101
|
Molecular and structural aspects of gasdermin family pores and insights into gasdermin-elicited programmed cell death. Biochem Soc Trans 2021; 49:2697-2710. [PMID: 34812891 PMCID: PMC8786298 DOI: 10.1042/bst20210672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
Pyroptosis is a highly inflammatory and lytic type of programmed cell death (PCD) commenced by inflammasomes, which sense perturbations in the cytosolic environment. Recently, several ground-breaking studies have linked a family of pore-forming proteins known as gasdermins (GSDMs) to pyroptosis. The human genome encodes six GSDM proteins which have a characteristic feature of forming pores in the plasma membrane resulting in the disruption of cellular homeostasis and subsequent induction of cell death. GSDMs have an N-terminal cytotoxic domain and an auto-inhibitory C-terminal domain linked together through a flexible hinge region whose proteolytic cleavage by various enzymes releases the N-terminal fragment that can insert itself into the inner leaflet of the plasma membrane by binding to acidic lipids leading to pore formation. Emerging studies have disclosed the involvement of GSDMs in various modalities of PCD highlighting their role in diverse cellular and pathological processes. Recently, the cryo-EM structures of the GSDMA3 and GSDMD pores were resolved which have provided valuable insights into the pore formation process of GSDMs. Here, we discuss the current knowledge regarding the role of GSDMs in PCD, structural and molecular aspects of autoinhibition, and pore formation mechanism followed by a summary of functional consequences of gasdermin-induced membrane permeabilization.
Collapse
|
102
|
Cicalău GIP, Babes PA, Calniceanu H, Popa A, Ciavoi G, Iova GM, Ganea M, Scrobotă I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021; 26:6899. [PMID: 34833990 PMCID: PMC8623889 DOI: 10.3390/molecules26226899] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease and diabetes mellitus are two pathologies that are extremely widespread worldwide and share the feature of chronic inflammation. Carvacrol is a phenolic monoterpenoid, produced by a variety of herbs, the most well-known of which is Origanum vulgare. Magnolol is a traditional polyphenolic compound isolated from the stem bark of Magnolia officinalis, mainly used in Chinese medicine. The purpose of this paper is to review the therapeutic properties of these bioactive compounds, in the treatment of periodontitis and diabetes. Based on our search strategy we conducted a literature search in the PubMed and Google Scholar databases to identify studies. A total of one hundred eighty-four papers were included in the current review. The results show that carvacrol and magnolol have anti-inflammatory, antioxidant, antimicrobial, anti-osteoclastic, and anti-diabetic properties that benefit both pathologies. Knowledge of the multiple activities of carvacrol and magnolol can assist with the development of new treatment strategies, and the design of clinical animal and human trials will maximize the potential benefits of these extracts in subjects suffering from periodontitis or diabetes.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Petru Aurel Babes
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
| | - Horia Calniceanu
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Periodontal and Periimplant Diseases Research Center “Prof. Dr. Anton Sculean”, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Popa
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Gilda Mihaela Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania;
| | - Ioana Scrobotă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| |
Collapse
|
103
|
Shao Q, Sun C, Zhang Q, Liu J, Xia Y, Jin B, Qian X. Macrophages regulates the transition of pericyte to peritoneal fibrosis through the GSDMD/IL-1β axis. Int Immunopharmacol 2021; 101:108323. [PMID: 34749292 DOI: 10.1016/j.intimp.2021.108323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND End stage renal disease (ESRD) has caused public health problem with high prevalence worldwide. Peritoneum from peritoneal dialysis patients with ESRD can induce pathological changes of the peritoneum, including fibrosis. The trans-differentiation of pericytes has been found to be closely associated with inflammatory diseases, such as organ fibrosis. However, the function of macrophages in regulating the transition of pericyte to peritoneal fibrosis is unclear. METHODS Histological examination was conducted using Hematoxylin and eosin (HE) staining and Masson's trichrome staining. The protein levels were determined via western blot. Enzyme-linked immunosorbent assay (ELISA) was used to examine IL-1β concentrations. Gasdermin D (GSDMD) was knocked out in mice by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9 (CRISPR-Cas9). RESULTS Mice receiving dextrose peritoneal dialysate displayed mesothelial cell monolayer loss and thickness of submesothelial compact zone increase. Moreover, dextrose peritoneal dialysate treatment up-regulated GSDMD expression. GSDMD knockdown inhibited IL-1β production in macrophages. Further, pericytes were treated with cultural supernatant from macrophages. We found that GSDMD knockdown suppressed fibrosis and vascular endothelial growth factor (VEGF)/phosphoinositide 3-kinase (PI3K) pathway in pericytes. In addition, GSDMD were knocked out in mice using CRISPR/Cas9. The histological examinations revealed that GSDMD-/- alleviated the damage of peritoneal tissue and thickness of submesothelial compact zone. GSDMD-/- attenuated interleukin-1beta (IL-1β) level and peritoneal fibrosis induced by dextrose peritoneal dialysate treatment in pericytes in vivo. CONCLUSION These results demonstrated that macrophages can regulate the transition of pericyte to peritoneal fibrosis via the GSDMD/IL-1β axis, which provides a new therapeutic target.
Collapse
Affiliation(s)
- Qiuyuan Shao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Cheng Sun
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Jin Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Yangyang Xia
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre, Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu Province 210008, China.
| |
Collapse
|
104
|
Sollberger G. Approaching Neutrophil Pyroptosis. J Mol Biol 2021; 434:167335. [PMID: 34757055 DOI: 10.1016/j.jmb.2021.167335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/21/2023]
Abstract
All cells must die at some point, and the dogma is that they do it either silently via apoptosis or via pro-inflammatory, lytic forms of death. Amongst these lytic cell death pathways, pyroptosis is one of the best characterized. Pyroptosis depends on inflammatory caspases which activate members of the gasdermin family of proteins, and it is associated with the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Pyroptosis is an essential component of innate immunity, it initiates and amplifies inflammation and it removes the replication niche for intracellular pathogens. Most of the literature on pyroptosis focuses on monocytes and macrophages. However, the most abundant phagocytes in humans are neutrophils. This review addresses whether neutrophils undergo pyroptosis and the underlying mechanisms. Furthermore, I discuss how and why neutrophils might be able to resist pyroptosis.
Collapse
Affiliation(s)
- Gabriel Sollberger
- University of Dundee, School of Life Sciences, Division of Cell Signalling and Immunology, Dow Street, DD1 5EH Dundee, UK; Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
105
|
Zhang P, Liu Y, Hu L, Huang K, Hong M, Wang Y, Fan X, Ulevitch RJ, Han J. NLRC4 inflammasome-dependent cell death occurs by a complementary series of three death pathways and determines lethality in mice. SCIENCE ADVANCES 2021; 7:eabi9471. [PMID: 34678072 PMCID: PMC8535822 DOI: 10.1126/sciadv.abi9471] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/31/2021] [Indexed: 05/09/2023]
Abstract
Inflammasome is an innate immune defense mechanism, but its overactivation can lead to host death. Here, we show that cell death dictates mouse death caused by NLRC4 inflammasome overactivation. To execute NLRC4-dependent cell death, three death pathways complement each other in a specific order: Pyroptosis pathway requiring caspase-1 and GSDMD is the default path; impairment of it initiates ASC-mediated caspase-8–dependent apoptosis; when these two pathways are blocked, caspase-1 triggers intrinsic apoptotic pathway. Blocking one or two of these death pathways inhibits induction of various cytokines and lipid mediators, but mice still succumb, and only genetic deletions that block all death paths prevent NLRC4-mediated cell death, tissue damage, and mice death. In addition, infection of nonpropagative Salmonella-caused mice death is attenuated by blocking these death pathways. Thus, to reduce the lethality of infection-related diseases, preventing cell death might be necessary when propagation of infected pathogen was controlled by other means.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yifei Liu
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lichen Hu
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kai Huang
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mao Hong
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuze Wang
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xinrui Fan
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Richard J. Ulevitch
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Research Unit of Cellular Stress of CAMS, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
106
|
Babamale AO, Chen ST. Nod-like Receptors: Critical Intracellular Sensors for Host Protection and Cell Death in Microbial and Parasitic Infections. Int J Mol Sci 2021; 22:11398. [PMID: 34768828 PMCID: PMC8584118 DOI: 10.3390/ijms222111398] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death is an essential immunological apparatus of host defense, but dysregulation of mutually inclusive cell deaths poses severe threats during microbial and parasitic infections leading to deleterious consequences in the pathological progression of infectious diseases. Nucleotide-binding oligomerization domain (NOD)-Leucine-rich repeats (LRR)-containing receptors (NLRs), also called nucleotide-binding oligomerization (NOD)-like receptors (NLRs), are major cytosolic pattern recognition receptors (PRRs), their involvement in the orchestration of innate immunity and host defense against bacteria, viruses, fungi and parasites, often results in the cleavage of gasdermin and the release of IL-1β and IL-18, should be tightly regulated. NLRs are functionally diverse and tissue-specific PRRs expressed by both immune and non-immune cells. Beyond the inflammasome activation, NLRs are also involved in NF-κB and MAPK activation signaling, the regulation of type I IFN (IFN-I) production and the inflammatory cell death during microbial infections. Recent advancements of NLRs biology revealed its possible interplay with pyroptotic cell death and inflammatory mediators, such as caspase 1, caspase 11, IFN-I and GSDMD. This review provides the most updated information that caspase 8 skews the NLRP3 inflammasome activation in PANoptosis during pathogen infection. We also update multidimensional roles of NLRP12 in regulating innate immunity in a content-dependent manner: novel interference of NLRP12 on TLRs and NOD derived-signaling cascade, and the recently unveiled regulatory property of NLRP12 in production of type I IFN. Future prospects of exploring NLRs in controlling cell death during parasitic and microbial infection were highlighted.
Collapse
Affiliation(s)
- Abdulkareem Olarewaju Babamale
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming Chiao Tung University and Academia Sinica, Taipei 11266, Taiwan;
- Parasitology Unit, Faculty of Life Sciences, University of Ilorin, Ilorin 240003, Nigeria
| | - Szu-Ting Chen
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming Chiao Tung University and Academia Sinica, Taipei 11266, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11266, Taiwan
- Cancer Progression Research Center, National Yang-Ming Chiao Tung University, Taipei 11266, Taiwan
| |
Collapse
|
107
|
Son S, Yoon SH, Chae BJ, Hwang I, Shim DW, Choe YH, Hyun YM, Yu JW. Neutrophils Facilitate Prolonged Inflammasome Response in the DAMP-Rich Inflammatory Milieu. Front Immunol 2021; 12:746032. [PMID: 34659244 PMCID: PMC8511454 DOI: 10.3389/fimmu.2021.746032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant inflammasome activation contributes to various chronic inflammatory diseases; however, pyroptosis of inflammasome-active cells promptly terminates local inflammasome response. Molecular mechanisms underlying prolonged inflammasome signaling thus require further elucidation. Here, we report that neutrophil-specific resistance to pyroptosis and NLRP3 desensitization can facilitate sustained inflammasome response and interleukin-1β secretion. Unlike macrophages, inflammasome-activated neutrophils did not undergo pyroptosis, indicated by using in vitro cell-based assay and in vivo mouse model. Intriguingly, danger-associated molecular patterns (DAMP)-rich milieu in the inflammatory region significantly abrogated NLRP3-activating potential of macrophages, but not of neutrophils. This macrophage-specific NLRP3 desensitization was associated with DAMP-induced mitochondrial depolarization that was not observed in neutrophils due to a lack of SARM1 expression. Indeed, valinomycin-induced compulsory mitochondrial depolarization in neutrophils restored inflammasome-dependent cell death and ATP-induced NLRP3 desensitization in neutrophils. Alongside prolonged inflammasome-activating potential, neutrophils predominantly secreted interleukin-1β rather than other proinflammatory cytokines upon NLRP3 stimulation. Furthermore, inflammasome-activated neutrophils did not trigger efferocytosis-mediated M2 macrophage polarization essential for the initiation of inflammation resolution. Taken together, our results indicate that neutrophils can prolong inflammasome response via mitochondria-dependent resistance to NLRP3 desensitization and function as major interleukin-1β-secreting cells in DAMP-rich inflammatory region.
Collapse
Affiliation(s)
- Seunghwan Son
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Hyun Yoon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Byeong Jun Chae
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Do-Wan Shim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Ho Choe
- Department of Anatomy, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
108
|
Li H, Li Y, Song C, Hu Y, Dai M, Liu B, Pan P. Neutrophil Extracellular Traps Augmented Alveolar Macrophage Pyroptosis via AIM2 Inflammasome Activation in LPS-Induced ALI/ARDS. J Inflamm Res 2021; 14:4839-4858. [PMID: 34588792 PMCID: PMC8473117 DOI: 10.2147/jir.s321513] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Uncontrollable inflammation is a critical feature of gram-negative bacterial pneumonia-induced acute respiratory distress syndrome (ARDS). Both neutrophils and alveolar macrophages participate in inflammation, but how their interaction augments inflammation and triggers ARDS is unclear. The authors hypothesize that neutrophil extracellular traps (NETs), which are formed during neutrophil NETosis, partly cause alveolar macrophage pyroptosis and worsen the severity of ARDS. Methods The authors first analysed whether NETs and caspase-1 are involved in clinical cases of ARDS. Then, the authors employed a lipopolysaccharide (LPS)-induced ARDS model to investigate whether targeting NETs or alveolar macrophages is protective. The AIM2 sensor can bind to DNA to promote AIM2 inflammasome activation, so the authors studied whether degradation of NET DNA or silencing of the AIM2 gene could protect alveolar macrophages from pyroptosis in vitro. Results Analysis of aspirate supernatants from ARDS patients showed that NET and caspase-1 levels were correlated with the severity of ARDS and that the levels of NETs and caspase-1 were higher in nonsurvivors than in survivors. In vivo, the NET level and proportion of pyroptotic alveolar macrophages in bronchoalveolar lavage fluid (BALF) were obviously higher in LPS-challenged mice than in control mice 24 h after injury. Administration of DNase I (a NET DNA-degrading agent) and BB-Cl-amidine (a NET formation inhibitor) alleviated alveolar macrophage pyroptosis, and Ac-YVAD-cmk (a pyroptosis inhibitor) attenuated NET levels in BALF and neutrophil infiltration in alveoli. All treatments markedly attenuated the severity of ARDS. Notably, LPS causes NETs to induce alveolar macrophage pyroptosis, and degradation of NET DNA or silencing of the AIM2 gene protected against alveolar macrophage pyroptosis. Conclusion These findings shed light on the proinflammatory role of NETs in mediating the neutrophil-alveolar macrophage interaction, which influences the progression of ARDS.
Collapse
Affiliation(s)
- Haitao Li
- First Department of Thoracic Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Yongbin Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Minhui Dai
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Ben Liu
- Department of Emergency, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Pinhua Pan
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| |
Collapse
|
109
|
Bjanes E, Sillas RG, Matsuda R, Demarco B, Fettrelet T, DeLaney AA, Kornfeld OS, Lee BL, Rodríguez López EM, Grubaugh D, Wynosky-Dolfi MA, Philip NH, Krespan E, Tovar D, Joannas L, Beiting DP, Henao-Mejia J, Schaefer BC, Chen KW, Broz P, Brodsky IE. Genetic targeting of Card19 is linked to disrupted NINJ1 expression, impaired cell lysis, and increased susceptibility to Yersinia infection. PLoS Pathog 2021; 17:e1009967. [PMID: 34648590 PMCID: PMC8547626 DOI: 10.1371/journal.ppat.1009967] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/26/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.
Collapse
Affiliation(s)
- Elisabet Bjanes
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Reyna Garcia Sillas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rina Matsuda
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Timothée Fettrelet
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Alexandra A. DeLaney
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Opher S. Kornfeld
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Bettina L. Lee
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California, United States of America
| | - Eric M. Rodríguez López
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Meghan A. Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Naomi H. Philip
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elise Krespan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Dorothy Tovar
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonel Joannas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- CRISPR/Cas9 Mouse Targeting Core, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Host Microbial Interactions, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jorge Henao-Mejia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Kaiwen W. Chen
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Igor E. Brodsky
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- Immunology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
110
|
Rühl S, Broz P. Regulation of Lytic and Non-Lytic Functions of Gasdermin Pores. J Mol Biol 2021; 434:167246. [PMID: 34537232 DOI: 10.1016/j.jmb.2021.167246] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
Pyroptosis is a necrotic form of cell death that was initially found to be induced upon activation of inflammatory caspases by inflammasome complexes. Mechanistically, pyroptosis induction requires cleavage of the caspase substrate gasdermin D (GSDMD), and the release of the GSDMD N-terminal fragment, which targets the plasma membrane to form large β-barrel pores. GSDMD shares this pore-forming ability with other gasdermin family members, which induce pyroptosis during infection or upon treatment with chemotherapy drugs. While induction of cell death has been assumed to be the main function of the gasdermin pores, increasing evidence suggests that these pores have non-lytic functions, such as in releasing cytokines or alarmins and in regulating intracellular signaling via ionic fluxes. Here we discuss how gasdermin pore formation is regulated to induce membrane permeabilization or lysis, how gasdermin pores achieve specificity for cargo-release and how cells repair gasdermin-induced damage to the plasma membrane.
Collapse
Affiliation(s)
- Sebastian Rühl
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
111
|
Evavold CL, Hafner-Bratkovič I, Devant P, D'Andrea JM, Ngwa EM, Boršić E, Doench JG, LaFleur MW, Sharpe AH, Thiagarajah JR, Kagan JC. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell 2021; 184:4495-4511.e19. [PMID: 34289345 PMCID: PMC8380731 DOI: 10.1016/j.cell.2021.06.028] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).
Collapse
Affiliation(s)
- Charles L Evavold
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Iva Hafner-Bratkovič
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, 1000 Ljubljana, Slovenia
| | - Pascal Devant
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jasmin M D'Andrea
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elsy M Ngwa
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - John G Doench
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Martin W LaFleur
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
112
|
Simons P, Guo Y, Bondu V, Tigert SL, Harkins M, Goodfellow S, Tompkins C, Chabot-Richards D, Yang XO, Bosc LG, Bradfute S, Lawrence DA, Buranda T. Longitudinal Assessment of Cytokine Expression and Plasminogen Activation in Hantavirus Cardiopulmonary Syndrome Reveals Immune Regulatory Dysfunction in End-Stage Disease. Viruses 2021; 13:1597. [PMID: 34452463 PMCID: PMC8402847 DOI: 10.3390/v13081597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic New World orthohantaviruses cause hantavirus cardiopulmonary syndrome (HCPS), a severe immunopathogenic disease in humans manifested by pulmonary edema and respiratory distress, with case fatality rates approaching 40%. High levels of inflammatory mediators are present in the lungs and systemic circulation of HCPS patients. Previous studies have provided insights into the pathophysiology of HCPS. However, the longitudinal correlations of innate and adaptive immune responses and disease outcomes remain unresolved. This study analyzed serial immune responses in 13 HCPS cases due to Sin Nombre orthohantavirus (SNV), with 11 severe cases requiring extracorporeal membrane oxygenation (ECMO) treatment and two mild cases. We measured viral load, levels of various cytokines, urokinase plasminogen activator (uPA), and plasminogen activator inhibitor-1 (PAI-1). We found significantly elevated levels of proinflammatory cytokines and PAI-1 in five end-stage cases. There was no difference between the expression of active uPA in survivors' and decedents' cases. However, total uPA in decedents' cases was significantly higher compared to survivors'. In some end-stage cases, uPA was refractory to PAI-1 inhibition as measured by zymography, where uPA and PAI-1 were strongly correlated to lymphocyte counts and IFN-γ. We also found bacterial co-infection influencing the etiology and outcome of immune response in two cases. Unsupervised Principal Component Analysis and hierarchical cluster analyses resolved separate waves of correlated immune mediators expressed in one case patient due to a sequential co-infection of bacteria and SNV. Overall, a robust proinflammatory immune response, characterized by an imbalance in T helper 17 (Th17) and regulatory T-cells (Treg) subsets, was correlated with dysregulated inflammation and mortality. Our sample size is small; however, the core differences correlated to survivors and end-stage HCPS are instructive.
Collapse
Affiliation(s)
- Peter Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Yan Guo
- Bioinformatics Shared Resource Center, Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Susan L. Tigert
- Clinical and Translational Science Center (CTSC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Michelle Harkins
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Samuel Goodfellow
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Cana Tompkins
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Devon Chabot-Richards
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| | - Xuexian O. Yang
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Laura Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Steven Bradfute
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (M.H.); (S.G.); (S.B.)
| | - Daniel A. Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (P.S.); (V.B.); (C.T.); (D.C.-R.)
| |
Collapse
|
113
|
Leishmaniasis: the act of transmission. Trends Parasitol 2021; 37:976-987. [PMID: 34389215 DOI: 10.1016/j.pt.2021.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
The contribution of vector transmission to pathogen establishment is largely underrated. For Leishmania, transmission by sand flies is critical to early survival involving an irreproducible myriad of parasite, vector, and host molecules acting in concert to promote infection at the bite site. Here, we review recent breakthroughs that provide consequential insights into how vector transmission of Leishmania unfolds. We focus on recent work pertaining to the effect of gut microbiota, sand fly immunity, and changes in metacyclogenesis upon multiple blood meals, on Leishmania development and transmission. We also explore how sand fly saliva, egested parasite molecules and vector gut microbiota, and bleeding have been implicated in modulating the early innate host response to Leishmania, affecting the phenotype of neutrophils and monocytes arriving at the bite site.
Collapse
|
114
|
Pandey A, Shen C, Feng S, Man SM. Cell biology of inflammasome activation. Trends Cell Biol 2021; 31:924-939. [PMID: 34284921 DOI: 10.1016/j.tcb.2021.06.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022]
Abstract
Organelles are critical structures in mediating the assembly and activation of inflammasomes in mammalian cells, resulting in inflammation and cell death. Assembly of inflammasomes can occur at the mitochondria, endoplasmic reticulum, nucleus, trans-Golgi network, or pathogen surface, facilitated by the overarching architecture of the cytoskeleton. NLRP3 and Pyrin inflammasome sensors may form smaller speckles and converge on a single larger speck at the microtubule-organizing center (MTOC). This signaling hub activates multiple mammalian inflammatory and apoptotic caspases, cytokine substrates, the pore-forming protein gasdermin D, and the plasma membrane rupture protein ninjurin-1 (NINJ1), allowing pyroptosis, cellular disintegration, and inflammation to ensue. In this review, we highlight the role of mammalian cell types and organellar architectures in executing inflammasome responses.
Collapse
Affiliation(s)
- Abhimanu Pandey
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Cheng Shen
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
115
|
Haschka D, Tymoszuk P, Petzer V, Hilbe R, Heeke S, Dichtl S, Skvortsov S, Demetz E, Berger S, Seifert M, Mitterstiller AM, Moser P, Bumann D, Nairz M, Theurl I, Weiss G. Ferritin H deficiency deteriorates cellular iron handling and worsens Salmonella typhimurium infection by triggering hyperinflammation. JCI Insight 2021; 6:e141760. [PMID: 34236052 PMCID: PMC8410025 DOI: 10.1172/jci.insight.141760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential nutrient for mammals as well as for pathogens. Inflammation-driven changes in systemic and cellular iron homeostasis are central for host-mediated antimicrobial strategies. Here, we studied the role of the iron storage protein ferritin H (FTH) for the control of infections with the intracellular pathogen Salmonella enterica serovar Typhimurium by macrophages. Mice lacking FTH in the myeloid lineage (LysM-Cre+/+Fthfl/fl mice) displayed impaired iron storage capacities in the tissue leukocyte compartment, increased levels of labile iron in macrophages, and an accelerated macrophage-mediated iron turnover. While under steady-state conditions, LysM-Cre+/+Fth+/+ and LysM-Cre+/+Fthfl/fl animals showed comparable susceptibility to Salmonella infection, i.v. iron supplementation drastically shortened survival of LysM-Cre+/+Fthfl/fl mice. Mechanistically, these animals displayed increased bacterial burden, which contributed to uncontrolled triggering of NF-κB and inflammasome signaling and development of cytokine storm and death. Importantly, pharmacologic inhibition of the inflammasome and IL-1β pathways reduced cytokine levels and mortality and partly restored infection control in iron-treated ferritin-deficient mice. These findings uncover incompletely characterized roles of ferritin and cellular iron turnover in myeloid cells in controlling bacterial spread and for modulating NF-κB and inflammasome-mediated cytokine activation, which may be of vital importance in iron-overloaded individuals suffering from severe infections and sepsis.
Collapse
Affiliation(s)
- David Haschka
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Heeke
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Laboratory for Experimental and Translational Research on Radiation Oncology, Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Berger
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
116
|
RIPK1 activates distinct gasdermins in macrophages and neutrophils upon pathogen blockade of innate immune signaling. Proc Natl Acad Sci U S A 2021; 118:2101189118. [PMID: 34260403 DOI: 10.1073/pnas.2101189118] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Injection of effector proteins to block host innate immune signaling is a common strategy used by many pathogenic organisms to establish an infection. For example, pathogenic Yersinia species inject the acetyltransferase YopJ into target cells to inhibit NF-κB and MAPK signaling. To counteract this, detection of YopJ activity in myeloid cells promotes the assembly of a RIPK1-caspase-8 death-inducing platform that confers antibacterial defense. While recent studies revealed that caspase-8 cleaves the pore-forming protein gasdermin D to trigger pyroptosis in macrophages, whether RIPK1 activates additional substrates downstream of caspase-8 to promote host defense is unclear. Here, we report that the related gasdermin family member gasdermin E (GSDME) is activated upon detection of YopJ activity in a RIPK1 kinase-dependent manner. Specifically, GSDME promotes neutrophil pyroptosis and IL-1β release, which is critical for anti-Yersinia defense. During in vivo infection, IL-1β neutralization increases bacterial burden in wild-type but not Gsdme-deficient mice. Thus, our study establishes GSDME as an important mediator that counteracts pathogen blockade of innate immune signaling.
Collapse
|
117
|
Wen J, Xuan B, Liu Y, Wang L, He L, Meng X, Zhou T, Wang Y. Updating the NLRC4 Inflammasome: from Bacterial Infections to Autoimmunity and Cancer. Front Immunol 2021; 12:702527. [PMID: 34276697 PMCID: PMC8283967 DOI: 10.3389/fimmu.2021.702527] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Inflammasomes comprise a family of cytosolic multi-protein complexes that modulate the activation of cysteine-aspartate-specific protease 1 (caspase-1) and promote the maturation and secretion of interleukin (IL)-1β and IL-18, leading to an inflammatory response. Different types of inflammasomes are defined by their sensor protein which recognizes pathogenic ligands and then directs inflammasome assembly. Although the specific molecular mechanisms underlying the activation of most inflammasomes are still unclear, NLRC4 inflammasomes have emerged as multifaceted agents of the innate immune response, playing important roles in immune defense against a variety of pathogens. Other studies have also expanded the scope of NLRC4 inflammasomes to include a range of inherited human autoimmune diseases as well as proposed roles in cancer. In this review article, we provide an updated overview of NLRC4 inflammasomes, describing their composition, activation mechanisms and roles in both microbial infections and other disease conditions.
Collapse
Affiliation(s)
- Jiexia Wen
- Department of Central Laboratory, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Bin Xuan
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Yang Liu
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Liwei Wang
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Li He
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Xiangcai Meng
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Tao Zhou
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Yimin Wang
- Department of Central Laboratory, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China.,Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| |
Collapse
|
118
|
Münzer P, Negro R, Fukui S, di Meglio L, Aymonnier K, Chu L, Cherpokova D, Gutch S, Sorvillo N, Shi L, Magupalli VG, Weber ANR, Scharf RE, Waterman CM, Wu H, Wagner DD. NLRP3 Inflammasome Assembly in Neutrophils Is Supported by PAD4 and Promotes NETosis Under Sterile Conditions. Front Immunol 2021; 12:683803. [PMID: 34122445 PMCID: PMC8195330 DOI: 10.3389/fimmu.2021.683803] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophil extracellular trap formation (NETosis) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome assembly are associated with a similar spectrum of human disorders. While NETosis is known to be regulated by peptidylarginine deiminase 4 (PAD4), the role of the NLRP3 inflammasome in NETosis was not addressed. Here, we establish that under sterile conditions the cannonical NLRP3 inflammasome participates in NETosis. We show apoptosis-associated speck-like protein containing a CARD (ASC) speck assembly and caspase-1 cleavage in stimulated mouse neutrophils without LPS priming. PAD4 was needed for optimal NLRP3 inflammasome assembly by regulating NLRP3 and ASC protein levels post-transcriptionally. Genetic ablation of NLRP3 signaling resulted in impaired NET formation, because NLRP3 supported both nuclear envelope and plasma membrane rupture. Pharmacological inhibition of NLRP3 in either mouse or human neutrophils also diminished NETosis. Finally, NLRP3 deficiency resulted in a lower density of NETs in thrombi produced by a stenosis-induced mouse model of deep vein thrombosis. Altogether, our results indicate a PAD4-dependent formation of the NLRP3 inflammasome in neutrophils and implicate NLRP3 in NETosis under noninfectious conditions in vitro and in vivo.
Collapse
Affiliation(s)
- Patrick Münzer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Roberto Negro
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Lucas di Meglio
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Laboratory of Vascular Translational Science, U1148 INSERM University of Paris, Paris, France
| | - Karen Aymonnier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Long Chu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sarah Gutch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Nicoletta Sorvillo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Lai Shi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Venkat Giri Magupalli
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Rüdiger E Scharf
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Division of Experimental and Clinical Hemostasis, Hemotherapy, and Transfusion Medicine, and Hemophilia Comprehensive Care Center, Institute of Transplantation Diagnostics and Cell Therapy, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Clare M Waterman
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, United States
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
119
|
Zhivaki D, Kagan JC. NLRP3 inflammasomes that induce antitumor immunity. Trends Immunol 2021; 42:575-589. [PMID: 34034975 DOI: 10.1016/j.it.2021.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/30/2022]
Abstract
Inflammasomes have emerged as context-dependent regulators of inflammation and protective immunity in vertebrates. Depending on the cell type and stimulus, inflammasome activities lead to interleukin (IL)-1 release from living (hyperactive) or dead (pyroptotic) cells. Herein, we review the mechanisms by which inflammasomes can impact CD8+ T cell-mediated antitumor immunity. We describe recent work demonstrating the differential impact of pyroptosis in cancer cells and dendritic cells (DCs) on antitumor immunity. We further highlight the surprising ability of inflammasomes within hyperactive DCs to facilitate the use of tumor lysates as immunogens, promoting CD8+ T cell-mediated antitumor responses. These context-dependent roles of inflammasomes in living and dead cells offer much opportunity for future research and should inform discussions of next-generation immunotherapy development.
Collapse
Affiliation(s)
- Dania Zhivaki
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
120
|
Dhital S, Deo P, Stuart I, Naderer T. Bacterial outer membrane vesicles and host cell death signaling. Trends Microbiol 2021; 29:1106-1116. [PMID: 34001418 DOI: 10.1016/j.tim.2021.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
The programmed cell death pathways of pyroptosis and apoptosis protect mammals from infections. The activation of host cell death signaling depends on cell surface and cytosolic receptors that bind bacterial molecules or sense their activity. The formation of cytosolic protein complexes, such as the inflammasome and apoptosome, activates caspases, pore-forming proteins, and inflammatory cytokines. These pathways respond to bacteria and their released membrane vesicles. Outer membrane vesicles (OMVs) that emerge from the outer membrane of Gram-negative bacteria deliver a range of bacterial molecules, including lipids, proteins, polysaccharides and nucleic acids to host cells. Recent findings describe how OMV-associated molecules activate pyroptosis, apoptosis, and other inflammatory pathways. We discuss here how OMV-associated molecules are sensed by the immune system and how this contributes to infections and inflammatory diseases.
Collapse
Affiliation(s)
- Subhash Dhital
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Pankaj Deo
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Isabella Stuart
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Thomas Naderer
- Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia.
| |
Collapse
|
121
|
Vijayaraj SL, Feltham R, Rashidi M, Frank D, Liu Z, Simpson DS, Ebert G, Vince A, Herold MJ, Kueh A, Pearson JS, Dagley LF, Murphy JM, Webb AI, Lawlor KE, Vince JE. The ubiquitylation of IL-1β limits its cleavage by caspase-1 and targets it for proteasomal degradation. Nat Commun 2021; 12:2713. [PMID: 33976225 PMCID: PMC8113568 DOI: 10.1038/s41467-021-22979-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1β (IL-1β) is activated by inflammasome-associated caspase-1 in rare autoinflammatory conditions and in a variety of other inflammatory diseases. Therefore, IL-1β activity must be fine-tuned to enable anti-microbial responses whilst limiting collateral damage. Here, we show that precursor IL-1β is rapidly turned over by the proteasome and this correlates with its decoration by K11-linked, K63-linked and K48-linked ubiquitin chains. The ubiquitylation of IL-1β is not just a degradation signal triggered by inflammasome priming and activating stimuli, but also limits IL-1β cleavage by caspase-1. IL-1β K133 is modified by ubiquitin and forms a salt bridge with IL-1β D129. Loss of IL-1β K133 ubiquitylation, or disruption of the K133:D129 electrostatic interaction, stabilizes IL-1β. Accordingly, Il1bK133R/K133R mice have increased levels of precursor IL-1β upon inflammasome priming and increased production of bioactive IL-1β, both in vitro and in response to LPS injection. These findings identify mechanisms that can limit IL-1β activity and safeguard against damaging inflammation.
Collapse
Affiliation(s)
- Swarna L Vijayaraj
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Maryam Rashidi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Zhengyang Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Angelina Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kate E Lawlor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia. .,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
122
|
Kovacs SB, Oh C, Maltez VI, McGlaughon BD, Verma A, Miao EA, Aachoui Y. Neutrophil Caspase-11 Is Essential to Defend against a Cytosol-Invasive Bacterium. Cell Rep 2021; 32:107967. [PMID: 32726630 PMCID: PMC7480168 DOI: 10.1016/j.celrep.2020.107967] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Either caspase-1 or caspase-11 can cleave gasdermin D to cause pyroptosis, eliminating intracellular replication niches. We previously showed that macrophages detect Burkholderia thailandensis via NLRC4, triggering the release of interleukin (IL)-18 and driving an essential interferon (IFN)-γ response that primes caspase-11. We now identify the IFN-γ-producing cells as a mixture of natural killer (NK) and T cells. Although both caspase-1 and caspase-11 can cleave gasdermin D in macrophages and neutrophils, we find that NLRC4-activated caspase-1 triggers pyroptosis in macrophages, but this pathway does not trigger pyroptosis in neutrophils. In contrast, caspase-11 triggers pyroptosis in both macrophages and neutrophils. This translates to an absolute requirement for caspase-11 in neutrophils during B. thailandensis infection in mice. We present an example of inflammasome sensors causing diverging outcomes in different cell types. Thus, cell fates are dictated not simply by the pathogen or inflammasome, but also by how the cell is wired to respond to detection events. Kovacs et al. demonstrate that natural killer and T cells produce IFN-γ to prime caspase-11 during Burkholderia thailandensis infection. They demonstrate that in neutrophils, caspase-1 and caspase-11 activation lead to gasdermin D cleavage, but only caspase-11 activation leads to pyroptosis that is necessary for clearance of this cytosol-invasive pathogen in vivo.
Collapse
Affiliation(s)
- Stephen B Kovacs
- Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vivien I Maltez
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin D McGlaughon
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ambika Verma
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Edward A Miao
- Department of Immunology, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
123
|
Hou F, Peng L, Jiang J, Chen T, Xu D, Huang Q, Ye C, Peng Y, Hu DL, Fang R. ATP Facilitates Staphylococcal Enterotoxin O Induced Neutrophil IL-1β Secretion via NLRP3 Inflammasome Dependent Pathways. Front Immunol 2021; 12:649235. [PMID: 34017331 PMCID: PMC8129502 DOI: 10.3389/fimmu.2021.649235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic food-borne pathogen causing severe invasive infections, such as sepsis, pneumonia, food poisoning, toxic shock syndrome and autoimmune diseases. Staphylococcal enterotoxin O (SEO) is a new type of enterotoxins of S. aureus with superantigenic and emetic activity. However, it is still unclear about SEO-induced host inflammatory response. Therefore, the mechanism of SEO-induced interleukin-1β (IL-1β) secretion in mouse neutrophils was investigated in this study. Our results showed that recombinant SEO had superantigenic activity with high level of gamma interferon (IFN-γ) production in mouse spleen cells and induced inflammatory cytokines expression including IL-1α, IL-1β, IL-6 and TNF-α in neutrophils under the action of ATP. In addition, SEO-induced IL-1β secretion was dependent on activation of Toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways. However, SEO-induced IL-1β secretion was abolished in the neutrophils of NLRP3-/- mice compared with those of wild type mice, indicating that activation of NLRP3 inflammasome mediated IL-1β secretion during neutrophils stimulation with SEO under the action of ATP. Moreover, this process of SEO+ATP-induced IL-1β secretion was dependent on potassium (K+) efflux. Taken together, our study suggests that activation of TLR4/JNK/NLRP3 inflammasome signaling pathway mediate maturation and secretion of IL-1β and provides a new insight on S. aureus virulence factor-induced host immune response.
Collapse
Affiliation(s)
- Fengqing Hou
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jiali Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Chongqing Animal Disease Prevention and Control Center, Chongqing, China
| | - Tingting Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dong-Liang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
124
|
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 2021; 18:1106-1121. [PMID: 33785842 PMCID: PMC8008022 DOI: 10.1038/s41423-020-00630-3] [Citation(s) in RCA: 895] [Impact Index Per Article: 298.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 02/01/2023] Open
Abstract
Cell death is a fundamental physiological process in all living organisms. Its roles extend from embryonic development, organ maintenance, and aging to the coordination of immune responses and autoimmunity. In recent years, our understanding of the mechanisms orchestrating cellular death and its consequences on immunity and homeostasis has increased substantially. Different modalities of what has become known as 'programmed cell death' have been described, and some key players in these processes have been identified. We have learned more about the intricacies that fine tune the activity of common players and ultimately shape the different types of cell death. These studies have highlighted the complex mechanisms tipping the balance between different cell fates. Here, we summarize the latest discoveries in the three most well understood modalities of cell death, namely, apoptosis, necroptosis, and pyroptosis, highlighting common and unique pathways and their effect on the surrounding cells and the organism as a whole.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
- German Center for Neurodegenerative Diseases, Bonn, NRW, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, NRW, Germany.
| |
Collapse
|
125
|
Ratitong B, Marshall M, Pearlman E. β-Glucan-stimulated neutrophil secretion of IL-1α is independent of GSDMD and mediated through extracellular vesicles. Cell Rep 2021; 35:109139. [PMID: 34010648 PMCID: PMC8186457 DOI: 10.1016/j.celrep.2021.109139] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Neutrophils are an important source of interleukin (IL)-1β and other cytokines because they are recruited to sites of infection and inflammation in high numbers. Although secretion of processed, bioactive IL-1β by neutrophils is dependent on NLRP3 and Gasdermin D (GSDMD), IL-1α secretion by neutrophils has not been reported. In this study, we demonstrate that neutrophils produce IL-1α following injection of Aspergillus fumigatus spores that express cell-surface β-Glucan. Although IL-1α secretion by lipopolysaccharide (LPS)/ATP-activated macrophages and dendritic cells is GSDMD dependent, IL-1α secretion by β-Glucan-stimulated neutrophils occurs independently of GSDMD. Instead, we found that bioactive IL-1α is in exosomes that were isolated from cell-free media of β-Glucan-stimulated neutrophils. Further, the exosome inhibitor GW4869 significantly reduces IL-1α in extracellular vesicles (EVs) and total cell-free supernatant. Together, these findings identify neutrophils as a source of IL-1α and demonstrate a role for EVs, specifically exosomes, in neutrophil secretion of bioactive IL-1α. Neutrophils have functional NLRP3 and NLRC4 and are recognized as an important source of IL-1β. Ratitong et al. demonstrate that murine neutrophils also produce IL-1α. Unlike macrophages, neutrophil IL-1α is secreted in extracellular vesicles and is released independently of gasdermin D and cell death.
Collapse
Affiliation(s)
- Bridget Ratitong
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA.
| | - Michaela Marshall
- Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
126
|
Hatscher L, Lehmann CHK, Purbojo A, Onderka C, Liang C, Hartmann A, Cesnjevar R, Bruns H, Gross O, Nimmerjahn F, Ivanović-Burmazović I, Kunz M, Heger L, Dudziak D. Select hyperactivating NLRP3 ligands enhance the T H1- and T H17-inducing potential of human type 2 conventional dendritic cells. Sci Signal 2021; 14:14/680/eabe1757. [PMID: 33906973 DOI: 10.1126/scisignal.abe1757] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The detection of microorganisms and danger signals by pattern recognition receptors on dendritic cells (DCs) and the consequent formation of inflammasomes are pivotal for initiating protective immune responses. Although the activation of inflammasomes leading to secretion of the cytokine IL-1β is typically accompanied by pyroptosis (an inflammatory form of lytic programmed cell death), some cells can survive and exist in a state of hyperactivation. Here, we found that the conventional type 2 DC (cDC2) subset is the major human DC subset that is transcriptionally and functionally poised for inflammasome formation and response without pyroptosis. When cDC2 were stimulated with ligands that relatively weakly activated the inflammasome, the cells did not enter pyroptosis but instead secreted IL-12 family cytokines and IL-1β. These cytokines induced prominent T helper type 1 (TH1) and TH17 responses that were superior to those seen in response to Toll-like receptor (TLR) stimulation alone or to stronger, classical inflammasome ligands. These findings not only define the human cDC2 subpopulation as a prime target for the treatment of inflammasome-dependent inflammatory diseases but may also inform new approaches for adjuvant and vaccine development.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Constantin Onderka
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Olaf Gross
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany.,Department Chemistry, Ludwigs Maximilians University, 81377 Munich, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany. .,Institute of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.,Deutsches Zentrum Immuntherapie, 91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
127
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
128
|
Fischer FA, Chen KW, Bezbradica JS. Posttranslational and Therapeutic Control of Gasdermin-Mediated Pyroptosis and Inflammation. Front Immunol 2021; 12:661162. [PMID: 33868312 PMCID: PMC8050342 DOI: 10.3389/fimmu.2021.661162] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Pyroptosis is a proinflammatory form of cell death, mediated by membrane pore-forming proteins called gasdermins. Gasdermin pores allow the release of the pro-inflammatory cytokines IL-1β and IL-18 and cause cell swelling and cell lysis leading to release of other intracellular proteins that act as alarmins to perpetuate inflammation. The best characterized, gasdermin D, forms pores via its N-terminal domain, generated after the cleavage of full length gasdermin D by caspase-1 or -11 (caspase-4/5 in humans) typically upon sensing of intracellular pathogens. Thus, gasdermins were originally thought to largely contribute to pathogen-induced inflammation. We now know that gasdermin family members can also be cleaved by other proteases, such as caspase-3, caspase-8 and granzymes, and that they contribute to sterile inflammation as well as inflammation in autoinflammatory diseases or during cancer immunotherapy. Here we briefly review how and when gasdermin pores are formed, and then focus on emerging endogenous mechanisms and therapeutic approaches that could be used to control pore formation, pyroptosis and downstream inflammation.
Collapse
Affiliation(s)
- Fabian A. Fischer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Kaiwen W. Chen
- Immunology Programme and Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jelena S. Bezbradica
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
129
|
Kumari P, Russo AJ, Wright SS, Muthupalani S, Rathinam VA. Hierarchical cell-type-specific functions of caspase-11 in LPS shock and antibacterial host defense. Cell Rep 2021; 35:109012. [PMID: 33882312 PMCID: PMC8451177 DOI: 10.1016/j.celrep.2021.109012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Caspase-11 sensing of intracellular lipopolysaccharide (LPS) plays critical roles during infections and sepsis. However, the key cell types that sense intracellular LPS and their contributions to the host responses at the organismal level are not completely clear. Here, we show that macrophage/monocyte-specific caspase-11 plays a dominant role in mediating the pathological manifestations of endotoxemia, including gasdermin D (GSDMD) activation, interleukin (IL)-1β, IL-18, and damage-associated molecular pattern (DAMP) release, tissue damage, and death. Surprisingly, caspase-11 expression in CD11c+ cells and intestinal epithelial cells (IECs) plays minor detrimental roles in LPS shock. In contrast, caspase-11 expression in neutrophils is dispensable for LPS-induced lethality. Importantly, caspase-11 sensing of intracellular LPS in LyzM+ myeloid cells and MRP8+ neutrophils, but not CD11c+ cells and IECs, is necessary for bacterial clearance and host survival during intracellular bacterial infection. Thus, we reveal hierarchical cell-type-specific roles of caspase-11 that govern the host-protective and host-detrimental functions of the cytosolic LPS surveillance. Kumari et al. reveal hierarchical cell-type-specific roles of caspase-11 that govern the host-protective and host-detrimental functions of the cytosolic LPS surveillance pathway during bacterial infections and sepsis, respectively.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashley J Russo
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Skylar S Wright
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
130
|
Abstract
A fundamental concept in immunology is that the innate immune system initiates or instructs downstream adaptive immune responses. Inflammasomes are central players in innate immunity to pathogens, but how inflammasomes shape adaptive immunity is complex and relatively poorly understood. Here we highlight recent work on the interplay between inflammasomes and adaptive immunity. We address how inflammasome-dependent release of cytokines and antigen activates, shapes or even inhibits adaptive immune responses. We consider how distinct tissue or cellular contexts may alter the effects of inflammasome activation on adaptive immunity and how this contributes to beneficial or detrimental outcomes in infectious diseases, cancer and autoimmunity. We aspire to provide a framework for thinking about inflammasomes and their connection to the adaptive immune response.
Collapse
|
131
|
Chen W, Zhao J, Mu D, Wang Z, Liu Q, Zhang Y, Yang D. Pyroptosis Mediates Neutrophil Extracellular Trap Formation during Bacterial Infection in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2021; 206:1913-1922. [PMID: 33712519 DOI: 10.4049/jimmunol.2001335] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
The formation of neutrophil extracellular trap (NET) is a critical host defense when neutrophils migrate to infection sites. Pyroptosis is a newly identified programmed cell death, which is tightly regulated by inflammasome activation. However, the mechanism of pyroptotic signaling participating in NET production remains to be elucidated. In this study, the zebrafish larvae otic vesicle microinjection model was used to infect larvae with hemolysin-overexpressing Edwardsiella piscicida (EthA+), and a rapid migration of neutrophils to infection sites was observed. Intriguingly, EthA+ infection effectively induced significant neutrophil membrane rupture in vivo, which was dependent on caspase-B (caspy2) and gasdermin Eb (GSDMEb) but not caspase-A or gasdermin Ea. Specifically, the EthA+ E. piscicida infection induced pyroptosis along with NETosis in vitro, and depletion of either caspy2 or GSDMEb impaired NET formation in vivo. Consequently, inhibition of the caspy2-GSDMEb axis-gated NETosis impaired bacterial clearance in vivo. Altogether, these data provide evidence that teleost fish innate immune cells, including neutrophils, express features of pyroptosis that are critical for NETosis in teleost innate immunity.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingjing Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di Mu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; and
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
132
|
Liu X, Xia S, Zhang Z, Wu H, Lieberman J. Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov 2021; 20:384-405. [PMID: 33692549 PMCID: PMC7944254 DOI: 10.1038/s41573-021-00154-z] [Citation(s) in RCA: 390] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/09/2022]
Abstract
Gasdermins were recently identified as the mediators of pyroptosis — inflammatory cell death triggered by cytosolic sensing of invasive infection and danger signals. Upon activation, gasdermins form cell membrane pores, which release pro-inflammatory cytokines and alarmins and damage the integrity of the cell membrane. Roles for gasdermins in autoimmune and inflammatory diseases, infectious diseases, deafness and cancer are emerging, revealing potential novel therapeutic avenues. Here, we review current knowledge of the family of gasdermins, focusing on their mechanisms of action and roles in normal physiology and disease. Efforts to develop drugs to modulate gasdermin activity to reduce inflammation or activate more potent immune responses are highlighted. Gasdermins (GSDMs) are a recently characterized protein family that mediate a programmed inflammatory cell death termed pyroptosis. Here, Lieberman and colleagues review current understanding of the expression, activation and regulation of GSDMs, highlighting their roles in cell death, cytokine secretion and inflammation. Emerging opportunities to develop GSDM-targeted drugs and the associated challenges are highlighted.
Collapse
Affiliation(s)
- Xing Liu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Shiyu Xia
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhibin Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
133
|
Yang H, Zhang Z. Sepsis-induced myocardial dysfunction: the role of mitochondrial dysfunction. Inflamm Res 2021; 70:379-387. [PMID: 33683374 DOI: 10.1007/s00011-021-01447-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Sepsis-induced myocardial dysfunction (SIMD) is a condition manifested by an intrinsic myocardial systolic and diastolic dysfunction during sepsis, which is associated with worse clinical outcomes and a higher mortality. MATERIALS AND METHODS Several pathophysiological mechanisms including mitochondrial dysfunction, abnormal body immune reaction, metabolic reprogramming, excessive production of reactive oxygen species (ROS), and disorder of calcium regulation have been involved in SIMD. Mitophagy has potential role in protecting myocardial cells in sepsis, especially in survivors. CONCLUSION In the current review, we focus on the role of mitochondrial dysfunction and other mitochondria-related mechanisms including immunologic imbalance, energetic reprogramming, mitophagy, and pyroptosis in the mechanisms of SIMD.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Wu Hou District, Chengdu, 610041, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road No. 88, Hangzhou, 310000, Zhejiang province, China.
| |
Collapse
|
134
|
Phenotypical and Functional Characterization of Neutrophils in Two Pyrin-Associated Auto-inflammatory Diseases. J Clin Immunol 2021; 41:1072-1084. [PMID: 33666778 DOI: 10.1007/s10875-021-01008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Familial Mediterranean Fever (FMF) and Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis (PAAND) are clinically distinct autoinflammatory disorders caused by mutations in the pyrin-encoding gene MEFV. We investigated the transcriptional, phenotypical, and functional characteristics of patient neutrophils to explore their potential role in FMF and PAAND pathophysiology. METHODS RNA sequencing was performed to discover transcriptional aberrancies. The phenotypical features, degranulation properties, and phagocytic capacity of neutrophils were assessed by flow cytometry. Production of reactive oxygen species (ROS), myeloperoxidase (MPO) release, and chemotactic responses were investigated via chemiluminescence, ELISA, and Boyden chamber assays, respectively. RESULTS Neutrophils from PAAND and FMF patients showed a partially overlapping, activated gene expression profile with increased expression of S100A8, S100A9, S100A12, IL-4R, CD48, F5, MMP9, and NFKB. Increased MMP9 and S100A8/A9 expression levels were accompanied by high plasma concentrations of the encoded proteins. Phenotypical analysis revealed that neutrophils from FMF patients exhibited an immature character with downregulation of chemoattractant receptors CXCR2, C5aR, and BLTR1 and increased expression of Toll-like receptor 4 (TLR4) and TLR9. PAAND neutrophils displayed an increased random, but reduced CXCL8-induced migration. A tendency for enhanced random migration was observed for FMF neutrophils. PAAND neutrophils showed a moderately but significantly enhanced phagocytic activity as opposed to neutrophils from FMF patients. Neutrophils from both patient groups showed increased MPO release and ROS production. CONCLUSIONS Neutrophils from patients with FMF and PAAND, carrying different mutations in the MEFV gene, share a pro-inflammatory phenotype yet demonstrate diverse features, underscoring the distinction between both diseases.
Collapse
|
135
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: Many Ways to Die. Front Immunol 2021; 12:631821. [PMID: 33746968 PMCID: PMC7969520 DOI: 10.3389/fimmu.2021.631821] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.
Collapse
Affiliation(s)
- Erandi Pérez-Figueroa
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Pablo Álvarez-Carrasco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
136
|
Wang M, Chen X, Zhang Y. Biological Functions of Gasdermins in Cancer: From Molecular Mechanisms to Therapeutic Potential. Front Cell Dev Biol 2021; 9:638710. [PMID: 33634141 PMCID: PMC7901903 DOI: 10.3389/fcell.2021.638710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Pyroptosis is a type of lytic programmed cell death triggered by various inflammasomes that sense danger signals. Pyroptosis has recently attracted great attention owing to its contributory role in cancer. Pyroptosis plays an important role in cancer progression by inducing cancer cell death or eliciting anticancer immunity. The participation of gasdermins (GSDMs) in pyroptosis is a noteworthy recent discovery. GSDMs have emerged as a group of pore-forming proteins that serve important roles in innate immunity and are composed of GSDMA-E and Pejvakin (PJVK) in human. The N-terminal domains of GSDMs, expect PJVK, can form pores on the cell membrane and function as effector proteins of pyroptosis. Remarkably, it has been found that GSDMs are abnormally expressed in several forms of cancers. Moreover, GSDMs are involved in cancer cell growth, invasion, metastasis and chemoresistance. Additionally, increasing evidence has indicated an association between GSDMs and clinicopathological features in cancer patients. These findings suggest the feasibility of using GSDMs as prospective biomarkers for cancer diagnosis, therapeutic intervention and prognosis. Here, we review the progress in unveiling the characteristics and biological functions of GSDMs. We also focus on the implication and molecular mechanisms of GSDMs in cancer pathogenesis. Investigating the relationship between GSDMs and cancer biology could assist us to explore new therapeutic avenues for cancer prevention and treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
137
|
Liu B, He R, Zhang L, Hao B, Jiang W, Wang W, Geng Q. Inflammatory Caspases Drive Pyroptosis in Acute Lung Injury. Front Pharmacol 2021; 12:631256. [PMID: 33613295 PMCID: PMC7892432 DOI: 10.3389/fphar.2021.631256] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Acute lung injury (ALI), a critical respiratory disorder that causes diffuse alveolar injury leads to high mortality rates with no effective treatment. ALI is characterized by varying degrees of ventilation/perfusion mismatch, severe hypoxemia, and poor pulmonary compliance. The diffuse injury to cells is one of most important pathological characteristics of ALI. Pyroptosis is a form of programmed cell death distinguished from apoptosis induced by inflammatory caspases, which can release inflammatory cytokines to clear cells infected by pathogens and promote monocytes to reassemble at the site of injury. And pyroptosis not only promotes inflammation in certain cell types, but also regulates many downstream pathways to perform different functions. There is increasing evidence that pyroptosis and its related inflammatory caspases play an important role in the development of acute lung injury. The main modes of activation of pyroptosis is not consistent among different types of cells in lung tissue. Meanwhile, inhibition of inflammasome, the key to initiating pyroptosis is currently the main way to treat acute lung injury. The review summarizes the relationship among inflammatory caspases, pyroptosis and acute lung injury and provides general directions and strategies to conduct further research.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenyang Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
138
|
Tyrkalska SD, Candel S, Mulero V. The neutrophil inflammasome. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103874. [PMID: 32987011 DOI: 10.1016/j.dci.2020.103874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Since inflammasomes were discovered in the early 21st century, knowledge about their biology has multiplied exponentially. These cytosolic multiprotein complexes alert the immune system about the presence of infection or tissue damage, and regulate the subsequent inflammatory responses. As inflammasome dysregulation is increasingly associated with numerous autoinflammatory disorders, there is an urgent need for further research into the inflammasome's involvement in the pathogenesis of such diseases in order to identify novel therapeutic targets and treatments. The zebrafish has become a widely used animal model to study human diseases in recent years, and has already provided relevant findings in the field of inflammasome biology including the identification of new components and pathways. We provide a detailed analysis of current knowledge on neutrophil inflammasome biology and compare its features with those of the better known macrophage inflammasome, focusing on its contribution to innate immunity and its relevance for human health. Importantly, a large body of evidence points to a link between neutrophil inflammasome dysfunction and many neutrophil-mediated human diseases, but the real contribution of the neutrophil inflammasome to the pathogenesis of these disorders is largely unknown. Although neutrophils have remained in the shadow of macrophages and monocytes in the field of inflammasome research since the discovery of these multiprotein platforms, recent studies strongly suggest that the importance of the neutrophil inflammasome has been underestimated.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
139
|
Lima C, Falcao MAP, Andrade-Barros AI, Seni-Silva AC, Grund LZ, Balogh E, Conceiçao K, Queniaux VF, Ryffel B, Lopes-Ferreira M. Natterin an aerolysin-like fish toxin drives IL-1β-dependent neutrophilic inflammation mediated by caspase-1 and caspase-11 activated by the inflammasome sensor NLRP6. Int Immunopharmacol 2021; 91:107287. [PMID: 33378723 DOI: 10.1016/j.intimp.2020.107287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Natterin is an aerolysin-like pore-forming toxin responsible for the toxic effects of the venom of the medically significant fish Thalassophryne nattereri. Using a combination of pharmacologic and genetic loss-of-function approaches we conduct a systematic investigation of the regulatory mechanisms that control Natterin-induced neutrophilic inflammation in the peritonitis model. Our data confirmed the capacity of Natterin to induce a strong and sustained neutrophilic inflammation leading to systemic inflammatory lung infiltration and revealed overlapping regulatory paths in its control. We found that Natterin induced the extracellular release of mature IL-1β and the sustained production of IL-33 by bronchial epithelial cells. We confirmed the dependence of both ST2/IL-33 and IL-17A/IL-17RA signaling on the local and systemic neutrophils migration, as well as the crucial role of IL-1α, caspase-1 and caspase-11 for neutrophilic inflammation. The inflammation triggered by Natterin was a gasdermin-D-dependent inflammasome process, despite the cells did not die by pyroptosis. Finally, neutrophilic inflammation was mediated by non-canonical NLRP6 and NLRC4 adaptors through ASC interaction, independent of NLRP3. Our data highlight that the inflammatory process dependent on non-canonical inflammasome activation can be a target for pharmacological intervention in accidents by T. nattereri, which does not have adequate specific therapy.
Collapse
Affiliation(s)
- Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil.
| | - Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| | - Aline Ingrid Andrade-Barros
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| | - Ana Carolina Seni-Silva
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| | - Lidiane Zito Grund
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| | - Eniko Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98, 4012 Debrecen, Hungary
| | - Katia Conceiçao
- Peptide Biochemistry Laboratory, UNIFESP, São José dos Campos. Brazil
| | - Valerie F Queniaux
- Allergy and Lung Inflammation Unit of the Molecular and Experimental Immunology and Neurogenetics (INEM, UMR7355, CNRS and University Orléans), Orléans, 45071 Orléans Cedex 2, France
| | - Bernhard Ryffel
- Allergy and Lung Inflammation Unit of the Molecular and Experimental Immunology and Neurogenetics (INEM, UMR7355, CNRS and University Orléans), Orléans, 45071 Orléans Cedex 2, France
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CETICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009 São Paulo. Brazil
| |
Collapse
|
140
|
Sanches JM, Correia-Silva RD, Duarte GHB, Fernandes AMAP, Sánchez-Vinces S, Carvalho PO, Oliani SM, Bortoluci KR, Moreira V, Gil CD. Role of Annexin A1 in NLRP3 Inflammasome Activation in Murine Neutrophils. Cells 2021; 10:121. [PMID: 33440601 PMCID: PMC7827236 DOI: 10.3390/cells10010121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
This study evaluated the role of endogenous and exogenous annexin A1 (AnxA1) in the activation of the NLRP3 inflammasome in isolated peritoneal neutrophils. C57BL/6 wild-type (WT) and AnxA1 knockout mice (AnxA1-/-) received 0.3% carrageenan intraperitoneally and, after 3 h, the peritoneal exudate was collected. WT and AnxA1-/- neutrophils were then stimulated with lipopolysaccharide, followed by the NLRP3 agonists nigericin or ATP. To determine the exogenous effect of AnxA1, the neutrophils were pretreated with the AnxA1-derived peptide Ac2-26 followed by the NLRP3 agonists. Ac2-26 administration reduced NLRP3-derived IL-1β production by WT neutrophils after nigericin and ATP stimulation. However, IL-1β release was impaired in AnxA1-/- neutrophils stimulated by both agonists, and there was no further impairment in IL-1β release with Ac2-26 treatment before stimulation. Despite this, ATP- and nigericin-stimulated AnxA1-/- neutrophils had increased levels of cleaved caspase-1. The lipidomics of supernatants from nigericin-stimulated WT and AnxA1-/- neutrophils showed potential lipid biomarkers of cell stress and activation, including specific sphingolipids and glycerophospholipids. AnxA1 peptidomimetic treatment also increased the concentration of phosphatidylserines and oxidized phosphocholines, which are lipid biomarkers related to the inflammatory resolution pathway. Together, our results indicate that exogenous AnxA1 negatively regulates NLRP3-derived IL-1β production by neutrophils, while endogenous AnxA1 is required for the activation of the NLRP3 machinery.
Collapse
Affiliation(s)
- José Marcos Sanches
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
| | - Rebeca D. Correia-Silva
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
| | - Gustavo H. B. Duarte
- Instituto de Química, Universidade Estadual de Campinas, Campinas 13083-862, São Paulo, Brazil;
| | - Anna Maria A. P. Fernandes
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Salvador Sánchez-Vinces
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Patrícia O. Carvalho
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista 12916-900, São Paulo, Brazil; (A.M.A.P.F.); (S.S.-V.); (P.O.C.)
| | - Sonia M. Oliani
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
- Programa de Pós-Graduação em Biociências, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto 15054-000, São Paulo, Brazil
| | - Karina R. Bortoluci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo, São Paulo 04044-010, Brazil;
| | - Vanessa Moreira
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil;
| | - Cristiane D. Gil
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil; (J.M.S.); (R.D.C.-S.); (S.M.O.)
- Programa de Pós-Graduação em Biociências, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto 15054-000, São Paulo, Brazil
| |
Collapse
|
141
|
Li LL, Zhu YG, Jia XM, Liu D, Qu JM. Adipose-Derived Mesenchymal Stem Cells Ameliorating Pseudomonas aeruginosa-induced Acute Lung Infection via Inhibition of NLRC4 Inflammasome. Front Cell Infect Microbiol 2021; 10:581535. [PMID: 33489931 PMCID: PMC7820751 DOI: 10.3389/fcimb.2020.581535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
Background Pseudomonas aeruginosa (PA) is one of the most common Gram-negative bacteria causing hospital-acquired pulmonary infection, with high drug resistance and mortality. Therefore, it is urgent to introduce new non-antibiotic treatment strategies. Mesenchymal stem cells (MSCs), as important members of the stem cell family, were demonstrated to alleviate pathological damage in acute lung injury. However, the potential mechanism how MSC alleviate acute lung infection caused by PA remains unclear. Objective The purpose of this study was to investigate the effects of Adipose-derived mesenchymal stem cells (ASCs) on acute pulmonary infections and the possible mechanisms how ASCs reduce pulmonary inflammation induced by PA. Methods The therapeutic and mechanistic effects of ASCs on PA pulmonary infection were evaluated respectively in a murine model as well as in an in vitro model stimulated by PA and co-cultured with ASCs. Results 1. ASCs treatment significantly reduced the bacterial load, inflammation of lung tissue and histopathological damage by PA. 2. PA infection mainly activated Nod-like receptor containing a caspase activating and recruitment domain 4 (NLRC4) inflammasome in the lung of mice. ASCs attenuated acute lung infection in mice by inhibiting NLRC4 inflammasome activation. 3. NLRC4-/- mice showed a significant improvement in survival rate and lung bacterial load after PA infection. 4. ASCs mainly increased expression and secretion of STC-1 in response to PA-stimulated NLRC4 inflammasome activation. Conclusions PA infection attenuated macrophage phagocytosis through activation of NLRC4 inflammasome in macrophages, which eventually led to pulmonary inflammatory damage in mouse; ASCs reduced the activation of NLRC4 inflammasome in macrophages induced by PA infection, thereby increasing the phagocytic ability of macrophages, and ultimately improving lung tissue damage in mouse; ASCs may inhibit NLRC4 inflammasome through the secretion of STC-1.
Collapse
Affiliation(s)
- Lu-Lu Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Gang Zhu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Xin-Ming Jia
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong Liu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
142
|
NLRC4 gene silencing-dependent blockade of NOD-like receptor pathway inhibits inflammation, reduces proliferation and increases apoptosis of dendritic cells in mice with septic shock. Aging (Albany NY) 2021; 13:1440-1457. [PMID: 33406504 PMCID: PMC7835030 DOI: 10.18632/aging.202379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Septic shock is one of the most significant health concerns across the world, involving hypo-perfusion and defects in tissue energy. The current study investigates the role of NLR family CARD domain containing protein 4 (NLRC4) in septic shock-induced inflammatory reactions, lung tissue injuries, and dendritic cell (DC) apoptosis. Septic shock mice models were established by modified cecal ligation and puncture and injected with retroviral vector expressing siRNA-NLRC4. DCs were then isolated and transfected with siRNA-NLRC4. The degree of lung tissue injury, cell cycle distribution, cell apoptosis and cell viability of DCs were assessed. NLRC4 was found to be expressed at high levels in mice with septic shock. NLRC4 silencing inhibited the activation of the NOD-like receptor (NLR) pathway as evidenced by the decreased levels of NOD1, NOD2, RIP2, and NF-κB. In addition, NLRC4 silencing reduced the inflammatory reaction as attributed by reduced levels of IL-1β, TNF-α and IL-6. Suppressed NLRC4 levels inhibited cell viability and promoted cell apoptosis evidenced by inhibited induction of DC surface markers (CD80, CD86, and MHC II), along with alleviated lung tissue injury. In conclusion, NLRC4 silencing ameliorates lung injury and inflammation induced by septic shock by negatively regulating the NLR pathway.
Collapse
|
143
|
Ding XD, Cao YY, Li L, Zhao GY. Dexmedetomidine Reduces the Lidocaine-Induced Neurotoxicity by Inhibiting Inflammasome Activation and Reducing Pyroptosis in Rats. Biol Pharm Bull 2021; 44:902-909. [PMID: 34193687 DOI: 10.1248/bpb.b20-00482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Local anesthetic toxicity is closely related to neuronal death and activation of the inflammatory response. Dexmedetomidine (Dex) is an adrenergic α2 receptor agonist that can reduce the neurotoxicity induced by lidocaine. It also has anti-inflammatory effects. However, the mechanism underlying the neuroprotective effects of Dex against lidocaine-induced toxicity remains to be defined. We hypothesized that Dex exerts its neural protective effect through inhibiting inflammasome activation and through anti-pyroptosis effects against local anesthetic-induced nerve injury. In a rat model of lidocaine-induced spinal cord injury, we studied the protective effect of Dex on lidocaine-induced changes in spinal cord function, inflammasome formation and pyroptosis, pro-inflammatory cytokine expression, and protein kinase C (PKC)-δ phosphorylation. Dex reduced lidocaine-induced neurotoxicity and inhibited PKC-δ phosphorylation in the spinal cord of rats. Furthermore, Dex inhibited pyroptosis and inflammasome formation (caspase-1, NLRP3, and apoptosis-associated speck-like protein (ASC)). Finally, Dex attenuated interleukin (IL)-1β and IL-18 expression, as well as microglia response. In conclusion, Dex can reduce the severity of lidocaine-induced spinal cord injury in rats by inhibiting priming and inflammasome activation and reducing pyroptosis via PKC-δ phosphorylation.
Collapse
Affiliation(s)
- Xu-Dong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University
| | - Yan-Yan Cao
- Department of Anesthesiology, Shengjing Hospital of China Medical University
| | - Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University
| | - Guang-Yi Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University
| |
Collapse
|
144
|
Activation of NLRP3 by uropathogenic Escherichia coli is associated with IL-1β release and regulation of antimicrobial properties in human neutrophils. Sci Rep 2020; 10:21837. [PMID: 33318544 PMCID: PMC7736892 DOI: 10.1038/s41598-020-78651-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
The NLRP3 inflammasome and IL-1β have recently been linked to the severity of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection (UTI). However, not much is known about the contribution of NLRP3 to the antimicrobial properties of neutrophils and the release of IL-1β during UPEC infection. The purpose of this study was to elucidate the mechanisms behind UPEC-induced IL-1β release from human neutrophils, and to investigate the contribution of the NLRP3 inflammasome in neutrophil-mediated inhibition of UPEC growth. We found that the UPEC strain CFT073 increased the expression of NLRP3 and increased caspase-1 activation and IL-1β release from human neutrophils. The IL-1β release was mediated by the NLRP3 inflammasome and by serine proteases in an NF-κB-and cathepsin B-dependent manner. The UPEC virulence factors α-hemolysin, type-1 fimbriae and p-fimbriae were all shown to contribute to UPEC mediated IL-1β release from neutrophils. Furthermore, inhibition of caspase-1 and NLRP3 activation increased neutrophil ROS-production, phagocytosis and the ability of neutrophils to suppress UPEC growth. In conclusion, this study demonstrates that UPEC can induce NLRP3 and serine protease-dependent release of IL-1β from human neutrophils and that NLRP3 and caspase-1 can regulate the antimicrobial activity of human neutrophils against UPEC.
Collapse
|
145
|
McVey MJ, Steinberg BE, Goldenberg NM. Inflammasome activation in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 320:L165-L178. [PMID: 33296269 DOI: 10.1152/ajplung.00303.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inflammasomes are multiprotein complexes tasked with sensing endogenous or exogenous inflammatory signals and integrating this signal into a downstream response. Inflammasome activation has been implicated in a variety of pulmonary diseases, including pulmonary hypertension, bacterial pneumonia, COPD, and asthma. Of increasing interest is the contribution of inflammasome activation in the context of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Inflammasome activation in both the lung parenchyma and resident immune cells generates intereukin-1β (IL-1β) and IL-18, both of which drive the cascade of lung inflammation forward. Blockade of these responses has been shown to be beneficial in animal models and is a focus of translational research in the field. In this review, we will discuss the assembly and regulation of inflammasomes during lung inflammation, highlighting therapeutically viable effector steps. We will examine the importance of IL-1β and IL-18, two key products of inflammasome activation, in ALI, as well as the contribution of the pulmonary endothelial cell to this process. Finally, we will explore translational research moving toward anti-inflammasome therapies for ALI/ARDS and speculate toward future directions for the field.
Collapse
Affiliation(s)
- Mark J McVey
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Neil M Goldenberg
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
146
|
Zhivaki D, Borriello F, Chow OA, Doran B, Fleming I, Theisen DJ, Pallis P, Shalek AK, Sokol CL, Zanoni I, Kagan JC. Inflammasomes within Hyperactive Murine Dendritic Cells Stimulate Long-Lived T Cell-Mediated Anti-tumor Immunity. Cell Rep 2020; 33:108381. [PMID: 33207188 PMCID: PMC7727444 DOI: 10.1016/j.celrep.2020.108381] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Central to anti-tumor immunity are dendritic cells (DCs), which stimulate long-lived protective T cell responses. Recent studies have demonstrated that DCs can achieve a state of hyperactivation, which is associated with inflammasome activities within living cells. Herein, we report that hyperactive DCs have an enhanced ability to migrate to draining lymph nodes and stimulate potent cytotoxic T lymphocyte (CTL) responses. This enhanced migratory activity is dependent on the chemokine receptor CCR7 and is associated with a unique transcriptional program that is not observed in conventionally activated or pyroptotic DCs. We show that hyperactivating stimuli are uniquely capable of inducing durable CTL-mediated anti-tumor immunity against tumors that are sensitive or resistant to PD-1 inhibition. These protective responses are intrinsic to the cDC1 subset of DCs, depend on the inflammasome-dependent cytokine IL-1β, and enable tumor lysates to serve as immunogens. If these activities are verified in humans, hyperactive DCs may impact immunotherapy.
Collapse
Affiliation(s)
- Dania Zhivaki
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Francesco Borriello
- Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Ohn A Chow
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Doran
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ira Fleming
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Derek J Theisen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paris Pallis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Alex K Shalek
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ivan Zanoni
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School and Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
147
|
Rodríguez-Ruiz L, Lozano-Gil JM, Lachaud C, Mesa-Del-Castillo P, Cayuela ML, García-Moreno D, Pérez-Oliva AB, Mulero V. Zebrafish Models to Study Inflammasome-Mediated Regulation of Hematopoiesis. Trends Immunol 2020; 41:1116-1127. [PMID: 33162327 DOI: 10.1016/j.it.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a complex process through which immature bone marrow precursor cells mature into all types of blood cells. Although the association of hematopoietic lineage bias (including anemia and neutrophilia) with chronic inflammatory diseases has long been appreciated, the causes involved are obscure. Recently, cytosolic multiprotein inflammasome complexes were shown to activate inflammatory and immune responses, and directly regulate hematopoiesis in zebrafish models; this was deemed to occur via cleavage and inactivation of the master erythroid transcription factor GATA1. Herein summarized are the zebrafish models that are currently available to study this unappreciated role of inflammasome-mediated regulation of hematopoiesis. Novel putative therapeutic strategies, for the treatment of hematopoietic alterations associated with chronic inflammatory diseases in humans, are also proposed.
Collapse
Affiliation(s)
- Lola Rodríguez-Ruiz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain
| | - Juan M Lozano-Gil
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain
| | - Christophe Lachaud
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Pablo Mesa-Del-Castillo
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30120 Murcia, Spain
| | - María L Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30120 Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| | - Ana B Pérez-Oliva
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, IMIB-Arrixaca, Centro de Investigación Biomédica en Red de Enfermedades Raras, 30100 Murcia, Spain.
| |
Collapse
|
148
|
Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher CA, Radaelli E, Fettrelet T, Mack V, Linkermann A, Roger T, Brodsky IE, Chen KW, Broz P. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. SCIENCE ADVANCES 2020; 6:6/47/eabc3465. [PMID: 33208362 PMCID: PMC7673803 DOI: 10.1126/sciadv.abc3465] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/30/2020] [Indexed: 05/12/2023]
Abstract
Gasdermin D (GSDMD) is a pore-forming protein that promotes pyroptosis and release of proinflammatory cytokines. Recent studies revealed that apoptotic caspase-8 directly cleaves GSDMD to trigger pyroptosis. However, the molecular requirements for caspase-8-dependent GSDMD cleavage and the physiological impact of this signaling axis are unresolved. Here, we report that caspase-8-dependent GSDMD cleavage confers susceptibility to tumor necrosis factor (TNF)-induced lethality independently of caspase-1 and that GSDMD activation provides host defense against Yersinia infection. We further demonstrate that GSDMD inactivation by apoptotic caspases at aspartate 88 (D88) suppresses TNF-induced lethality but promotes anti-Yersinia defense. Last, we show that caspase-8 dimerization and autoprocessing are required for GSDMD cleavage, and provide evidence that the caspase-8 autoprocessing and activity on various complexes correlate with its ability to directly cleave GSDMD. These findings reveal GSDMD as a potential therapeutic target to reduce inflammation associated with mutations in the death receptor signaling machinery.
Collapse
Affiliation(s)
- Benjamin Demarco
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - James P Grayczyk
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Elisabet Bjanes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | | | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Timothée Fettrelet
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Vanessa Mack
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kaiwen W Chen
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| |
Collapse
|
149
|
Frank MG, Baratta MV, Zhang K, Fallon IP, Pearson MA, Liu G, Hutchinson MR, Watkins LR, Goldys EM, Maier SF. Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-1β protein in dorsal hippocampus. Brain Behav Immun 2020; 90:70-80. [PMID: 32750541 PMCID: PMC7544655 DOI: 10.1016/j.bbi.2020.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/31/2023] Open
Abstract
The proinflammatory cytokine interleukin (IL)-1β plays a pivotal role in the behavioral manifestations (i.e., sickness) of the stress response. Indeed, exposure to acute and chronic stressors induces the expression of IL-1β in stress-sensitive brain regions. Thus, it is typically presumed that exposure to stressors induces the extra-cellular release of IL-1β in the brain parenchyma. However, this stress-evoked neuroimmune phenomenon has not been directly demonstrated nor has the cellular process of IL-1β release into the extracellular milieu been characterized in brain. This cellular process involves a form of inflammatory cell death, termed pyroptosis, which involves: 1) activation of caspase-1, 2) caspase-1 maturation of IL-1β, 3) caspase-1 cleavage of gasdermin D (GSDMD), and 4) GSDMD-induced permeability of the cell membrane through which IL-1β is released into the extracellular space. Thus, the present study examined whether stress induces the extra-cellular release of IL-1β and engages the above cellular process in mediating IL-1β release in the brain. Male Sprague-Dawley rats were exposed to inescapable tailshock (IS). IL-1β extra-cellular release, caspase-1 activity and cleavage of GSDMD were measured in dorsal hippocampus. We found that exposure to IS induced a transient increase in the release of IL-1β into the extracellular space immediately after termination of the stressor. IS also induced a transient increase in caspase-1 activity prior to IL-1β release, while activation of GSDMD was observed immediately after termination of the stressor. IS also increased mRNA and protein expression of the ESCRTIII protein CHMP4B, which is involved in cellular repair. The present results suggest that exposure to an acute stressor induces the hallmarks of pyroptosis in brain, which might serve as a key cellular process involved in the release of IL-1β into the extracellular milieu of the brain parenchyma.
Collapse
Affiliation(s)
- Matthew G. Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO;,Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience, Campus Box 603, University of Colorado Boulder, Boulder, CO, 80301, USA, Tel: +1-303-919-8116,
| | - Michael V. Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Kaixin Zhang
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde, Australia;,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, Australia
| | - Isabella P. Fallon
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Mikayleigh A. Pearson
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, Australia;,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Mark R. Hutchinson
- Adelaide Medical School & ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), The University of Adelaide, Adelaide, Australia
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, Australia
| | - Steven F. Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
150
|
Rosazza T, Warner J, Sollberger G. NET formation - mechanisms and how they relate to other cell death pathways. FEBS J 2020; 288:3334-3350. [PMID: 33047496 DOI: 10.1111/febs.15589] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
Cell death is an integral part of both infectious and sterile inflammatory reactions. Many cell death pathways cause the dying cell to lyse, thereby amplifying inflammation. A special form of lytic cell death is the formation of neutrophil extracellular traps (NETs), large structures of chromatin and antimicrobial proteins, which are released by dying neutrophils to capture extracellular pathogens and limit the spread of infections. The molecular mechanisms of NET formation remain incompletely understood. Recent research demonstrated substantial crosstalk between different cell death pathways, most notably between apoptosis, pyroptosis and necroptosis. Here, we review suicidal and vital NET formation and discuss potential crosstalk of their mechanisms of release with other forms of cell death.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, UK
| | - Jordan Warner
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, UK
| | - Gabriel Sollberger
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, UK
| |
Collapse
|