101
|
Rosenblau G, Frolichs K, Korn CW. A neuro-computational social learning framework to facilitate transdiagnostic classification and treatment across psychiatric disorders. Neurosci Biobehav Rev 2023; 149:105181. [PMID: 37062494 PMCID: PMC10236440 DOI: 10.1016/j.neubiorev.2023.105181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Social deficits are among the core and most striking psychiatric symptoms, present in most psychiatric disorders. Here, we introduce a novel social learning framework, which consists of neuro-computational models that combine reinforcement learning with various types of social knowledge structures. We outline how this social learning framework can help specify and quantify social psychopathology across disorders and provide an overview of the brain regions that may be involved in this type of social learning. We highlight how this framework can specify commonalities and differences in the social psychopathology of individuals with autism spectrum disorder (ASD), personality disorders (PD), and major depressive disorder (MDD) and improve treatments on an individual basis. We conjecture that individuals with psychiatric disorders rely on rigid social knowledge representations when learning about others, albeit the nature of their rigidity and the behavioral consequences can greatly differ. While non-clinical cohorts tend to efficiently adapt social knowledge representations to relevant environmental constraints, psychiatric cohorts may rigidly stick to their preconceived notions or overly coarse knowledge representations during learning.
Collapse
Affiliation(s)
- Gabriela Rosenblau
- Department of Psychological and Brain Sciences, George Washington University, Washington DC, USA; Autism and Neurodevelopmental Disorders Institute, George Washington University, Washington DC, USA.
| | - Koen Frolichs
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany; Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph W Korn
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany; Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
102
|
Badarnee M, Wen Z, Nassar N, Milad MR. Gray matter associations with extinction-induced neural activation in patients with anxiety disorders. J Psychiatr Res 2023; 162:180-186. [PMID: 37167838 DOI: 10.1016/j.jpsychires.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
The relationship between structural characteristics and extinction-induced brain activations in anxiety disorders (ANX) remains a space for greater exploration. In this study, we assessed gray matter volume (GMV) and its associated functional activations during fear extinction memory recall in an ANX cohort. We performed voxel-based morphometry analysis to examine GMVs from ANX (n = 92) and controls (n = 73). We further examined the correlation between GMVs and extinction-induced neural activations during recall across groups. In the patients' group, we observed decreased GMV in the anterior hippocampus and increased GMV in the dorsolateral prefrontal cortex (dlPFC). Hippocampal volume was positively correlated with ventromedial prefrontal cortex activation in healthy controls, while it was negatively correlated with dorsal anterior cingulate cortex (dACC) activation in ANX. The dlPFC volume was positively correlated with activations of dACC, pre- and post-central gyrus, and supramarginal gyrus only in healthy controls. Therefore, the link between structural and functional imbalance within the hippocampus and dlPFC might contribute to the pathophysiology of ANX. In the controls, the relationship between structural variance in the hippocampus and dlPFC and extinction-induced neural activations is consistent with a greater ability to regulate fear responding; associations that were absent in the ANX cohort. Furthermore, our findings of structure-function abnormalities within key nodes of emotional homeostasis in ANX point to dlPFC as a potential neural node to target using neuromodulation tools.
Collapse
Affiliation(s)
- Muhammad Badarnee
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Zhenfu Wen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Noor Nassar
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Nathan Kline Institute for Psychiatric Research, Rockland, NY, USA.
| |
Collapse
|
103
|
Grasser LR, Saad B, Bazzi C, Suhaiban HA, Mammo DF, Izar R, Rass NA, Winters SJ, Nashef R, Ali AA, Javanbakht A, Jovanovic T. The fear that remains: Associations between trauma, related psychopathology, and fear‐potentiated startle in youth resettled as refugees. Dev Psychobiol 2023; 65:e22385. [PMID: 37073587 DOI: 10.1002/dev.22385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 03/31/2023]
Abstract
Fear-potentiated startle (FPS) can be used to measure fear and safety learning-behaviors affected by trauma that may map onto posttraumatic stress disorder (PTSD). Therefore, FPS could be a candidate biomarker of trauma-related psychopathology and a potential identifier of trauma-exposed youth in need of focused treatment. We enrolled n = 71 (35 females, Mage = 12.7 years) Syrian youth exposed to civilian war trauma. Eyeblink electromyogram (EMG) data from a differential conditioning FPS paradigm were obtained 2.5 years after resettlement. Youth provided self-report of trauma exposure (Harvard Trauma Questionnaire) and PTSD symptoms (UCLA PTSD Reaction Index). While FPS during conditioning was not associated with symptoms, associations with psychopathology emerged in fear extinction. Probable PTSD was associated with FPS in the last block of extinction, such that FPS to threat cue was significantly greater in the PTSD+ group compared to the PTSD- group at the end of extinction (F = 6.25, p = .015). As with adults, we observed a deficit in extinction learning but not fear conditioning in youth with PTSD. These results support the use of trauma-informed cognitive behavioral therapy based on the learning principles of extinction in youth with PTSD.
Collapse
Affiliation(s)
- Lana Ruvolo Grasser
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Bassem Saad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Celine Bazzi
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Hiba Abu Suhaiban
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Dalia F Mammo
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Ragda Izar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Noor Abou Rass
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Sterling J Winters
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Raya Nashef
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Ayat Abed Ali
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Arash Javanbakht
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
104
|
Matsuda S. Importance of home cage condition for contextual fear memory, fear extinction and spontaneous recovery: Cage size and bedding material. Neurosci Lett 2023; 804:137204. [PMID: 36966963 DOI: 10.1016/j.neulet.2023.137204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Home cage condition influences the central nervous system of experimental animals. However, little is known about the effect of home cage size and bedding material on fear-related behaviors. Thus, in this study, the effects of home cage size (large or small) and/or bedding material (paper or wood) on acquisition, retrieval, extinction, and spontaneous recovery of contextual fear memory were investigated in both male and female mice. The present study demonstrated that males housed in small cages with wood bedding showed a low fear response during fear extinction when compared to males housed in small or large cages with paper bedding. In females, mice housed in small cages with wood bedding showed low fear response during fear conditioning and extinction when compared to mice housed in large cages with paper bedding. Moreover, small cages with wood bedding, but not small or large cages with paper bedding, prevented the spontaneous recovery of fear memory in females. Thus, home cage conditions, and particularly bedding material, influence contextual fear extinction and spontaneous recovery. This finding may help to obtain reproducibility of results by researchers and explain discrepancies of results among research groups.
Collapse
|
105
|
Zabik NL, Rabinak CA, Peters CA, Iadipaolo A. Cannabinoid modulation of corticolimbic activation during extinction learning and fear renewal in adults with posttraumatic stress disorder. Neurobiol Learn Mem 2023; 201:107758. [PMID: 37088409 PMCID: PMC10226818 DOI: 10.1016/j.nlm.2023.107758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Failure to successfully extinguish fear is a hallmark of trauma-related disorders, like posttraumatic stress disorder (PTSD). PTSD is also characterized by dysfunctional corticolimbic activation and connectivity. The endocannabinoid system is a putative system to target for rescuing these behavioral and neural deficits. In healthy adults, acute, low-dose delta-9-tetrahydrocannabinol (THC) facilitates fear extinction and increases cortico-limbic activation and connectivity in response to threat. The present study determines the effect of acute, low-dose THC on fear-related brain activation and connectivity during fear extinction in trauma-exposed adults with (PTSD = 19) and without PTSD [trauma-exposed controls (TEC) = 26] and non-trauma-exposed [healthy controls (HC) = 26]. We used a Pavlovian fear conditioning and extinction paradigm, where we measured concurrent functional magnetic resonance imaging (fMRI) and behavioral responses (i.e., skin conductance responding and expectancy ratings). Using a randomized, double-blind, placebo-controlled design, N = 71 subjects were randomized to receive placebo (PBO, n = 37) or THC (n = 34) prior to fear extinction learning. During early extinction learning, individuals with PTSD given THC had greater vmPFC activation than their TEC counterparts. During a test of the return of fear (i.e., renewal), HC and individuals with PTSD given THC had greater vmPFC activation compared to TEC. Individuals with PTSD given THC also had greater amygdala activation compared to those given PBO. We found no effects of trauma group or THC on behavioral fear indices during extinction learning, recall, and fear renewal. These data suggest that low dose, oral THC can affect neural indices of fear learning and memory in adults with trauma-exposure; this may be beneficial for future therapeutic interventions seeking to improve fear extinction learning and memory.
Collapse
Affiliation(s)
- Nicole L Zabik
- Translational Neuroscience Program, Tolan Park Medical Building, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Christine A Rabinak
- Translational Neuroscience Program, Tolan Park Medical Building, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Craig A Peters
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Allesandra Iadipaolo
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
106
|
Li M, Wang X, Yang L, Jiang Y, Xie Y, Li K. Acupuncture improves learning and memory ability of posttraumatic stress disorder model rats through epigenetic regulation of microglial phosphatidylinositol 3-kinase pathway. Technol Health Care 2023; 31:409-421. [PMID: 37066940 DOI: 10.3233/thc-236035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Microglia express phosphatidylinositol 3-kinase (PI3K) has been implicated in the induction and maintenance of long-term potentiation (LTP) and in hippocampal synaptic plasticity. However, there are few studies on the interference of PI3K signal pathway in microglia. OBJECTIVE The study goal is to gain a better understanding of the mechanism by which EA affects synapses provides insights into how electroacupuncture (EA) modulates synaptic plasticity in learning and memory. METHODS Rat models of posttraumatic stress disorder (PTSD) were used to explore the effects of EA on microglial PI3K pathway, brain-derived neurotrophic factor (BDNF) and LTP, and the target and mechanism underlying the effects of EA on PI3K from the perspective of protein ubiquitination. RESULTS EA induced microglial BDNF expression by activating the PI3K-AKT pathway, thereby facilitating LTP and synaptic plasticity. EA inhibited lincRNA 02023 to rescue the binding of WWP2 to PTEN, thereby promoting PTEN ubiquitination and degradation. CONCLUSION The mechanism of EA improving the learning and memory ability of PTSD rats may be that it can promote the competitive combination of WWP2 and PTEN by inhibiting Linc RNA02023, and then lead to microglial PI3K and its pathway activation, BDNF up-regulation, and finally induce LTP and repair damaged synaptic plasticity.
Collapse
Affiliation(s)
- Mi Li
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
| | - Xian Wang
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
| | - Lijie Yang
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yong Jiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yiqiang Xie
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
| | - Kai Li
- College of Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, China
| |
Collapse
|
107
|
Neudert MK, Schäfer A, Zehtner RI, Fricke S, Seinsche RJ, Kruse O, Stark R, Hermann A. Behavioral pattern separation is associated with neural and electrodermal correlates of context-dependent fear conditioning. Sci Rep 2023; 13:5577. [PMID: 37019951 PMCID: PMC10076331 DOI: 10.1038/s41598-023-31504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Hippocampus-dependent pattern separation is considered as a relevant factor for context discrimination and might therefore impact the contextual modulation of conditioned fear. However, the association between pattern separation and context-dependent fear conditioning has not been investigated so far. In the current study, 72 healthy female students completed the Mnemonic Similarity Task, a measure of behavioral pattern separation, in addition to a context-dependent fear conditioning paradigm during functional magnetic resonance imaging. The paradigm included fear acquisition in context A and extinction training in context B on a first day, as well as retrieval testing of the fear and extinction memories in the safe context B (extinction recall) and a novel context C (fear renewal) one day later. Main outcome measures comprised skin conductance responses (SCRs) and blood oxygen level-dependent responses in brain regions of the fear and extinction circuit. Regarding retrieval testing, pattern separation did not correlate with extinction recall, but with stronger dorsal anterior cingulate cortex activation and conditioned SCRs (trend) during fear renewal, indicating a stronger retrieval of the fear memory trace. Our findings suggest that behavioral pattern separation ability seems to be important for context-dependent fear modulation, which is impaired in patients with posttraumatic stress disorder.
Collapse
Affiliation(s)
- Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany.
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany.
| | - Axel Schäfer
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Raphaela I Zehtner
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Fricke
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rosa J Seinsche
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Onno Kruse
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen, Giessen, Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, Phillips University Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
108
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
109
|
Dugré JR, Potvin S. Neural bases of frustration-aggression theory: A multi-domain meta-analysis of functional neuroimaging studies. J Affect Disord 2023; 331:64-76. [PMID: 36924847 DOI: 10.1016/j.jad.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Early evidence suggests that unexpected non-reward may increase the risk for aggressive behaviors. Despite the growing interest in understanding brain functions that may be implicated in aggressive behaviors, the neural processes underlying such frustrative events remain largely unknown. Furthermore, meta-analytic results have produced discrepant results, potentially due to substantial differences in the definition of anger/aggression constructs. METHODS Therefore, we conducted a coordinate-based meta-analysis, using the activation likelihood estimation algorithm, on neuroimaging studies examining reward omission and retaliatory behaviors in healthy subjects. Conjunction analyses were further examined to discover overlapping brain activations across these meta-analytic maps. RESULTS Frustrative non-reward deactivated the orbitofrontal cortex, ventral striatum and posterior cingulate cortex, whereas increased activations were observed in midcingulo-insular regions. Retaliatory behaviors recruited the left fronto-insular and anterior midcingulate cortices, the dorsal caudate and the primary somatosensory cortex. Conjunction analyses revealed that both strongly activated midcingulo-insular regions. LIMITATIONS Spatial overlap between neural correlates of frustration and retaliatory behaviors was conducted using a conjunction analysis. Therefore, neurobiological markers underlying the temporal sequence of the frustration-aggression theory should be interpreted with caution. CONCLUSIONS Nonetheless, our results underscore the role of anterior midcingulate/pre-supplementary motor area and fronto-insular cortex in both frustration and retaliatory behaviors. A neurobiological framework for understanding frustration-based impulsive aggression is provided.
Collapse
Affiliation(s)
- Jules R Dugré
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montréal, Canada.
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montréal, Canada.
| |
Collapse
|
110
|
Venkataraman A, Dias BG. Expanding the canon: An inclusive neurobiology of thalamic and subthalamic fear circuits. Neuropharmacology 2023; 226:109380. [PMID: 36572176 PMCID: PMC9984284 DOI: 10.1016/j.neuropharm.2022.109380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Appropriate expression of fear in the face of threats in the environment is essential for survival. The sustained expression of fear in the absence of threat signals is a central pathological feature of trauma- and anxiety-related disorders. Our understanding of the neural circuitry that controls fear inhibition coalesces around the amygdala, hippocampus, and prefrontal cortex. By discussing thalamic and sub-thalamic influences on fear-related learning and expression in this review, we suggest a more inclusive neurobiological framework that expands our canonical view of fear. First, we visit how fear-related learning and expression is influenced by the aforementioned canonical brain regions. Next, we review emerging data that shed light on new roles for thalamic and subthalamic nuclei in fear-related learning and expression. Then, we highlight how these neuroanatomical hubs can modulate fear via integration of sensory and salient stimuli, gating information flow and calibrating behavioral responses, as well as maintaining and updating memory representations. Finally, we propose that the presence of this thalamic and sub-thalamic neuroanatomy in parallel with the tripartite prefrontal cortex-amygdala-hippocampus circuit allows for dynamic modulation of information based on interoceptive and exteroceptive signals. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Archana Venkataraman
- Department of Cellular & Molecular Pharmacology, University of San Francisco, San Francisco, CA, United States
| | - Brian George Dias
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States; Division of Endocrinology, Children's Hospital Los Angeles, Los Angeles, CA, United States; Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States.
| |
Collapse
|
111
|
Al Jowf GI, Ahmed ZT, Reijnders RA, de Nijs L, Eijssen LMT. To Predict, Prevent, and Manage Post-Traumatic Stress Disorder (PTSD): A Review of Pathophysiology, Treatment, and Biomarkers. Int J Mol Sci 2023; 24:ijms24065238. [PMID: 36982313 PMCID: PMC10049301 DOI: 10.3390/ijms24065238] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) can become a chronic and severely disabling condition resulting in a reduced quality of life and increased economic burden. The disorder is directly related to exposure to a traumatic event, e.g., a real or threatened injury, death, or sexual assault. Extensive research has been done on the neurobiological alterations underlying the disorder and its related phenotypes, revealing brain circuit disruption, neurotransmitter dysregulation, and hypothalamic–pituitary–adrenal (HPA) axis dysfunction. Psychotherapy remains the first-line treatment option for PTSD given its good efficacy, although pharmacotherapy can also be used as a stand-alone or in combination with psychotherapy. In order to reduce the prevalence and burden of the disorder, multilevel models of prevention have been developed to detect the disorder as early as possible and to reduce morbidity in those with established diseases. Despite the clinical grounds of diagnosis, attention is increasing to the discovery of reliable biomarkers that can predict susceptibility, aid diagnosis, or monitor treatment. Several potential biomarkers have been linked with pathophysiological changes related to PTSD, encouraging further research to identify actionable targets. This review highlights the current literature regarding the pathophysiology, disease development models, treatment modalities, and preventive models from a public health perspective, and discusses the current state of biomarker research.
Collapse
Affiliation(s)
- Ghazi I. Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| | - Ziyad T. Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairyah 52726, Saudi Arabia
| | - Rick A. Reijnders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Lars M. T. Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Bioinformatics—BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
- Correspondence: (G.I.A.J.); (L.M.T.E.)
| |
Collapse
|
112
|
The role of estrogen receptor manipulation during traumatic stress on changes in emotional memory induced by traumatic stress. Psychopharmacology (Berl) 2023; 240:1049-1061. [PMID: 36879072 DOI: 10.1007/s00213-023-06342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Traumatic stress leads to persistent fear, which is a core feature of post-traumatic stress disorder (PTSD). Women are more likely than men to develop PTSD after trauma exposure, which suggests women are differentially sensitive to traumatic stress. However, it is unclear how this differential sensitivity manifests. Cyclical changes in vascular estrogen release could be a contributing factor where levels of vascular estrogens (and activation of estrogen receptors) at the time of traumatic stress alter the impact of traumatic stress. METHODS To examine this, we manipulated estrogen receptors at the time of stress and observed the effect this had on fear and extinction memory (within the single prolonged stress (SPS) paradigm) in female rats. In all experiments, freezing and darting were used to measure fear and extinction memory. RESULTS In Experiment 1, SPS enhanced freezing during extinction testing, and this effect was blocked by nuclear estrogen receptor antagonism prior to SPS. In Experiment 2, SPS decreased conditioned freezing during the acquisition and testing of extinction. Administration of 17β-estradiol altered freezing in control and SPS animals during the acquisition of extinction, but this treatment had no effect on freezing during the testing of extinction memory. In all experiments, darting was only observed to footshock onset during fear conditioning. CONCLUSION The results suggest multiple behaviors (or different behavioral paradigms) are needed to characterize the nature of traumatic stress effects on emotional memory in female rats and that nuclear estrogen receptor antagonism prior to SPS blocks SPS effects on emotional memory in female rats.
Collapse
|
113
|
Sanford LD, Wellman LL, Adkins AM, Guo ML, Zhang Y, Ren R, Yang L, Tang X. Modeling integrated stress, sleep, fear and neuroimmune responses: Relevance for understanding trauma and stress-related disorders. Neurobiol Stress 2023; 23:100517. [PMID: 36793998 PMCID: PMC9923229 DOI: 10.1016/j.ynstr.2023.100517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Sleep and stress have complex interactions that are implicated in both physical diseases and psychiatric disorders. These interactions can be modulated by learning and memory, and involve additional interactions with the neuroimmune system. In this paper, we propose that stressful challenges induce integrated responses across multiple systems that can vary depending on situational variables in which the initial stress was experienced, and with the ability of the individual to cope with stress- and fear-inducing challenges. Differences in coping may involve differences in resilience and vulnerability and/or whether the stressful context allows adaptive learning and responses. We provide data demonstrating both common (corticosterone, SIH and fear behaviors) and distinguishing (sleep and neuroimmune) responses that are associated with an individual's ability to respond and relative resilience and vulnerability. We discuss neurocircuitry regulating integrated stress, sleep, neuroimmune and fear responses, and show that responses can be modulated at the neural level. Finally, we discuss factors that need to be considered in models of integrated stress responses and their relevance for understanding stress-related disorders in humans.
Collapse
Affiliation(s)
- Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L. Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Austin M. Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
114
|
Sachdeva B, Sachdeva P, Ghosh S, Ahmad F, Sinha JK. Ketamine as a therapeutic agent in major depressive disorder and posttraumatic stress disorder: Potential medicinal and deleterious effects. IBRAIN 2023; 9:90-101. [PMID: 37786516 PMCID: PMC10528797 DOI: 10.1002/ibra.12094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 10/04/2023]
Abstract
Major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are the most common causes of emotional distress that impair an individual's quality of life. MDD is a chronic mental illness that affects 300 million people across the world. Clinical manifestations of MDD include fatigue, loss of interest in routine tasks, psychomotor agitation, impaired ability to focus, suicidal ideation, hypersomnolence, altered psychosocial functioning, and appetite loss. Individuals with depression also demonstrate a reduced behavioral response while experiencing pleasure, a symptom known as anhedonia. Like MDD, PTSD is a prevalent and debilitating psychiatric disorder resulting from a traumatic incident such as sexual assault, war, severe accident, or natural disaster. Symptoms such as recalling event phases, hypervigilance, irritability, and anhedonia are common in PTSD. Both MDD and PTSD pose enormous socioeconomic burdens across the globe. The search for effective treatment with minimal side effects is still ongoing. Ketamine is known for its anesthetic and analgesic properties. Psychedelic and psychotropic effects of ketamine have been found on the nervous system, which highlights its toxicity. In this article, the effectiveness of ketamine as a potential therapeutic for PTSD and MDD along with its mechanisms of action, clinical trials, and possible side effects have been discussed.
Collapse
Affiliation(s)
- Bhuvi Sachdeva
- Department of Physics and Astrophysics, Bhagini Nivedita CollegeUniversity of DelhiDelhiIndia
| | | | - Shampa Ghosh
- GloNeuro AcademyNoidaUttar PradeshIndia
- ICMR—National Institute of NutritionTarnakaHyderabadIndia
| | - Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia HamdardDelhiIndia
| | | |
Collapse
|
115
|
Beckers T, Hermans D, Lange I, Luyten L, Scheveneels S, Vervliet B. Understanding clinical fear and anxiety through the lens of human fear conditioning. NATURE REVIEWS PSYCHOLOGY 2023; 2:233-245. [PMID: 36811021 PMCID: PMC9933844 DOI: 10.1038/s44159-023-00156-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Fear is an adaptive emotion that mobilizes defensive resources upon confrontation with danger. However, fear becomes maladaptive and can give rise to the development of clinical anxiety when it exceeds the degree of threat, generalizes broadly across stimuli and contexts, persists after the danger is gone or promotes excessive avoidance behaviour. Pavlovian fear conditioning has been the prime research instrument that has led to substantial progress in understanding the multi-faceted psychological and neurobiological mechanisms of fear in past decades. In this Perspective, we suggest that fruitful use of Pavlovian fear conditioning as a laboratory model of clinical anxiety requires moving beyond the study of fear acquisition to associated fear conditioning phenomena: fear extinction, generalization of conditioned fear and fearful avoidance. Understanding individual differences in each of these phenomena, not only in isolation but also in how they interact, will further strengthen the external validity of the fear conditioning model as a tool with which to study maladaptive fear as it manifests in clinical anxiety.
Collapse
Affiliation(s)
- Tom Beckers
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dirk Hermans
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Iris Lange
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Luyten
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Sara Scheveneels
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
116
|
The lifetime impact of stress on fear regulation and cortical function. Neuropharmacology 2023; 224:109367. [PMID: 36464208 DOI: 10.1016/j.neuropharm.2022.109367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A variety of stressful experiences can influence the ability to form and subsequently inhibit fear memory. While nonsocial stress can impact fear learning and memory throughout the lifespan, psychosocial stressors that involve negative social experiences or changes to the social environment have a disproportionately high impact during adolescence. Here, we review converging lines of evidence that suggest that development of prefrontal cortical circuitry necessary for both social experiences and fear learning is altered by stress exposure in a way that impacts both social and fear behaviors throughout the lifespan. Further, we suggest that psychosocial stress, through its impact on the prefrontal cortex, may be especially detrimental during early developmental periods characterized by higher sociability. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
|
117
|
Wendt FR, Garcia-Argibay M, Cabrera-Mendoza B, Valdimarsdóttir UA, Gelernter J, Stein MB, Nivard MG, Maihofer AX, Nievergelt CM, Larsson H, Mattheisen M, Polimanti R, Meier SM. The Relationship of Attention-Deficit/Hyperactivity Disorder With Posttraumatic Stress Disorder: A Two-Sample Mendelian Randomization and Population-Based Sibling Comparison Study. Biol Psychiatry 2023; 93:362-369. [PMID: 36335070 PMCID: PMC10496427 DOI: 10.1016/j.biopsych.2022.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and posttraumatic stress disorder (PTSD) are associated, but it is unclear if this is a causal relationship or confounding. We used genetic analyses and sibling comparisons to clarify the direction of this relationship. METHODS Linkage disequilibrium score regression and 2-sample Mendelian randomization were used to test for genetic correlation (rg) and bidirectional causal effects using European ancestry genome-wide association studies of ADHD (20,183 cases and 35,191 controls) and 6 PTSD definitions (up to 320,369 individuals). Several additional variables were included in the analysis to verify the independence of the ADHD-PTSD relationship. In a population-based sibling comparison (N = 2,082,118 individuals), Cox regression models were fitted to account for time at risk, a range of sociodemographic factors, and unmeasured familial confounders (via sibling comparisons). RESULTS ADHD and PTSD had consistent rg (rg range, 0.43-0.52; p < .001). ADHD genetic liability was causally linked with increased risk for PTSD (β = 0.367; 95% CI, 0.186-0.552; p = 7.68 × 10-5). This result was not affected by heterogeneity, horizontal pleiotropy (Mendelian randomization Egger intercept = 4.34 × 10-4, p = .961), or other phenotypes and was consistent across PTSD datasets. However, we found no consistent associations between PTSD genetic liability and ADHD risk. Individuals diagnosed with ADHD were at a higher risk for developing PTSD than their undiagnosed sibling (hazard ratio = 2.37; 95% CI, 1.98-3.53). CONCLUSIONS Our findings add novel evidence supporting the need for early and effective treatment of ADHD, as patients with this diagnosis are at significantly higher risk to develop PTSD later in life.
Collapse
Affiliation(s)
- Frank R Wendt
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | | | - Brenda Cabrera-Mendoza
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Unnur A Valdimarsdóttir
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Murray B Stein
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, La Jolla, California; Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Michel G Nivard
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Adam X Maihofer
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California; Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Caroline M Nievergelt
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California; Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Henrik Larsson
- School of Medical Sciences, Örebro University, Örebro, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mattheisen
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada; Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, Munich, Germany; Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.
| | - Sandra M Meier
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada; Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
118
|
Comparison of behavioral and brain indices of fear renewal during a standard vs. novel immersive reality Pavlovian fear extinction paradigm in healthy adults. Behav Brain Res 2023; 437:114154. [PMID: 36244544 DOI: 10.1016/j.bbr.2022.114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
Pavlovian conditioning paradigms model the learned fear associations inherent in posttraumatic stress disorder, including the renewal of inappropriate fear responses following extinction learning. However, very few studies in humans investigate the underlying neural mechanisms involved in fear renewal despite its clinical importance. To address this issue, our lab designed a novel, immersive-reality Pavlovian fear acquisition, extinction, recall, and renewal paradigm. We utilized an ecological threat - a snake striking towards the participant - as the unconditioned stimulus (US). Context and background were dynamic and included both visual and auditory cues that are relevant to everyday life. Using functional magnetic resonance imaging and behavioral measures (US expectancy ratings), we examined the validity of this Novel paradigm in healthy adults (n = 49) and compared it to a Standard, well-validated 2D paradigm (n = 28). The Novel paradigm, compared to the Standard, was associated with greater hippocampal activation throughout the task. Participants who underwent the Standard paradigm, compared to the Novel, also displayed insula activation; however, this was not specific to stimulus or time. During fear renewal, the Novel paradigm was associated with dorsal anterior cingulate cortex activation to CS+ (> CS-). Overall, we found that our Novel, immersive-reality paradigm, which features an ecologically relevant US, elicited greater corticolimbic activation. These results suggest that immersive Pavlovian fear conditioning paradigms paired with innately fearful stimuli may improve translatability of preclinical paradigms to clinical interventions for fear-based disorders.
Collapse
|
119
|
Bilodeau-Houle A, Morand-Beaulieu S, Bouchard V, Marin MF. Parent-child physiological concordance predicts stronger observational fear learning in children with a less secure relationship with their parent. J Exp Child Psychol 2023; 226:105553. [PMID: 36202012 DOI: 10.1016/j.jecp.2022.105553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/04/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
Observational fear learning is common in children as they learn to fear by observing their parents. Although adaptive, it can also contribute to the development of fear-related psychopathologies such as anxiety disorders. Therefore, it is important to identify and study the factors that modulate children's sensitivity to observational fear learning. For instance, observational fear learning can be facilitated by the synchronization of biological systems between two people. In parent-child dyads, physiological concordance is important and varies according to the attachment relationship, among others. We investigated the joint effect of parent-child physiological concordance and attachment on observational fear learning in children. A total of 84 parent-child dyads participated in this study. Parents were filmed while exposed to a fear-conditioning protocol, where one stimulus was associated with a shock (CS+) and the other was not (CS-). This recording was then shown to the children (observational learning). Thereafter, both stimuli (CS+ and CS-) were presented to the children without any shock (direct expression test). For both the parent and child, skin conductance activity was recorded throughout the entire procedure. We measured physiological concordance between the parent's phasic skin conductance signal during conditioning and the child's signal during the observational learning stage. Children showing stronger concordance and a less secure relationship with their parent exhibited higher levels of fear to the CS+, as indicated by a heightened skin conductance response during the direct expression test. Thus, when children have an insecure relationship with their parent, strong physiological concordance may increase their sensitivity to observational fear learning.
Collapse
Affiliation(s)
- Alexe Bilodeau-Houle
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec H2X 3P2, Canada; Research Center of Institut universitaire en santé mentale de Montréal, Montreal, Quebec H1N 3V2, Canada
| | | | - Valérie Bouchard
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec H2X 3P2, Canada; Research Center of Institut universitaire en santé mentale de Montréal, Montreal, Quebec H1N 3V2, Canada
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, Quebec H2X 3P2, Canada; Research Center of Institut universitaire en santé mentale de Montréal, Montreal, Quebec H1N 3V2, Canada.
| |
Collapse
|
120
|
Zhu W, Li Y, Ma X, Yang H, Wang Z, Shi R, Shi W, Cong B. Bibliometric analysis of post-traumatic stress disorder in forensic medicine: Research trends, hot spots, and prospects. Front Psychol 2023; 13:1074999. [PMID: 36726521 PMCID: PMC9884826 DOI: 10.3389/fpsyg.2022.1074999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
Background Post-traumatic stress disorder (PTSD) has various risk factors, complex pathogenesis, and diverse symptoms, and is often comorbid with other injuries and diseases, making forensic diagnosis difficult. Methods To explore the current research status and trends of PTSD, we used the Web of Science Core Collection databases to screen PTSD-related literature published between 2010 and 2021 and CiteSpace to perform bibliometric analysis. Results In recent years, PTSD-related research has grown steadily. The countries and institutions with the most research results were the United States and England, and King's College London and Boston University, respectively. Publications were identified from 2,821 different journals, including 13 forensic-related journals, but the journal distribution was relatively scattered and there was a lack of professional core journals. Keyword co-occurrence and clustering identified many hot topics; "rat model," "mental health," and "satisfaction" were the topics most likely to have a clear effect on future research. Analysis extracted nine turning points from the literature that suggested that neural network centers, the hypothalamic-pituitary-adrenal axis, and biomarkers were new research directions. It was found that COVID-19 can cause severe psychological stress and induce PTSD, but the relationship needs further study. The literature on stress response areas and biomarkers has gradually increased over time, but specific systemic neural brain circuits and biomarkers remain to be determined. Conclusion There is a need to expand the collection of different types of biological tissue samples from patients with different backgrounds, screen PTSD biomarkers and molecular targets using multi-omics and molecular biology techniques, and establish PTSD-related molecular networks. This may promote a systematic understanding of the abnormal activation of neural circuits in patients with PTSD and help to establish a personalized, accurate, and objective forensic diagnostic standard.
Collapse
|
121
|
Yin J, Zhou J, Fang F, Yu S, Wang J, Yuan J, Zhou Z. Identification of VIPR2 rare and common variants in the Chinese Han population with schizophrenia. Front Mol Neurosci 2023; 16:1170708. [PMID: 37181653 PMCID: PMC10174236 DOI: 10.3389/fnmol.2023.1170708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Schizophrenia is a severe and chronic psychiatric disorder with hereditary risk up to 80% as previous studies indicated. Several researches have demonstrated a significant association between schizophrenia and microduplications that overlap the vasoactive intestinal peptide receptor 2 gene (VIPR2). Methods To further investigate potential causal VIPR2 gene variants, all exons and un-translated portions of the VIPR2 gene were sequenced using amplicon targeted resequencing in 1804 Chinese Han patients with schizophrenia and 996 healthy counterparts in the present study. Results Nineteen rare non-synonymous mutations and 1 frameshift deletion was identified for schizophrenia, among which 5 variants have never been reported so far. Frequencies of rare non-synonymous mutations were significantly different between the two groups. Specifically, the non-synonymous mutation rs78564798 (Pallele = 0.006) as well as two rare variations in the VIPR2 gene's introns (rs372544903, Pallele = 0.026 and a novel mutation, chr7:159034078, GRCh38, Pallele = 0.048) were significantly associated with schizophrenia. Discussion Our findings add new evidence that the functional and probable causative variants of VIPR2 gene may play an important role in susceptibility to schizophrenia. Further studies on validations of VIPR2's function in the etiology of schizophrenia are warranted.
Collapse
Affiliation(s)
- Jiajun Yin
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Juan Zhou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fang Fang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Shui Yu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jun Wang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jianmin Yuan
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- *Correspondence: Jianmin Yuan,
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- Zhenhe Zhou,
| |
Collapse
|
122
|
Lokshina Y, Sheynin J, Vogt GS, Liberzon I. Fear Extinction Learning in Posttraumatic Stress Disorder. Curr Top Behav Neurosci 2023; 64:257-270. [PMID: 37535308 DOI: 10.1007/7854_2023_436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Impairments in fear extinction processes have been implicated in the genesis and maintenance of debilitating psychopathologies, including Posttraumatic stress disorder (PTSD). PTSD, classified as a trauma- and stressor-related disorder, is characterized by four symptom clusters: intrusive recollections of trauma, avoidance of trauma-related stimuli, alterations in cognition and mood, and hyperarousal. One of the key pathological feature associated with the persistence of these symptoms is impaired fear extinction, as delineated in multiple studies employing Pavlovian fear-conditioning paradigms. These paradigms, comprising fear acquisition, extinction, extinction recall, and fear renewal phases, have illuminated the neurobiological substrates of PTSD. Dysfunctions in the neural circuits that mediate these fear learning and extinction processes can result in failure to extinguish fear responses and retain extinction memory, giving rise to enduring experience of fear and anxiety. The protective avoidance behaviors observed in individuals with PTSD further exacerbate intrusive symptoms and pose challenges to effective treatment strategies. A comprehensive analysis of fear conditioning and extinction processes, along with the underlying neurobiology, could significantly enhance our understanding of PTSD pathophysiology. This chapter delineates the role of fear extinction processes in PTSD, investigates the underlying neurobiological substrates, and underscores the therapeutic implications, while also identifying future research directions.
Collapse
Affiliation(s)
- Yana Lokshina
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Jony Sheynin
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gregory S Vogt
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, TX, USA.
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
123
|
Bryant RA. Is Fear Extinction Impairment Central to Psychopathology? Curr Top Behav Neurosci 2023; 64:195-212. [PMID: 37668874 DOI: 10.1007/7854_2023_439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
As discussed in this chapter, there have been enormous advances in our understanding of how anxiety disorders develop, are maintained, and can be treated. Many of these advances have been the result of translational studies using fear conditioning and extinction models. Despite these successes, we recognize, as a field, that there are important limitations in the extent to which extinction can explain how anxiety disorders and behaviors remit. Clinically speaking, the outstanding challenge for treatment of anxiety disorders is to improve the current suboptimal success rates. Over the past 30 years, we have not improved our treatment success rates despite employing many pharmacological and pharmacological strategies. While extinction and related fear circuitry mechanisms most certainly appear to play a role in treatment of anxiety disorders, they are also apparently insufficient to fully accommodate the varied responses individuals exhibit with this treatment approach. Increasingly diverse and innovative approaches are needed that accommodate the multitude of change mechanisms involved in treating anxiety. However, this is not to suggest ignoring the key role that extinction and memory updating processes play in overcoming anxiety.
Collapse
Affiliation(s)
- Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
124
|
Cain CK. Beyond Fear, Extinction, and Freezing: Strategies for Improving the Translational Value of Animal Conditioning Research. Curr Top Behav Neurosci 2023; 64:19-57. [PMID: 37532965 PMCID: PMC10840073 DOI: 10.1007/7854_2023_434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Translational neuroscience for anxiety has had limited success despite great progress in understanding the neurobiology of Pavlovian fear conditioning and extinction. This chapter explores the idea that conditioning paradigms have had a modest impact on translation because studies in animals and humans are misaligned in important ways. For instance, animal conditioning studies typically use imminent threats to assess short-duration fear states with single behavioral measures (e.g., freezing), whereas human studies typically assess weaker or more prolonged anxiety states with physiological (e.g., skin conductance) and self-report measures. A path forward may be more animal research on conditioned anxiety phenomena measuring dynamic behavioral and physiological responses in more complex environments. Exploring transitions between defensive brain states during extinction, looming threats, and post-threat recovery may be particularly informative. If care is taken to align paradigms, threat levels, and measures, this strategy may reveal stable patterns of non-conscious defense in animals and humans that correlate better with conscious anxiety. This shift in focus is also warranted because anxiety is a bigger problem than fear, even in disorders defined by dysfunctional fear or panic reactions.
Collapse
Affiliation(s)
- Christopher K Cain
- Department of Child and Adolescent Psychiatry, NYU Langone Health, New York, NY, USA.
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
125
|
Velasco ER, Florido A, Perez-Caballero L, Marin I, Andero R. The Impacts of Sex Differences and Sex Hormones on Fear Extinction. Curr Top Behav Neurosci 2023; 64:105-132. [PMID: 37528309 DOI: 10.1007/7854_2023_426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Fear extinction memories are strongly modulated by sex and hormonal status, but the exact mechanisms are still being discovered. In humans, there are some basal and task-related features in which male and female individuals differ in fear conditioning paradigms. However, analyses considering the effects of sex hormones demonstrate a role for estradiol in fear extinction memory consolidation. Translational studies are taking advantage of the convergent findings between species to understand the brain structures implicated. Nevertheless, the human brain is complex and the transfer of these findings into the clinics remains a challenge. The promising advances in the field together with the standardization of fear extinction methodologies in humans will benefit the design of new personalized therapies.
Collapse
Affiliation(s)
- Eric Raul Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Marin
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
126
|
Huang J, Xu F, Yang L, Tuolihong L, Wang X, Du Z, Zhang Y, Yin X, Li Y, Lu K, Wang W. Involvement of the GABAergic system in PTSD and its therapeutic significance. Front Mol Neurosci 2023; 16:1052288. [PMID: 36818657 PMCID: PMC9928765 DOI: 10.3389/fnmol.2023.1052288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The neurobiological mechanism of post-traumatic stress disorder (PTSD) is poorly understood. The inhibition of GABA neurons, especially in the amygdala, is crucial for the precise regulation of the consolidation, expression, and extinction of fear conditioning. The GABAergic system is involved in the pathophysiological process of PTSD, with several studies demonstrating that the function of the GABAergic system decreases in PTSD patients. This paper reviews the preclinical and clinical studies, neuroimaging techniques, and pharmacological studies of the GABAergic system in PTSD and summarizes the role of the GABAergic system in PTSD. Understanding the role of the GABAergic system in PTSD and searching for new drug targets will be helpful in the treatment of PTSD.
Collapse
Affiliation(s)
| | - Fei Xu
- Department of Psychiatry of School of Public Health, Southern Medical University, Guangzhou, China
| | - Liping Yang
- Department of Applied Psychology of School of Public Health, Southern Medical University, Guangzhou, China
| | - Lina Tuolihong
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyu Wang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zibo Du
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiqi Zhang
- Eight-Year Master's and Doctoral Program in Clinical Medicine of the First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xuanlin Yin
- Department of Basic Medical of Basic Medical College, Southern Medical University, Guangzhou, China
| | - Yingjun Li
- Department of Medical Laboratory Science, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kangrong Lu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
127
|
Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, Widge AS. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev 2023; 144:105005. [PMID: 36549377 PMCID: PMC10210253 DOI: 10.1016/j.neubiorev.2022.105005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Arizona State University, AZ, USA
| | - Ziad Nahas
- Department of Psychology, Arizona State University, AZ, USA
| | - Shmuel M Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Medical Discovery Team on Addictions, University of Minnesota Medical School, MN, USA
| |
Collapse
|
128
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
129
|
Woodford J, Riser M, Norrholm SD. Understanding Human Fear Extinction: Insights from Psychophysiology. Curr Top Behav Neurosci 2023; 64:59-77. [PMID: 37528308 DOI: 10.1007/7854_2023_435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The study of fear extinction has been driven largely by Pavlovian fear conditioning methods across the translational spectrum. The primary methods used to study these processes in humans have been recordings of skin conductance (historically termed galvanic skin response) and fear-potentiation of the acoustic startle reflex. As outlined in the following chapter, the combined corpus of this work has demonstrated the value of psychophysiology in better understanding the underlying neurobiology of extinction learning in healthy humans as well as those with psychopathologies. In addition, psychophysiological approaches, which allow for the preservation of methods between species, have shown their applicability to the assessment of wide-ranging treatment effects. The chapter concludes with potential trajectories for future study in this area.
Collapse
Affiliation(s)
- Jessica Woodford
- Department of Psychiatry and Behavioral Neurosciences, Neuroscience Center for Anxiety, Stress, and Trauma, Wayne State University School of Medicine, Detroit, MI, USA
| | - Manessa Riser
- Department of Psychiatry and Behavioral Neurosciences, Neuroscience Center for Anxiety, Stress, and Trauma, Wayne State University School of Medicine, Detroit, MI, USA
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Neurosciences, Neuroscience Center for Anxiety, Stress, and Trauma, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Behavioral Sciences and Leadership, United States Air Force Academy, Colorado Springs, CO, USA.
| |
Collapse
|
130
|
Warren WG, Papagianni EP, Hale E, Brociek RA, Cassaday HJ, Stevenson CW. Endocannabinoid metabolism inhibition has no effect on spontaneous fear recovery or extinction resistance in Lister hooded rats. Front Pharmacol 2022; 13:1082760. [PMID: 36588687 PMCID: PMC9798003 DOI: 10.3389/fphar.2022.1082760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Endocannabinoid transmission is emerging as a target for treating anxiety-related disorders, given its regulation of fear extinction. Boosting anandamide levels via inhibition of its metabolism by fatty acid amide hydrolase (FAAH) can enhance extinction, whereas inhibiting monoacylglycerol lipase (MAGL) to elevate 2-arachidonoylglycerol levels can impair extinction. However, whether endocannabinoids regulate fear relapse over time or extinction resistance remains unclear. In two experiments using auditory fear conditioned rats, we examined the effects of the FAAH inhibitor URB597 and the MAGL inhibitor JZL184 administered systemically on 1) spontaneous fear recovery after delayed extinction, and 2) extinction resistance resulting from immediate extinction [the immediate extinction deficit (IED)]. In Experiment 1, URB597 or JZL184 was given immediately after delayed extinction occurring 24 h after conditioning. Extinction recall and spontaneous fear recovery were tested drug-free 1 and 21 days later, respectively. We found no effects of either drug on extinction recall or spontaneous fear recovery. In Experiment 2, URB597 or JZL184 was given before immediate extinction occurring 30 min after conditioning and extinction recall was tested drug-free the next day. We also examined the effects of propranolol, a beta-adrenoceptor antagonist that can rescue the IED, as a positive control. JZL184 enhanced fear expression and impaired extinction learning but we found no lasting effects of URB597 or JZL184 on cued extinction recall. Propranolol reduced fear expression but, unexpectedly, had no enduring effect on extinction recall. The results are discussed in relation to various methodological differences between previous studies examining endocannabinoid and adrenergic regulation of fear extinction.
Collapse
Affiliation(s)
- William G. Warren
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Eleni P. Papagianni
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Ed Hale
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom
| | - Rebecca A. Brociek
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Helen J. Cassaday
- School of Psychology, University Park, University of Nottingham, Nottingham, United Kingdom
| | - Carl W. Stevenson
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, United Kingdom,*Correspondence: Carl W. Stevenson,
| |
Collapse
|
131
|
Hamani C, Davidson B, Corchs F, Abrahao A, Nestor SM, Rabin JS, Nyman AJ, Phung L, Goubran M, Levitt A, Talakoub O, Giacobbe P, Lipsman N. Deep brain stimulation of the subgenual cingulum and uncinate fasciculus for the treatment of posttraumatic stress disorder. SCIENCE ADVANCES 2022; 8:eadc9970. [PMID: 36459550 PMCID: PMC10936049 DOI: 10.1126/sciadv.adc9970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Deep brain stimulation (DBS) has been investigated for neuropsychiatric disorders. In this phase 1 trial, we treated four posttraumatic stress disorder (PTSD) patients with DBS delivered to the subgenual cingulum and the uncinate fasciculus. In addition to validated clinical scales, patients underwent neuroimaging studies and psychophysiological assessments of fear conditioning, extinction, and recall. We show that the procedure is safe and potentially effective (55% reduction in Clinical Administered PTSD Scale scores). Posttreatment imaging data revealed metabolic activity changes in PTSD neurocircuits. During psychophysiological assessments, patients with PTSD had higher skin conductance responses when tested for recall compared to healthy controls. After DBS, this objectively measured variable was significantly reduced. Last, we found that a ratio between recall of extinguished and nonextinguished conditioned responses had a strong correlation with clinical outcome. As this variable was recorded at baseline, it may comprise a potential biomarker of treatment response.
Collapse
Affiliation(s)
- Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Felipe Corchs
- Department of Psychiatry, Institute of Psychiatry, University of São Paulo, SP 05403-903, Brazil
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, ON M4N 3M5, Canada
| | - Sean M. Nestor
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S. Rabin
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Alexander J. Nyman
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Liane Phung
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Maged Goubran
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anthony Levitt
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Omid Talakoub
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
132
|
Schenker MT, Ince S, Ney LJ, Hsu CMK, Zuj DV, Jordan AS, Nicholas CL, Felmingham KL. Sex differences in the effect of subjective sleep on fear conditioning, extinction learning, and extinction recall in individuals with a range of PTSD symptom severity. Behav Res Ther 2022; 159:104222. [PMID: 36327524 DOI: 10.1016/j.brat.2022.104222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
Sleep has been found to play a key role in fear conditioning, extinction learning and extinction recall, and sleep disturbances are linked to many mental disorders including post-traumatic stress disorder (PTSD). Previous studies examining associations between sleep and fear or extinction processes primarily focused on objectively measured sleep architecture. Little research has so far focused on subjective sleep measures and particularly in clinical populations, which often experience subjectively poor sleep, including PTSD. Here we investigated whether subjective sleep disturbance, sleep onset latency, wake after sleep onset or sleep efficiency were related to fear conditioning, extinction learning or extinction recall in a large sample of individuals with a range of PTSD symptom severity (n = 248). Overall, we did not find that subjective sleep was associated with fear conditioning or extinction processes. However, exploratory analyses examining the moderating effect of sex found that shorter sleep onset latency and greater sleep efficiency were associated with improved extinction recall in women with higher PTSD symptom severity. This suggests that less time falling asleep and longer time asleep while in bed may be protective in highly symptomatic women against the commonly observed impaired extinction recall in PTSD. More studies are needed to explore sex-specific effects further.
Collapse
Affiliation(s)
- Maya T Schenker
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Sevil Ince
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Luke J Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS, Australia; School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Chia-Ming K Hsu
- School of Psychological Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - Daniel V Zuj
- School of Psychological Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - Amy S Jordan
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Christian L Nicholas
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; School of Psychological Sciences, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
133
|
Choi JJ, Martins JS, Hwang S, Sinha R, Seo D. Neural correlates linking trauma and physical symptoms. Psychiatry Res Neuroimaging 2022; 327:111560. [PMID: 36327865 PMCID: PMC9757618 DOI: 10.1016/j.pscychresns.2022.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Trauma and chronic pain frequently co-occur, but the underlying neurological mechanisms are poorly understood. The current study investigated the neural correlates of stress and physical symptoms in trauma patients using functional magnetic resonance imaging (fMRI) and follow-up smartphone surveys. Participants were 10 patients diagnosed with Trauma- and Stressor-Related Disorders and 18 demographically-matched healthy controls who completed a fMRI stress provocation task in which they viewed stressful and neutral-relaxing images. Subsequently, participants completed daily smartphone surveys which prospectively monitored their stress and physical symptoms for 30 days. The trauma group experienced a significantly higher frequency of physical symptoms than controls during the follow-up period. During stress, trauma patients exhibited increased activity in the hippocampus, insula, and sensorimotor areas, but decreased activity in the ventromedial prefrontal cortex (vmPFC), lateral prefrontal cortex (LPFC), and dorsal striatum relative to controls. In all participants, higher physical symptom frequency was significantly associated with a hyperactive left hippocampal response to stress. The current study reports that trauma is characterized by greater physical symptoms and decreased prefrontal but increased limbic responses to stress. Our findings suggest that trauma may increase physical health symptoms by compromising hippocampal function, which could also increase vulnerability to stress- and pain-related disorders.
Collapse
Affiliation(s)
- Justin J Choi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America.
| | - Jorge S Martins
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America; William James Center for Research, ISPA-Instituto Universitário, Lisbon, Portugal
| | - Seungju Hwang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States of America
| | - Dongju Seo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States of America.
| |
Collapse
|
134
|
Kotler S, Mannino M, Kelso S, Huskey R. First few seconds for flow: A comprehensive proposal of the neurobiology and neurodynamics of state onset. Neurosci Biobehav Rev 2022; 143:104956. [PMID: 36368525 DOI: 10.1016/j.neubiorev.2022.104956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Flow is a cognitive state that manifests when there is complete attentional absorption while performing a task. Flow occurs when certain internal as well as external conditions are present, including intense concentration, a sense of control, feedback, and a balance between the challenge of the task and the relevant skillset. Phenomenologically, flow is accompanied by a loss of self-consciousness, seamless integration of action and awareness, and acute changes in time perception. Research has begun to uncover some of the neurophysiological correlates of flow, as well as some of the state's neuromodulatory processes. We comprehensively review this work and consider the neurodynamics of the onset of the state, considering large-scale brain networks, as well as dopaminergic, noradrenergic, and endocannabinoid systems. To accomplish this, we outline an evidence-based hypothetical situation, and consider the flow state in a broader context including other profound alterations in consciousness, such as the psychedelic state and the state of traumatic stress that can induce PTSD. We present a broad theoretical framework which may motivate future testable hypotheses.
Collapse
Affiliation(s)
| | | | - Scott Kelso
- Human Brain & Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, United States; Intelligent Systems Research Centre, Ulster University, Derry∼Londonderry, North Ireland
| | - Richard Huskey
- Cognitive Communication Science Lab, Department of Communication, University of California Davis, United States; Cognitive Science Program, University of California Davis, United States; Center for Mind and Brain, University of California Davis, United States.
| |
Collapse
|
135
|
Roeckner AR, Sogani S, Michopoulos V, Hinrichs R, van Rooij SJH, Rothbaum BO, Jovanovic T, Ressler KJ, Stevens JS. Sex-dependent risk factors for PTSD: a prospective structural MRI study. Neuropsychopharmacology 2022; 47:2213-2220. [PMID: 36114284 PMCID: PMC9630503 DOI: 10.1038/s41386-022-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Female individuals are more likely to be diagnosed with PTSD following trauma exposure than males, potentially due, in part, to underlying neurobiological factors. Several brain regions underlying fear learning and expression have previously been associated with PTSD, with the hippocampus, amygdala, dorsal anterior cingulate cortex (dACC), and rostral ACC (rACC) showing altered volume and function in those with PTSD. However, few studies have examined how sex impacts the predictive value of subcortical volumes and cortical thickness in longitudinal PTSD studies. As part of an emergency department study completed at the Grady Trauma Project in Atlanta, GA, N = 93 (40 Female) participants were enrolled within 24 h following a traumatic event. Multi-echo T1-weighted MRI images were collected one-month post-trauma exposure. Bilateral amygdala and hippocampal volumes and rACC and dACC cortical thickness were segmented. To assess the longitudinal course of PTSD, the PTSD Symptom Scale (PSS) was collected 6 months post-trauma. We investigated whether regional volume/thickness interacted with sex to predict later PTSD symptom severity, controlling for PSS score at time of scan, age, race, and trauma type, as well as intracranial volume (ICV) for subcortical volumes. There was a significant interaction between sex and rACC for 6-month PSS, such that right rACC thickness was positively correlated with 6-month PSS scores in females, but not in males. In examining PTSD symptom subtypes and depression symptoms, greater rACC thickness in females predicted greater avoidance symptoms, while smaller rACC thickness in males predicted greater depression symptoms. Amygdala and hippocampus volume and dACC thickness showed no main effect or interaction with sex. The current findings provide evidence for sex-based differences in how brain volume predicts future PTSD severity and symptoms and supports the rACC as being a vital region regarding PTSD. Gender differences should be assessed in future longitudinal PTSD MRI studies for more accurate identification of future PTSD risk following trauma.
Collapse
|
136
|
de Oliveira Alves C, Reimer AE, de Oliveira AR. Involvement of D2-like dopaminergic receptors in contextual fear conditioning in female rats: influence of estrous cycle. Front Behav Neurosci 2022; 16:1033649. [PMID: 36518813 PMCID: PMC9742248 DOI: 10.3389/fnbeh.2022.1033649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 10/19/2023] Open
Abstract
Introduction: Dopamine has been increasingly recognized as a key neurotransmitter regulating fear/anxiety states. Nevertheless, the influence of sex and estrous cycle differences on the role of dopamine in fear responses needs further investigation. We aimed to evaluate the effects of sulpiride (a dopaminergic D2-like receptor antagonist) on contextual fear conditioning in females while exploring the influence of the estrous cycle. Methods: First, using a contextual fear conditioning paradigm, we assessed potential differences in acquisition, expression, and extinction of the conditioned freezing response in male and female (split in proestrus/estrus and metestrus/diestrus) Wistar rats. In a second cohort, we evaluated the effects of sulpiride (20 and 40 mg/kg) on contextual conditioned fear in females during proestrus/estrus and metestrus/diestrus. Potential nonspecific effects were assessed in motor activity assays (catalepsy and open-field tests). Results: No sex differences nor estrous cycle effects on freezing behavior were observed during the fear conditioning phases. Sulpiride reduced freezing expression in female rats. Moreover, females during the proestrus/estrus phases of the estrous cycle were more sensitive to the effects of sulpiride than females in metestrus/diestrus. Sulpiride did not cause motor impairments. Discussion: Although no sex or estrous cycle differences were observed in basal conditioned fear expression and extinction, the estrous cycle seems to influence the effects of D2-like antagonists on contextual fear conditioning.
Collapse
Affiliation(s)
- Camila de Oliveira Alves
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Adriano Edgar Reimer
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Center of Education and Human Sciences, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| |
Collapse
|
137
|
Pace-Schott EF, Seo J, Bottary R. The influence of sleep on fear extinction in trauma-related disorders. Neurobiol Stress 2022; 22:100500. [PMID: 36545012 PMCID: PMC9761387 DOI: 10.1016/j.ynstr.2022.100500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
In Posttraumatic Stress Disorder (PTSD), fear and anxiety become dysregulated following psychologically traumatic events. Regulation of fear and anxiety involves both high-level cognitive processes such as cognitive reattribution and low-level, partially automatic memory processes such as fear extinction, safety learning and habituation. These latter processes are believed to be deficient in PTSD. While insomnia and nightmares are characteristic symptoms of existing PTSD, abundant recent evidence suggests that sleep disruption prior to and acute sleep disturbance following traumatic events both can predispose an individual to develop PTSD. Sleep promotes consolidation in multiple memory systems and is believed to also do so for low-level emotion-regulatory memory processes. Consequently sleep disruption may contribute to the etiology of PTSD by interfering with consolidation in low-level emotion-regulatory memory systems. During the first weeks following a traumatic event, when in the course of everyday life resilient individuals begin to acquire and consolidate these low-level emotion-regulatory memories, those who will develop PTSD symptoms may fail to do so. This deficit may, in part, result from alterations of sleep that interfere with their consolidation, such as REM fragmentation, that have also been found to presage later PTSD symptoms. Here, sleep disruption in PTSD as well as fear extinction, safety learning and habituation and their known alterations in PTSD are first briefly reviewed. Then neural processes that occur during the early post-trauma period that might impede low-level emotion regulatory processes through alterations of sleep quality and physiology will be considered. Lastly, recent neuroimaging evidence from a fear conditioning and extinction paradigm in patient groups and their controls will be considered along with one possible neural process that may contribute to a vulnerability to PTSD following trauma.
Collapse
Affiliation(s)
- Edward F. Pace-Schott
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Corresponding author. Harvard Medical School, Massachusetts General Hospital - East, CNY 149 13th Street, Charlestown, MA, 02129, USA.
| | - Jeehye Seo
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Korea University, Department of Brain & Cognitive Engineering, Seongbuk-gu, Seoul, South Korea
| | - Ryan Bottary
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
138
|
Hazra S, Hazra JD, Bar-On RA, Duan Y, Edut S, Cao X, Richter-Levin G. The role of hippocampal CaMKII in resilience to trauma-related psychopathology. Neurobiol Stress 2022; 21:100506. [PMID: 36532378 PMCID: PMC9755065 DOI: 10.1016/j.ynstr.2022.100506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Traumatic stress exposure can form persistent trauma-related memories. However, only a minority of individuals develop post-traumatic stress disorder (PTSD) symptoms upon exposure. We employed a rat model of PTSD, which enables differentiating between exposed-affected and exposed-unaffected individuals. Two weeks after the end of exposure, male rats were tested behaviorally, following an exposure to a trauma reminder, identifying them as trauma 'affected' or 'unaffected.' In light of the established role of hippocampal synaptic plasticity in stress and the essential role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in hippocampal based synaptic plasticity, we pharmacologically inhibited CaMKII or knocked-down (kd) αCaMKII (in two separate experiments) in the dorsal dentate gyrus of the hippocampus (dDG) following exposure to the same trauma paradigm. Both manipulations brought down the prevalence of 'affected' individuals in the trauma-exposed population. A day after the last behavioral test, long-term potentiation (LTP) was examined in the dDG as a measure of synaptic plasticity. Trauma exposure reduced the ability to induce LTP, whereas, contrary to expectation, αCaMKII-kd reversed this effect. Further examination revealed that reducing αCaMKII expression enables the formation of αCaMKII-independent LTP, which may enable increased resilience in the face of a traumatic experience. The current findings further emphasize the pivotal role dDG has in stress resilience.
Collapse
Affiliation(s)
- Somoday Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
| | - Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
| | - Rani Amit Bar-On
- Faculty of Social Sciences, University of Haifa, Mount Carmel, 3498838, Israel
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Shahaf Edut
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
- Psychology Department, University of Haifa, Mount Carmel, 3498838, Israel
| |
Collapse
|
139
|
Souza RR, Powers MB, Rennaker RL, McIntyre CK, Hays SA, Kilgard MP. Timing of vagus nerve stimulation during fear extinction determines efficacy in a rat model of PTSD. Sci Rep 2022; 12:16526. [PMID: 36192564 PMCID: PMC9530175 DOI: 10.1038/s41598-022-20301-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Studies have indicated that vagus nerve stimulation (VNS) enhances extinction learning in rodent models. Here, we investigated if pairing VNS with the conditioned stimulus is required for the enhancing effects of VNS. Adult Sprague-Dawley rats were exposed to intense stress followed by fear conditioning training to produce resistant fear. Rats were then implanted with a cuff electrode around the left vagus. After recovery, rats underwent extinction training paired with VNS (0.5 s, 0.8 mA, 100 µs, and 30 Hz) or with Sham VNS (0 mA). VNS rats were randomized into the following subgroups: During VNS (delivered during presentations of the conditioned stimulus, CS), Between VNS (delivered between CS presentations), Continuous VNS (delivered during the entire extinction session), and Dispersed VNS (delivered at longer inter-stimulation intervals across the extinction session). Sham VNS rats failed to extinguish the conditioned fear response over 5 days of repeated exposure to the CS. Rats that received Between or Dispersed VNS showed modest improvement in conditioned fear at the retention test. During and Continuous VNS groups displayed the greatest reduction in conditioned fear. These findings indicate that delivering VNS paired precisely with CS presentations or continuously throughout extinction promotes the maximum enhancement in extinction learning.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, 75080, USA.
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Bioengineering and Sciences Building, 14.506, 800 West Campbell Road, Richardson, TX, 75080, USA.
| | - Mark B Powers
- Baylor University Medical Center, Dallas, TX, 75246, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, 75080, USA
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Bioengineering and Sciences Building, 14.506, 800 West Campbell Road, Richardson, TX, 75080, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Christa K McIntyre
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, 75080, USA
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Bioengineering and Sciences Building, 14.506, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, 75080, USA
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Bioengineering and Sciences Building, 14.506, 800 West Campbell Road, Richardson, TX, 75080, USA
| |
Collapse
|
140
|
Klingelhöfer-Jens M, Ehlers MR, Kuhn M, Keyaniyan V, Lonsdorf TB. Robust group- but limited individual-level (longitudinal) reliability and insights into cross-phases response prediction of conditioned fear. eLife 2022; 11:e78717. [PMID: 36098500 PMCID: PMC9691022 DOI: 10.7554/elife.78717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Here, we follow the call to target measurement reliability as a key prerequisite for individual-level predictions in translational neuroscience by investigating (1) longitudinal reliability at the individual and (2) group level, (3) internal consistency and (4) response predictability across experimental phases. One hundred and twenty individuals performed a fear conditioning paradigm twice 6 months apart. Analyses of skin conductance responses, fear ratings and blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) with different data transformations and included numbers of trials were conducted. While longitudinal reliability was rather limited at the individual level, it was comparatively higher for acquisition but not extinction at the group level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher responding in subsequent experimental phases at a weak to moderate level depending on data specifications. In sum, the results suggest that while individual-level predictions are meaningful for (very) short time frames, they also call for more attention to measurement properties in the field.
Collapse
Affiliation(s)
- Maren Klingelhöfer-Jens
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Mana R Ehlers
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Manuel Kuhn
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Department of Psychiatry, Harvard Medical School, and Center for Depression, Anxiety and Stress Research, McLean HospitalBelmontUnited States
| | - Vincent Keyaniyan
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Tina B Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
| |
Collapse
|
141
|
Zhou K, Chi H, Wang J, Zheng Y, Pan J, Yu D, Xu J, Zhu H, Li J, Chen S, Zhao X, Wu X, Shen B, Tung TH, Luo C. Physical condition, psychological status, and posttraumatic stress disorder among recovered COVID-19 subjects: A mediation analysis. Front Psychiatry 2022; 13:918679. [PMID: 36147994 PMCID: PMC9485496 DOI: 10.3389/fpsyt.2022.918679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
The physical condition of individuals who contracted COVID-19 had a profound influence on mitigating the physical and psychological impact of the disease and the symptoms of posttraumatic stress disorder (PTSD). Little attention has been focused on the influence of physical condition on PTSD among recovered COVID-19 subjects. This study explored the relationship between physical and psychological status and PTSD and the potential mechanisms. Questionnaires were completed by 73 (50.7%, 73/144) COVID-19 recovered subjects who were diagnosed in Taizhou, Zhejiang, China. We conducted a face-to-face survey from January 17 to March 10, 2020. The mediation analysis approach was applied in this research. Our data show that recovered COVID-19 subjects who were in better physical condition exhibited fewer psychological problems [B (95%CI), (-1.65 -3.04, -0.26)] and lower PTSD [B (95%CI), -6.13 (-9.43, -2.83)]. In addition, the worse the psychological status of recovered COVID-19 subjects was, the stronger the PTSD (B [95%CI], 0.58 [0.02, 1.14]). Moreover, psychological status could significantly mediate the impact of physical condition on PTSD (β1θ2 = -0.87). Together, COVID-19 recovered subjects who have better physical condition could decrease their PTSD, and the worse the physical condition of COVID-19 recovered subjects would increase their psychological problems. Our finding about psychological status could significantly mediate the impact of the physical condition on PTSD might be useful for medical institutions and the government seeking to help with the follow-up rehabilitation training of recovered COVID-19 subjects.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hongbo Chi
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jing Wang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yufen Zheng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Juan Pan
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Die Yu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, China
| | - Jiaqin Xu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hongguo Zhu
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jun Li
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shiyong Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xinzhuan Zhao
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiaomai Wu
- Department of Respiratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Chengwen Luo
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
142
|
Bartholomew ME, Rozalski V, Richards A, Gurdock J, Thornton M, Fee C, Lipshitz SL, Metzler TJ, Neylan TC, Inslicht SS. Impact of hormonal contraceptives on sex differences in fear conditioning and fear extinction in PTSD. Learn Mem 2022; 29:332-339. [PMID: 36206397 PMCID: PMC9488024 DOI: 10.1101/lm.053597.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Sex differences in the neurobiological mechanisms involved in fear conditioning and extinction have been suggested to contribute to differential vulnerability for the development of posttraumatic stress disorder (PTSD) in women compared with men. Reproductive hormones, such as estradiol, have been shown to facilitate fear conditioning and extinction learning and may explain some of these differences. However, the effect of commonly used hormonal contraceptives on the neurobiological mechanisms of fear conditioning and extinction is poorly understood. A laboratory study was conducted in trauma-exposed men and women with and without full or partial PTSD to examine effects of sex and use of hormonal birth control on fear conditioning, fear extinction learning, and extinction retention. Participants underwent fear conditioning with stimuli that were paired (CS+) or unpaired (CS−) with shock. Extinction learning occurred 72 h later, and extinction retention was tested 1 wk after extinction. Women on hormonal contraceptives (HCs) demonstrated enhanced acquisition of fear conditioning and enhanced extinction of fear as compared with women off hormonal birth control and men. While clinical implications have yet to be determined, these results suggest that hormonal contraceptives may facilitate learning during both fear acquisition and extinction. Understanding the impact of sex and hormones on fear conditioning and extinction processes may lead to new insights into the pathophysiology of PTSD and result in advancements in treatment that may vary by sex.
Collapse
|
143
|
Swift KM, Thomas CL, Balkin TJ, Lowery-Gionta EG, Matson LM. Acute sleep interventions as an avenue for treatment of trauma-associated disorders. J Clin Sleep Med 2022; 18:2291-2312. [PMID: 35678060 PMCID: PMC9435330 DOI: 10.5664/jcsm.10074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022]
Abstract
Scientific evidence that acute, posttrauma sleep disturbances (eg, nightmares and insomnia) can contribute significantly to the pathogenesis of trauma-induced disorders is compelling. Sleep disturbances precipitating from trauma are uniquely predictive of daytime posttrauma symptom occurrence and severity, as well as subsequent onset of mental health disorders, including post-traumatic stress disorder. Conversely, adequate sleep during the acute posttrauma period is associated with reduced likelihood of adverse mental health outcomes. These findings, which are broadly consistent with what is known about the role of sleep in the regulation of emotion, suggest that the acute posttrauma period constitutes a "window of opportunity" during which treatment of sleep disturbances may be especially effective for preventing or mitigating progression of aberrant psychophysiological processes. At this point, the weight of the scientific evidence supporting this possibility warrants initiation of clinical trials to confirm the benefits of targeted prophylactic sleep enhancement, and to establish treatment guidelines as appropriate. CITATION Swift KM, Thomas CL, Balkin TJ, Lowery-Gionta EG, Matson LM. Acute sleep interventions as an avenue for treatment of trauma-associated disorders. J Clin Sleep Med. 2022;18(9):2291-2312.
Collapse
Affiliation(s)
- Kevin M. Swift
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Connie L. Thomas
- Department of Sleep Medicine, Walter Reed National Military Medical Center, Bethesda, Maryland
- Department of Psychiatry, Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Thomas J. Balkin
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Emily G. Lowery-Gionta
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Liana M. Matson
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
144
|
Wen Z, Fried J, Pace-Schott EF, Lazar SW, Milad MR. Revisiting sex differences in the acquisition and extinction of threat conditioning in humans. Learn Mem 2022; 29:274-282. [PMID: 36206388 PMCID: PMC9488021 DOI: 10.1101/lm.053521.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
Findings pertaining to sex differences in the acquisition and extinction of threat conditioning, a paradigm widely used to study emotional homeostasis, remain inconsistent, particularly in humans. This inconsistency is likely due to multiple factors, one of which is sample size. Here, we pooled functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) data from multiple studies in healthy humans to examine sex differences during threat conditioning, extinction learning, and extinction memory recall. We observed increased functional activation in males, relative to females, in multiple parietal and frontal (medial and lateral) cortical regions during acquisition of threat conditioning and extinction learning. Females mainly exhibited higher amygdala activation during extinction memory recall to the extinguished conditioned stimulus and also while responding to the unconditioned stimulus (presentation of the shock) during threat conditioning. Whole-brain functional connectivity analyses revealed that females showed increased connectivity across multiple networks including visual, ventral attention, and somatomotor networks during late extinction learning. At the psychophysiological level, a sex difference was only observed during shock delivery, with males exhibiting higher unconditioned responses relative to females. Our findings point to minimal to no sex differences in the expression of conditioned responses during acquisition and extinction of such responses. Functional MRI findings, however, show some distinct functional activations and connectivities between the sexes. These data suggest that males and females might use different neural mechanisms, mainly related to cognitive processing, to achieve comparable levels of acquired conditioned responses to threating cues.
Collapse
Affiliation(s)
- Zhenfu Wen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Jamie Fried
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Edward F Pace-Schott
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
145
|
Tanriverdi B, Gregory DF, Olino TM, Ely TD, Harnett NG, van Rooij SJH, Lebois LAM, Seligowski AV, Jovanovic T, Ressler KJ, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Kurz MC, McGrath ME, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Pearson C, Domeier RM, Rathlev NK, O'Neil BJ, Sanchez LD, Bruce SE, Miller MW, Pietrzak RH, Joormann J, Barch DM, Pizzagalli DA, Sheridan JF, Smoller JW, Harte SE, Elliott JM, McLean SA, Kessler RC, Koenen KC, Stevens JS, Murty VP. Hippocampal Threat Reactivity Interacts with Physiological Arousal to Predict PTSD Symptoms. J Neurosci 2022; 42:6593-6604. [PMID: 35879096 PMCID: PMC9410748 DOI: 10.1523/jneurosci.0911-21.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Hippo campal impairments are reliably associated with post-traumatic stress disorder (PTSD); however, little research has characterized how increased threat sensitivity may interact with arousal responses to alter hippocampal reactivity, and further how these interactions relate to the sequelae of trauma-related symptoms. In a sample of individuals recently exposed to trauma (N = 116, 76 female), we found that PTSD symptoms at 2 weeks were associated with decreased hippocampal responses to threat as assessed with fMRI. Further, the relationship between hippocampal threat sensitivity and PTSD symptomology only emerged in individuals who showed transient, high threat-related arousal, as assayed by an independently collected measure of fear potentiated startle. Collectively, our finding suggests that development of PTSD is associated with threat-related decreases in hippocampal function because of increases in fear-potentiated arousal.SIGNIFICANCE STATEMENT Alterations in hippocampal function linked to threat-related arousal are reliably associated with post-traumatic stress disorder (PTSD); however, how these alterations relate to the sequelae of trauma-related symptoms is unknown. Prior models based on nontrauma samples suggest that arousal may impact hippocampal neurophysiology leading to maladaptive behavior. Here we show that decreased hippocampal threat sensitivity interacts with fear-potentiated startle to predict PTSD symptoms. Specifically, individuals with high fear-potentiated startle and low, transient hippocampal threat sensitivity showed the greatest PTSD symptomology. These findings bridge literatures of threat-related arousal and hippocampal function to better understand PTSD risk.
Collapse
Affiliation(s)
- Büşra Tanriverdi
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19121
| | - David F Gregory
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19121
| | - Thomas M Olino
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19121
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Antonia V Seligowski
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan 48202
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Francesca L Beaudoin
- Department of Emergency Medicine & Department of Health Services, Policy, and Practice, Alpert Medical School of Brown University, Rhode Island Hospital, and Miriam Hospital, Providence, Rhode Island 02930
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, California 94143
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia 30332
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts 02478
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
- Institute for Technology in Psychiatry/Department of Psychiatry, McLean Hospital, Belmont, Massachusetts 02478
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida 32209
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida 32209
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, New Jersey 08103
| | - Brittany E Punches
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
- College of Nursing, University of Cincinnati, Cincinnati, Ohio 45221
| | - Michael C Kurz
- Department of Emergency Medicine, University of Alabama School of Medicine, Birmingham, Alabama 35294
- Department of Surgery, Division of Acute Care Surgery, University of Alabama School of Medicine, Birmingham, Alabama 35294
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Meghan E McGrath
- Department of Emergency Medicine, Boston Medical Center, Boston, Massachusetts 02118
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Elizabeth M Datner
- Department of Emergency Medicine, Einstein Healthcare Network, Philadelphia, Pennsylvania 19141
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48202
| | - Robert M Domeier
- Department of Emergency Medicine, Saint Joseph Mercy Hospital, Ypsilanti, Michigan 48197
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts 01107
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48202
| | - Leon D Sanchez
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
- Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, Missouri 63121
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, Massachusetts 02130
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Robert H Pietrzak
- National Center for PTSD, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, Connecticut 06516
- Department of Psychiatry, Yale School of Medicine, West Haven, Connecticut 06510
| | - Jutta Joormann
- Department of Psychology, Yale University, West Haven, Connecticut 06520
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Diego A Pizzagalli
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts 02478
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02115
| | - John F Sheridan
- Department of Biosciences, Ohio State University Wexner Medical Center, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, Ohio 43211
| | - Jordan W Smoller
- Department of Psychiatry, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - James M Elliott
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
- Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60208
| | - Samuel A McLean
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27559
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts 02115
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30329
| | - Vishnu P Murty
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19121
| |
Collapse
|
146
|
Tanaka M, Szabó Á, Spekker E, Polyák H, Tóth F, Vécsei L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022; 11:2607. [PMID: 36010683 PMCID: PMC9406499 DOI: 10.3390/cells11162607] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nearly half a century has passed since the discovery of cytoplasmic inheritance of human chloramphenicol resistance. The inheritance was then revealed to take place maternally by mitochondrial DNA (mtDNA). Later, a number of mutations in mtDNA were identified as a cause of severe inheritable metabolic diseases with neurological manifestation, and the impairment of mitochondrial functions has been probed in the pathogenesis of a wide range of illnesses including neurodegenerative diseases. Recently, a growing number of preclinical studies have revealed that animal behaviors are influenced by the impairment of mitochondrial functions and possibly by the loss of mitochondrial stress resilience. Indeed, as high as 54% of patients with one of the most common primary mitochondrial diseases, mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, present psychiatric symptoms including cognitive impairment, mood disorder, anxiety, and psychosis. Mitochondria are multifunctional organelles which produce cellular energy and play a major role in other cellular functions including homeostasis, cellular signaling, and gene expression, among others. Mitochondrial functions are observed to be compromised and to become less resilient under continuous stress. Meanwhile, stress and inflammation have been linked to the activation of the tryptophan (Trp)-kynurenine (KYN) metabolic system, which observably contributes to the development of pathological conditions including neurological and psychiatric disorders. This review discusses the functions of mitochondria and the Trp-KYN system, the interaction of the Trp-KYN system with mitochondria, and the current understanding of the involvement of mitochondria and the Trp-KYN system in preclinical and clinical studies of major neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Masaru Tanaka
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Eleonóra Spekker
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Helga Polyák
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - Fanni Tóth
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - László Vécsei
- ELKH-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Eötvös Loránd Research Network, University of Szeged (ELKH-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
147
|
Cannabidiol Prevents Spontaneous Fear Recovery after Extinction and Ameliorates Stress-Induced Extinction Resistance. Int J Mol Sci 2022; 23:ijms23169333. [PMID: 36012600 PMCID: PMC9409311 DOI: 10.3390/ijms23169333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
Cannabidiol, the main non-psychotropic constituent of cannabis, has potential as a treatment for anxiety-related disorders since it reduces learned fear expression and enhances fear extinction. The return of fear over time after successful extinction and stress-induced extinction resistance are potential barriers to the treatment of these disorders with extinction-based psychological therapy. In two experiments using rats subjected to auditory fear conditioning, we determined the effects of systemic cannabidiol treatment on (1) delayed extinction and later spontaneous fear recovery, and (2) extinction resistance caused by immediate extinction (the immediate extinction deficit (IED)). In Experiment 1, cannabidiol was given before delayed extinction occurring 24 h after conditioning, with extinction recall and spontaneous fear recovery tested drug-free 1 and 21 days after extinction, respectively. We found that cannabidiol had no effect on extinction recall but it prevented spontaneous fear recovery. In Experiment 2, the IED procedure was first validated, with immediate extinction occurring 30 min after conditioning. We confirmed that immediate extinction impaired extinction recall, compared to delayed extinction. Next, cannabidiol was given before immediate or no extinction, with extinction recall tested drug-free the next day. We found that cannabidiol rescued the IED, which did not involve effects on fear memory consolidation. In summary, cannabidiol prevented spontaneous fear recovery after delayed extinction and ameliorated extinction resistance caused by immediate extinction. Although the pharmacological mechanisms underlying these effects remain to be determined, our results add to evidence indicating that cannabidiol might prove useful as an adjunct for potentiating the psychological treatment of anxiety-related disorders.
Collapse
|
148
|
Neural activity in afferent projections to the infralimbic cortex is associated with individual differences in the recall of fear extinction. Sci Rep 2022; 12:13703. [PMID: 35953525 PMCID: PMC9372091 DOI: 10.1038/s41598-022-17895-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by an impaired ability to extinguish fear responses to trauma-associated cues. Studies in humans and non-human animals point to differences in the engagement of certain frontal cortical regions as key mediators determining whether or not fear extinction is successful, however the neural circuit interactions that dictate the differential involvement of these regions are not well understood. To better understand how individual differences in extinction recall are reflected in differences in neural circuit activity, we labeled projections to the infralimbic cortex (IL) in rats using a retrograde tracer and compared neural activity within, and outside, of IL-projecting neurons. We analyzed these data in groups separated on the basis of how well rats retained extinction memory. We found that within IL-projecting cells, neurons in the posterior paraventricular thalamus showed heightened activity in rats that showed good extinction recall. Outside of the IL-projecting cells, increased Fos activity was observed in good extinction rats in select regions of the claustrum and ventral hippocampus. Our results indicate that differences in extinction recall are associated with a specific pattern of neural activity both within and outside of projections to the IL.
Collapse
|
149
|
Katrinli S, Oliveira NCS, Felger JC, Michopoulos V, Smith AK. The role of the immune system in posttraumatic stress disorder. Transl Psychiatry 2022; 12:313. [PMID: 35927237 PMCID: PMC9352784 DOI: 10.1038/s41398-022-02094-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) develops in a subset of individuals upon exposure to traumatic stress. In addition to well-defined psychological and behavioral symptoms, some individuals with PTSD also exhibit elevated concentrations of inflammatory markers, including C-reactive protein, interleukin-6, and tumor necrosis factor-α. Moreover, PTSD is often co-morbid with immune-related conditions, such as cardiometabolic and autoimmune disorders. Numerous factors, including lifetime trauma burden, biological sex, genetic background, metabolic conditions, and gut microbiota, may contribute to inflammation in PTSD. Importantly, inflammation can influence neural circuits and neurotransmitter signaling in regions of the brain relevant to fear, anxiety, and emotion regulation. Given the link between PTSD and the immune system, current studies are underway to evaluate the efficacy of anti-inflammatory treatments in those with PTSD. Understanding the complex interactions between PTSD and the immune system is essential for future discovery of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA.
| | - Nayara C. S. Oliveira
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, Rio de Janeiro, RJ Brazil ,grid.418068.30000 0001 0723 0931Department of Violence and Health Studies Jorge Careli, National School of Public Health, Fiocruz, Rio de Janeiro, RJ Brazil
| | - Jennifer C. Felger
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502The Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Vasiliki Michopoulos
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| | - Alicia K. Smith
- grid.189967.80000 0001 0941 6502Department of Gynecology and Obstetrics, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA USA
| |
Collapse
|
150
|
Zhang Z, Meng P, Zhang H, Jia Y, Wen Y, Zhang J, Chen Y, Li C, Pan C, Cheng S, Yang X, Yao Y, Liu L, Zhang F. Brain Proteome-Wide Association Study Identifies Candidate Genes that Regulate Protein Abundance Associated with Post-Traumatic Stress Disorder. Genes (Basel) 2022; 13:genes13081341. [PMID: 35893077 PMCID: PMC9332745 DOI: 10.3390/genes13081341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Although previous genome-wide association studies (GWASs) on post-traumatic stress disorder (PTSD) have identified multiple risk loci, how these loci confer risk of PTSD remains unclear. Through the FUSION pipeline, we integrated two human brain proteome reference datasets (ROS/MAP and Banner) with the PTSD GWAS dataset, respectively, to conduct a proteome-wide association study (PWAS) analysis. Then two transcriptome reference weights (Rnaseq and Splicing) were applied to a transcriptome-wide association study (TWAS) analysis. Finally, the PWAS and TWAS results were investigated through brain imaging analysis. In the PWAS analysis, 8 and 13 candidate genes were identified in the ROS/MAP and Banner reference weight groups, respectively. Examples included ADK (pPWAS-ROS/MAP = 3.00 × 10−5) and C3orf18 (pPWAS-Banner = 7.07 × 10−31). Moreover, the TWAS also detected multiple candidate genes associated with PTSD in two different reference weight groups, including RIMS2 (pTWAS-Splicing = 3.84 × 10−2), CHMP1A (pTWAS-Rnaseq = 5.09 × 10−4), and SIRT5 (pTWAS-Splicing = 4.81 × 10−3). Further comparison of the PWAS and TWAS results in different populations detected the overlapping genes: MADD (pPWAS-Banner = 4.90 × 10−2, pTWAS-Splicing = 1.23 × 10−2) in the total population and GLO1(pPWAS-Banner = 4.89 × 10−3, pTWAS-Rnaseq = 1.41 × 10−3) in females. Brain imaging analysis revealed several different brain imaging phenotypes associated with MADD and GLO1 genes. Our study identified multiple candidate genes associated with PTSD in the proteome and transcriptome levels, which may provide new clues to the pathogenesis of PTSD.
Collapse
|