101
|
Horino M, Ikeda K, Yamada T. The Role of Thermogenic Fat Tissue in Energy Consumption. Curr Issues Mol Biol 2022; 44:3166-3179. [PMID: 35877443 PMCID: PMC9317885 DOI: 10.3390/cimb44070219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022] Open
Abstract
Mammalian adipose tissues are broadly divided into white adipose tissue (WAT) and thermogenic fat tissue (brown adipose tissue and beige adipose tissue). Uncoupling protein 1 (UCP1) is the central protein in thermogenesis, and cells that exhibit induced UCP1 expression and appear scattered throughout WAT are called beige adipocytes, and their induction in WAT is referred to as “beiging”. Beige adipocytes can differentiate from preadipocytes or convert from mature adipocytes. UCP1 was thought to contribute to non-shivering thermogenesis; however, recent studies demonstrated the presence of UCP1-independent thermogenic mechanisms. There is evidence that thermogenic fat tissue contributes to systemic energy expenditure even in human beings. This review discusses the roles that thermogenic fat tissue plays in energy consumption and offers insight into the possibility and challenges associated with its application in the treatment of obesity and type 2 diabetes.
Collapse
|
102
|
Shin S. Regulation of Adipose Tissue Biology by Long-Chain Fatty Acids: Metabolic Effects and Molecular Mechanisms. J Obes Metab Syndr 2022; 31:147-160. [PMID: 35691686 PMCID: PMC9284576 DOI: 10.7570/jomes22014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Long-chain fatty acids (LCFA) modulate metabolic, oxidative, and inflammatory responses, and the physiological effects of LCFA are determined by chain length and the degree of saturation. Adipose tissues comprise multiple cell types, and play a significant role in energy storage and expenditure. Fatty acid uptake and oxidation are the pathways through which fatty acids participate in the regulation of energy homeostasis, and their dysregulation can lead to the development of obesity and chronic obesity-related disorders, including type 2 diabetes, cardiovascular diseases, and certain types of cancer. Numerous studies have reported that many aspects of adipose tissue biology are influenced by the number and position of double bonds in LCFA, and these effects are mediated by various signaling pathways, including those regulating adipocyte differentiation (adipogenesis), thermogenesis, and inflammation in adipose tissue. This review aims to describe the underlying molecular mechanisms by which different types of LCFA influence adipose tissue metabolism, and to further clarify their relevance to metabolic dysregulation associated with obesity. A better understanding of the effects of LCFA on adipose tissue metabolism may lead to improved nutraceutical strategies to address obesity and obesity-associated diseases.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul, Korea
| |
Collapse
|
103
|
Liang W, Qi Y, Yi H, Mao C, Meng Q, Wang H, Zheng C. The Roles of Adipose Tissue Macrophages in Human Disease. Front Immunol 2022; 13:908749. [PMID: 35757707 PMCID: PMC9222901 DOI: 10.3389/fimmu.2022.908749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 01/02/2023] Open
Abstract
Macrophages are a population of immune cells functioning in antigen presentation and inflammatory response. Research has demonstrated that macrophages belong to a cell lineage with strong plasticity and heterogeneity and can be polarized into different phenotypes under different microenvironments or stimuli. Many macrophages can be recruited by various cytokines secreted by adipose tissue. The recruited macrophages further secrete various inflammatory factors to act on adipocytes, and the interaction between the two leads to chronic inflammation. Previous studies have indicated that adipose tissue macrophages (ATMs) are closely related to metabolic diseases like obesity and diabetes. Here, we will not only conclude the current progress of factors affecting the polarization of adipose tissue macrophages but also elucidate the relationship between ATMs and human diseases. Furthermore, we will highlight its potential in preventing and treating metabolic diseases as immunotherapy targets.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.,Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yanxu Qi
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, The Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Chenyu Mao
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hao Wang
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
104
|
Ishaq A, Tchkonia T, Kirkland JL, Siervo M, Saretzki G. Palmitate induces DNA damage and senescence in human adipocytes in vitro that can be alleviated by oleic acid but not inorganic nitrate. Exp Gerontol 2022; 163:111798. [PMID: 35390489 PMCID: PMC9214712 DOI: 10.1016/j.exger.2022.111798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Hypertrophy in white adipose tissue (WAT) can result in sustained systemic inflammation, hyperlipidaemia, insulin resistance, and onset of senescence in adipocytes. Inflammation and hypertrophy can be induced in vitro using palmitic acid (PA). WAT adipocytes have innately low β-oxidation capacity, while inorganic nitrate can promote a beiging phenotype, with promotion of β-oxidation when cells are exposed to nitrate during differentiation. We hypothesized that treatment of human adipocytes with PA in vitro can induce senescence, which might be attenuated by nitrate treatment through stimulation of β-oxidation to remove accumulated lipids. Differentiated subcutaneous and omental adipocytes were treated with PA and nitrate and senescence markers were analyzed. PA induced DNA damage and increased p16INK4a levels in both human subcutaneous and omental adipocytes in vitro. However, lipid accumulation and lipid droplet size increased after PA treatment only in subcutaneous adipocytes. Thus, hypertrophy and senescence seem not to be causally associated. Contrary to our expectations, subsequent treatment of PA-induced adipocytes with nitrate did not attenuate PA-induced lipid accumulation or senescence. Instead, we found a significantly beneficial effect of oleic acid (OA) on human subcutaneous adipocytes when applied together with PA, which reduced the DNA damage caused by PA treatment.
Collapse
Affiliation(s)
- Abbas Ishaq
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States of America
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States of America
| | - Mario Siervo
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK; School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.
| |
Collapse
|
105
|
Lee S, Benvie AM, Park HG, Spektor R, Harlan B, Brenna JT, Berry DC, Soloway PD. Remodeling of gene regulatory networks underlying thermogenic stimuli-induced adipose beiging. Commun Biol 2022; 5:584. [PMID: 35701601 PMCID: PMC9197980 DOI: 10.1038/s42003-022-03531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
Beige adipocytes are induced by cold temperatures or β3-adrenergic receptor (Adrb3) agonists. They create heat through glucose and fatty acid (FA) oxidation, conferring metabolic benefits. The distinct and shared mechanisms by which these treatments induce beiging are unknown. Here, we perform single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) on adipose tissue from mice exposed to cold or an Adrb3 agonist to identify cellular and chromatin accessibility dynamics during beiging. Both stimuli induce chromatin remodeling that influence vascularization and inflammation in adipose. Beige adipocytes from cold-exposed mice have increased accessibility at genes regulating glycolytic processes, whereas Adrb3 activation increases cAMP responses. While both thermogenic stimuli increase accessibility at genes regulating thermogenesis, lipogenesis, and beige adipocyte development, the kinetics and magnitudes of the changes are distinct for the stimuli. Accessibility changes at lipogenic genes are linked to functional changes in lipid composition of adipose. Both stimuli tend to decrease the proportion of palmitic acids, a saturated FA in adipose. However, Adrb3 activation increases the proportion of monounsaturated FAs, whereas cold increases the proportion of polyunsaturated FAs. These findings reveal common and distinct mechanisms of cold and Adrb3 induced beige adipocyte biogenesis, and identify unique functional consequences of manipulating these pathways in vivo.
Collapse
Affiliation(s)
- Seoyeon Lee
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Departments of Chemistry, Pediatrics, and Nutrition, Dell Medical School and the College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Roman Spektor
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, NY, USA
| | - Blaine Harlan
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, NY, USA
| | - J Thomas Brenna
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
- Dell Pediatric Research Institute, Departments of Chemistry, Pediatrics, and Nutrition, Dell Medical School and the College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Paul D Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY, USA.
| |
Collapse
|
106
|
Choi HE, Jeon EJ, Kim DY, Choi MJ, Yu H, Kim JI, Cheon HG. Sodium salicylate induces browning of white adipocytes via M2 macrophage polarization by HO-1 upregulation. Eur J Pharmacol 2022; 928:175085. [PMID: 35679889 DOI: 10.1016/j.ejphar.2022.175085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Browning, a white to brown-like (beige) adipocyte conversion, offers a promising therapeutic strategy for the treatment of human obesity. In the present study, the effects of sodium salicylate, a nonsteroidal anti-inflammatory drug, on adipocyte browning were investigated. We found sodium salicylate altered the macrophage phenotype to M2 in RAW264.7 cells, mediated by up-regulation of heme oxygenase-1 (HO-1), and sodium salicylate-treated conditioned medium from macrophages (Sal-M2 CM) induced browning of fully differentiated 3T3-L1 adipocytes. Conversely, the conditioned medium obtained from macrophages when treated with sodium salicylate in the presence of either ZnPP (a HO-1 inhibitor) or HO-1 siRNA did not induce browning. In association with macrophage HO-1 induction by sodium salicylate, iron production also increased, and deferoxamine (an iron chelator) blunted the browning effects of Sal-M2 CM, suggesting that iron may play a role in the Sal-M2 CM-induced browning. The in vivo browning effects of sodium salicylate were confirmed in ob/ob mice, whereas in vivo macrophage depletion by clodronate as well as HO-1 blockade by either ZnPP or adeno-associated virus carrying HO-1 shRNA (AAV-HO-1 shRNA) attenuated the browning effects of sodium salicylate. These results reveal sodium salicylate induces browning in vitro and in vivo by up-regulating HO-1 thus promoting M2 polarization.
Collapse
Affiliation(s)
- Hye-Eun Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Eun Jeong Jeon
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Dong Young Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Hana Yu
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Jea Il Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University School of Medicine, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
107
|
Lee NH, Choi MJ, Yu H, Kim JI, Cheon HG. Adapalene induces adipose browning through the RARβ-p38 MAPK-ATF2 pathway. Arch Pharm Res 2022; 45:340-351. [PMID: 35608792 DOI: 10.1007/s12272-022-01384-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
Abstract
Adipose browning has recently been reported to be a novel therapeutic strategy for obesity. Because the retinoic acid receptor (RAR) is a potential target involved in browning, adapalene (AD), an anti-acne agent with RAR agonism, was examined in detail for its effects on adipose browning and the underlying mechanisms in vitro and in vivo. AD upregulated the expression of adipose browning-related markers in a concentration-dependent manner, promoted mitochondrial biogenesis, increased oxygen consumption rates, and lowered lipid droplet sizes in differentiated 3T3/L1 white adipocytes. Among the three retinoic acid receptors (RARα, RARβ, and RARγ), knockdown of the gene encoding RARβ mitigated AD-induced adipose browning. Similarly, LE135 (a selective RARβ antagonist) attenuated AD action, suggesting that AD promotes adipose browning through RARβ. Sequential phosphorylation of p38 mitogen-activated protein kinase (MAPK) and activating transcription factor 2 (ATF2) was critical for AD-induced adipose browning, based on the observations that either SB203580 (a p38 MAPK inhibitor) or ATF2 siRNA reduced the effects of AD. In vivo browning effects of AD were confirmed in C57BL/6J mice and high-fat diet-induced obese (DIO) mice after oral administration of AD either acutely or chronically. This study identifies new actions of AD as an adipose browning agent and demonstrates that RARβ activation followed by increased phosphorylation of p38 MAPK and ATF2 appears to be a key mechanism of AD action.
Collapse
Affiliation(s)
- Na Hyun Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Mi Jin Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Hana Yu
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Jea Il Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea.
| |
Collapse
|
108
|
Lin J, Zhu S, Liao Y, Liang Z, Quan Y, He Y, Cai J, Lu F. Spontaneous Browning of White Adipose Tissue Improves Angiogenesis and Reduces Macrophage Infiltration After Fat Grafting in Mice. Front Cell Dev Biol 2022; 10:845158. [PMID: 35557960 PMCID: PMC9087586 DOI: 10.3389/fcell.2022.845158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Fat grafting is a frequently used technique; however, its survival/ regeneration mechanism is not fully understood. The browning of white adipocytes, a process initiated in response to external stimuli, is the conversion of white to beige adipocytes. The physiologic significance of the browning of adipocytes following transplantation is unclear. Methods: C57BL/6 mice received 150 mg grafts of inguinal adipose tissue, and then the transplanted fat was harvested and analyzed at different time points to assess the browning process. To verify the role of browning of adipocytes in fat grafting, the recipient mice were allocated to three groups, which were administered CL316243 or SR59230A to stimulate or suppress browning, respectively, or a control group after transplantation. Results: Browning of the grafts was present in the center of each as early as 7 days post-transplantation. The number of beige cells peaked at day 14 and then decreased gradually until they were almost absent at day 90. The activation of browning resulted in superior angiogenesis, higher expression of the pro-angiogenic molecules vascular endothelial growth factor A (VEGF-A) and fibroblast growth factor 21 (FGF21), fewer macrophages, and ultimately better graft survival (Upregulation, 59.17% ± 6.64% vs. Control, 40.33% ± 4.03%, *p < 0.05), whereas the inhibition of browning led to poor angiogenesis, lower expression of VEGF-A, increased inflammatory macrophages, and poor transplant retention at week 10 (Downregulation, 20.67% ± 3.69% vs. Control, 40.33% ± 4.03%, *p < 0.05). Conclusion: The browning of WAT following transplantation improves the survival of fat grafts by the promotion of angiogenesis and reducing macrophage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng Lu
- *Correspondence: Junrong Cai, ; Feng Lu,
| |
Collapse
|
109
|
Jiang N, Yang M, Han Y, Zhao H, Sun L. PRDM16 Regulating Adipocyte Transformation and Thermogenesis: A Promising Therapeutic Target for Obesity and Diabetes. Front Pharmacol 2022; 13:870250. [PMID: 35462933 PMCID: PMC9024053 DOI: 10.3389/fphar.2022.870250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Given that obesity and diabetes have been major public health concerns and that disease morbidities have been rising continuously, effective treatment for these diseases is urgently needed. Because adipose tissue metabolism is involved in the progression of obesity and diabetes, it might be efficient to target adipocyte metabolic pathways. Positive regulatory domain zinc finger region protein 16 (PRDM16), a transcription factor that is highly expressed in adipocytes, plays a key role in adipose tissue metabolism, such as the browning and thermogenesis of adipocytes, the beigeing of adipocytes, the adipogenic differentiation of myoblasts, and the conversion of visceral adipocytes to subcutaneous adipocytes. Furthermore, clinical and basic studies have shown that the expression of PRDM16 is associated with obesity and diabetes and that PRDM16 signaling participates in the treatment of the two diseases. For example, metformin promotes thermogenesis and alleviates obesity by activating the AMPK/αKG/PRDM16 signaling pathway; rosiglitazone alleviates obesity under the synergistic effect of PRDM16; resveratrol plays an antiobesity role by inducing the expression of PRDM16; liraglupeptide improves insulin resistance by inducing the expression of PRDM16; and mulberry leaves play an anti-inflammatory and antidiabetes role by activating the expression of brown fat cell marker genes (including PRDM16). In this review, we summarize the evidence of PRDM16 involvement in the progression of obesity and diabetes and that PRDM16 may be a promising therapy for obesity and diabetes.
Collapse
|
110
|
Xie H, Liu X, Zhou Q, Huang T, Zhang L, Gao J, Wang Y, Liu Y, Yan T, Zhang S, Wang CY. DNA Methylation Modulates Aging Process in Adipocytes. Aging Dis 2022; 13:433-446. [PMID: 35371604 PMCID: PMC8947842 DOI: 10.14336/ad.2021.0904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Aging has been recognized to be a highly complex biological health problem with a high risk of chronic diseases, including type 2 diabetes, atherosclerosis, chronic bronchitis or emphysema, cancer and Alzheimer's disease. Particularly, age-related turnover in adipose tissue is a major contributor to metabolic syndromes and shortened lifespan. Adipocytes undergo senescence in early stage, which results in adipose tissue metabolic dysfunction, redistribution, and inflammation. The well-established association between DNA methylation (DNAm) and aging has been observed in the past few decades. Indeed, age-related alteration in DNAm is highly tissue-specific. This review intends to summarize the advancements how DNAm changes coupled with aging process in adipose tissue, by which DNAm regulates cellular senescence, metabolic function, adipokine secretion and beiging process in adipocytes. Elucidation of the effect of DNAm on adipose aging would have great potential to the development of epigenetic therapeutic strategies against aging-related diseases in clinical settings.
Collapse
Affiliation(s)
- Hao Xie
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Liu
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuhan Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanjun Liu
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.,The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Tong Yan
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
111
|
Salagre D, Chayah M, Molina-Carballo A, Oliveras-López MJ, Munoz-Hoyos A, Navarro-Alarcón M, Fernández-Vázquez G, Agil A. Melatonin induces fat browning by transdifferentiation of white adipocytes and de novo differentiation of mesenchymal stem cells. Food Funct 2022; 13:3760-3775. [PMID: 35274657 DOI: 10.1039/d1fo04360a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of melatonin in obesity control is extensively accepted, but its mechanism of action is still unclear. Previously we demonstrated that chronic oral melatonin acts as a brown-fat inducer, driving subcutaneous white adipose tissue (sWAT) into a brown-fat-like function (beige) in obese diabetic rats. However, immunofluorescence characterization of beige depots in sWAT and whether melatonin is a beige-fat inducer by de novo differentiation and/or transdifferentiation of white adipocytes are still undefined. Lean (ZL) and diabetic fatty (ZDF) Zücker rats were subdivided into two groups, control (C) and oral melatonin-supplemented (M, 10 mg kg-1 day-1) for 6 weeks. Mesenchymal stem cells (MSCs) were isolated from both rat inguinal fat and human lipoaspirates followed by adipogenesis assays with or without melatonin (50 nM for 12 h in a 24 h period, 12 h+/12 h-) mimicking the light/dark cycle. Immunofluorescence and western-blot assays showed the partial transdifferentiation of white adipocytes in both ZL and ZDF rats, with increasing thermogenic and beige markers, UCP1 and CITED1 and decreasing white adipocyte marker ASC-1 expression. In addition, melatonin increased UCP1, CITED1, and PGC1-α expression in differentiated adipocytes in both rats and humans. These results demonstrate that melatonin increases brown fat in obese diabetic rats by both adipocyte transdifferentiation and de novo differentiation. Furthermore, it promotes beige MSC adipogenesis in humans. This may contribute to the control of body weight attributed to melatonin and its metabolic benefits in human diabesity.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology and Neurosciences Institute, School of Medicine & Biomedical Research Center, University of Granada, 18016 Granada, Spain.
| | - Meriem Chayah
- Department of Pharmacology and Neurosciences Institute, School of Medicine & Biomedical Research Center, University of Granada, 18016 Granada, Spain.
| | - Antonio Molina-Carballo
- Department of Pediatrics, School of Medicine, University of Granada (Spain). Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, the Andalusian Health Service, Granada, Spain.
| | - María-Jesús Oliveras-López
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, 41013, Seville, Spain
| | - Antonio Munoz-Hoyos
- Department of Pediatrics, School of Medicine, University of Granada (Spain). Unit of Pediatric Neurology and Neurodevelopment, Clínico San Cecilio University Hospital, the Andalusian Health Service, Granada, Spain.
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, School of Medicine & Biomedical Research Center, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
112
|
Lee Y, Park YJ, Lee B, Park E, Kim H, Choi CW, Kim MS. Ribes fasciculatum Ameliorates High-Fat-Diet-Induced Obesity by Elevating Peripheral Thermogenic Signaling. Molecules 2022; 27:1649. [PMID: 35268752 PMCID: PMC8911937 DOI: 10.3390/molecules27051649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ribes fasciculatum has been consumed as a food and as a traditional medicine for treating autoimmune diseases and aging in diverse countries. A previous study showed that a mixture of Ribes fasciculatum and Cornus officinalis prohibited adipocyte differentiation and lipid accumulation in preadipocytes and suppressed diet-induced obesity. Nevertheless, the mechanism of R. fasciculatum to regulate energy homeostasis solely through thermogenic signaling remains unclear. Thus, we investigated its effects on energy homeostasis using R. fasciculatum fed to C57BL/6 mice with a 45% high-fat diet. Chronic consumption of R. fasciculatum decreased the body weight of obese mice with increasing food intakes and improved metabolic-syndrome-related phenotypes. Therefore, we further tested its thermogenic effects. Cold chamber experiments and qPCR studies indicated that R. fasciculatum elevated thermogenic signaling pathways, demonstrated by increased body temperature and uncoupling protein 1 (UCP1) signaling in the white and brown adipose tissues. Afzelin is one major known compound derived from R. fasciculatum. Hence, the isolated compound afzelin was treated with preadipocytes and brown adipocytes for cell viability and luciferase assay, respectively, to further examine its thermogenic effect. The studies showed that the response of afzelin was responsible for cell viability and the increased UCP1. In conclusion, our data indicated that R. fasciculatum elevated peripheral thermogenic signaling through increased UCP1 via afzelin activation and ameliorated diet-induced obesity.
Collapse
Affiliation(s)
- Yuna Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Yeo-Jin Park
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea;
- Korean Convergence Medicine, University of Science and Technology, Daejeon 34054, Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34504, Korea;
| | - Chun-Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea
| | - Min-Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
113
|
Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res 2022; 178:106175. [DOI: 10.1016/j.phrs.2022.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
114
|
Kirschner KM, Foryst-Ludwig A, Gohlke S, Li C, Flores RE, Kintscher U, Schupp M, Schulz TJ, Scholz H. Wt1 haploinsufficiency induces browning of epididymal fat and alleviates metabolic dysfunction in mice on high-fat diet. Diabetologia 2022; 65:528-540. [PMID: 34846543 PMCID: PMC8803700 DOI: 10.1007/s00125-021-05621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells. METHODS Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. RESULTS Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60-90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. CONCLUSION/INTERPRETATION WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease.
Collapse
Affiliation(s)
- Karin M Kirschner
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Foryst-Ludwig
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sabrina Gohlke
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Chen Li
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Roberto E Flores
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Kintscher
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Michael Schupp
- Institut für Pharmakologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Holger Scholz
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
115
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 290] [Impact Index Per Article: 145.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
116
|
Xu PC, You M, Yu SY, Luan Y, Eldani M, Caffrey TC, Grandgenett PM, O'Connell KA, Shukla SK, Kattamuri C, Hollingsworth MA, Singh PK, Thompson TB, Chung S, Kim SY. Visceral adipose tissue remodeling in pancreatic ductal adenocarcinoma cachexia: the role of activin A signaling. Sci Rep 2022; 12:1659. [PMID: 35102236 PMCID: PMC8803848 DOI: 10.1038/s41598-022-05660-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients display distinct phenotypes of cachexia development, with either adipose tissue loss preceding skeletal muscle wasting or loss of only adipose tissue. Activin A levels were measured in serum and analyzed in tumor specimens of both a cohort of Stage IV PDAC patients and the genetically engineered KPC mouse model. Our data revealed that serum activin A levels were significantly elevated in Stage IV PDAC patients in comparison to age-matched non-cancer patients. Little is known about the role of activin A in adipose tissue wasting in the setting of PDAC cancer cachexia. We established a correlation between elevated activin A and remodeling of visceral adipose tissue. Atrophy and fibrosis of visceral adipose tissue was examined in omental adipose tissue of Stage IV PDAC patients and gonadal adipose tissue of an orthotopic mouse model of PDAC. Remarkably, white visceral adipose tissue from both PDAC patients and mice exhibited decreased adipocyte diameter and increased fibrotic deposition. Strikingly, expression of thermogenic marker UCP1 in visceral adipose tissues of PDAC patients and mice remained unchanged. Thus, we propose that activin A signaling could be relevant to the acceleration of visceral adipose tissue wasting in PDAC-associated cachexia.
Collapse
Affiliation(s)
- Pauline C Xu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mikyoung You
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, 211 Chenoweth Laboratory, 100 Holdsworth Way, Amherst, MA, 01003-9282, USA
| | - Seok-Yeong Yu
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yi Luan
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maya Eldani
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kelly A O'Connell
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surendra K Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH, 68198, USA
| | - Soonkyu Chung
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, 211 Chenoweth Laboratory, 100 Holdsworth Way, Amherst, MA, 01003-9282, USA.
| | - So-Youn Kim
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
117
|
Dacic M, Shibu G, Rogatsky I. Physiological Convergence and Antagonism Between GR and PPARγ in Inflammation and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:123-141. [PMID: 36107316 DOI: 10.1007/978-3-031-11836-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nuclear receptors (NRs) are transcription factors that modulate gene expression in a ligand-dependent manner. The ubiquitously expressed glucocorticoid receptor (GR) and peroxisome proliferator-activated receptor gamma (PPARγ) represent steroid (type I) and non-steroid (type II) classes of NRs, respectively. The diverse transcriptional and physiological outcomes of their activation are highly tissue-specific. For example, in subsets of immune cells, such as macrophages, the signaling of GR and PPARγ converges to elicit an anti-inflammatory phenotype; in contrast, in the adipose tissue, their signaling can lead to reciprocal metabolic outcomes. This review explores the cooperative and divergent outcomes of GR and PPARγ functions in different cell types and tissues, including immune cells, adipose tissue and the liver. Understanding the coordinated control of these NR pathways should advance studies in the field and potentially pave the way for developing new therapeutic approaches to exploit the GR:PPARγ crosstalk.
Collapse
Affiliation(s)
- Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Gayathri Shibu
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA.
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
118
|
Luo J, Wang Y, Gilbert E, Liu D. Deletion of GPR30 Drives the Activation of Mitochondrial Uncoupling Respiration to Induce Adipose Thermogenesis in Female Mice. Front Endocrinol (Lausanne) 2022; 13:877152. [PMID: 35592783 PMCID: PMC9110859 DOI: 10.3389/fendo.2022.877152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Thermogenic adipocytes possess a promising approach to combat obesity with its capability promoting energy metabolism. We previously discovered that deletion of GPR30 (GPRKO), a presumably membrane-associated estrogen receptor, protected female mice from developing obesity, glucose intolerance, and insulin resistance when challenged with a high-fat diet (HFD). In vivo, the metabolic phenotype of wild type (WT) and GPRKO female mice were measured weekly. Acute cold tolerance test was performed. Ex vivo, mitochondrial respiration of brown adipose tissue (BAT) was analyzed from diet-induced obese female mice of both genotypes. In vitro, stromal vascular fractions (SVF) were isolated for beige adipocyte differentiation to investigate the role of GPR30 in thermogenic adipocyte. Deletion of GPR30 protects female mice from hypothermia and the mitochondria in BAT are highly energetic in GPRKO animals while the WT mitochondria remain in a relatively quiescent stage. Consistently, GPR30 deficiency enhances beige adipocyte differentiation in white adipose tissue (WAT) and activates the thermogenic browning of subcutaneous WAT due to up-regulation of UCP-1, which thereby protects female mice from HFD-induced obesity. GPR30 is a negative regulator of thermogenesis, which at least partially contributes to the reduced adiposity in the GPRKO female mice. Our findings provide insight into the mechanism by which GPR30 regulates fat metabolism and adiposity in female mice exposed to excess calories, which may be instrumental in the development of new therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Jing Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth Gilbert
- Department of Animal and Poultry Sciences, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Dongmin Liu,
| |
Collapse
|
119
|
Zhang Q, Ye R, Zhang YY, Fan CC, Wang J, Wang S, Chen S, Liu X. Brown Adipose Tissue and Novel Management Strategies for Polycystic Ovary Syndrome Therapy. Front Endocrinol (Lausanne) 2022; 13:847249. [PMID: 35663310 PMCID: PMC9160465 DOI: 10.3389/fendo.2022.847249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Brown adipose tissue (BAT), a unique tissue, plays a key role in metabolism and energy expenditure through adaptive nonshivering thermogenesis. It has recently become a therapeutic target in the treatment of obesity and metabolic diseases. The thermogenic effect of BAT occurs through uncoupling protein-1 by uncoupling adenosine triphosphate (ATP) synthesis from energy substrate oxidation. The review discusses the recent developments and progress associated with the biology, function, and activation of BAT, with a focus on its therapeutic potential for the treatment of polycystic ovary syndrome (PCOS). The endocrine activity of brown adipocytes affects the energy balance and homeostasis of glucose and lipids, thereby affecting the association of BAT activity and the metabolic profile. PCOS is a complex reproductive and metabolic disorder of reproductive-age women. Functional abnormalities of adipose tissue (AT) have been reported in patients with PCOS. Numerous studies have shown that BAT could regulate the features of PCOS and that increases in BAT mass or activity were effective in the treatment of PCOS through approaches including cold stimulation, BAT transplantation and compound activation in various animal models. Therefore, BAT may be used as a novel management strategy for the patients with PCOS to improve women's health clinically. It is highly important to identify key brown adipokines for the discovery and development of novel candidates to establish an efficacious therapeutic strategy for patients with PCOS in the future.
Collapse
Affiliation(s)
- Qiaoli Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Zhang
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Chen-Chen Fan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Shuyu Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| | - Suwen Chen
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| | - Xiaowei Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| |
Collapse
|
120
|
Nuclear Receptors in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:61-82. [DOI: 10.1007/978-3-031-11836-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
121
|
Ikeda K, Tajima K, Tanabe Y, Poon ASY, Kajimura S. Activation of UCP1-Independent Ca 2+ Cycling Thermogenesis by Wireless Optogenetics. Methods Mol Biol 2022; 2448:131-139. [PMID: 35167095 PMCID: PMC9087983 DOI: 10.1007/978-1-0716-2087-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The identification of non-canonical UCP1-independent thermogenic mechanisms offers new opportunities to target such pathways to improve metabolic health. Based on our recent studies on Ca2+ futile cycling thermogenesis in beige fat, we applied the newly developed implantable wireless optogenetic system to activate Ca2+ cycling in an adipocyte-specific manner without external stimuli, i.e., fat-specific cold mimetics. Here, we describe the detailed methodology and application to the prevention of obesity.
Collapse
Affiliation(s)
- Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Tajima
- Department of Endocrinology and Metabolism, Yokohama Medical Center, Yokohama, Japan
| | - Yuji Tanabe
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ada S Y Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard, MA, USA.
| |
Collapse
|
122
|
Mishra BK, Madhu SV, Aslam M, Agarwal V, Banerjee BD. Adipose tissue expression of UCP1 and PRDM16 genes and their association with postprandial triglyceride metabolism and glucose intolerance. Diabetes Res Clin Pract 2021; 182:109115. [PMID: 34718051 DOI: 10.1016/j.diabres.2021.109115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/28/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022]
Abstract
AIMS UCP1 and PRDM16 genes, primarily involved in browning of adipose tissue that can affect lipid metabolism are also associated with diabetes risk. Therefore, we planned to study the adipose tissue expression of UCP1 and PRDM 16 genes in subjects with glucose intolerance to find out its association with postprandial triglyceride (PPTg) measures and T2DM. METHODS A total of 30 subjects were recruited in three groups i.e., NGT, prediabetes and T2DM (NDDM + known T2DM) who were matched for age, sex and BMI. An 8-hour standardized fat challenge test was performed to study lipemic responses. UCP1 and PRDM16 genes quantification in adipose tissue was performed by real-time PCR followed by SDS PAGE. RESULTS UCP1 gene expression in SAT was significantly lower in T2DM and prediabetes as compared to NGT group while PRDM16 gene expression was significantly lower in T2DM group as compared to NGT group. UCP1 gene expression correlated with PPTg measures as well as with glycaemic measures while PRDM16 gene expression correlated with glycaemic measures only. CONCLUSION This study found downregulation of PRDM16 and UCP1 gene expression in SAT in subjects with glucose intolerance. The association of UCP1 gene expression with PPTg dysmetabolism may contribute to greater predisposition to T2DM.
Collapse
Affiliation(s)
- B K Mishra
- Department of Endocrinology, University College of Medical Sciences & GTB Hospital, University of Delhi, India
| | - S V Madhu
- Department of Endocrinology, University College of Medical Sciences & GTB Hospital, University of Delhi, India.
| | - M Aslam
- Department of Endocrinology, University College of Medical Sciences & GTB Hospital, University of Delhi, India
| | - V Agarwal
- Department of Surgery, University College of Medical Sciences & GTB Hospital, University of Delhi, India
| | - B D Banerjee
- Department of Biochemistry, University College of Medical Sciences & GTB Hospital, University of Delhi, India
| |
Collapse
|
123
|
Ahluwalia MK. Nutrigenetics and nutrigenomics-A personalized approach to nutrition. ADVANCES IN GENETICS 2021; 108:277-340. [PMID: 34844714 DOI: 10.1016/bs.adgen.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prevalence of non-communicable diseases has been on an upward trajectory for some time and this puts an enormous burden on the healthcare expenditure. Lifestyle modifications including dietary interventions hold an immense promise to manage and prevent these diseases. Recent advances in genomic research provide evidence that focussing these efforts on individual variations in abilities to metabolize nutrients (nutrigenetics) and exploring the role of dietary compounds on gene expression (nutrigenomics and nutri-epigenomics) can lead to more meaningful personalized dietary strategies to promote optimal health. This chapter aims to provide examples on these gene-diet interactions at multiple levels to support the need of embedding targeted dietary interventions as a way forward to prevent, avoid and manage diseases.
Collapse
|
124
|
Becker-Greene D, Li H, Perez-Cremades D, Wu W, Bestepe F, Ozdemir D, Niosi CE, Aydogan C, Orgill DP, Feinberg MW, Icli B. MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance. Cell Mol Life Sci 2021; 78:7663-7679. [PMID: 34698882 PMCID: PMC8655847 DOI: 10.1007/s00018-021-03960-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Endothelial cells (ECs) within the microvasculature of brown adipose tissue (BAT) are important in regulating the plasticity of adipocytes in response to increased metabolic demand by modulating the angiogenic response. However, the mechanism of EC-adipocyte crosstalk during this process is not completely understood. We used RNA sequencing to profile microRNAs derived from BAT ECs of obese mice and identified an anti-angiogenic microRNA, miR-409-3p. MiR-409-3p overexpression inhibited EC angiogenic properties; whereas, its inhibition had the opposite effects. Mechanistic studies revealed that miR-409-3p targets ZEB1 and MAP4K3. Knockdown of ZEB1/MAP4K3 phenocopied the angiogenic effects of miR-409-3p. Adipocytes co-cultured with conditioned media from ECs deficient in miR-409-3p showed increased expression of BAT markers, UCP1 and CIDEA. We identified a pro-angiogenic growth factor, placental growth factor (PLGF), released from ECs in response to miR-409-3p inhibition. Deficiency of ZEB1 or MAP4K3 blocked the release of PLGF from ECs and PLGF stimulation of 3T3-L1 adipocytes increased UCP1 expression in a miR-409-3p dependent manner. MiR-409-3p neutralization improved BAT angiogenesis, glucose and insulin tolerance, and energy expenditure in mice with diet-induced obesity. These findings establish miR-409-3p as a critical regulator of EC-BAT crosstalk by modulating a ZEB1-MAP4K3-PLGF signaling axis, providing new insights for therapeutic intervention in obesity.
Collapse
Affiliation(s)
- Dakota Becker-Greene
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Hao Li
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Daniel Perez-Cremades
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Department of Physiology, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Winona Wu
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
| | - Furkan Bestepe
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - Denizhan Ozdemir
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Department of Medical Biology, Hacettepe University, Ankara, Turkey
| | - Carolyn E Niosi
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - Ceren Aydogan
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA
- Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA.
| | - Basak Icli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Louis Pasteur Avenue 77, Boston, MA, 02115, USA.
- Molecular Cardiology Research Institute, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|
125
|
Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, Lv Y, Li H, Wang C, Ma Q, Li Y, Li P, Du H, Zhao B. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021; 10:48-65. [PMID: 33403891 PMCID: PMC7801117 DOI: 10.1080/21623945.2020.1870060] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian adipose tissue can be divided into two major types, namely, white adipose tissue (WAT) and brown adipose tissue (BAT). According to classical view, the main function of WAT is to store excess energy in the form of triglycerides, while BAT is a thermogenic tissue that acts a pivotal part in maintaining the core body temperature. White adipocytes display high plasticity and can transdifferentiate into beige adipocytes which have many similar morphological and functional properties with brown adipocytes under the stimulations of exercise, cold exposure and other factors. This phenomenon is also known as 'browning of WAT'. In addition to transdifferentiation, beige adipocytes can also come from de novo differentiation from tissue-resident progenitors. Activating BAT and inducing browning of WAT can accelerate the intake of glycolipids and reduce the insulin secretion requirement, which may be a new strategy to improve glycolipids metabolism and insulin resistance of obese and type 2 diabetes mellitus (T2DM) patients. This review mainly discusses the significance of brown and beige adipose tissues in the treatment of obesity and T2DM, and focuses on the effect of the browning agent on obesity and T2DM, which provides a brand-new theoretical reference for the prevention and treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Long Cheng
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Jingkang Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yaqi Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Pengfei Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Haifeng Du
- The Third Municipal Hospital of Chengde, Chengde, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing China
| |
Collapse
|
126
|
Wu D, Eeda V, Undi RB, Mann S, Stout M, Lim HY, Wang W. A novel peroxisome proliferator-activated receptor gamma ligand improves insulin sensitivity and promotes browning of white adipose tissue in obese mice. Mol Metab 2021; 54:101363. [PMID: 34710641 PMCID: PMC8627988 DOI: 10.1016/j.molmet.2021.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Nuclear receptor Peroxisome Proliferator-Activated Receptor γ (PPARγ) is a promising target for the treatment of type 2 diabetes. The antidiabetic drug thiazolidinediones (TZDs) are potent insulin sensitizers as full agonists of PPARγ, but cause unwanted side effects. Recent discoveries have shown that TZDs improve insulin sensitivity by blocking PPARγ phosphorylation at S273, which decouples the full agonism-associated side effects. PPARγ ligands that act through the blockage of PPARγ phosphorylation but lack the full agonist activity would be expected to improve insulin sensitivity without TZD-associated side effects, however, chemicals that carry such traits and bind to PPARγ with high-affinity are lacking. Moreover, TZDs are known to promote white-to-brown adipocyte conversion and energy expenditure and appear to require their full agonism on PPARγ for this activity. It is unknown whether a partial or non-TZD agonist of PPARγ is capable of promoting browning effect. In this study, we developed a novel non-TZD partial agonist of PPARγ and investigated its function on insulin sensitivity and white-to-brown conversion and energy expenditure in diet-induced obese mice. METHODS A novel indole-based chemical WO95E was designed via medicinal chemistry and tested for PPARγ binding and activity and for the effect on PPARγ phosphorylation. Diet-induced obese mice were administered with WO95E for 4 weeks. Insulin sensitivity, glucose tolerance, body weight, fat tissue weight, adipocyte size, morphology, energy expenditure, and expression levels of genes involved in PPARγ activity, thermogenesis/browning, and TZD-related side effects were evaluated. RESULTS WO95E binds to PPARγ with high affinity and acts as a PPARγ partial agonist. WO95E inhibits PPARγ phosphorylation and regulates PPARγ phosphorylation-dependent genes. WO95E ameliorates insulin resistance and glucose tolerance in mice of diet-induced obesity, with minimal TZD use-associated side effects. We found that WO95E promotes white-to-brown adipocyte conversion and energy expenditure and hence protects against diet-induced obesity. WO95E decreases the size of adipocytes and suppresses adipose tissue inflammation. WO95E also suppresses obesity-associated liver steatosis. CONCLUSIONS WO95E improves insulin sensitivity and glucose homeostasis and promotes browning and energy expenditure by acting as a novel PPARγ phosphorylation inhibitor/partial agonist. Our findings suggest the potential of this compound or its derivative for the therapeutic treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Medicine, Division of Endocrinology, USA
| | | | - Ram Babu Undi
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | - Shivani Mann
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Hui-Ying Lim
- Department of Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, 941 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | - Weidong Wang
- Department of Medicine, Division of Endocrinology, USA.
| |
Collapse
|
127
|
Ávila DL, Nunes NAM, Almeida PHRF, Gomes JAS, Rosa COB, Alvarez-Leite JI. Signaling Targets Related to Antiobesity Effects of Capsaicin: A Scoping Review. Adv Nutr 2021; 12:2232-2243. [PMID: 34171094 PMCID: PMC8634413 DOI: 10.1093/advances/nmab064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
The search for new antiobesogenic agents is increasing because of the current obesity pandemic. Capsaicin (Caps), an exogenous agonist of the vanilloid receptor of transient potential type 1 (TRPV1), has shown promising results in the treatment of obesity. This scoping review aims to verify the pathways mediating the effects of Caps in obesity and the different methods adopted to identify these pathways. The search was carried out using data from the EMBASE, MEDLINE (PubMed), Web of Science, and SCOPUS databases. Studies considered eligible evaluated the mechanisms of action of Caps in obesity models or cell types involved in obesity. Nine studies were included and 100% (n = 6) of the in vivo studies showed a high risk of bias. Of the 9 studies, 66.6% (n = 6) administered Caps orally in the diet and 55.5% (n = 5) used a concentration of Caps of 0.01% in the diet. In vitro, the most tested concentration was 1 μM (88.9%; n = 8). Capsazepine was the antagonist chosen by 66.6% (n = 6) of the studies. Seven studies (77.8%) linked the antiobesogenic effects of Caps to TRPV1 activation and 3 (33.3%) indicated peroxisome proliferator-activated receptor (PPAR) involvement as an upstream connection to TRPV1, rather than a direct metabolic target of Caps. The main secondary effects of Caps were lower weight gain (33.3%; n = 3) or loss (22.2%; n = 2), greater improvement in lipid profile (33.3%; n = 3), lower white adipocyte adipogenesis (33.3%; n = 3), browning process activation (44.4%; n = 4), and higher brown adipocyte activity (33.3%; n = 3) compared with those of the control treatment. Some studies have shown that PPAR agonists modulate TRPV1 activity, and no study has evaluated the simultaneous antagonism of these 2 receptors. Consequently, further studies are necessary to elucidate the role of each of these signaling molecules in the antiobesogenic effects of Caps.
Collapse
Affiliation(s)
- Danielle L Ávila
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Núbia A M Nunes
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo H R F Almeida
- Programa de Pós-Graduação em Medicamentos e Assistência Farmacêutica, Departamento de Farmácia Social, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana A S Gomes
- Instituto de Ciências Biológicas, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carla O B Rosa
- Faculdade de Nutrição, Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jacqueline I Alvarez-Leite
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
128
|
Theobromine enhances the conversion of white adipocytes into beige adipocytes in a PPARγ activation-dependent manner. J Nutr Biochem 2021; 100:108898. [PMID: 34748921 DOI: 10.1016/j.jnutbio.2021.108898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.
Collapse
|
129
|
Wang Z, Zeng M, Wang Z, Qin F, Wang Y, Chen J, Christian M, He Z. Food phenolics stimulate adipocyte browning via regulating gut microecology. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34738509 DOI: 10.1080/10408398.2021.1997905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fat browning has piqued the interest of researchers as a potential target for treating obesity and related metabolic disorders. Recruitment of brown adipocytes leads to enhanced energy dissipation and reduced adiposity, thus facilitating the maintenance of metabolic homeostasis. Evidence is increasing to support the crucial roles of polyphenols and gut microecology in turning fat "brown". However, it is not clear whether the intestinal microecology is involved in polyphenol-mediated regulation of adipose browning, so this concept is worthy of exploration. In this review, we summarize the current knowledge, mostly from studies with murine models, supporting the concept that the effects of food phenolics on brown fat activation and white fat browning can be attributed to their regulatory actions on gut microecology, including microbial community profile, gut metabolites, and gut-derived hormones. Furthermore, the potential underlying pathways involved are also discussed. Basically, understanding gut microecology paves the way to determine the underlying roles and mechanisms of food phenolics in adipose browning.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yongzhi Wang
- Food and Beverage Department of Damin Food (Zhangzhou) Co., Ltd, Zhangzhou, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
130
|
Zhang S, Song P, Chen X, Wang Y, Gao X, Liang L, Zhao J. Astragalus polysaccharide regulates brown adipocytes differentiation by miR-6911 targeting Prdm16. Lipids 2021; 57:45-55. [PMID: 34738642 DOI: 10.1002/lipd.12328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/22/2023]
Abstract
Brown adipose tissue (BAT) is a specialized tissue in mammals related to thermogenesis. The Astragalus polysaccharide (APS) is the major natural active component of Astragalus membranaceus, which has been recognized as one of the most popular herbal medicines worldwide. The role and possible mechanisms of APS on brown adipocytes differentiation is not well defined. Here, we explored the effect of APS on the differentiation of brown adipocytes in C3H10T 1/2 cells. The results showed that APS promoted the differentiation of brown adipocytes and improved insulin sensitivity along with significant increases in the expression of brown adipogenic marker proteins (C/EBPα, C/EBPβ, and PPARγ), thermogenesis marker proteins (UCP1, PRDM16, and PGC-1α), and insulin sensitivity marker protein (GLUT4). Meanwhile, the results showed that the amount of the phosphorylation of insulin receptor substrate 1 (p-IRS1) and phospho-AKT (p-AKT) which are critical factors in the insulin signaling pathway was increased without changing the total amount of IRS and AKT. Furthermore, the results of RNA-seq showed that APS altered the expression profiles of various miRNAs, and among which the expression of miR-6911 as a universal regulatory factor was significantly decreased. Importantly, we found that miR-6911 regulated the differentiation of brown adipocytes by targeting PR domain-containing 16 (Prdm16). In addition, after transfection of miR-6911 mimics, compared with the control and inhibitor group, PRDM16 protein expression significantly decreased, which was accompanied by the decrease of PPARγ, UCP1, and PGC-1α. Collectively, our results indicated that APS regulated brown adipocytes differentiation in C3H10T 1/2 cells via miRNA-6911 targeting Prdm16.
Collapse
Affiliation(s)
- Shihe Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Pengkang Song
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Xiaoyou Chen
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yu Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Xuyang Gao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Lin Liang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
131
|
Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021; 10:cells10113030. [PMID: 34831253 PMCID: PMC8616549 DOI: 10.3390/cells10113030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago, and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. A substantially decreased BAT activity in individuals with obesity indicates a role for BAT in the setting of human obesity. On the other hand, BAT mass and its prevalence correlate with lower body mass index (BMI), decreased age and lower glucose levels, leading to a lower incidence of cardio-metabolic diseases. The increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. A deeper understanding of the role of BAT in human metabolic health and its interrelationship with body fat distribution and deciphering proper strategies to increase energy expenditure, by either increasing functional BAT mass or inducing white adipose browning, holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.
Collapse
|
132
|
Wu R, Chen Y, Liu Y, Zhuang L, Chen W, Zeng B, Liao X, Guo G, Wang Y, Wang X. m6A methylation promotes white-to-beige fat transition by facilitating Hif1a translation. EMBO Rep 2021; 22:e52348. [PMID: 34569703 DOI: 10.15252/embr.202052348] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity mainly results from a chronic energy imbalance. Promoting browning of white adipocytes is a promising strategy to enhance energy expenditure and combat obesity. N6-methyladenosine (m6A), the most abundant mRNA modification in eukaryotes, plays an important role in regulating adipogenesis. However, whether m6A regulates white adipocyte browning was unknown. Here, we report that adipose tissue-specific deletion of Fto, an m6A demethylase, predisposes mice to prevent high-fat diet (HFD)-induced obesity by enhancing energy expenditure. Additionally, deletion of FTO in vitro promotes thermogenesis and white-to-beige adipocyte transition. Mechanistically, FTO deficiency increases the m6A level of Hif1a mRNA, which is recognized by m6A-binding protein YTHDC2, facilitating mRNA translation and increasing HIF1A protein abundance. HIF1A activates the transcription of thermogenic genes, including Ppaggc1a, Prdm16, and Pparg, thereby promoting Ucp1 expression and the browning process. Collectively, these results unveil an epigenetic mechanism by which m6A-facilitated HIF1A expression controls browning of white adipocytes and thermogenesis, providing a potential target to counteract obesity and metabolic disease.
Collapse
Affiliation(s)
- Ruifan Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Youhua Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Botao Zeng
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xing Liao
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Guanqun Guo
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
133
|
Lee JY, Lee M, Lee JY, Bae J, Shin E, Lee YH, Lee BW, Kang ES, Cha BS. Ipragliflozin, an SGLT2 Inhibitor, Ameliorates High-Fat Diet-Induced Metabolic Changes by Upregulating Energy Expenditure through Activation of the AMPK/ SIRT1 Pathway. Diabetes Metab J 2021; 45:921-932. [PMID: 33611885 PMCID: PMC8640151 DOI: 10.4093/dmj.2020.0187] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that exhibit multiple extraglycemic effects. However, there are conflicting results regarding the effects of SGLT2 inhibition on energy expenditure and thermogenesis. Therefore, we investigated the effect of ipragliflozin (a selective SGLT2 inhibitor) on energy metabolism. METHODS Six-week-old male 129S6/Sv mice with a high propensity for adipose tissue browning were randomly assigned to three groups: normal chow control, 60% high-fat diet (HFD)-fed control, and 60% HFD-fed ipragliflozin-treated groups. The administration of diet and medication was continued for 16 weeks. RESULTS The HFD-fed mice became obese and developed hepatic steatosis and adipose tissue hypertrophy, but their random glucose levels were within the normal ranges; these features are similar to the metabolic features of a prediabetic condition. Ipragliflozin treatment markedly attenuated HFD-induced hepatic steatosis and reduced the size of hypertrophied adipocytes to that of smaller adipocytes. In the ipragliflozin treatment group, uncoupling protein 1 (Ucp1) and other thermogenesis-related genes were significantly upregulated in the visceral and subcutaneous adipose tissue, and fatty acid oxidation was increased in the brown adipose tissue. These effects were associated with a significant reduction in the insulin-to-glucagon ratio and the activation of the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway in the liver and adipose tissue. CONCLUSION SGLT2 inhibition by ipragliflozin showed beneficial metabolic effects in 129S6/Sv mice with HFD-induced obesity that mimics prediabetic conditions. Our data suggest that SGLT2 inhibitors, through their upregulation of energy expenditure, may have therapeutic potential in prediabetic obesity.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Lee
- Department of Molecular, Cellular and Cancer Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jaehyun Bae
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eugene Shin
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
134
|
Kim D, Lee Y, Kim HR, Park YJ, Hwang H, Rhim H, Kang T, Choi CW, Lee B, Kim MS. Hypothalamic administration of sargahydroquinoic acid elevates peripheral thermogenic signaling and ameliorates high fat diet-induced obesity through the sympathetic nervous system. Sci Rep 2021; 11:21315. [PMID: 34716371 PMCID: PMC8556287 DOI: 10.1038/s41598-021-00074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Sargassum serratifolium (C. Agardh) C.Agardh, a marine brown alga, has been consumed as a food and traditional medicine in Asia. A previous study showed that the meroterpenoid-rich fraction of an ethanolic extract of S. serratifolium (MES) induced adipose tissue browning and suppressed diet-induced obesity and metabolic syndrome when orally supplemented. Sargahydroquinoic acid (SHQA) is a major component of MES. However, it is unclear whether SHQA regulates energy homeostasis through the central nervous system. To examine this, SHQA was administrated through the third ventricle in the hypothalamus in high-fat diet-fed C57BL/6 mice and investigated its effects on energy homeostasis. Chronic administration of SHQA into the brain reduced body weight without a change in food intake and improved metabolic syndrome-related phenotypes. Cold experiments and biochemical analyses indicated that SHQA elevated thermogenic signaling pathways, as evidenced by an increase in body temperature and UCP1 signaling in white and brown adipose tissues. Peripheral denervation experiments using 6-OHDA indicated that the SHQA-induced anti-obesity effect is mediated by the activation of the sympathetic nervous system, possibly by regulating genes associated with sympathetic outflow and GABA signaling pathways. In conclusion, hypothalamic injection of SHQA elevates peripheral thermogenic signaling and ameliorates diet-induced obesity.
Collapse
Affiliation(s)
- Doyeon Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yuna Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yeo Jin Park
- Korea Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
- Korean Convergence Medicine, University of Science and Technology, Daejeon, 34504, Republic of Korea
| | - Hongik Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chun Whan Choi
- Natural Product Research Team, Gyeonggi Biocenter, Gyeonggido Business and Science Accelerator, Suwon, Gyeonggi-Do, 16229, Republic of Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
135
|
Anti-Hyperlipidemia and Gut Microbiota Community Regulation Effects of Selenium-Rich Cordyceps militaris Polysaccharides on the High-Fat Diet-Fed Mice Model. Foods 2021; 10:foods10102252. [PMID: 34681302 PMCID: PMC8534605 DOI: 10.3390/foods10102252] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Supplementation of polysaccharides is a promising gut microbiota-targeted therapeutic method for obesity and metabolic diseases. Biological activities of Cordyceps militaris polysaccharides have been well reported, but the effect of selenium (Se)-rich C. militaris polysaccharides (SeCMP) on obesity and associated metabolic disorder and gut microbiota composition has been rarely studied. This study aimed to investigate the anti-obesity and gut microbiota modulatory effect of crude polysaccharides separated from Se-rich C. militaris on a high-fat diet (HFD)-fed C57BL/6J mice model. Mice were treated with a normal diet (CHOW), HFD alone, HFD plus C. militaris polysaccharides (CMP), or low/medium/high dosage of SeCMP for 8 weeks. Body weight, fat content, serum lipid, appetite hormone, lipid gene expression, inflammation cytokines, thermogenic protein, short-chain fatty acids (SCFAs), and gut microbiota structure of the mice were determined. Compared with HFD-fed mice, the serum triglyceride and low-density lipoprotein cholesterol (LDL-C) in the SeCMP-200 group were decreased by 51.5% and 44.1%, respectively. Furthermore, serum lipopolysaccharide-binding proteins (LBP), adiponectin level, and pro-inflammation gene expression in the colon and subcutaneous fat were inhibited, whereas anti-inflammation gene expression was improved, reflecting SeCMP-200 might mitigate obese-induced inflammation. Meanwhile, SeCMP-200 promoted satiety and thermogenesis of obese mice. It also significantly decreased gut bacteria, such as Dorea, Lactobacillus, Clostridium, Ruminococcus, that negatively correlated with obesity traits and increased mucosal beneficial bacteria Akkermansia. There was no significant difference between CMP and SeCMP-100 groups. Our results revealed a high dose of SeCMP could prevent HFD-induced dyslipidemia and gut microbiota dysbiosis and was potential to be used as functional foods.
Collapse
|
136
|
Role of Brown and Beige Adipose Tissues in Seasonal Adaptation in the Raccoon Dog ( Nyctereutes procyonoides). Int J Mol Sci 2021; 22:ijms22179623. [PMID: 34502532 PMCID: PMC8431801 DOI: 10.3390/ijms22179623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter.
Collapse
|
137
|
Miyamae Y. Insights into Dynamic Mechanism of Ligand Binding to Peroxisome Proliferator-Activated Receptor γ toward Potential Pharmacological Applications. Biol Pharm Bull 2021; 44:1185-1195. [PMID: 34471046 DOI: 10.1248/bpb.b21-00263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily, which regulates the transcription of a variety of genes involved in lipid and glucose metabolism, inflammation, and cell proliferation. These functions correlate with the onset of type-2 diabetes, obesity, and immune disorders, which makes PPARγ a promising target for drug development. The majority of PPARγ functions are regulated by binding of small molecule ligands, which cause conformational changes of PPARγ followed by coregulator recruitment. The ligand-binding domain (LBD) of PPARγ contains a large Y-shaped cavity that can be occupied by various classes of compounds such as full agonists, partial agonists, natural lipids, and in some cases, a combination of multiple molecules. Several crystal structure studies have revealed the binding modes of these compounds in the LBD and insight into the resulting conformational changes. Notably, the apo form of the PPARγ LBD contains a highly mobile region that can be stabilized by ligand binding. Furthermore, recent biophysical investigations have shed light on the dynamic mechanism of how ligands induce conformational changes in PPARγ and result in functional output. This information may be useful for the design of new and repurposed structures of ligands that serve a different function from original compounds and more potent pharmacological effects with less undesirable clinical outcomes. This review provides an overview of the peculiar characteristics of the PPARγ LBD by examining a series of structural studies focused on the dynamic mechanism of binding and the potential applications of strategies for ligand screening and chemical labeling.
Collapse
Affiliation(s)
- Yusaku Miyamae
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Alliance for Research on the Mediterranean and North Africa, University of Tsukuba
| |
Collapse
|
138
|
Goddard KE. Consequences of an obesogenic diet can be prevented by knockout of P2Y 6 purinergic receptor in mice. Purinergic Signal 2021; 17:323-325. [PMID: 33905052 PMCID: PMC8410915 DOI: 10.1007/s11302-021-09793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- Kayleigh E Goddard
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
139
|
Wang Z, Gao X, Li Q, Zhu H, Zhao X, Garcia-Barrio M, Zhang J, Guo Y, Chen YE, Zeng R, Wu JR, Chang L. Inhibition of a Novel CLK1-THRAP3-PPARγ Axis Improves Insulin Sensitivity. Front Physiol 2021; 12:699578. [PMID: 34526909 PMCID: PMC8435799 DOI: 10.3389/fphys.2021.699578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing energy expenditure by promoting "browning" in adipose tissues is a promising strategy to prevent obesity and associated diabetes. To uncover potential targets of cold exposure, which induces energy expenditure, we performed phosphoproteomics profiling in brown adipose tissue of mice housed in mild cold environment at 16°C. We identified CDC2-like kinase 1 (CLK1) as one of the kinases that were significantly downregulated by mild cold exposure. In addition, genetic knockout of CLK1 or chemical inhibition in mice ameliorated diet-induced obesity and insulin resistance at 22°C. Through proteomics, we uncovered thyroid hormone receptor-associated protein 3 (THRAP3) as an interacting partner of CLK1, further confirmed by co-immunoprecipitation assays. We further demonstrated that CLK1 phosphorylates THRAP3 at Ser243, which is required for its regulatory interaction with phosphorylated peroxisome proliferator-activated receptor gamma (PPARγ), resulting in impaired adipose tissue browning and insulin sensitivity. These data suggest that CLK1 plays a critical role in controlling energy expenditure through the CLK1-THRAP3-PPARγ axis.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Xiaojing Gao
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingrun Li
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Hongwen Zhu
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Xiangjie Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| | - Jia-Rui Wu
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
140
|
PPARs-Orchestrated Metabolic Homeostasis in the Adipose Tissue. Int J Mol Sci 2021; 22:ijms22168974. [PMID: 34445679 PMCID: PMC8396609 DOI: 10.3390/ijms22168974] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
It has been more than three decades since peroxisome proliferator-activated receptors (PPARs) were first discovered. Many investigations have revealed the central regulators of PPARs in lipid and glucose homeostasis in response to different nutrient conditions. PPARs have attracted much attention due to their ability to improve metabolic syndromes, and they have also been proposed as classical drug targets for the treatment of hyperlipidemia and type 2 diabetes (T2D) mellitus. In parallel, adipose tissue is known to play a unique role in the pathogenesis of insulin resistance and metabolic syndromes due to its ability to “safely” store lipids and secrete cytokines that regulate whole-body metabolism. Adipose tissue relies on a complex and subtle network of transcription factors to maintain its normal physiological function, by coordinating various molecular events, among which PPARs play distinctive and indispensable roles in adipocyte differentiation, lipid metabolism, adipokine secretion, and insulin sensitivity. In this review, we discuss the characteristics of PPARs with special emphasis on the roles of the different isotypes in adipocyte biology.
Collapse
|
141
|
Jiang CL, Chen YF, Lin FJ. Apolipoprotein E deficiency activates thermogenesis of white adipose tissues in mice through enhancing β-hydroxybutyrate production from precursor cells. FASEB J 2021; 35:e21760. [PMID: 34309918 DOI: 10.1096/fj.202100298rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022]
Abstract
White adipose tissue (WAT) has the capacity to undergo a white-to-beige phenotypic switch, known as browning, in response to stimuli such as cold. However, the mechanism underlying beige adipocyte formation is largely unknown. Apolipoprotein E (ApoE) is highly induced in WAT and has been implicated in lipid metabolism. Here, we show that ApoE deficiency in mice increased oxygen consumption and thermogenesis and enhanced adipose browning pattern in inguinal WAT (iWAT), with associated characteristics such as increased Ucp1 and Pparγ expression. At the cellular level, ApoE deficient beige adipocytes had increased glucose uptake and higher mitochondrial respiration than wild-type cells. Mechanistically, we showed that ApoE deficient iWAT and primary adipose precursor cells activated the thermogenic genes program by stimulating the production of ketone body β-hydroxybutyrate (βHB), a novel adipose browning promoting factor. This was accompanied by increased expression of genes involved in ketogenesis and could be compromised by the treatment for ketogenesis inhibitors. Consistently, ApoE deficient mice show higher serum βHB level than wild-type mice in the fed state and during cold exposure. Our results further demonstrate that the increased βHB production in ApoE deficient adipose precursor cells could be attributed, at least in part, to enhanced Cd36 expression and CD36-mediated fatty acid utilization. Our findings uncover a previously uncharacterized role for ApoE in energy homeostasis via its cell-autonomous action in WAT.
Collapse
Affiliation(s)
- Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ying-Fang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.,Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
142
|
Tan HYA, Sim MFM, Tan SX, Ng Y, Gan SY, Li H, Neo SP, Gunaratne J, Xu F, Han W. HOXC10 Suppresses Browning to Maintain White Adipocyte Identity. Diabetes 2021; 70:1654-1663. [PMID: 33990396 PMCID: PMC8385616 DOI: 10.2337/db21-0114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022]
Abstract
Promoting beige adipocyte development within white adipose tissue (WAT) is a potential therapeutic approach to staunch the current obesity epidemic. Previously, we identified homeobox-containing transcription factor HOXC10 as a suppressor of browning in subcutaneous WAT. Here, we provide evidence for the physiological role of HOXC10 in regulating WAT thermogenesis. Analysis of an adipose-specific HOXC10 knockout mouse line with no detectable HOXC10 in mature adipocytes revealed spontaneous subcutaneous WAT browning, increased expression of genes involved in browning, increased basal rectal temperature, enhanced cold tolerance, and improved glucose homeostasis. These phenotypes were further exacerbated by exposure to cold or a β-adrenergic stimulant. Mechanistically, cold and β-adrenergic exposure led to reduced HOXC10 protein level without affecting its mRNA level. Cold exposure induced cAMP-dependent protein kinase-dependent proteasome-mediated degradation of HOXC10 in cultured adipocytes, and shotgun proteomics approach identified KCTD2, 5, and 17 as potential E3 ligases regulating HOXC10 proteasomal degradation. Collectively, these data demonstrate that HOXC10 is a gatekeeper of WAT identity, and targeting HOXC10 could be a plausible therapeutic strategy to unlock WAT thermogenic potentials.
Collapse
Affiliation(s)
- H Y Angeline Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - M F Michelle Sim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shi-Xiong Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yvonne Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sin Yee Gan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hongyu Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Suat Peng Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Feng Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
143
|
Du H, Wang Q, Li T, Ren D, Yang X. Grape seed proanthocyanidins reduced the overweight of C57BL/6J mice through modulating adipose thermogenesis and gut microbiota. Food Funct 2021; 12:8467-8477. [PMID: 34296715 DOI: 10.1039/d1fo01361k] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Activating the thermogenic function of adipocytes is an attractive therapeutic strategy against obesity and its associated metabolic complications. Proanthocyanidins are a class of polyphenols which are widely found in plants and daily foods. This aim of this study is to investigate the modulatory effects of grape seed proanthocyanidin extract (GSPE) on brown adipose tissue (BAT) activity, browning of white adipose tissue (WAT) and microbiome regulation in high-fat diet (HFD)-fed mice and its associated molecular mechanism. An 8-week administration of GSPE at 200 mg per kg bw in mice significantly reduced their final body weight, antagonized their HFD-induced insulin resistance and elevated their levels of adiponectin and leptin, respectively (p < 0.05). GSPE significantly increased the expression levels of thermogenic marker UCP1 in BAT and elevated the expression of a key transcription factor of browning, PRDM16, and thermogenic markers UCP1 and PGC-1α in inguinal white adipose tissue (iWAT). The high doses of GSPE also increased the levels of acetic acid, propionic acid and butyric acid in the colon of HFD-fed mice (p < 0.05). Furthermore, GSPE normalized the colonic Firmicutes/Bacteroidetes ratios, reversed the relative abundance of Weissella, Faecalibaculum, Bacteroides, Akkermansia and Ruminococcus 1 induced by HFD, and improved the structural diversity of the gut microbiota in C57BL/6J mice.
Collapse
Affiliation(s)
- Haiping Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Qi Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
144
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
145
|
Zhao J, Tao C, Chen C, Wang Y, Liu T. Formation of thermogenic adipocytes: What we have learned from pigs. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
146
|
Kim S, Reed E, Monti S, Schlezinger JJ. A Data-Driven Transcriptional Taxonomy of Adipogenic Chemicals to Identify White and Brite Adipogens. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77006. [PMID: 34323617 PMCID: PMC8320370 DOI: 10.1289/ehp6886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Chemicals in disparate structural classes activate specific subsets of the transcriptional programs of peroxisome proliferator-activated receptor-γ (PPARγ) to generate adipocytes with distinct phenotypes. OBJECTIVES Our objectives were to a) establish a novel classification method to predict PPARγ ligands and modifying chemicals; and b) create a taxonomy to group chemicals on the basis of their effects on PPARγ's transcriptome and downstream metabolic functions. We tested the hypothesis that environmental adipogens highly ranked by the taxonomy, but segregated from therapeutic PPARγ ligands, would induce white but not brite adipogenesis. METHODS 3T3-L1 cells were differentiated in the presence of 76 chemicals (negative controls, nuclear receptor ligands known to influence adipocyte biology, potential environmental PPARγ ligands). Differentiation was assessed by measuring lipid accumulation. mRNA expression was determined by RNA-sequencing (RNA-Seq) and validated by reverse transcription-quantitative polymerase chain reaction. A novel classification model was developed using an amended random forest procedure. A subset of environmental contaminants identified as strong PPARγ agonists were analyzed by their effects on lipid handling, mitochondrial biogenesis, and cellular respiration in 3T3-L1 cells and human preadipocytes. RESULTS We used lipid accumulation and RNA-Seq data to develop a classification system that a) identified PPARγ agonists; and b) sorted chemicals into likely white or brite adipogens. Expression of Cidec was the most efficacious indicator of strong PPARγ activation. 3T3-L1 cells treated with two known environmental PPARγ ligands, tetrabromobisphenol A and triphenyl phosphate, which sorted distinctly from therapeutic ligands, had higher expression of white adipocyte genes but no difference in Pgc1a and Ucp1 expression, and higher fatty acid uptake but not mitochondrial biogenesis. Moreover, cells treated with two chemicals identified as highly ranked PPARγ agonists, tonalide and quinoxyfen, induced white adipogenesis without the concomitant health-promoting characteristics of brite adipocytes in mouse and human preadipocytes. DISCUSSION A novel classification procedure accurately identified environmental chemicals as PPARγ ligands distinct from known PPARγ-activating therapeutics. CONCLUSION The computational and experimental framework has general applicability to the classification of as-yet uncharacterized chemicals. https://doi.org/10.1289/EHP6886.
Collapse
Affiliation(s)
- Stephanie Kim
- Boston University Superfund Research Program, Boston University, Massachusetts, USA
- Department of Environmental Health, Boston University School of Public Health, Massachusetts, USA
| | - Eric Reed
- Boston University Superfund Research Program, Boston University, Massachusetts, USA
- Section of Computational Biomedicine, Boston University School of Medicine, Massachusetts, USA
- Boston University Bioinformatics Program, Boston University, Massachusetts, USA
| | - Stefano Monti
- Boston University Superfund Research Program, Boston University, Massachusetts, USA
- Section of Computational Biomedicine, Boston University School of Medicine, Massachusetts, USA
- Boston University Bioinformatics Program, Boston University, Massachusetts, USA
| | - Jennifer J. Schlezinger
- Boston University Superfund Research Program, Boston University, Massachusetts, USA
- Department of Environmental Health, Boston University School of Public Health, Massachusetts, USA
| |
Collapse
|
147
|
Xu X, Ma A, Li T, Cui W, Wang X, Li J, Li Q, Pang Y. Genetic and Functional Characterization of Novel Brown-Like Adipocytes Around the Lamprey Brain. Front Cell Dev Biol 2021; 9:674939. [PMID: 34277616 PMCID: PMC8281276 DOI: 10.3389/fcell.2021.674939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
During the process of vertebrate evolution, many thermogenic organs and mechanisms have appeared. Mammalian brown adipose tissue (BAT) generates heat through the uncoupling oxidative phosphorylation of mitochondria, acts as a natural defense against hypothermia and inhibits the development of obesity. Although the existence, cellular origin and molecular identity of BAT in humans have been well studied, the genetic and functional characteristics of BAT from lampreys remain unknown. Here, we identified and characterized a novel, naturally existing brown-like adipocytes at the lamprey brain periphery. Similar to human BAT, the lamprey brain periphery contains brown-like adipocytes that maintain the same morphology as human brown adipocytes, containing multilocular lipid droplets and high mitochondrion numbers. Furthermore, we found that brown-like adipocytes in the periphery of lamprey brains responded to thermogenic reagent treatment and cold exposure and that lamprey UCP2 promoted precursor adipocyte differentiation. Molecular mapping by RNA-sequencing showed that inflammation in brown-like adipocytes treated with LPS and 25HC was enhanced compared to controls. The results of this study provide new evidence for human BAT research and demonstrate the multilocular adipose cell functions of lampreys, including: (1) providing material energy and protecting structure, (2) generating additional heat and contributing to adaptation to low-temperature environments, and (3) resisting external pathogens.
Collapse
Affiliation(s)
- XiaoLuan Xu
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - AnQi Ma
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - TieSong Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - WenXue Cui
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - XueFeng Wang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
148
|
Blackburn ML, Wankhade UD, Ono-Moore KD, Chintapalli SV, Fox R, Rutkowsky JM, Willis BJ, Tolentino T, Lloyd KCK, Adams SH. On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice. Am J Physiol Endocrinol Metab 2021; 321:E47-E62. [PMID: 33969705 PMCID: PMC8321818 DOI: 10.1152/ajpendo.00662.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myoglobin (Mb) regulates O2 bioavailability in muscle and heart as the partial pressure of O2 (Po2) drops with increased tissue workload. Globin proteins also modulate cellular NO pools, "scavenging" NO at higher Po2 and converting NO2- to NO as Po2 falls. Myoglobin binding of fatty acids may also signal a role in fat metabolism. Interestingly, Mb is expressed in brown adipose tissue (BAT), but its function is unknown. Herein, we present a new conceptual model that proposes links between BAT thermogenic activation, concurrently reduced Po2, and NO pools regulated by deoxy/oxy-globin toggling and xanthine oxidoreductase (XOR). We describe the effect of Mb knockout (Mb-/-) on BAT phenotype [lipid droplets, mitochondrial markers uncoupling protein 1 (UCP1) and cytochrome C oxidase 4 (Cox4), transcriptomics] in male and female mice fed a high-fat diet (HFD, 45% of energy, ∼13 wk), and examine Mb expression during brown adipocyte differentiation. Interscapular BAT weights did not differ by genotype, but there was a higher prevalence of mid-large sized droplets in Mb-/-. COX4 protein expression was significantly reduced in Mb-/- BAT, and a suite of metabolic/NO/stress/hypoxia transcripts were lower. All of these Mb-/--associated differences were most apparent in females. The new conceptual model, and results derived from Mb-/- mice, suggest a role for Mb in BAT metabolic regulation, in part through sexually dimorphic systems and NO signaling. This possibility requires further validation in light of significant mouse-to-mouse variability of BAT Mb mRNA and protein abundances in wild-type mice and lower expression relative to muscle and heart.NEW & NOTEWORTHY Myoglobin confers the distinct red color to muscle and heart, serving as an oxygen-binding protein in oxidative fibers. Less attention has been paid to brown fat, a thermogenic tissue that also expresses myoglobin. In a mouse knockout model lacking myoglobin, brown fat had larger fat droplets and lower markers of mitochondrial oxidative metabolism, especially in females. Gene expression patterns suggest a role for myoglobin as an oxygen/nitric oxide-sensor that regulates cellular metabolic and signaling pathways.
Collapse
Affiliation(s)
- Michael L Blackburn
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Renee Fox
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, California
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
| | - Brandon J Willis
- Mouse Biology Program, University of California, Davis, California
| | - Todd Tolentino
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
| | - K C Kent Lloyd
- Mouse Metabolic Phenotyping Center, University of California, Davis, California
- Mouse Biology Program, University of California, Davis, California
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California
- Center for Alimentary and Metabolic Science, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
149
|
Chen LL, Huang JQ, Wu YY, Chen LB, Li SP, Zhang X, Wu S, Ren FZ, Lei XG. Loss of Selenov predisposes mice to extra fat accumulation and attenuated energy expenditure. Redox Biol 2021; 45:102048. [PMID: 34167027 PMCID: PMC8227834 DOI: 10.1016/j.redox.2021.102048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein V (SELENOV) is a new and the least conserved member of the selenoprotein family. Herein we generated Selenov knockout (KO) mice to determine its in vivo function. The KO led to 16-19% increases (P < 0.05) in body weight that were largely due to 54% higher (P < 0.05) fat mass accumulation, compared with the wild-type (WT) controls. The extra fat accumulation in the KO mice was mediated by up-regulations of genes and proteins involved in lipogenesis (Acc, Fas, Dgat, and Lpl; up by 40%-1.1-fold) and down-regulations of lipolysis (Atgl, Hsl, Ces1d, and Cpt1a; down by 36-89%) in the adipose tissues. The KO also decreased (P < 0.05) VO2 consumption (14-21%), VCO2 production (14-16%), and energy expenditure (14-23%), compared with the WT controls. SELENOV and O-GlcNAc transferase (OGT) exhibited a novel protein-protein interaction that explained the KO-induced decreases (P < 0.05) of OGT protein (15-29%), activity (33%), and function (O-GlcNAcylation, 10-21%) in the adipose tissues. A potential cascade of SELENOV-OGT-AMP-activated protein kinase might serve as a central mechanism to link the biochemical and molecular responses to the KO. Overall, our data revealed a novel in vivo function and mechanism of SELENOV as a new inhibitor of body fat accumulation, activator of energy expenditure, regulator of O-GlcNAcylation, and therapeutic target of such related disorders.
Collapse
Affiliation(s)
- Ling-Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yuan-Yuan Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Liang-Bing Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Life Science and Agriculture Department, Zhoukou Normal University, Zhoukou, Henan, 466001, China
| | - Shu-Ping Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Xin-Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
150
|
Atrial Natriuretic Peptide Orchestrates a Coordinated Physiological Response to Fuel Non-shivering Thermogenesis. Cell Rep 2021; 32:108075. [PMID: 32846132 DOI: 10.1016/j.celrep.2020.108075] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/12/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone controlling blood volume and pressure in mammals. It is still unclear whether ANP controls cold-induced thermogenesis in vivo. Here, we show that acute cold exposure induces cardiac ANP secretion in mice and humans. Genetic inactivation of ANP promotes cold intolerance and suppresses half of cold-induced brown adipose tissue (BAT) activation in mice. While white adipocytes are resistant to ANP-mediated lipolysis at thermoneutral temperature in mice, cold exposure renders white adipocytes fully responsive to ANP to activate lipolysis and a thermogenic program, a physiological response that is dramatically suppressed in ANP null mice. ANP deficiency also blunts liver triglycerides and glycogen metabolism, thus impairing fuel availability for BAT thermogenesis. ANP directly increases mitochondrial uncoupling and thermogenic gene expression in human white and brown adipocytes. Together, these results indicate that ANP is a major physiological trigger of BAT thermogenesis upon cold exposure in mammals.
Collapse
|