher concentrations of MG and H2O2 than those in WT plants. Meanwhile, ppakr1a plants exhibited decreases in the MG-reducing activity and reactive oxygen species-scavenging ability in response to salt stress, possibly due to decreases in the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). Our results indicate that PpAKR1A is an aldo-keto reductase that detoxifies MG and thus plays an important role in salt stress tolerance in P. patens.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Shuxuan Tang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Enhui Zuo
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Dongyang Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
| | - Xiaoqin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (X.W.); (Y.H.); Tel.: +86-10-68903089 (Y.H.)
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (L.C.); (F.B.); (S.T.); (E.Z.); (Q.L.); (D.Z.); (Y.H.)
- Correspondence: (X.W.); (Y.H.); Tel.: +86-10-68903089 (Y.H.)
| |
Collapse
|
113
|
Proietti S, Falconieri GS, Bertini L, Baccelli I, Paccosi E, Belardo A, Timperio AM, Caruso C. GLYI4 Plays A Role in Methylglyoxal Detoxification and Jasmonate-Mediated Stress Responses in Arabidopsis thaliana. Biomolecules 2019; 9:biom9100635. [PMID: 31652571 PMCID: PMC6843518 DOI: 10.3390/biom9100635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Plant hormones play a central role in various physiological functions and in mediating defense responses against (a)biotic stresses. In response to primary metabolism alteration, plants can produce also small molecules such as methylglyoxal (MG), a cytotoxic aldehyde. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I (GLYI) and glyoxalase II (GLYII) that make up the glyoxalase system. Recently, by a genome-wide association study performed in Arabidopsis, we identified GLYI4 as a novel player in the crosstalk between jasmonate (JA) and salicylic acid (SA) hormone pathways. Here, we investigated the impact of GLYI4 knock-down on MG scavenging and on JA pathway. In glyI4 mutant plants, we observed a general stress phenotype, characterized by compromised MG scavenging, accumulation of reactive oxygen species (ROS), stomatal closure, and reduced fitness. Accumulation of MG in glyI4 plants led to lower efficiency of the JA pathway, as highlighted by the increased susceptibility of the plants to the pathogenic fungus Plectospherella cucumerina. Moreover, MG accumulation brought about a localization of GLYI4 to the plasma membrane, while MeJA stimulus induced a translocation of the protein into the cytoplasmic compartment. Collectively, the results are consistent with the hypothesis that GLYI4 is a hub in the MG and JA pathways.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | | | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elena Paccosi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
114
|
Das S, Singh VK, Dwivedy AK, Chaudhari AK, Upadhyay N, Singh A, Dubey NK. Antimicrobial activity, antiaflatoxigenic potential and in situ efficacy of novel formulation comprising of Apium graveolens essential oil and its major component. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:102-111. [PMID: 31519243 DOI: 10.1016/j.pestbp.2019.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The present study reports the formulation of Apium graveolens essential oil (AGEO) with its major components linalyl acetate (LA) and geranyl acetate (GA) (1:1:1) as a novel green preservative for protection of postharvest food commodities from fungal infestations, aflatoxin B1 (AFB1) secretion, free radical generation and lipid peroxidation. The essential oil based novel formulation displayed considerable inhibitory action against fourteen food borne molds responsible for deterioration of stored food commodities, in addition to the most toxigenic strain of Aspergillus flavus (AFLHPR14) isolated from fungal and aflatoxin contaminated rice seeds. The observed higher efficacy of designed formulation was due to the synergistic action of essential oil and its major components. Fungal plasma membrane was recorded as the possible target site of antifungal action of the formulation as revealed through reduction in membrane ergosterol content, increased intracellular propidium iodide (PI) fluorescence and enhanced leakage of cellular ions (sodium, potassium, calcium) and 260, 280 nm absorbing materials. Further, inhibition of methylglyoxal (an aflatoxin inducer) confirmed the aflatoxin inhibitory potential of novel formulation based on essential oil and its major components. High antioxidant potential as observed through DPPH and ABTS·+ radical scavenging assay, improved phenolic content, considerable inhibition of lipid peroxidation in stored rice seeds, in situ efficacy on AFB1 inhibition in food system under storage container system, acceptable sensorial characteristics and favorable safety profile during animal trials suggest the recommendation of the designed formulation for large scale application as green preservative by food and agriculture based industries against fungal and aflatoxin contamination of stored commodities.
Collapse
Affiliation(s)
- Somenath Das
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vipin Kumar Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Kumar Dwivedy
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Chaudhari
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Neha Upadhyay
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Akanksha Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
115
|
Zaid A, Mohammad F, Wani SH, Siddique KMH. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:575-587. [PMID: 31129436 DOI: 10.1016/j.ecoenv.2019.05.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 05/13/2019] [Indexed: 05/07/2023]
Abstract
The present study identified inverse relationships between nickel (Ni) levels and growth, photosynthesis and physio-biochemical attributes, but increasing levels of Ni stress enhanced methylglyoxal, electrolyte leakage, hydrogen peroxide, and lipid peroxidation content. Exogenous application of salicylic acid (SA) (10-5 M) ameliorated the ill-effects of Ni by restoring growth, photosynthesis and physio-biochemical attributes and increasing the activities of enzymes associated with antioxidant systems, especially the ascorbate-glutathione (AsA-GSH) cycle and glyoxalase system. In addition, SA application to Ni-stressed plants had an additive effect on the activities of the ascorbate and glutathione pools, and the AsA-GSH cycle enzymes (ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase), superoxide dismutase, catalase, glutathione S-transferase, and osmolyte biosynthesis). This trend also follows in glyoxalase system viz. glyoxalase I and glyoxalase II enzymes. Nevertheless, exogenous SA supplementation restored mineral nutrient contents. Principal component analysis showed that growth, photosynthesis, and mineral nutrient parameters were positively correlated with each other and negatively correlated with antioxidant enzymes and oxidative stress biomarkers. Hence, SA is an alternative compound with potential application in the phytoremediation of Ni.
Collapse
Affiliation(s)
- Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani Anantnag, 192101, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K, India
| | - Kadambot M H Siddique
- The UWA Institute of Agriculture, The University of Western Australia, LB 5005, Perth, WA, 6001, Australia
| |
Collapse
|
116
|
Rai S, Rai R, Singh PK, Rai LC. Alr2321, a multiple stress inducible glyoxalase I of Anabaena sp. PCC7120 detoxifies methylglyoxal and reactive species oxygen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105238. [PMID: 31301544 DOI: 10.1016/j.aquatox.2019.105238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Abiotic stresses enhance the cellular level of reactive oxygen species (ROS) which consequently leads to toxic methylglyoxal (MG) production. Glyoxalases (GlyI & GlyII) catalyze the conversion of toxic MG into non-toxic lactic acid but their properties and functions have been overlooked in cyanobacteria. This is the first attempt to conduct a genome-wide analysis of GlyI protein (PF00903) from Anabaena sp. PCC7120. Out of total nine GlyI domain possessing proteins, only three (Alr2321, Alr4469, All1022) harbour conserve His/Glu/His/Glu metal binding site at their homologous position and are deficient in conserved region specific for Zn2+ dependent members. Their biochemical, structural and functional characterization revealed that only Alr2321 is a homodimeric Ni2+ dependent active GlyI with catalytic efficiency 11.7 × 106 M-1 s-1. It has also been found that Alr2321 is activated by various divalent metal ions and has maximum GlyI activity with Ni2+ followed by Co2+ > Mn2+ > Cu2+ and no activity with Zn2+. Moreover, the expression of alr2321 was found to be maximally up-regulated under heat (19 fold) followed by cadmium, desiccation, arsenic, salinity and UV-B stresses. BL21/pGEX-5X2-alr2321 showed improved growth under various abiotic stresses as compared to BL21/pGEX-5X2 by increased scavenging of intracellular MG and ROS levels. Taken together, these results suggest noteworthy links between intracellular MG and ROS, its detoxification by Alr2321, a member of GlyI family of Anabaena sp. PCC7120, in relation to abiotic stress.
Collapse
Affiliation(s)
- Shweta Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prashant Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
117
|
Corujo M, Pla M, van Dijk J, Voorhuijzen M, Staats M, Slot M, Lommen A, Barros E, Nadal A, Puigdomènech P, Paz JLL, van der Voet H, Kok E. Use of omics analytical methods in the study of genetically modified maize varieties tested in 90 days feeding trials. Food Chem 2019; 292:359-371. [DOI: 10.1016/j.foodchem.2018.05.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
|
118
|
Ratajczak E, Staszak AM, Wojciechowska N, Bagniewska-Zadworna A, Dietz KJ. Regulation of thiol metabolism as a factor that influences the development and storage capacity of beech seeds. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:61-70. [PMID: 31200171 DOI: 10.1016/j.jplph.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 05/07/2023]
Abstract
Seeds are the basis of propagation for the common beech (Fagus sylvatica L.), but the seed set of the beech is unsteady, with 5-10 years between abundant crops. Beech seeds are very difficult to store and lose their viability quickly even in optimum storage conditions. To date, it has not been possible to determine factors indicative of the aging process and the loss of viability of beech seeds during storage. To address this important economic challenge and interesting scientific problem, we analyzed the adjustment of the redox state during the development and storage of seeds. Many metabolic processes are based on reduction and oxidation reactions. Thiol proteins control and react to the redox state in the cells. The level of thiol proteins increased during seed maturation and decreased during storage. Gel-based redox proteomics identified 17 proteins in beech seeds during development. The proteins could be assigned to processes like metabolism and antioxidant functions. During storage, the number of proteins decreased to only six, i.e., oxidoreductases, peptidases, hydrolases and isomerases. The occurrence of peroxiredoxins (PRX) as thiol peroxidases and redox regulators indicates an important role of cytosolic 1CysPRX and PRXIIC, mitochondrial PRXIIF, and plastidic PRXIIE, 2CysPRX, and PRXQ in beech seeds during development and storage. Particularly, 2CysPRX was present in beech seeds during development and storage and may perform an important function in regulation of the redox state during both seed development and storage. The role of thiol proteins in the regulation of the redox state during the development and storage of beech seeds is discussed.
Collapse
Affiliation(s)
- E Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, 62-035, Kórnik, Poland.
| | - A M Staszak
- Plant Physiology Department, Faculty of Biology and Chemistry, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - N Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - A Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - K J Dietz
- Department of Biochemistry and Physiology of Plants, Bielefeld University, University Street 25, Bielefeld, 33501, Germany
| |
Collapse
|
119
|
Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. Int J Biol Macromol 2019; 133:294-305. [DOI: 10.1016/j.ijbiomac.2019.04.070] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
|
120
|
de Freitas GM, Thomas J, Liyanage R, Lay JO, Basu S, Ramegowda V, do Amaral MN, Benitez LC, Bolacel Braga EJ, Pereira A. Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS One 2019; 14:e0218019. [PMID: 31181089 PMCID: PMC6557504 DOI: 10.1371/journal.pone.0218019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/24/2019] [Indexed: 11/25/2022] Open
Abstract
Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and consequently sustains large losses in growth and productivity. Currently, rice is the second most consumed cereal in the world and production losses caused by extreme temperature events in the context of "major climatic changes" can have major impacts on the world economy. We report here an analysis of rice genotypes in response to low-temperature stress, studied through physiological gas-exchange parameters, biochemical changes in photosynthetic pigments and antioxidants, and at the level of gene and protein expression, towards an understanding and identification of multiple low-temperature tolerance mechanisms. The first effects of cold stress were observed on photosynthesis among all genotypes. However, the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in gas exchange parameters like photosynthesis and water use efficiency in comparison to the temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245, and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica Nipponbare and M202 genotypes, as observed through the analysis of physiological and biochemical responses and the associated changes in gene and protein expression patterns. The genes and proteins showing differential expression response are notable candidates towards understanding the biological pathways affected in rice and for engineering cold tolerance, to generate cultivars capable of maintaining growth, development, and reproduction under cold stress. We also propose that the mechanisms of action of the genes analyzed are associated with the tolerance response.
Collapse
Affiliation(s)
- Gabriela Moraes de Freitas
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- Department of Botany, Federal University of Pelotas, Pelotas, Brazil
| | - Julie Thomas
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Jackson O. Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Supratim Basu
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Venkategowda Ramegowda
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | | | | | | | - Andy Pereira
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
121
|
Rehman MZU, Rizwan M, Sohail MI, Ali S, Waris AA, Khalid H, Naeem A, Ahmad HR, Rauf A. Opportunities and challenges in the remediation of metal-contaminated soils by using tobacco (Nicotiana tabacum L.): a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18053-18070. [PMID: 31093913 DOI: 10.1007/s11356-019-05391-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 05/06/2023]
Abstract
The successful phytoextraction of potentially toxic elements (PTEs) from polluted soils can be achieved by growing non-food and industrial crops. Tobacco (Nicotiana tabacum L.) is one of the main industrial crops and is widely grown in many countries. Tobacco can uptake high concentrations of PTEs especially in aboveground biomass without suffering from toxicity. This review highlighted the potential of tobacco for the phytoextraction of heavy metals and tolerance mechanisms under metal stress. Different management practices have been discussed which can enhance the potential of this plant for metal extraction. Finally, suitable options for the management/disposal of biomass enriched in excess metal have been elaborated to prevent secondary pollution.
Collapse
Affiliation(s)
- Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Muhammad Irfan Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Aisha A Waris
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hinnan Khalid
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Asif Naeem
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Jhang Road, Faisalabad, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Arslan Rauf
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
122
|
Shumilina J, Kusnetsova A, Tsarev A, Janse van Rensburg HC, Medvedev S, Demidchik V, Van den Ende W, Frolov A. Glycation of Plant Proteins: Regulatory Roles and Interplay with Sugar Signalling? Int J Mol Sci 2019; 20:E2366. [PMID: 31086058 PMCID: PMC6539852 DOI: 10.3390/ijms20092366] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Glycation can be defined as an array of non-enzymatic post-translational modifications of proteins formed by their interaction with reducing carbohydrates and carbonyl products of their degradation. Initial steps of this process rely on reducing sugars and result in the formation of early glycation products-Amadori and Heyns compounds via Schiff base intermediates, whereas their oxidative degradation or reactions of proteins with α-dicarbonyl compounds yield a heterogeneous group of advanced glycation end products (AGEs). These compounds accompany thermal processing of protein-containing foods and are known to impact on ageing, pathogenesis of diabetes mellitus and Alzheimer's disease in mammals. Surprisingly, despite high tissue carbohydrate contents, glycation of plant proteins was addressed only recently and its physiological role in plants is still not understood. Therefore, here we summarize and critically discuss the first steps done in the field of plant protein glycation during the last decade. We consider the main features of plant glycated proteome and discuss them in the context of characteristic metabolic background. Further, we address the possible role of protein glycation in plants and consider its probable contribution to protein degradation, methylglyoxal and sugar signalling, as well as interplay with antioxidant defense.
Collapse
Affiliation(s)
- Julia Shumilina
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Alena Kusnetsova
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Biotechnology, St. Petersburg Chemical Pharmaceutical University, Saint Petersburg 197022, Russia.
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| | | | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Belarusian State University, 220030 Minsk, Belarus.
- Department of Horticulture, Foshan University, Foshan 528231, China.
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, 3001 Leuven, Belgium.
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University, Saint Petersburg 199034, Russia.
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany.
| |
Collapse
|
123
|
Molecular and biochemical characterization of All0580 as a methylglyoxal detoxifying glyoxalase II of Anabaena sp. PCC7120 that confers abiotic stress tolerance in E. coli. Int J Biol Macromol 2019; 124:981-993. [DOI: 10.1016/j.ijbiomac.2018.11.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
|
124
|
Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK. Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:76-91. [PMID: 30658287 DOI: 10.1016/j.plaphy.2018.12.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The activities of TCA cycle enzymes viz., pyruvate dehydrogenase, citrate synthase, isocitrate dehydrogenase, succinate dehydrogenase and malate dehydrogenase as well as levels of different organic acids viz., pyruvic acid, citric acid, succinic acid and malic acid were studied in two rice cultivars viz. cv. Nonabokra and cv. MTU 1010 differing in salt tolerance grown under 25, 50 and 100 mM NaCl salinity levels. A contrasting response to salt stress on enzyme activities of TCA cycle and accumulation of organic acid was observed between two cultivars during twenty-one days period of study. Salinity caused enhanced organic acid production and increase in all five enzyme activities in cv. Nonabokra whereas in cv. MTU 1010 decrease in both organic acid production and enzymes activities were noted. Joint application of exogenous silicon along with NaCl, altered the organic acids levels and activities of enzymes in both cultivars of rice seedlings conferring tolerance against salt induced stress. Rice cv. MTU 1010 showed better response to exogenous silicon on parameters tested compared to cv. Nonabokra.
Collapse
Affiliation(s)
- Prabal Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Indrani Manna
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Palin Sil
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
125
|
Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M. Heavy metal stress and responses in plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2019; 16:1807-1828. [PMID: 0 DOI: 10.1007/s13762-019-02215-8] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/29/2018] [Accepted: 01/05/2019] [Indexed: 05/24/2023]
|
126
|
Gao Y, Cui Y, Long R, Sun Y, Zhang T, Yang Q, Kang J. Salt-stress induced proteomic changes of two contrasting alfalfa cultivars during germination stage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1384-1396. [PMID: 30144052 DOI: 10.1002/jsfa.9331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/29/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa L.), the primary forage crop throughout the world, is sensitive to salt stress during the germination stage. To investigate the response of alfalfa to salt stress, a comprehensive proteomic analysis was performed comparing alfalfa cultivars that differ in salinity tolerance in the early seedling. RESULTS Five cultivars were examined for salt tolerance, and the most salt-tolerant cultivar, ZhongmuNo.3, and the most salt-sensitive cultivar, Daxiyang, were compared in terms of their physiological and proteomic responses. The two alfalfa cultivars seeds were exposed to 0 mmolL-1 or 200 mmolL-1 NaCl salt treatment for 10 days. Salt stress significantly reduced young seedling growth and the cotyledons' chlorophyll content; meanwhile, it increased the cotyledons' H2 O2 and malondialdehyde (MDA) levels, all of which were less adversely affected in ZhongmuNo.3 than in Daxiyang. A total of 51 spots (24 and 27 protein spots in the salt-sensitive and salt-tolerant cultivars, respectively) were identified as significantly differentially expressed using two-dimensional electrophoresis analysis. The proteins that were associated with salt tolerance included antioxidants/detoxifying enzymes, molecular chaperones, energy metabolic enzymes, a secondary metabolic enzyme, and pathogenesis-related proteins. CONCLUSIONS Under salt stress, ZhongmuNo.3 possessed a higher capacity for reactive oxygen species (ROS) scavenging, a more abundant energy supply, and stronger photosynthesis than the salt-sensitive cultivar Daxiyang, and these physiological processes may be the primary contributors to salt tolerance in ZhongmuNo.3. These advanced proteome data expand our knowledge of the physiology of the response of alfalfa to salt stress, providing a potentially valuable foundation for molecular breeding to enhance salt tolerance. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanli Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanjun Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Sun
- Department of Grass and ForageScience, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiejun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
127
|
Bifunctional Chloroplastic DJ-1B from Arabidopsis thaliana is an Oxidation-Robust Holdase and a Glyoxalase Sensitive to H₂O₂. Antioxidants (Basel) 2019; 8:antiox8010008. [PMID: 30609642 PMCID: PMC6356872 DOI: 10.3390/antiox8010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/15/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023] Open
Abstract
Members of the DJ-1 protein family are multifunctional enzymes whose loss increases the susceptibility of the cell to oxidative stress. However, little is known about the function of the plant DJ-1 homologs. Therefore, we analyzed the effect of oxidation on the structure and function of chloroplastic AtDJ-1B and studied the phenotype of T-DNA lines lacking the protein. In vitro oxidation of AtDJ-1B with H₂O₂ lowers its glyoxalase activity, but has no effect on its holdase chaperone function. Remarkably, upon oxidation, the thermostability of AtDJ-1B increases with no significant alteration of the overall secondary structure. Moreover, we found that AtDJ-1B transcript levels are invariable, and loss of AtDJ-1B does not affect plant viability, growth and stress response. All in all, two discrete functions of AtDJ-1B respond differently to H₂O₂, and AtDJ-1B is not essential for plant development under stress.
Collapse
|
128
|
Wu Q, Gao S, Pan YB, Su Y, Grisham MP, Guo J, Xu L, Que Y. Heterologous expression of a Glyoxalase I gene from sugarcane confers tolerance to several environmental stresses in bacteria. PeerJ 2018; 6:e5873. [PMID: 30402355 PMCID: PMC6215438 DOI: 10.7717/peerj.5873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/01/2018] [Indexed: 01/02/2023] Open
Abstract
Glyoxalase I belongs to the glyoxalase system that detoxifies methylglyoxal (MG), a cytotoxic by-product produced mainly from triose phosphates. The concentration of MG increases rapidly under stress conditions. In this study, a novel glyoxalase I gene, designated as SoGloI was identified from sugarcane. SoGloI had a size of 1,091 bp with one open reading frame (ORF) of 885 bp encoding a protein of 294 amino acids. SoGloI was predicted as a Ni2+-dependent GLOI protein with two typical glyoxalase domains at positions 28-149 and 159-283, respectively. SoGloI was cloned into an expression plasmid vector, and the Trx-His-S-tag SoGloI protein produced in Escherichia coli was about 51 kDa. The recombinant E. coli cells expressing SoGloI compared to the control grew faster and tolerated higher concentrations of NaCl, CuCl2, CdCl2, or ZnSO4. SoGloI ubiquitously expressed in various sugarcane tissues. The expression was up-regulated under the treatments of NaCl, CuCl2, CdCl2, ZnSO4 and abscisic acid (ABA), or under simulated biotic stress conditions upon exposure to salicylic acid (SA) and methyl jasmonate (MeJA). SoGloI activity steadily increased when sugarcane was subjected to NaCl, CuCl2, CdCl2, or ZnSO4 treatments. Sub-cellular observations indicated that the SoGloI protein was located in both cytosol and nucleus. These results suggest that the SoGloI gene may play an important role in sugarcane's response to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Qibin Wu
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | - Shiwu Gao
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | - Yong-Bao Pan
- USDA-ARS, Sugarcane Research Unit, Houma, LA, USA
| | - Yachun Su
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | | | - Jinlong Guo
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | - Liping Xu
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| | - Youxiong Que
- Fujian Agriculture and Forestry University, Key Laboratory of Sugarcane Biology and Genetic Breeding, Fuzhou, Fujian, China
| |
Collapse
|
129
|
Proietti S, Caarls L, Coolen S, Van Pelt JA, Van Wees SC, Pieterse CM. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:2342-2356. [PMID: 29852537 PMCID: PMC6175328 DOI: 10.1111/pce.13357] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 05/22/2023]
Abstract
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA-regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome-wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA-responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA-induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA- and ABA-affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T-DNA insertion mutant analysis to affect SA-JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA-JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.
Collapse
Affiliation(s)
- Silvia Proietti
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Lotte Caarls
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Silvia Coolen
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Johan A. Van Pelt
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Saskia C.M. Van Wees
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| | - Corné M.J. Pieterse
- Plant‐Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
130
|
Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS One 2018; 13:e0202175. [PMID: 30180173 PMCID: PMC6122799 DOI: 10.1371/journal.pone.0202175] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The protective role of exogenously applied kinetin (10 μM KN, a cytokinin) against the adverse effects caused by NaCl-induced (150 mM) stress in Solanum lycopersicum was investigated. Application of KN significantly enhanced growth and biomass production of normally grown plants (non-stressed) and also mitigated the adverse effect of NaCl on stressed plants to a considerable extent. Among the examined parameters, chlorophyll and carotenoid contents, photosynthetic parameters, components of the antioxidant system (both enzymatic and non-enzymatic), osmotica accumulation, and mineral uptake exhibited a significant increase following the application of KN. Furthermore, KN application reduced the generation of reactive free radical hydrogen peroxide, coupled with a significant reduction in lipid peroxidation and an increase in membrane stability. The activities of antioxidant enzymes, and glyoxylase system were found to be promoted in plants exposed to NaCl, and the activities were further promoted by KN application, thereby protecting S. lycopersicum plants against NaCl-induced oxidative damage. Further strengthening of the antioxidant system in KN supplied plants was ascribed to regulation of ascorbate-glutathione cycle, phenols and flavonoids in them. The levels of proline and glycine betaine increased considerably in KN-treated plants, thereby maintaining relative water content. Moreover, exogenous KN application reduced the inhibitory effects of NaCl on K+ and Ca2+ uptake, which resulted in a considerable reduction in tissue Na+/K+ ratio.
Collapse
Affiliation(s)
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud A. Alamri
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia (KSA)
| | - Muhammad Ashraf
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- International Centre for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
131
|
Shimakawa G, Ifuku K, Suzuki Y, Makino A, Ishizaki K, Fukayama H, Morita R, Sakamoto K, Nishi A, Miyake C. Responses of the chloroplast glyoxalase system to high CO 2 concentrations. Biosci Biotechnol Biochem 2018; 82:2072-2083. [PMID: 30122118 DOI: 10.1080/09168451.2018.1507724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sugar metabolism pathways such as photosynthesis produce dicarbonyls, e.g. methylglyoxal (MG), which can cause cellular damage. The glyoxalase (GLX) system comprises two enzymes GLX1 and GLX2, and detoxifies MG; however, this system is poorly understood in the chloroplast, compared with the cytosol. In the present study, we determined GLX1 and GLX2 activities in spinach chloroplasts, which constituted 40% and 10%, respectively, of the total leaf glyoxalase activity. In Arabidopsis thaliana, five GFP-fusion GLXs were present in the chloroplasts. Under high CO2 concentrations, where increased photosynthesis promotes the MG production, GLX1 and GLX2 activities in A. thaliana increased and the expression of AtGLX1-2 and AtGLX2-5 was enhanced. On the basis of these findings and the phylogeny of GLX in oxygenic phototrophs, we propose that the GLX system scavenges MG produced in chloroplasts during photosynthesis.
Collapse
Affiliation(s)
- Ginga Shimakawa
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Kentaro Ifuku
- b Division of Integrated Life Science, Graduate School of Biostudies , Kyoto University , Kyoto , Japan.,c Core Research for Environmental Science and Technology , Japan Science and Technology Agency , Tokyo , Japan
| | - Yuji Suzuki
- c Core Research for Environmental Science and Technology , Japan Science and Technology Agency , Tokyo , Japan.,d Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,e Faculty of Agriculture , Iwate University , Morioka , Iwate , Japan
| | - Amane Makino
- d Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | | | - Hiroshi Fukayama
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Ryutaro Morita
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Katsuhiko Sakamoto
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Akiko Nishi
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan
| | - Chikahiro Miyake
- a Graduate School of Agricultural Science , Kobe University , Kobe , Japan.,c Core Research for Environmental Science and Technology , Japan Science and Technology Agency , Tokyo , Japan
| |
Collapse
|
132
|
Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujita M, Tran LSP. Methylglyoxal - a signaling molecule in plant abiotic stress responses. Free Radic Biol Med 2018; 122:96-109. [PMID: 29545071 DOI: 10.1016/j.freeradbiomed.2018.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Abiotic stresses are the most common harmful factors, adversely affecting all aspects of plants' life. Plants have to elicit appropriate responses against multifaceted effects of abiotic stresses by reprogramming various cellular processes. Signaling molecules play vital roles in sensing environmental stimuli to modulate gene expression, metabolism and physiological processes in plants to cope with the adverse effects. Methylglyoxal (MG), a dicarbonyl compound, is known to accumulate in cells as a byproduct of various metabolic pathways, including glycolysis. Several works in recent years have demonstrated that MG could play signaling roles via Ca2+, reactive oxygen species (ROS), K+ and abscisic acid. Recently, global gene expression profiling has shown that MG could induce signaling cascades, and an overlap between MG-responsive and stress-responsive signaling events might exist in plants. Once overaccumulated in cells, MG can provoke detrimental effects by generating ROS, forming advanced glycation end products and inactivating antioxidant systems. Plants are also equipped with MG-detoxifying glyoxalase system to save cellular organelles from MG toxicity. Since MG has regulatory functions in plant growth and development, and glyoxalase system is an integral component of abiotic stress adaptation, an in-depth understanding on MG metabolism and glyoxalase system will help decipher mechanisms underlying plant responses to abiotic stresses. Here, we provide a comprehensive update on the current knowledge of MG production and detoxification in plants, and highlight the putative functions of glyoxalase system in mediating plant defense against abiotic stresses. We particularly emphasize on the dual roles of MG and its connection with glutathione-related redox regulation, which is crucial for plant defense and adaptive responses under changing environmental conditions.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming 650500, PR China.
| | - Md Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
133
|
Upadhyay N, Singh VK, Dwivedy AK, Das S, Chaudhari AK, Dubey NK. Cistus ladanifer L. essential oil as a plant based preservative against molds infesting oil seeds, aflatoxin B1 secretion, oxidative deterioration and methylglyoxal biosynthesis. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
134
|
Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. PLANT, CELL & ENVIRONMENT 2018; 41:1186-1200. [PMID: 28425127 DOI: 10.1111/pce.12968] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/05/2023]
Abstract
Crop plants face a multitude of diverse abiotic and biotic stresses in the farmers' fields. Although there now exists a considerable knowledge of the underlying mechanisms of response to individual stresses, the crosstalk between response pathways to various abiotic and biotic stresses remains enigmatic. Here, we investigated if the cytotoxic metabolite methylglyoxal (MG), excess of which is generated as a common consequence of many abiotic and biotic stresses, may serve as a key molecule linking responses to diverse stresses. For this, we generated transgenic rice plants overexpressing the entire two-step glyoxalase pathway for MG detoxification. Through assessment of various morphological, physiological and agronomic parameters, we found that glyoxalase-overexpression imparts tolerance towards abiotic stresses like salinity, drought and heat and also provides resistance towards damage caused by the sheath blight fungus (Rhizoctonia solani) toxin phenylacetic acid. We show that the mechanism of observed tolerance of the glyoxalase-overexpressing plants towards these diverse abiotic and biotic stresses involves improved MG detoxification and reduced oxidative damage leading to better protection of chloroplast and mitochondrial ultrastructure and maintained photosynthetic efficiency under stress conditions. Together, our findings indicate that MG may serve as a key link between abiotic and biotic stress response in plants.
Collapse
Affiliation(s)
- Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Khirod K Sahoo
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ajit Ghosh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Amit K Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanka Das
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anil K Singh
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
135
|
Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 2018; 8:5710. [PMID: 29632386 PMCID: PMC5890255 DOI: 10.1038/s41598-018-24012-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
To reveal the integrative biochemical networks of wheat leaves in response to water deficient conditions, proteomics and metabolomics were applied to two spring-wheat cultivars (Bahar, drought-susceptible; Kavir, drought-tolerant). Drought stress induced detrimental effects on Bahar leaf proteome, resulting in a severe decrease of total protein content, with impairments mainly in photosynthetic proteins and in enzymes involved in sugar and nitrogen metabolism, as well as in the capacity of detoxifying harmful molecules. On the contrary, only minor perturbations were observed at the protein level in Kavir stressed leaves. Metabolome analysis indicated amino acids, organic acids, and sugars as the main metabolites changed in abundance upon water deficiency. In particular, Bahar cv showed increased levels in proline, methionine, arginine, lysine, aromatic and branched chain amino acids. Tryptophan accumulation via shikimate pathway seems to sustain auxin production (indoleacrylic acid), whereas glutamate reduction is reasonably linked to polyamine (spermine) synthesis. Kavir metabolome was affected by drought stress to a less extent with only two pathways significantly changed, one of them being purine metabolism. These results comprehensively provide a framework for better understanding the mechanisms that govern plant cell response to drought stress, with insights into molecules that can be used for crop improvement projects.
Collapse
Affiliation(s)
- Anna Michaletti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | - Mahmoud Toorchi
- Department of Biotechnology and Plant Breeding, University of Tabriz, Tabriz, Iran
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy.
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
136
|
GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Sci Rep 2018; 8:5451. [PMID: 29615695 PMCID: PMC5883029 DOI: 10.1038/s41598-018-23806-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/21/2018] [Indexed: 01/31/2023] Open
Abstract
Methylglyoxal(MG) is a potent cytotoxin that is produced as a byproduct of various metabolic reactions in the cell. The major enzymes for MG detoxification are Glyoxalase I(GLYI), Glyoxalase II(GLYII) and D-lactate dehydrogenase(D-LDH). These three enzymes work together and convert MG into D-pyruvate, which directly goes to TCA cycle. Here, a comparative study of the ability of MG detoxification of these three enzymes has been done in both E. coli and yeast. Ectopic expression of these three genes from Arabidopsis in E. coli in presence of different abiotic stress revealed the contribution of each of these genes in detoxifying MG. Yeast mutants of MG detoxification enzymes were also grown in different stress conditions to record the effect of each gene. These mutants were also used for complementation assays using the respective MG detoxifying genes from Arabidopsis in presence of various stress conditions. The MG content and the corresponding growth of cells was measured in all the bacterial as well as yeast strains. This study reveals differential contribution of MG detoxification enzymes in mitigating MG levels and alleviating stress in both prokaryotes as well as eukaryotes. GLYI and D-LDH were found to be key enzymes in MG detoxification under various abiotic stresses.
Collapse
|
137
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 DOI: 10.3389/fchem.2018.00026/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 05/28/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
138
|
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front Chem 2018; 6:26. [PMID: 29520357 PMCID: PMC5827537 DOI: 10.3389/fchem.2018.00026] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 01/09/2023] Open
Abstract
Drought and heat are major abiotic stresses that reduce crop productivity and weaken global food security, especially given the current and growing impacts of climate change and increases in the occurrence and severity of both stress factors. Plants have developed dynamic responses at the morphological, physiological and biochemical levels allowing them to escape and/or adapt to unfavorable environmental conditions. Nevertheless, even the mildest heat and drought stress negatively affects crop yield. Further, several independent studies have shown that increased temperature and drought can reduce crop yields by as much as 50%. Response to stress is complex and involves several factors including signaling, transcription factors, hormones, and secondary metabolites. The reproductive phase of development, leading to the grain production is shown to be more sensitive to heat stress in several crops. Advances coming from biotechnology including progress in genomics and information technology may mitigate the detrimental effects of heat and drought through the use of agronomic management practices and the development of crop varieties with increased productivity under stress. This review presents recent progress in key areas relevant to plant drought and heat tolerance. Furthermore, an overview and implications of physiological, biochemical and genetic aspects in the context of heat and drought are presented. Potential strategies to improve crop productivity are discussed.
Collapse
Affiliation(s)
- Mouna Lamaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| | - Martin Jemo
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
- Office Chérifien des Phosphates-Africa, Casablanca, Morocco
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada
| | - Faouzi Bekkaoui
- AgroBioSciences Division, University Mohammed VI Polytechnic, Benguérir, Morocco
| |
Collapse
|
139
|
Yan G, Xiao X, Wang N, Zhang F, Gao G, Xu K, Chen B, Qiao J, Wu X. Genome-wide analysis and expression profiles of glyoxalase gene families in Chinese cabbage (Brassica rapa L). PLoS One 2018; 13:e0191159. [PMID: 29324881 PMCID: PMC5764358 DOI: 10.1371/journal.pone.0191159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
The glyoxalase pathway is composed of glyoxalase I (GLYI) and glyoxalase II (GLYII) and is responsible for the detoxification of a cytotoxic metabolite methylglyoxal (MG) into the nontoxic S-D-lactoylglutathione. The two glyoxalase enzymes play a crucial role in stress tolerance in various plant species. Recently, the GLY gene families have well been analyzed in Arabidopsis, rice and soybean, however, little is known about them in Chinese cabbage (Brassica rapa). Here, 16 BrGLYI and 15 BrGLYII genes were identified in the B. rapa genome, and the BrGLYI and BrGLYII proteins were both clustered into five subfamilies. The classifications, chromosomal distributions, gene duplications, exon–intron structures, localizations, conserved motifs and promoter cis-elements were also predicted and analyzed. In addition, the expression pattern of these genes in different tissues and their response to biotic and abiotic stresses were analyzed using publicly available data and a quantitative real-time PCR analysis (RT-qPCR). The results indicated that the expression profiles of BrGLY genes varied among different tissues. Notably, a number of BrGLY genes showed responses to biotic and abiotic stress treatments, including Plasmodiophora brassicae infection and various heavy metal stresses. Taken together, this study identifies BrGLYI and BrGLYII gene families in B. rapa and offers insight into their roles in plant development and stress resistance, especially in heavy metal stress tolerance and pathogen resistance.
Collapse
Affiliation(s)
- Guixin Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Xin Xiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Nian Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Fugui Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Guizhen Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Kun Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Biyun Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Jiangwei Qiao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
| | - Xiaoming Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
140
|
Schmitz J, Rossoni AW, Maurino VG. Dissecting the Physiological Function of Plant Glyoxalase I and Glyoxalase I-Like Proteins. FRONTIERS IN PLANT SCIENCE 2018; 9:1618. [PMID: 30483284 PMCID: PMC6240745 DOI: 10.3389/fpls.2018.01618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/18/2018] [Indexed: 05/19/2023]
Abstract
The Arabidopsis genome annotation include 11 glyoxalase I (GLXI) genes, all encoding for protein members of the vicinal oxygen chelate (VOC) superfamily. The biochemical properties and physiological importance of three Arabidopsis GLXI proteins in the detoxification of reactive carbonyl species has been recently described. Analyses of phylogenetic relationships and conserved GLXI binding sites indicate that the other eight GLXI genes (GLXI-like) do not encode for proteins with GLXI activity. In this perspective article we analyse the structural features of GLXI and GLXI-like proteins, and explore splice forms and transcript abundance under abiotic stress conditions. Finally, we discuss future directions of research on this topic with respect to the substrate identification of GLXI and GLXI-like proteins and the need of reliable quantitative measurements of reactive carbonyl species in plant tissues.
Collapse
Affiliation(s)
- Jessica Schmitz
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- *Correspondence: Jessica Schmitz,
| | - Alessandro W. Rossoni
- Institute of Plant Biochemistry, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Veronica G. Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
141
|
Borysiuk K, Ostaszewska-Bugajska M, Vaultier MN, Hasenfratz-Sauder MP, Szal B. Enhanced Formation of Methylglyoxal-Derived Advanced Glycation End Products in Arabidopsis Under Ammonium Nutrition. FRONTIERS IN PLANT SCIENCE 2018; 9:667. [PMID: 29881392 PMCID: PMC5976750 DOI: 10.3389/fpls.2018.00667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/30/2018] [Indexed: 05/22/2023]
Abstract
Nitrate (NO3-) and ammonium (NH4+) are prevalent nitrogen (N) sources for plants. Although NH4+ should be the preferred form of N from the energetic point of view, ammonium nutrition often exhibits adverse effects on plant physiological functions and induces an important growth-limiting stress referred as ammonium syndrome. The effective incorporation of NH4+ into amino acid structures requires high activity of the mitochondrial tricarboxylic acid cycle and the glycolytic pathway. An unavoidable consequence of glycolytic metabolism is the production of methylglyoxal (MG), which is very toxic and inhibits cell growth in all types of organisms. Here, we aimed to investigate MG metabolism in Arabidopsis thaliana plants grown on NH4+ as a sole N source. We found that changes in activities of glycolytic enzymes enhanced MG production and that markedly elevated MG levels superseded the detoxification capability of the glyoxalase pathway. Consequently, the excessive accumulation of MG was directly involved in the induction of dicarbonyl stress by introducing MG-derived advanced glycation end products (MAGEs) to proteins. The severe damage to proteins was not within the repair capacity of proteolytic enzymes. Collectively, our results suggest the impact of MG (mediated by MAGEs formation in proteins) in the contribution to NH4+ toxicity symptoms in Arabidopsis.
Collapse
Affiliation(s)
- Klaudia Borysiuk
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Ostaszewska-Bugajska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Ostaszewska-Bugajska, Bożena Szal,
| | - Marie-Noëlle Vaultier
- UMR 1137, INRA, Ecologie et Ecophysiologie Forestières, Université de Lorraine, Nancy, France
| | | | - Bożena Szal
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Monika Ostaszewska-Bugajska, Bożena Szal,
| |
Collapse
|
142
|
Tripathi A, Chacon O, Singla-Pareek SL, Sopory SK, Sanan-Mishra N. Mapping the microRNA Expression Profiles in Glyoxalase Over-expressing Salinity Tolerant Rice. Curr Genomics 2018; 19:21-35. [PMID: 29491730 PMCID: PMC5817874 DOI: 10.2174/1389202918666170228134530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/08/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022] Open
Abstract
In the recent years, glyoxalase pathway has been an active area of research in both human and plants. This pathway is reported to confer stress tolerance in plants, by modulating the glutathione homeostasis to achieve detoxification of a potent cytotoxic and mutagenic compound, methylglyoxal. The microRNAs (miRNAs) are also reported to play significant role in stress tolerance for plants. However, the cross-talk of miRNAs with the metabolism regulated by glyoxalase in the salinity-tolerance is unexplored. We therefore investigated whether expression profiles of miRNAs are altered in response to glyoxalase overexpression, and if any of these are also responsible for modulating the stress responses of plants. In this study, the Next Generation Sequencing (NGS) was employed to profile miRNA expression levels from glyoxalase overexpressing transgenic lines. The associated targets of differentially expressed miRNAs were predicted and their functional annotation was carried out using Gene Ontology (GO) and KEGG Orthology (KO), which showed their involvement in several crucial biological pathways. The analysis of NGS datasets also identified other isoforms or isomiRs of selected miRNAs, which may have an active role in developing tolerance against salt stress. Different aspects of miRNA modifications were also studied in glyoxalase overexpressing lines.
Collapse
Affiliation(s)
- Anita Tripathi
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Osmani Chacon
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sneh Lata Singla-Pareek
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sudhir K. Sopory
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neeti Sanan-Mishra
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
143
|
Hossain MA, Li ZG, Hoque TS, Burritt DJ, Fujita M, Munné-Bosch S. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. PROTOPLASMA 2018; 255:399-412. [PMID: 28776104 DOI: 10.1007/s00709-017-1150-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 05/23/2023]
Abstract
Plants growing under field conditions are constantly exposed, either simultaneously or sequentially, to more than one abiotic stress factor. Plants have evolved sophisticated sensory systems to perceive a number of stress signals that allow them to activate the most adequate response to grow and survive in a given environment. Recently, cross-stress tolerance (i.e. tolerance to a second, strong stress after a different type of mild primary stress) has gained attention as a potential means of producing stress-resistant crops to aid with global food security. Heat or cold priming-induced cross-tolerance is very common in plants and often results from the synergistic co-activation of multiple stress signalling pathways, which involve reactive nitrogen species (RNS), reactive oxygen species (ROS), reactive carbonyl species (RCS), plant hormones and transcription factors. Recent studies have shown that the signalling functions of ROS, RNS and RCS, most particularly hydrogen peroxide, nitric oxide (NO) and methylglyoxal (MG), provide resistance to abiotic stresses and underpin cross-stress tolerance in plants by modulating the expression of genes as well as the post-translational modification of proteins. The current review highlights the key regulators and mechanisms underlying heat or cold priming-induced cross-stress tolerance in plants, with a focus on ROS, MG and NO signalling, as well as on the role of antioxidant and glyoxalase systems, osmolytes, heat-shock proteins (HSPs) and hormones. Our aim is also to provide a comprehensive idea on the topic for researchers using heat or cold priming-induced cross-tolerance as a mechanism to improve crop yields under multiple abiotic stresses.
Collapse
Affiliation(s)
- Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Tahsina Sharmin Hoque
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Takamatsu, Japan
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
144
|
An B, Lan J, Deng X, Chen S, Ouyang C, Shi H, Yang J, Li Y. Silencing of D-Lactate Dehydrogenase Impedes Glyoxalase System and Leads to Methylglyoxal Accumulation and Growth Inhibition in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2071. [PMID: 29259615 PMCID: PMC5723347 DOI: 10.3389/fpls.2017.02071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/20/2017] [Indexed: 05/24/2023]
Abstract
D-Lactate is oxidized by two classes of D-lactate dehydrogenase (D-LDH), namely, NAD-dependent and NAD-independent D-LDHs. Little is known about the characteristics and biological functions of D-LDHs in rice. In this study, a functional NAD-independent D-LDH (LOC_Os07g06890) was identified in rice, as a result of alternative splicing events. Characterization of the expression profile, subcellular localization, and enzymatic properties of the functional OsD-LDH revealed that it is a mitochondrial cytochrome-c-dependent D-LDH with high affinity and catalytic efficiency. Functional analysis of OsD-LDH RNAi transgenic rice demonstrated that OsD-LDH participates in methylglyoxal metabolism by affecting the activity of the glyoxalase system and aldo-keto reductases. Under methylglyoxal treatment, silencing of OsD-LDH in rice resulted in the accumulation of methylglyoxal and D-lactate, the decrease of reduced glutathione in leaves, and ultimately severe growth inhibition. Moreover, the detached leaves of OsD-LDH RNAi plants were more sensitive to salt stress. However, the silencing of OsD-LDH did not affect the growth under photorespiration conditions. Our results provide new insights into the role of NAD-independent D-LDHs in rice.
Collapse
Affiliation(s)
- Baoguang An
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Jie Lan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolong Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huiyun Shi
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration Innovation Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
145
|
Nisarga KN, Vemanna RS, Kodekallu Chandrashekar B, Rao H, Vennapusa AR, Narasimaha A, Makarla U, Basavaiah MR. Aldo-ketoreductase 1 (AKR1) improves seed longevity in tobacco and rice by detoxifying reactive cytotoxic compounds generated during ageing. RICE (NEW YORK, N.Y.) 2017; 10:11. [PMID: 28409435 PMCID: PMC5391344 DOI: 10.1186/s12284-017-0148-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/17/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Maintenance of seed viability is an important factor for seedling vigour and plant establishment. Lipid peroxidation mediated reactive carbonyl compounds (RCC's) and non-enzymatic modifications of proteins through Maillard and Amadori products reduce seed viability and seedling vigour. RESULTS In this study, the relevance of RCCs on genotypic variation in rice seed viability and overexpression of an aldo-ketoreductase (AKR1) enzyme that detoxify cytotoxic compounds to improve seed viability and vigour was studied. Physiological and biochemical approaches were integrated to quantify the variation in seed viability and seedling vigour in rice genotypes after exposing to ageing treatment. AKR1 was overexpressed in a susceptible rice genotype and tobacco to study the relevance of reduced RCC's on seed viability and seedling vigour. The glycation and lipid peroxidation compounds accumulated after accelerated ageing treatments in rice genotypes. The accumulation of malondialdehyde, methyl glyoxal, Maillard and Amadori products affected the seed viability and germination as they showed a significant negative relationship. The transgenic rice and tobacco seeds expressing AKR1 showed lower levels of cytotoxic compounds and glycation products that resulted in improved seed viability and seedling vigour in rice and tobacco. CONCLUSIONS The study demonstrates that, reactive cytotoxic compounds affect the seed viability during storage. Detoxification of reactive cytotoxic compounds by Aldo-keto reductases is one of the mechanisms to improve the seed longevity during storage.
Collapse
Affiliation(s)
| | - Ramu S Vemanna
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India
| | | | - Hanumantha Rao
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India
| | | | - Ashwini Narasimaha
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India
| | - Udayakumar Makarla
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India.
| | - Mohan Raju Basavaiah
- Department of Crop Physiology, University of Agriculture Sciences, GKVK, Bengaluru, 560065, India
| |
Collapse
|
146
|
Yousuf PY, Abd Allah EF, Nauman M, Asif A, Hashem A, Alqarawi AA, Ahmad A. Responsive Proteins in Wheat Cultivars with Contrasting Nitrogen Efficiencies under the Combined Stress of High Temperature and Low Nitrogen. Genes (Basel) 2017; 8:E356. [PMID: 29186028 PMCID: PMC5748674 DOI: 10.3390/genes8120356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/13/2017] [Accepted: 11/23/2017] [Indexed: 11/17/2022] Open
Abstract
Productivity of wheat (Triticumaestivum) is markedly affected by high temperature and nitrogen deficiency. Identifying the functional proteins produced in response to these multiple stresses acting in a coordinated manner can help in developing tolerance in the crop. In this study, two wheat cultivars with contrasting nitrogen efficiencies (N-efficient VL616 and N-inefficient UP2382) were grown in control conditions, and under a combined stress of high temperature (32 °C) and low nitrogen (4 mM), and their leaf proteins were analysed in order to identify the responsive proteins. Two-dimensional electrophoresis unravelled sixty-one proteins, which varied in their expression in wheat, and were homologous to known functional proteins involved in biosynthesis, carbohydrate metabolism, energy metabolism, photosynthesis, protein folding, transcription, signalling, oxidative stress, water stress, lipid metabolism, heat stress tolerance, nitrogen metabolism, and protein synthesis. When exposed to high temperature in combination with low nitrogen, wheat plants altered their protein expression as an adaptive means to maintain growth. This response varied with cultivars. Nitrogen-efficient cultivars showed a higher potential of redox homeostasis, protein stability, osmoprotection, and regulation of nitrogen levels. The identified stress-responsive proteins can pave the way for enhancing the multiple-stress tolerance in wheat and developing a better understanding of its mechanism.
Collapse
Affiliation(s)
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Mohd Nauman
- Department of Botany, Jamia Hamdard, New Delhi 110062, India.
| | - Ambreen Asif
- Department of Botany, Aligarh Muslim University, Aligarh 251002, India.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Abdulaziz A Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 251002, India.
| |
Collapse
|
147
|
Li ZG, Duan XQ, Min X, Zhou ZH. Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes. PROTOPLASMA 2017; 254:1995-2006. [PMID: 28281000 DOI: 10.1007/s00709-017-1094-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/22/2017] [Indexed: 05/19/2023]
Abstract
Reactive carbonyl species methylglyoxal (MG) has always been regarded as a cytotoxic metabolite, but now is emerging to function as signal molecule in plants. However, whether MG can induce salt tolerance is elusive. In this study, treatment of wheat seeds with NaCl reduced seed germination, plant height, root length, fresh weight, and dry weight, indicating the inhibitive effects of NaCl on seed germination and seedling growth. The inhibitive effects of NaCl were alleviated by applying exogenous MG, but aggravated by the MG scavenger N-acetyl-L-cysteine (NAC), suggesting that MG could induce the salt tolerance of wheat. In addition, MG increased glyoxalase I and glyoxalase II activities and decreased endogenous MG content in wheat seedlings under NaCl stress, whereas coapplication of NAC weakened glyoxalase activity and enhanced the endogenous MG level. Also, MG activated superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase activities; increased glutathione and ascorbic acid levels; and decreased superoxide radical production and H2O2 and malondialdehyde contents under NaCl stress, while NAC reversed these physiological parameters. Furthermore, MG also induced the accumulation of proline, glycine betaine, and soluble sugar under NaCl stress, whereas this accumulation was weakened by NAC. This work reported for the first time that MG could induce the salt tolerance of wheat, and the acquisition of this salt tolerance was involved in the activation of the glyoxalase system and antioxidant system, as well as the accumulation of osmolytes.
Collapse
Affiliation(s)
- Zhong-Guang Li
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China.
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, People's Republic of China.
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| | - Xiang-Qiu Duan
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xiong Min
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zhi-Hao Zhou
- School of Life Sciences, Yunnan Normal University, Kunming, 650500, People's Republic of China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming, 650500, People's Republic of China
- Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Province, Yunnan Normal University, Kunming, 650500, People's Republic of China
| |
Collapse
|
148
|
Wani SH, Dutta T, Neelapu NRR, Surekha C. Transgenic approaches to enhance salt and drought tolerance in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
149
|
He WJ, Zhang L, Yi SY, Tang XL, Yuan QS, Guo MW, Wu AB, Qu B, Li HP, Liao YC. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Sci Rep 2017; 7:9549. [PMID: 28842569 PMCID: PMC5573404 DOI: 10.1038/s41598-017-08799-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Degradation of toxins by microorganisms is a promising approach for detoxification of agricultural products. Here, a bacterial strain, Sphingomonas S3-4, that has the ability to degrade the mycotoxin deoxynivalenol (DON) was isolated from wheat fields. Incubation of Fusarium-infected wheat grains with S3-4 completely eliminated DON. In S3-4 DON is catabolized into compounds with no detectable phytotoxicity, 3-oxo-DON and 3-epi-DON, via two sequential reactions. Comparative analysis of genome sequences from two DON-degrading strains, S3-4 and Devosia D17, and one non-DON-degrading strain, Sphingobium S26, combined with functional screening of a S3-4 genomic BAC library led to the discovery that a novel aldo/keto reductase superfamily member, AKR18A1, is responsible for oxidation of DON into 3-oxo-DON. DON-degrading activity is completely abolished in a mutant S3-4 strain where the AKR18A1 gene is disrupted. Recombinant AKR18A1 protein expressed in Escherichia coli catalyzed the reversible oxidation/reduction of DON at a wide range of pH values (7.5 to 11) and temperatures (10 to 50 °C). The S3-4 strain and recombinant AKR18A1 also catabolized zearalenone and the aldehydes glyoxal and methyglyoxal. The S3-4 strain and the AKR18A1 gene are promising agents for the control of Fusarium pathogens and detoxification of mycotoxins in plants and in food/feed products.
Collapse
Affiliation(s)
- Wei-Jie He
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shu-Yuan Yi
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xue-Ling Tang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Song Yuan
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mao-Wei Guo
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ai-Bo Wu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Food Safety Research Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bo Qu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
150
|
Auiyawong B, Narawongsanont R, Tantitadapitak C. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s). Protein J 2017; 36:257-269. [PMID: 28699078 DOI: 10.1007/s10930-017-9732-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Environmental stresses often cause a rapid and excessive accumulation of reactive oxygen species (ROS), the toxicity of which is further amplified by downstream aldehyde production. Aldo-keto reductase (AKR) is a group of enzymes metabolizing aldehyde/ketone to the corresponding alcohol using NADPH as the cofactor. In this study, OsI_20197 (AKR4C15), a novel member of AKR4 subfamily C, was isolated and biochemically characterized. Kinetic studies on bacterially-expressed recombinant AKR4C15 revealed that the enzyme was capable of metabolizing a wide variety of aldehydes but clearly exhibited a preference for three carbon compounds, i.e. methylglyoxal, malondialdehyde and glyceraldehyde. In comparison with His-tagged proteins of AKR4C9 from Arabidopsis and several other rice AKR(s): OsI_04426, OsI_04428, OsI_04429, and OsI_15387, AKR4C15 was the one capable of most efficiently metabolizing MDA and had the highest value of catalytic efficiency, which was higher than the value of AKR4C9, approximately, by 30-fold; while its capability of metabolizing MG was on par with AKR4C9, OsI_04426 and OsI_04428 (AKR4C14); and was considerably higher than the activity of OsI_04429 and OsI_15387. In vivo research on transgenic Arabidopsis seedlings ectopically-expressing AKR4C15 showed that the levels of both MDA and MG were also significantly lower than the levels in wild-type seedlings under both normal and stress conditions, emphasizing the role of AKR4C15 in MG and MDA metabolism. In conclusion, AKR4C15, together with OsI_04426 and AKR4C14, may play protective roles against small reactive aldehydes and medium-chain aldehydes.
Collapse
Affiliation(s)
- Budsakorn Auiyawong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Rawint Narawongsanont
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | |
Collapse
|