101
|
Dworatzyk K, Jansen T, Schmidt TT. Phenomenological assessment of psychedelics induced experiences: Translation and validation of the German Challenging Experience Questionnaire (CEQ) and Ego-Dissolution Inventory (EDI). PLoS One 2022; 17:e0264927. [PMID: 35294453 PMCID: PMC8926265 DOI: 10.1371/journal.pone.0264927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Several measures have been designed to assess subjective experiences induced by psychedelic substances or other mind-altering drugs as well as non-pharmacological methods. Recently, two self-report questionnaires have been introduced to measure acute adverse effects following psilocybin ingestion and the phenomenon of ego-dissolution associated with the use of psychedelics, respectively. The 26-item Challenging Experience Questionnaire assesses multiple facets of psilocybin induced experiences on seven subscales, whereas the 8-item Ego-Dissolution Inventory consists of a unidimensional scale. In the present study, these questionnaires were translated into German and their psychometric properties then evaluated in an online survey on psychedelics induced experiences. Confirmatory factor analysis suggested an acceptable fit of the 7-factor structure of the German Challenging Experience Questionnaire with overall good internal consistency for all subscales. The factor structure did not differ based on gender or prior struggle with a psychiatric disorder, furthering the evidence of internal validity. Correlations with the State-Trait-Anxiety Inventory and the Altered States of Consciousness Rating Scale demonstrated convergent validity. Confirmatory factor analysis did not support the hypothesized single-factor structure of the German Ego-Dissolution Inventory and exploratory factor analysis suggested an alternative factor structure, where only five items loaded onto a common factor that was interpreted as ego-dissolution. Internal consistency of this 5-item measure was high and correlation with selected items of the Mystical Experience Questionnaire and Altered States of Consciousness Rating Scale supported convergent validity. Translation and validation of these questionnaires contribute to the advancement of common standards in the psychological and neuroscientific study of altered states of consciousness.
Collapse
Affiliation(s)
| | - Tallulah Jansen
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Timo Torsten Schmidt
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
102
|
Girn M, Roseman L, Bernhardt B, Smallwood J, Carhart-Harris R, Nathan Spreng R. Serotonergic psychedelic drugs LSD and psilocybin reduce the hierarchical differentiation of unimodal and transmodal cortex. Neuroimage 2022; 256:119220. [PMID: 35483649 DOI: 10.1016/j.neuroimage.2022.119220] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
Lysergic acid diethylamide (LSD) and psilocybin are serotonergic psychedelic compounds with potential in the treatment of mental health disorders. Past neuroimaging investigations have revealed that both compounds can elicit significant changes to whole-brain functional organization and dynamics. A recent proposal linked past findings into a unified model and hypothesized reduced whole-brain hierarchical organization as a key mechanism underlying the psychedelic state, but this has yet to be directly tested. We applied a non-linear dimensionality reduction technique previously used to map hierarchical connectivity gradients to assess cortical organization in the LSD and psilocybin state from two previously published pharmacological resting-state fMRI datasets (N = 15 and 9, respectively). Results supported our primary hypothesis: The principal gradient of cortical connectivity, describing a hierarchy from unimodal to transmodal cortex, was significantly flattened under both drugs relative to their respective placebo conditions. Between-condition contrasts revealed that this was driven by a reduction of functional differentiation at both hierarchical extremes - default and frontoparietal networks at the upper end, and somatomotor at the lower. Gradient-based connectivity mapping indicated that this was underpinned by a disruption of modular unimodal connectivity and increased unimodal-transmodal crosstalk. Results involving the second and third gradient, which, respectively represent axes of sensory and executive differentiation, also showed significant alterations across both drugs. These findings provide support for a recent mechanistic model of the psychedelic state relevant to therapeutic applications of psychedelics. More fundamentally, we provide the first evidence that macroscale connectivity gradients are sensitive to an acute pharmacological manipulation, supporting a role for psychedelics as scientific tools to perturb cortical functional organization.
Collapse
Affiliation(s)
- Manesh Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 Rue Université, Montreal, QC H3A 2B4, Canada.
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Boris Bernhardt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 Rue Université, Montreal, QC H3A 2B4, Canada
| | | | - Robin Carhart-Harris
- Neuroscape Psychedelics Division, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 Rue Université, Montreal, QC H3A 2B4, Canada; Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Verdun, QC, Canada; McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
103
|
Doss MK, Madden MB, Gaddis A, Nebel MB, Griffiths RR, Mathur BN, Barrett FS. Models of psychedelic drug action: modulation of cortical-subcortical circuits. Brain 2022; 145:441-456. [PMID: 34897383 PMCID: PMC9014750 DOI: 10.1093/brain/awab406] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Classic psychedelic drugs such as psilocybin and lysergic acid diethylamide (LSD) have recaptured the imagination of both science and popular culture, and may have efficacy in treating a wide range of psychiatric disorders. Human and animal studies of psychedelic drug action in the brain have demonstrated the involvement of the serotonin 2A (5-HT2A) receptor and the cerebral cortex in acute psychedelic drug action, but different models have evolved to try to explain the impact of 5-HT2A activation on neural systems. Two prominent models of psychedelic drug action (the cortico-striatal thalamo-cortical, or CSTC, model and relaxed beliefs under psychedelics, or REBUS, model) have emphasized the role of different subcortical structures as crucial in mediating psychedelic drug effects. We describe these models and discuss gaps in knowledge, inconsistencies in the literature and extensions of both models. We then introduce a third circuit-level model involving the claustrum, a thin strip of grey matter between the insula and the external capsule that densely expresses 5-HT2A receptors (the cortico-claustro-cortical, or CCC, model). In this model, we propose that the claustrum entrains canonical cortical network states, and that psychedelic drugs disrupt 5-HT2A-mediated network coupling between the claustrum and the cortex, leading to attenuation of canonical cortical networks during psychedelic drug effects. Together, these three models may explain many phenomena of the psychedelic experience, and using this framework, future research may help to delineate the functional specificity of each circuit to the action of both serotonergic and non-serotonergic hallucinogens.
Collapse
Affiliation(s)
- Manoj K Doss
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Maxwell B Madden
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Andrew Gaddis
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Roland R Griffiths
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Frederick S Barrett
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
104
|
Ballentine G, Friedman SF, Bzdok D. Trips and neurotransmitters: Discovering principled patterns across 6850 hallucinogenic experiences. SCIENCE ADVANCES 2022; 8:eabl6989. [PMID: 35294242 PMCID: PMC8926331 DOI: 10.1126/sciadv.abl6989] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 05/06/2023]
Abstract
Psychedelics probably alter states of consciousness by disrupting how the higher association cortex governs bottom-up sensory signals. Individual hallucinogenic drugs are usually studied in participants in controlled laboratory settings. Here, we have explored word usage in 6850 free-form testimonials about 27 drugs through the prism of 40 neurotransmitter receptor subtypes, which were then mapped to three-dimensional coordinates in the brain via their gene transcription levels from invasive tissue probes. Despite high interindividual variability, our pattern-learning approach delineated how drug-induced changes of conscious awareness are linked to cortex-wide anatomical distributions of receptor density proxies. Each discovered receptor-experience factor spanned between a higher-level association pole and a sensory input pole, which may relate to the previously reported collapse of hierarchical order among large-scale networks. Coanalyzing many psychoactive molecules and thousands of natural language descriptions of drug experiences, our analytical framework finds the underlying semantic structure and maps it directly to the brain.
Collapse
Affiliation(s)
- Galen Ballentine
- Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Canada
| |
Collapse
|
105
|
Stoliker D, Egan GF, Razi A. Reduced Precision Underwrites Ego Dissolution and Therapeutic Outcomes Under Psychedelics. Front Neurosci 2022; 16:827400. [PMID: 35368271 PMCID: PMC8968396 DOI: 10.3389/fnins.2022.827400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 01/02/2023] Open
Abstract
Evidence suggests classic psychedelics reduce the precision of belief updating and enable access to a range of alternate hypotheses that underwrite how we make sense of the world. This process, in the higher cortices, has been postulated to explain the therapeutic efficacy of psychedelics for the treatment of internalizing disorders. We argue reduced precision also underpins change to consciousness, known as "ego dissolution," and that alterations to consciousness and attention under psychedelics have a common mechanism of reduced precision of Bayesian belief updating. Evidence, connecting the role of serotonergic receptors to large-scale connectivity changes in the cortex, suggests the precision of Bayesian belief updating may be a mechanism to modify and investigate consciousness and attention.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Wellcome Centre for Human Neuroimaging, University College London (UCL), London, United Kingdom
- CIFAR Azrieli Global Scholars Programs, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
106
|
van Amsterdam J, van den Brink W. The therapeutic potential of psilocybin: a systematic review. Expert Opin Drug Saf 2022; 21:833-840. [DOI: 10.1080/14740338.2022.2047929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jan van Amsterdam
- Department of Psychiatry, Academic Medical Center University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Center University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
107
|
Markopoulos A, Inserra A, De Gregorio D, Gobbi G. Evaluating the Potential Use of Serotonergic Psychedelics in Autism Spectrum Disorder. Front Pharmacol 2022; 12:749068. [PMID: 35177979 PMCID: PMC8846292 DOI: 10.3389/fphar.2021.749068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 01/29/2023] Open
Abstract
Recent clinical and preclinical evidence points towards empathogenic and prosocial effects elicited by psychedelic compounds, notably the serotonin 5-HT2A agonists lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), and their derivatives. These findings suggest a therapeutic potential of psychedelic compounds for some of the behavioural traits associated with autism spectrum disorder (ASD), a neurodevelopmental condition characterized by atypical social behaviour. In this review, we highlight evidence suggesting that psychedelics may potentially ameliorate some of the behavioural atypicalities of ASD, including reduced social behaviour and highly co-occurring anxiety and depression. Next, we discuss dysregulated neurobiological systems in ASD and how they may underlie or potentially limit the therapeutic effects of psychedelics. These phenomena include: 1) synaptic function, 2) serotonergic signaling, 3) prefrontal cortex activity, and 4) thalamocortical signaling. Lastly, we discuss clinical studies from the 1960s and 70s that assessed the use of psychedelics in the treatment of children with ASD. We highlight the positive behavioural outcomes of these studies, including enhanced mood and social behaviour, as well as the adverse effects of these trials, including increases in aggressive behaviour and dissociative and psychotic states. Despite preliminary evidence, further studies are needed to determine whether the benefits of psychedelic treatment in ASD outweigh the risks associated with the use of these compounds in this population, and if the 5-HT2A receptor may represent a target for social-behavioural disorders.
Collapse
Affiliation(s)
- Athanasios Markopoulos
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada.,McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
108
|
Reckweg JT, Uthaug MV, Szabo A, Davis AK, Lancelotta R, Mason NL, Ramaekers JG. The clinical pharmacology and potential therapeutic applications of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). J Neurochem 2022; 162:128-146. [PMID: 35149998 PMCID: PMC9314805 DOI: 10.1111/jnc.15587] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
5‐methoxy‐N,N‐dimethyltryptamine (5‐MeO‐DMT) is a naturally occurring tryptamine that primarily acts as an agonist at the 5‐HT1A and 5‐HT2A receptors, whereby affinity for the 5‐HT1A subtype is highest. Subjective effects following 5‐MeO‐DMT administration include distortions in auditory and time perception, amplification of emotional states, and feelings of ego dissolution that usually are short‐lasting, depending on the route of administration. Individual dose escalation of 5‐MeO‐DMT reliably induces a “peak” experience, a state thought to be a core predictor of the therapeutic efficacy of psychedelics. Observational studies and surveys have suggested that single exposure to 5‐MeO‐DMT can cause rapid and sustained reductions in symptoms of depression, anxiety, and stress. 5‐MeO‐DMT also stimulates neuroendocrine function, immunoregulation, and anti‐inflammatory processes, which may contribute to changes in mental health outcomes. To date, only one clinical trial has been published on 5‐MeO‐DMT, demonstrating the safety of vaporized dosing up to 18 mg. Importantly, the rapid onset and short duration of the 5‐MeO‐DMT experience may render it more suitable for individual dose‐finding strategies compared with longer‐acting psychedelics. A range of biotech companies has shown an interest in the development of 5‐MeO‐DMT formulations for a range of medical indications, most notably depression. Commercial development will therefore be the most important resource for bringing 5‐MeO‐DMT to the clinic. However, fundamental research will also be needed to increase understanding of the neurophysiological and neural mechanisms that contribute to the potential clinical effects of 5‐MeO‐DMT and its sustainability and dissemination over time. Such studies are less likely to be conducted as part of drug development programs and are more likely to rely on independent, academic initiatives.
Collapse
Affiliation(s)
- J T Reckweg
- Faculty of Psychology and Neuroscience, Dept of Neuropsychology and psychopharmacology, Maastricht University, The Netherlands
| | - M V Uthaug
- Faculty of Psychology and Neuroscience, Dept of Neuropsychology and psychopharmacology, Maastricht University, The Netherlands
| | - A Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - A K Davis
- Center for Psychedelic Drug Research and Education, College of Social Work, The Ohio State University, Columbus, OH, USA.,Center for Psychedelic and Consciousness Research, Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - R Lancelotta
- Center for Psychedelic Drug Research and Education, College of Social Work, The Ohio State University, Columbus, OH, USA
| | - N L Mason
- Faculty of Psychology and Neuroscience, Dept of Neuropsychology and psychopharmacology, Maastricht University, The Netherlands
| | - J G Ramaekers
- Faculty of Psychology and Neuroscience, Dept of Neuropsychology and psychopharmacology, Maastricht University, The Netherlands
| |
Collapse
|
109
|
Northoff G, Zilio F. Temporo-spatial Theory of Consciousness (TTC) - Bridging the gap of neuronal activity and phenomenal states. Behav Brain Res 2022; 424:113788. [PMID: 35149122 DOI: 10.1016/j.bbr.2022.113788] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/22/2023]
Abstract
Consciousness and its neural mechanisms remain a mystery. Current neuroscientific theories focus predominantly on the external input/stimulus and the associated stimulus-related activity during conscious contents. Despite all progress, we encounter two gaps: (i) a gap between spontaneous and stimulus-related activity; (ii) a gap between neuronal and phenomenal features. A novel, different, and unique approach, Temporo-spatial theory of consciousness (TTC) aims to bridge both gaps. The TTC focuses on the brain's spontaneous activity and how its spatial topography and temporal dynamic shape stimulus-related activity and resurface in the corresponding spatial and temporal features of consciousness, i.e., 'common currency'. The TTC introduces four temporo-spatial mechanisms: expansion, globalization, alignment, and nestedness. These are associated with distinct dimensions of consciousness including phenomenal content, access, form/structure, and level/state, respectively. Following up on the first introduction of the TTC in 2017, we review updates, further develop these temporo-spatial mechanisms, and postulate specific neurophenomenal hypotheses. We conclude that the TTC offers a viable approach for (i) linking spontaneous and stimulus-related activity in conscious states; (ii) determining specific neuronal and neurophenomenal mechanisms for the distinct dimensions of consciousness; (iii) an integrative and unifying framework of different neuroscientific theories of consciousness; and (iv) offers novel empirically grounded conceptual assumptions about the biological and ontological nature of consciousness and its relation to the brain.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy.
| |
Collapse
|
110
|
Vollenweider FX, Smallridge JW. Classic Psychedelic Drugs: Update on Biological
Mechanisms. PHARMACOPSYCHIATRY 2022; 55:121-138. [PMID: 35079988 PMCID: PMC9110100 DOI: 10.1055/a-1721-2914] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Renewed interest in the effects of psychedelics in the treatment of psychiatric
disorders warrants a better understanding of the neurobiological mechanisms
underlying the effects of these substances. During the past two decades,
state-of-the-art studies of animals and humans have yielded new important
insights into the molecular, cellular, and systems-level actions of psychedelic
drugs. These efforts have revealed that psychedelics affect primarily
serotonergic receptor subtypes located in cortico-thalamic and cortico-cortical
feedback circuits of information processing. Psychedelic drugs modulate
excitatory-inhibitory balance in these circuits and can participate in
neuroplasticity within brain structures critical for the integration of
information relevant to sensation, cognition, emotions, and the narrative of
self. Neuroimaging studies showed that characteristic dimensions of the
psychedelic experience obtained through subjective questionnaires as well as
alterations in self-referential processing and emotion regulation obtained
through neuropsychological tasks are associated with distinct changes in brain
activity and connectivity patterns at multiple-system levels. These recent
results suggest that changes in self-experience, emotional processing, and
social cognition may contribute to the potential therapeutic effects of
psychedelics.
Collapse
Affiliation(s)
- Franz X. Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry,
Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich,
Zurich, Switzerland
| | - John W. Smallridge
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry,
Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich,
Zurich, Switzerland
| |
Collapse
|
111
|
Husain MI, Ledwos N, Fellows E, Baer J, Rosenblat JD, Blumberger DM, Mulsant BH, Castle DJ. Serotonergic psychedelics for depression: What do we know about neurobiological mechanisms of action? Front Psychiatry 2022; 13:1076459. [PMID: 36844032 PMCID: PMC9950579 DOI: 10.3389/fpsyt.2022.1076459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Current treatment options for major depressive disorder (MDD) have limited efficacy and are associated with adverse effects. Recent studies investigating the antidepressant effect of serotonergic psychedelics-also known as classic psychedelics-have promising preliminary results with large effect sizes. In this context, we conducted a review of the putative neurobiological underpinnings of the mechanism of antidepressant action of these drugs. METHODS A narrative review was conducted using PubMed to identify published articles evaluating the antidepressant mechanism of action of serotonergic psychedelics. RESULTS Serotonergic psychedelics have serotonin (5HT)2A agonist or partial agonist effects. Their rapid antidepressant effects may be mediated-in part-by their potent 5HT2A agonism, leading to rapid receptor downregulation. In addition, these psychedelics impact brain derived neurotrophic factor and immunomodulatory responses, both of which may play a role in their antidepressant effect. Several neuroimaging and neurophysiology studies evaluating mechanistic change from a network perspective can help us to further understand their mechanism of action. Some, but not all, data suggest that psychedelics may exert their effects, in part, by disrupting the activity of the default mode network, which is involved in both introspection and self-referential thinking and is over-active in MDD. CONCLUSION The mechanisms of action underlying the antidepressant effect of serotonergic psychedelics remains an active area of research. Several competing theories are being evaluated and more research is needed to determine which ones are supported by the most robust evidence.
Collapse
Affiliation(s)
- Muhammad Ishrat Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicole Ledwos
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Elise Fellows
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jenna Baer
- Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Daniel M Blumberger
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David J Castle
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Complex Interventions, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
112
|
McCulloch DEW, Madsen MK, Stenbæk DS, Kristiansen S, Ozenne B, Jensen PS, Knudsen GM, Fisher PM. Lasting effects of a single psilocybin dose on resting-state functional connectivity in healthy individuals. J Psychopharmacol 2022; 36:74-84. [PMID: 34189985 PMCID: PMC8801642 DOI: 10.1177/02698811211026454] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Psilocybin is a psychedelic drug that has shown lasting positive effects on clinical symptoms and self-reported well-being following a single dose. There has been little research into the long-term effects of psilocybin on brain connectivity in humans. AIM Evaluate changes in resting-state functional connectivity (RSFC) at 1 week and 3 months after one psilocybin dose in 10 healthy psychedelic-naïve volunteers and explore associations between change in RSFC and related measures. METHODS Participants received 0.2-0.3 mg/kg psilocybin in a controlled setting. Participants completed resting-state functional magnetic resonance imaging (fMRI) scans at baseline, 1-week and 3-month post-administration and [11C]Cimbi-36 PET scans at baseline and 1 week. We examined changes in within-network, between-network and region-to-region RSFC. We explored associations between changes in RSFC and psilocybin-induced phenomenology as well as changes in psychological measures and neocortex serotonin 2A receptor binding. RESULTS Psilocybin was well tolerated and produced positive changes in well-being. At 1 week only, executive control network (ECN) RSFC was significantly decreased (Cohen's d = -1.73, pFWE = 0.010). We observed no other significant changes in RSFC at 1 week or 3 months, nor changes in region-to-region RSFC. Exploratory analyses indicated that decreased ECN RSFC at 1 week predicted increased mindfulness at 3 months (r = -0.65). CONCLUSIONS These findings in a small cohort indicate that psilocybin affects ECN function within the psychedelic 'afterglow' period. Our findings implicate ECN modulation as mediating psilocybin-induced, long-lasting increases in mindfulness. Although our findings implicate a neural pathway mediating lasting psilocybin effects, it is notable that changes in neuroimaging measures at 3 months, when personality changes are observed, remain to be identified.
Collapse
Affiliation(s)
| | - Martin Korsbak Madsen
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dea Siggaard Stenbæk
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Sara Kristiansen
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark,Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Steen Jensen
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit and NeuroPharm, Rigshospitalet, Copenhagen, Denmark,Patrick MacDonald Fisher, Neurobiology Research Unit, Rigshospitalet Building 8057, 8 Inge Lehmanns Vej, Copenhagen 2100, Denmark.
| |
Collapse
|
113
|
Fischman LG. Knowing and being known: Psychedelic-assisted psychotherapy and the sense of authenticity. Front Psychiatry 2022; 13:933495. [PMID: 36203843 PMCID: PMC9530638 DOI: 10.3389/fpsyt.2022.933495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Participants in MDMA- and psychedelic-assisted psychotherapy often emerge from these treatments with new beliefs about themselves and the world. Studies have linked changed beliefs with mystical experiences reported by some participants during drug sessions. While there has been some debate about the epistemic value of drug-induced mystical experiences, and about the need for consent to treatments that may alter metaphysical beliefs, less attention has been given to the sense of authenticity that attends these experiences. In this paper, I consider the intersubjective context in which these changed beliefs arise. I suggest that the sense of authenticity people experience with MDMA- and psychedelic-assisted psychotherapy derives from a simultaneous feeling of knowing and being known. The medications used in these treatments reduce the defensive barriers which ordinarily prevent powerful feelings from being intersubjectively shared, allowing the subject to experience knowing and being known with the therapist and/or internalized or imagined others. In explaining this thesis, I discuss Ratcliffe's "existential feeling;" ipseity in incipient psychosis and psychedelic states; Winnicott's notions of the True Self, omnipotence, creativity, and transitional phenomena; implicit relational knowing and moments of meeting; infant-mother dyad research; predictive processing and the relaxed beliefs model of psychedelic action; the role of the "partner in thought" in knowing and feeling known. I propose that a "transitional space" model of MDMA- and psychedelic-assisted psychotherapy is well-suited for working through "not-me" or dissociated experience.
Collapse
Affiliation(s)
- Lawrence G Fischman
- Department of Psychiatry, School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
114
|
López-Arnau R, Camarasa J, Carbó ML, Nadal-Gratacós N, Puigseslloses P, Espinosa-Velasco M, Urquizu E, Escubedo E, Pubill D. 3,4-Methylenedioxy methamphetamine, synthetic cathinones and psychedelics: From recreational to novel psychotherapeutic drugs. Front Psychiatry 2022; 13:990405. [PMID: 36262632 PMCID: PMC9574023 DOI: 10.3389/fpsyt.2022.990405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The utility of classical drugs used to treat psychiatric disorders (e.g., antidepressants, anxiolytics) is often limited by issues of lack of efficacy, delayed onset of action or side effects. Psychoactive substances have a long history of being used as tools to alter consciousness and as a gateway to approach the unknown and the divinities. These substances were initially obtained from plants and animals and more recently by chemical synthesis, and its consumption evolved toward a more recreational use, leading to drug abuse-related disorders, trafficking, and subsequent banning by the authorities. However, these substances, by modulation of certain neurochemical pathways, have been proven to have a beneficial effect on some psychiatric disorders. This evidence obtained under medically controlled conditions and often associated with psychotherapy, makes these substances an alternative to conventional medicines, to which in many cases the patient does not respond properly. Such disorders include post-traumatic stress disease and treatment-resistant depression, for which classical drugs such as MDMA, ketamine, psilocybin and LSD, among others, have already been clinically tested, reporting successful outcomes. The irruption of new psychoactive substances (NPS), especially during the last decade and despite their recreational and illicit uses, has enlarged the library of substances with potential utility on these disorders. In fact, many of them were synthetized with therapeutic purposes and were withdrawn for concrete reasons (e.g., adverse effects, improper pharmacological profile). In this review we focus on the basis, existing evidence and possible use of synthetic cathinones and psychedelics (specially tryptamines) for the treatment of mental illnesses and the properties that should be found in NPS to obtain new therapeutic compounds.
Collapse
Affiliation(s)
- Raúl López-Arnau
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Jordi Camarasa
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Marcel Lí Carbó
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Núria Nadal-Gratacós
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Pol Puigseslloses
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - María Espinosa-Velasco
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Edurne Urquizu
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Elena Escubedo
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - David Pubill
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
115
|
Zamani A, Carhart-Harris R, Christoff K. Prefrontal contributions to the stability and variability of thought and conscious experience. Neuropsychopharmacology 2022; 47:329-348. [PMID: 34545195 PMCID: PMC8616944 DOI: 10.1038/s41386-021-01147-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
The human prefrontal cortex is a structurally and functionally heterogenous brain region, including multiple subregions that have been linked to different large-scale brain networks. It contributes to a broad range of mental phenomena, from goal-directed thought and executive functions to mind-wandering and psychedelic experience. Here we review what is known about the functions of different prefrontal subregions and their affiliations with large-scale brain networks to examine how they may differentially contribute to the diversity of mental phenomena associated with prefrontal function. An important dimension that distinguishes across different kinds of conscious experience is the stability or variability of mental states across time. This dimension is a central feature of two recently introduced theoretical frameworks-the dynamic framework of thought (DFT) and the relaxed beliefs under psychedelics (REBUS) model-that treat neurocognitive dynamics as central to understanding and distinguishing between different mental phenomena. Here, we bring these two frameworks together to provide a synthesis of how prefrontal subregions may differentially contribute to the stability and variability of thought and conscious experience. We close by considering future directions for this work.
Collapse
Affiliation(s)
- Andre Zamani
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada.
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Kalina Christoff
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| |
Collapse
|
116
|
Teixeira PJ, Johnson MW, Timmermann C, Watts R, Erritzoe D, Douglass H, Kettner H, Carhart-Harris RL. Psychedelics and health behaviour change. J Psychopharmacol 2022; 36:12-19. [PMID: 34053342 PMCID: PMC8801670 DOI: 10.1177/02698811211008554] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Healthful behaviours such as maintaining a balanced diet, being physically active and refraining from smoking have major impacts on the risk of developing cancer, diabetes, cardiovascular diseases and other serious conditions. The burden of the so-called 'lifestyle diseases'-in personal suffering, premature mortality and public health costs-is considerable. Consequently, interventions designed to promote healthy behaviours are increasingly being studied, e.g., using psychobiological models of behavioural regulation and change. In this article, we explore the notion that psychedelic substances such as psilocybin could be used to assist in promoting positive lifestyle change conducive to good overall health. Psilocybin has a low toxicity, is non-addictive and has been shown to predict favourable changes in patients with depression, anxiety and other conditions marked by rigid behavioural patterns, including substance (mis)use. While it is still early days for modern psychedelic science, research is advancing fast and results are promising. Here we describe psychedelics' proposed mechanisms of action and research findings pertinent to health behaviour change science, hoping to generate discussion and new research hypotheses linking the two areas. Therapeutic models including psychedelic experiences and common behaviour change methods (e.g., Cognitive Behaviour Therapy, Motivational Interviewing) are already being tested for addiction and eating disorders. We believe this research may soon be extended to help promote improved diet, exercise, nature exposure and also mindfulness or stress reduction practices, all of which can contribute to physical and psychological health and well-being.
Collapse
Affiliation(s)
- Pedro J Teixeira
- CIPER - Faculty of Human Kinetics, University of Lisbon, Cruz Quebrada, Portugal,The Synthesis Institute B.V, Amsterdam, The Netherlands,Pedro J Teixeira, Faculty of Human Kinetics, University of Lisbon, Estrada da Costa, Cruz Quebrada 1499-002, Portugal.
| | - Matthew W Johnson
- Center for Psychedelic and Consciousness Research, Johns Hopkins University, Baltimore, USA
| | | | | | - David Erritzoe
- Imperial College London Psychedelic Research Group, London, UK
| | - Hannah Douglass
- Imperial College London Psychedelic Research Group, London, UK
| | - Hannes Kettner
- Imperial College London Psychedelic Research Group, London, UK
| | | |
Collapse
|
117
|
Kelly JR, Gillan CM, Prenderville J, Kelly C, Harkin A, Clarke G, O'Keane V. Psychedelic Therapy's Transdiagnostic Effects: A Research Domain Criteria (RDoC) Perspective. Front Psychiatry 2021; 12:800072. [PMID: 34975593 PMCID: PMC8718877 DOI: 10.3389/fpsyt.2021.800072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating clinical evidence shows that psychedelic therapy, by synergistically combining psychopharmacology and psychological support, offers a promising transdiagnostic treatment strategy for a range of disorders with restricted and/or maladaptive habitual patterns of emotion, cognition and behavior, notably, depression (MDD), treatment resistant depression (TRD) and addiction disorders, but perhaps also anxiety disorders, obsessive-compulsive disorder (OCD), Post-Traumatic Stress Disorder (PTSD) and eating disorders. Despite the emergent transdiagnostic evidence, the specific clinical dimensions that psychedelics are efficacious for, and associated underlying neurobiological pathways, remain to be well-characterized. To this end, this review focuses on pre-clinical and clinical evidence of the acute and sustained therapeutic potential of psychedelic therapy in the context of a transdiagnostic dimensional systems framework. Focusing on the Research Domain Criteria (RDoC) as a template, we will describe the multimodal mechanisms underlying the transdiagnostic therapeutic effects of psychedelic therapy, traversing molecular, cellular and network levels. These levels will be mapped to the RDoC constructs of negative and positive valence systems, arousal regulation, social processing, cognitive and sensorimotor systems. In summarizing this literature and framing it transdiagnostically, we hope we can assist the field in moving toward a mechanistic understanding of how psychedelics work for patients and eventually toward a precise-personalized psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
| | - Claire M. Gillan
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
- Global Brain Health Institute, Trinity College, Dublin, Ireland
| | - Jack Prenderville
- Transpharmation Ireland Ltd, Institute of Neuroscience, Trinity College, Dublin, Ireland
- Discipline of Physiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Clare Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Psychology, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Department of Psychiatry, Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
118
|
Escitalopram modulates learning content-specific neuroplasticity of functional brain networks. Neuroimage 2021; 247:118829. [PMID: 34923134 DOI: 10.1016/j.neuroimage.2021.118829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.
Collapse
|
119
|
Beating Pain with Psychedelics: Matter over Mind? Neurosci Biobehav Rev 2021; 134:104482. [PMID: 34922987 DOI: 10.1016/j.neubiorev.2021.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
Abstract
Basic pain research has shed light on key cellular and molecular mechanisms underlying nociceptive and phenomenological aspects of pain. Despite these advances, [[we still yearn for] the discovery of novel therapeutic strategies to address the unmet needs of about 70% of chronic neuropathic pain patients whose pain fails to respond to opioids as well as to other conventional analgesic agents. Importantly, a substantial body of clinical observations over the past decade cumulatively suggests that the psychedelic class of drugs may possess heuristic value for understanding and treating chronic pain conditions. The present review presents a theoretical framework for hitherto insufficiently understood neuroscience-based mechanisms of psychedelics' potential analgesic effects. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain, analgesia, inflammatory, brain connectivity, ketamine, psilocybin, functional imaging, and dendrites. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) studies employing psychedelics for alleviation of physical and emotional pain; (2) potential neuro-restorative effects of psychedelics to remediate the impaired connectivity underlying the dissociation between pain-related conscious states/cognitions and the subcortical activity/function leading to the eventual chronicity through immediate and long-term effects on dentritic plasticity; (3) anti-neuroinflammatory and pro-immunomodulatory actions of psychedelics as the may pertain to the role of these factors in the pathogenesis of neuropathic pain; (4) safety, legal, and ethical consideration inherent in psychedelics' pharmacotherapy. In addition to direct beneficial effects in terms of reduction of pain and suffering, psychedelics' inclusion in the analgesic armamentarium will contribute to deeper and more sophisticated insights not only into pain syndromes but also into frequently comorbid psychiatric condition associated with emotional pain, e.g., depressive and anxiety disorders. Further inquiry is clearly warranted into the above areas that have potential to evolve into further elucidate the mechanisms of chronic pain and affective disorders, and lead to the development of innovative, safe, and more efficacious neurobiologically-based therapeutic approaches.
Collapse
|
120
|
Abstract
Hallucinogens, or psychedelics, are substances/drugs that have been used for over a millennium. The most well known are LSD, psilocybin, mescaline, and PCP. These substances may induce hallucinations as well as cause somatic and psychological symptoms. Because of the Controlled Substances Act of 1970, there has been very little research done to determine the long-term consequences or perhaps potential benefit of misuse and abuse of hallucinogens. Typically, these drugs are not abused but more often misused. Recently, there has been a renewed interest in these compounds, which may lead to possible therapeutic options.
Collapse
Affiliation(s)
- Wm Maurice Redden
- Division of Geriatric Psychiatry, Department of Psychiatry & Behavioral Neuroscience, St. Louis University School of Medicine, 1438 South Grand Boulevard, St Louis, MO 63104, USA.
| | - Saif-Ur-Rahman Paracha
- Division of Geriatric Psychiatry, Department of Psychiatry & Behavioral Neuroscience, St. Louis University School of Medicine, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| | - Quratulanne Sheheryar
- Division of Geriatric Psychiatry, Department of Psychiatry & Behavioral Neuroscience, St. Louis University School of Medicine, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| |
Collapse
|
121
|
Rodríguez Arce JM, Winkelman MJ. Psychedelics, Sociality, and Human Evolution. Front Psychol 2021; 12:729425. [PMID: 34659037 PMCID: PMC8514078 DOI: 10.3389/fpsyg.2021.729425] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Our hominin ancestors inevitably encountered and likely ingested psychedelic mushrooms throughout their evolutionary history. This assertion is supported by current understanding of: early hominins' paleodiet and paleoecology; primate phylogeny of mycophagical and self-medicative behaviors; and the biogeography of psilocybin-containing fungi. These lines of evidence indicate mushrooms (including bioactive species) have been a relevant resource since the Pliocene, when hominins intensified exploitation of forest floor foods. Psilocybin and similar psychedelics that primarily target the serotonin 2A receptor subtype stimulate an active coping strategy response that may provide an enhanced capacity for adaptive changes through a flexible and associative mode of cognition. Such psychedelics also alter emotional processing, self-regulation, and social behavior, often having enduring effects on individual and group well-being and sociality. A homeostatic and drug instrumentalization perspective suggests that incidental inclusion of psychedelics in the diet of hominins, and their eventual addition to rituals and institutions of early humans could have conferred selective advantages. Hominin evolution occurred in an ever-changing, and at times quickly changing, environmental landscape and entailed advancement into a socio-cognitive niche, i.e., the development of a socially interdependent lifeway based on reasoning, cooperative communication, and social learning. In this context, psychedelics' effects in enhancing sociality, imagination, eloquence, and suggestibility may have increased adaptability and fitness. We present interdisciplinary evidence for a model of psychedelic instrumentalization focused on four interrelated instrumentalization goals: management of psychological distress and treatment of health problems; enhanced social interaction and interpersonal relations; facilitation of collective ritual and religious activities; and enhanced group decision-making. The socio-cognitive niche was simultaneously a selection pressure and an adaptive response, and was partially constructed by hominins through their activities and their choices. Therefore, the evolutionary scenario put forward suggests that integration of psilocybin into ancient diet, communal practice, and proto-religious activity may have enhanced hominin response to the socio-cognitive niche, while also aiding in its creation. In particular, the interpersonal and prosocial effects of psilocybin may have mediated the expansion of social bonding mechanisms such as laughter, music, storytelling, and religion, imposing a systematic bias on the selective environment that favored selection for prosociality in our lineage.
Collapse
Affiliation(s)
| | - Michael James Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
122
|
Castelhano J, Lima G, Teixeira M, Soares C, Pais M, Castelo-Branco M. The Effects of Tryptamine Psychedelics in the Brain: A meta-Analysis of Functional and Review of Molecular Imaging Studies. Front Pharmacol 2021; 12:739053. [PMID: 34658876 PMCID: PMC8511767 DOI: 10.3389/fphar.2021.739053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
There is an increasing interest in the neural effects of psychoactive drugs, in particular tryptamine psychedelics, which has been incremented by the proposal that they have potential therapeutic benefits, based on their molecular mimicry of serotonin. It is widely believed that they act mainly through 5HT2A receptors but their effects on neural activation of distinct brain systems are not fully understood. We performed a quantitative meta-analysis of brain imaging studies to investigate the effects of substances within this class (e.g., LSD, Psilocybin, DMT, Ayahuasca) in the brain from a molecular and functional point of view. We investigated the question whether the changes in activation patterns and connectivity map into regions with larger 5HT1A/5HT2A receptor binding, as expected from indolaemine hallucinogens (in spite of the often reported emphasis only on 5HT2AR). We did indeed find that regions with changed connectivity and/or activation patterns match regions with high density of 5HT2A receptors, namely visual BA19, visual fusiform regions in BA37, dorsal anterior and posterior cingulate cortex, medial prefrontal cortex, and regions involved in theory of mind such as the surpramarginal gyrus, and temporal cortex (rich in 5HT1A receptors). However, we also found relevant patterns in other brain regions such as dorsolateral prefrontal cortex. Moreover, many of the above-mentioned regions also have a significant density of both 5HT1A/5HT2A receptors, and available PET studies on the effects of psychedelics on receptor occupancy are still quite scarce, precluding a metanalytic approach. Finally, we found a robust neuromodulatory effect in the right amygdala. In sum, the available evidence points towards strong neuromodulatory effects of tryptamine psychedelics in key brain regions involved in mental imagery, theory of mind and affective regulation, pointing to potential therapeutic applications of this class of substances.
Collapse
|
123
|
Forstmann M, Sagioglou C. New Insights Into the Clinical and Nonclinical Effects of Psychedelic Substances. EUROPEAN PSYCHOLOGIST 2021. [DOI: 10.1027/1016-9040/a000447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. After decades of stagnation, research on psychedelic substances (such as lysergic acid diethylamide [LSD], psilocybin, or N,N-dimethyltryptamine [DMT]) has experienced a renaissance over the last 10 years, with various major research programs being conducted across Europe and the United States. This research primarily investigates the potential of psychedelics in the treatment of mental health disorders, their short- and long-term effects on recreational users, and the neurological and cognitive processes responsible for their effects. The present review provides a concise summary of the most recent insights gained from this research. We briefly outline the history of psychedelic research, the objective and subjective effects caused by these substances, the prevalence and socio-psychological correlates of their use, as well as their potential for harm. Subsequently, we review empirical research on the beneficial effects of psychedelics in clinical samples, focusing on their efficacy in the treatment of major depression, anxiety, and substance use disorders, and discuss research on the proposed neural and cognitive mechanisms behind these effects. We then review research on their effects on healthy subjects, focusing on psychological well-being as well as changes in personality, nature-relatedness, and creativity. Finally, we review empirical evidence regarding the long-term effects of single experiences with psychedelics and conclude with a summary and outlook.
Collapse
|
124
|
Domenico C, Haggerty D, Mou X, Ji D. LSD degrades hippocampal spatial representations and suppresses hippocampal-visual cortical interactions. Cell Rep 2021; 36:109714. [PMID: 34525364 PMCID: PMC9798728 DOI: 10.1016/j.celrep.2021.109714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
Lysergic acid diethylamide (LSD) produces hallucinations, which are perceptions uncoupled from the external environment. How LSD alters neuronal activities in vivo that underlie abnormal perceptions is unknown. Here, we show that when rats run along a familiar track, hippocampal place cells under LSD reduce their firing rates, their directionality, and their interaction with visual cortical neurons. However, both hippocampal and visual cortical neurons temporarily increase firing rates during head-twitching, a behavioral signature of a hallucination-like state in rodents. When rats are immobile on the track, LSD enhances cortical firing synchrony in a state similar to the wakefulness-to-sleep transition, during which the hippocampal-cortical interaction remains dampened while hippocampal awake reactivation is maintained. Our results suggest that LSD suppresses hippocampal-cortical interactions during active behavior and during immobility, leading to internal hippocampal representations that are degraded and isolated from external sensory input. These effects may contribute to LSD-produced abnormal perceptions.
Collapse
Affiliation(s)
- Carli Domenico
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Haggerty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang Mou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
125
|
Stewart B, Dean JG, Koek A, Chua J, Wabl R, Martin K, Davoodian N, Becker C, Himedan M, Kim A, Albin R, Chou KL, Kotagal V. Psychedelic-assisted therapy for functional neurological disorders: A theoretical framework and review of prior reports. Pharmacol Res Perspect 2021; 8:e00688. [PMID: 33280274 PMCID: PMC7719191 DOI: 10.1002/prp2.688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Functional neurological disorders (FNDs), which are sometimes also referred to as psychogenic neurological disorders or conversion disorder, are common disabling neuropsychiatric disorders with limited treatment options. FNDs can present with sensory and/or motor symptoms, and, though they may mimic other neurological conditions, they are thought to occur via mechanisms other than those related to identifiable structural neuropathology and, in many cases, appear to be triggered and sustained by recognizable psychological factors. There is intriguing preliminary evidence to support the use of psychedelic‐assisted therapy in a growing number of psychiatric illnesses, including FNDs. We review the theoretical arguments for and against exploring psychedelic‐assisted therapy as a treatment for FNDs. We also provide an in‐depth discussion of prior published cases detailing the use of psychedelics for psychosomatic conditions, analyzing therapeutic outcomes from a contemporary neuroscientific vantage as informed by several recent neuroimaging studies on psychedelics and FNDs.
Collapse
Affiliation(s)
- Benjamin Stewart
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Jon G Dean
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Adriana Koek
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Jason Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Rafael Wabl
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Kayla Martin
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Mai Himedan
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amanda Kim
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Roger Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Kelvin L Chou
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Vikas Kotagal
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
126
|
Fauvel B, Mutlu J, Piolino P. Propriété égolytique des psychédéliques et intérêts dans le traitement de la dépression. PSYCHOLOGIE FRANCAISE 2021. [DOI: 10.1016/j.psfr.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
127
|
Madsen MK, Stenbæk DS, Arvidsson A, Armand S, Marstrand-Joergensen MR, Johansen SS, Linnet K, Ozenne B, Knudsen GM, Fisher PM. Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. Eur Neuropsychopharmacol 2021; 50:121-132. [PMID: 34246868 DOI: 10.1016/j.euroneuro.2021.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
The emerging novel therapeutic psilocybin produces psychedelic effects via engagement of cerebral serotonergic targets by psilocin (active metabolite). The serotonin 2A receptor critically mediates these effects by altering distributed neural processes that manifest as increased entropy, reduced functional connectivity (FC) within discrete brain networks (i.e., reduced integrity) and increased FC between networks (i.e., reduced segregation). Reduced integrity of the default mode network (DMN) is proposed to play a particularly prominent role in psychedelic phenomenology, including perceived ego-dissolution. Here, we investigate the effects of a psychoactive peroral dose of psilocybin (0.2-0.3 mg/kg) on plasma psilocin level (PPL), subjective drug intensity (SDI) and their association in fifteen healthy individuals. We further evaluate associations between these measures and resting-state FC, measured with functional magnetic resonance imaging, acquired over the course of five hours after psilocybin administration. We show that PPL and SDI correlate negatively with measures of network integrity (including DMN) and segregation, both spatially constrained and unconstrained. We also find that the executive control network and dorsal attention network desegregate, increasing connectivity with other networks and throughout the brain as a function of PPL and SDI. These findings provide direct evidence that psilocin critically shapes the time course and magnitude of changes in the cerebral functional architecture and subjective experience following psilocybin administration. Our findings provide novel insight into the neurobiological mechanisms underlying profound perceptual experiences evoked by this emerging transnosological therapeutic and implicate the expression of network integrity and segregation in the psychedelic experience and consciousness.
Collapse
Affiliation(s)
- Martin K Madsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dea S Stenbæk
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Albin Arvidsson
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Sophia Armand
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Maja R Marstrand-Joergensen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Sys S Johansen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
128
|
Yaden DB, Johnson MW, Griffiths RR, Doss MK, Garcia-Romeu A, Nayak S, Gukasyan N, Mathur BN, Barrett FS. Psychedelics and Consciousness: Distinctions, Demarcations, and Opportunities. Int J Neuropsychopharmacol 2021; 24:615-623. [PMID: 33987652 PMCID: PMC8378075 DOI: 10.1093/ijnp/pyab026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Psychedelic substances produce unusual and compelling changes in conscious experience that have prompted some to propose that psychedelics may provide unique insights explaining the nature of consciousness. At present, psychedelics, like other current scientific tools and methods, seem unlikely to provide information relevant to the so-called "hard problem of consciousness," which involves explaining how first-person experience can emerge. However, psychedelics bear on multiple "easy problems of consciousness," which involve relations between subjectivity, brain function, and behavior. In this review, we discuss common meanings of the term "consciousness" when used with regard to psychedelics and consider some models of the effects of psychedelics on the brain that have also been associated with explanatory claims about consciousness. We conclude by calling for epistemic humility regarding the potential for psychedelic research to aid in explaining the hard problem of consciousness while pointing to ways in which psychedelics may advance the study of many specific aspects of consciousness.
Collapse
Affiliation(s)
- David B Yaden
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Roland R Griffiths
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
- Department of Neuroscience
| | - Manoj K Doss
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Sandeep Nayak
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Natalie Gukasyan
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Brian N Mathur
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| |
Collapse
|
129
|
Burt JB, Preller KH, Demirtas M, Ji JL, Krystal JH, Vollenweider FX, Anticevic A, Murray JD. Transcriptomics-informed large-scale cortical model captures topography of pharmacological neuroimaging effects of LSD. eLife 2021; 10:e69320. [PMID: 34313217 PMCID: PMC8315798 DOI: 10.7554/elife.69320] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Psychoactive drugs can transiently perturb brain physiology while preserving brain structure. The role of physiological state in shaping neural function can therefore be investigated through neuroimaging of pharmacologically induced effects. Previously, using pharmacological neuroimaging, we found that neural and experiential effects of lysergic acid diethylamide (LSD) are attributable to agonism of the serotonin-2A receptor (Preller et al., 2018). Here, we integrate brain-wide transcriptomics with biophysically based circuit modeling to simulate acute neuromodulatory effects of LSD on human cortical large-scale spatiotemporal dynamics. Our model captures the inter-areal topography of LSD-induced changes in cortical blood oxygen level-dependent (BOLD) functional connectivity. These findings suggest that serotonin-2A-mediated modulation of pyramidal-neuronal gain is a circuit mechanism through which LSD alters cortical functional topography. Individual-subject model fitting captures patterns of individual neural differences in pharmacological response related to altered states of consciousness. This work establishes a framework for linking molecular-level manipulations to systems-level functional alterations, with implications for precision medicine.
Collapse
Affiliation(s)
- Joshua B Burt
- Department of Psychiatry, Yale UniversityNew HavenUnited States
| | - Katrin H Preller
- Pharmaco-Neuroimaging and Cognitive-Emotional Processing, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Murat Demirtas
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Jie Lisa Ji
- Department of Psychiatry, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - John H Krystal
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
| | - Franz X Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital for Psychiatry ZurichZurichSwitzerland
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - John D Murray
- Department of Psychiatry, Yale UniversityNew HavenUnited States
- Department of Psychiatry, Yale University School of MedicineNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| |
Collapse
|
130
|
Losing the Self in Near-Death Experiences: The Experience of Ego-Dissolution. Brain Sci 2021; 11:brainsci11070929. [PMID: 34356163 PMCID: PMC8307473 DOI: 10.3390/brainsci11070929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Many people who have had a near-death experience (NDE) describe, as part of it, a disturbed sense of having a “distinct self”. However, no empirical studies have been conducted to explore the frequency or intensity of these effects. We surveyed 100 NDE experiencers (Near-Death-Experience Content [NDE-C] scale total score ≥27/80). Eighty participants had their NDEs in life-threatening situations and 20 had theirs not related to life-threatening situations. Participants completed the Ego-Dissolution Inventory (EDI) and the Ego-Inflation Inventory (EII) to assess the experience of ego dissolution and inflation potentially experienced during their NDE, respectively. They also completed the Nature-Relatedness Scale (NR-6) which measures the trait-like construct of one’s self-identification with nature. Based on prior hypotheses, ratings of specific NDE-C items pertaining to out-of-body experiences and a sense of unity were used for correlational analyses. We found higher EDI total scores compared with EII total scores in our sample. Total scores of the NDE-C scale were positively correlated with EDI total scores and, although less strongly, the EII and NR-6 scores. EDI total scores were also positively correlated with the intensity of OBE and a sense of unity. This study suggests that the experience of dissolved ego-boundaries is a common feature of NDEs.
Collapse
|
131
|
Thal SB, Bright SJ, Sharbanee JM, Wenge T, Skeffington PM. Current Perspective on the Therapeutic Preset for Substance-Assisted Psychotherapy. Front Psychol 2021; 12:617224. [PMID: 34326789 PMCID: PMC8313735 DOI: 10.3389/fpsyg.2021.617224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
The present narrative review is the first in a series of reviews about the appropriate conduct in substance-assisted psychotherapy (SAPT). It outlines a current perspective onpreconditions and theoretical knowledge that have been identified as valuable in the literaturefor appropriate therapeutic conduct in SAPT. In this context, considerations regarding ethics and the spiritual emphasis of the therapeutic approaches are discussed. Further, current methods, models, and concepts of psychological mechanism of action and therapeutic effects of SAPT are summarized, and similarities between models, approaches, and potential mediators for therapeutic effects are outlined. It is argued that a critical assessment of the literature might indicate that the therapeutic effect of SAPT may be mediated by intra- and interpersonal variables within the therapeutic context rather than specific therapeutic models per se. The review provides a basis for the development and adaptation of future investigations, therapeutic models, training programs for therapists, and those interested in the therapeutic potential of SAPT. Limitations and future directions for research are discussed.
Collapse
Affiliation(s)
- Sascha B. Thal
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Stephen J. Bright
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Psychedelic Research in Science and Medicine Pty Ltd (PRISM), Balwyn North, VIC, Australia
| | - Jason M. Sharbanee
- Department of Psychology and Criminology, School of Arts and Humanities, Edith Cowan University, Joondalup, WA, Australia
| | - Tobias Wenge
- International Society for Bonding Psychotherapy, Friedrichshafen, Germany
| | - Petra M. Skeffington
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
132
|
Fear extinction learning modulates large-scale brain connectivity. Neuroimage 2021; 238:118261. [PMID: 34126211 PMCID: PMC8436785 DOI: 10.1016/j.neuroimage.2021.118261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
Exploring the neural circuits of the extinction of conditioned fear is critical to advance our understanding of fear- and anxiety-related disorders. The field has focused on examining the role of various regions of the medial prefrontal cortex, insular cortex, hippocampus, and amygdala in conditioned fear and its extinction. The contribution of this 'fear network' to the conscious awareness of fear has recently been questioned. And as such, there is a need to examine higher/multiple cortical systems that might contribute to the conscious feeling of fear and anxiety. Herein, we studied functional connectivity patterns across the entire brain to examine the contribution of multiple networks to the acquisition of fear extinction learning and its retrieval. We conducted trial-by-trial analyses on data from 137 healthy participants who underwent a two-day fear conditioning and extinction paradigm in a functional magnetic resonance imaging (fMRI) scanner. We found that functional connectivity across a broad range of brain regions, many of which are part of the default mode, frontoparietal, and ventral attention networks, increased from early to late extinction learning only to a conditioned cue. The increased connectivity during extinction learning predicted the magnitude of extinction memory tested 24 h later. Together, these findings provide evidence supporting recent studies implicating distributed brain regions in learning, consolidation and expression of fear extinction memory in the human brain.
Collapse
|
133
|
Garland EL. Mindful Positive Emotion Regulation as a Treatment for Addiction: From Hedonic Pleasure to Self-Transcendent Meaning. Curr Opin Behav Sci 2021; 39:168-177. [PMID: 34084873 PMCID: PMC8168946 DOI: 10.1016/j.cobeha.2021.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic drug use is theorized to induce cortico-striatal neuroplasticity, driving an allostatic process marked by increased sensitivity to drug-related cues and decreased sensitivity to natural rewards that results in anhedonia and a dearth of positive affect. As such, positive emotion regulation represents a key mechanistic target for addictions treatment. This paper provides a conceptual model detailing how mindfulness may synergize a range of positive affective mechanisms to reduce addictive behavior, from savoring the hedonic pleasure derived from natural rewards, to self-generating interoceptive reward responses, and ultimately to cultivating self-transcendent meaning. These therapeutic processes may restructure reward processing from over-valuation of drug-related rewards back to valuation of natural rewards, and hypothetically, "reset" the default mode network dysfunction that undergirds addiction.
Collapse
Affiliation(s)
- Eric L. Garland
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, USA
- College of Social Work, University of Utah, USA
| |
Collapse
|
134
|
Banks MI, Zahid Z, Jones NT, Sultan ZW, Wenthur CJ. Catalysts for change: the cellular neurobiology of psychedelics. Mol Biol Cell 2021; 32:1135-1144. [PMID: 34043427 PMCID: PMC8351556 DOI: 10.1091/mbc.e20-05-0340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
The resurgence of interest in the therapeutic potential of psychedelics for treating psychiatric disorders has rekindled efforts to elucidate their mechanism of action. In this Perspective, we focus on the ability of psychedelics to promote neural plasticity, postulated to be central to their therapeutic activity. We begin with a brief overview of the history and behavioral effects of the classical psychedelics. We then summarize our current understanding of the cellular and subcellular mechanisms underlying these drugs' behavioral effects, their effects on neural plasticity, and the roles of stress and inflammation in the acute and long-term effects of psychedelics. The signaling pathways activated by psychedelics couple to numerous potential mechanisms for producing long-term structural changes in the brain, a complexity that has barely begun to be disentangled. This complexity is mirrored by that of the neural mechanisms underlying psychiatric disorders and the transformations of consciousness, mood, and behavior that psychedelics promote in health and disease. Thus, beyond changes in the brain, psychedelics catalyze changes in our understanding of the neural basis of psychiatric disorders, as well as consciousness and human behavior.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Zarmeen Zahid
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Nathan T. Jones
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706
| | - Ziyad W. Sultan
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Cody J. Wenthur
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI 53706
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706
- School of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
135
|
Psychedelic Medicines in Major Depression: Progress and Future Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:515-533. [PMID: 33834416 DOI: 10.1007/978-981-33-6044-0_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The volume of research on the therapeutic use of psychedelic drugs has been increasing during the last decades. Partly because of the need of innovative treatments in psychiatry, several studies have assessed the safety and efficacy of drugs like psilocybin or ayahuasca for a wide range of mental disorders, including major depression. The first section of this chapter will offer an introduction to psychedelic research, including a brief historical overview and discussions about appropriate terminology. In the second section, the recently published clinical trials in which psychedelic drugs were administered to patients will be analysed in detail. Then, in the third section, the main neurobiological mechanisms of these drugs will be described, noting that while some of these mechanisms could be potentially associated with their therapeutic properties, they are commonly used as adjuvants in psychotherapeutic processes. The last section suggests future challenges for this groundbreaking field of research and therapy.
Collapse
|
136
|
Spontaneous and deliberate creative cognition during and after psilocybin exposure. Transl Psychiatry 2021; 11:209. [PMID: 33833225 PMCID: PMC8032715 DOI: 10.1038/s41398-021-01335-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
Creativity is an essential cognitive ability linked to all areas of our everyday functioning. Thus, finding a way to enhance it is of broad interest. A large number of anecdotal reports suggest that the consumption of psychedelic drugs can enhance creative thinking; however, scientific evidence is lacking. Following a double-blind, placebo-controlled, parallel-group design, we demonstrated that psilocybin (0.17 mg/kg) induced a time- and construct-related differentiation of effects on creative thinking. Acutely, psilocybin increased ratings of (spontaneous) creative insights, while decreasing (deliberate) task-based creativity. Seven days after psilocybin, number of novel ideas increased. Furthermore, we utilized an ultrahigh field multimodal brain imaging approach, and found that acute and persisting effects were predicted by within- and between-network connectivity of the default mode network. Findings add some support to historical claims that psychedelics can influence aspects of the creative process, potentially indicating them as a tool to investigate creativity and subsequent underlying neural mechanisms. Trial NL6007; psilocybin as a tool for enhanced cognitive flexibility; https://www.trialregister.nl/trial/6007 .
Collapse
|
137
|
Pallavicini C, Cavanna F, Zamberlan F, de la Fuente LA, Ilksoy Y, Perl YS, Arias M, Romero C, Carhart-Harris R, Timmermann C, Tagliazucchi E. Neural and subjective effects of inhaled N,N-dimethyltryptamine in natural settings. J Psychopharmacol 2021; 35:406-420. [PMID: 33567945 DOI: 10.1177/0269881120981384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND N,N-dimethyltryptamine is a short-acting psychedelic tryptamine found naturally in many plants and animals. Few studies to date have addressed the neural and psychological effects of N,N-dimethyltryptamine alone, either administered intravenously or inhaled in freebase form, and none have been conducted in natural settings. AIMS Our primary aim was to study the acute effects of inhaled N,N-dimethyltryptamine in natural settings, focusing on questions tuned to the advantages of conducting field research, including the effects of contextual factors (i.e. "set" and "setting"), the possibility of studying a comparatively large number of subjects, and the relaxed mental state of participants consuming N,N-dimethyltryptamine in familiar and comfortable settings. METHODS We combined state-of-the-art wireless electroencephalography with psychometric questionnaires to study the neural and subjective effects of naturalistic N,N-dimethyltryptamine use in 35 healthy and experienced participants. RESULTS We observed that N,N-dimethyltryptamine significantly decreased the power of alpha (8-12 Hz) oscillations throughout all scalp locations, while simultaneously increasing power of delta (1-4 Hz) and gamma (30-40 Hz) oscillations. Gamma power increases correlated with subjective reports indicative of some features of mystical-type experiences. N,N-dimethyltryptamine also increased global synchrony and metastability in the gamma band while decreasing those measures in the alpha band. CONCLUSIONS Our results are consistent with previous studies of psychedelic action in the human brain, while at the same time the results suggest potential electroencephalography markers of mystical-type experiences in natural settings, thus highlighting the importance of investigating these compounds in the contexts where they are naturally consumed.
Collapse
Affiliation(s)
- Carla Pallavicini
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Buenos Aires, Argentina.,Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Buenos Aires, Argentina
| | - Federico Cavanna
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Buenos Aires, Argentina.,Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Buenos Aires, Argentina
| | - Federico Zamberlan
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Buenos Aires, Argentina
| | - Laura A de la Fuente
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Buenos Aires, Argentina
| | - Yayla Ilksoy
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Buenos Aires, Argentina
| | - Yonatan S Perl
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Buenos Aires, Argentina
| | - Mauricio Arias
- Hospital General de Agudos Donación Francisco Santojanni, Buenos Aires, Argentina
| | - Celeste Romero
- Centro de Estudios de la Cultura Cannábica (CECCa), Buenos Aires, Argentina
| | | | | | - Enzo Tagliazucchi
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Buenos Aires, Argentina
| |
Collapse
|
138
|
Golesorkhi M, Gomez-Pilar J, Tumati S, Fraser M, Northoff G. Temporal hierarchy of intrinsic neural timescales converges with spatial core-periphery organization. Commun Biol 2021; 4:277. [PMID: 33664456 PMCID: PMC7933253 DOI: 10.1038/s42003-021-01785-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
The human cortex exhibits intrinsic neural timescales that shape a temporal hierarchy. Whether this temporal hierarchy follows the spatial hierarchy of its topography, namely the core-periphery organization, remains an open issue. Using magnetoencephalography data, we investigate intrinsic neural timescales during rest and task states; we measure the autocorrelation window in short (ACW-50) and, introducing a novel variant, long (ACW-0) windows. We demonstrate longer ACW-50 and ACW-0 in networks located at the core compared to those at the periphery with rest and task states showing a high ACW correlation. Calculating rest-task differences, i.e., subtracting the shared core-periphery organization, reveals task-specific ACW changes in distinct networks. Finally, employing kernel density estimation, machine learning, and simulation, we demonstrate that ACW-0 exhibits better prediction in classifying a region's time window as core or periphery. Overall, our findings provide fundamental insight into how the human cortex's temporal hierarchy converges with its spatial core-periphery hierarchy.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Shankar Tumati
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
- Neuropsychopharmacology research group, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maia Fraser
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada.
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
139
|
Luppi AI, Carhart-Harris RL, Roseman L, Pappas I, Menon DK, Stamatakis EA. LSD alters dynamic integration and segregation in the human brain. Neuroimage 2021; 227:117653. [PMID: 33338615 PMCID: PMC7896102 DOI: 10.1016/j.neuroimage.2020.117653] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
Investigating changes in brain function induced by mind-altering substances such as LSD is a powerful method for interrogating and understanding how mind interfaces with brain, by connecting novel psychological phenomena with their neurobiological correlates. LSD is known to increase measures of brain complexity, potentially reflecting a neurobiological correlate of the especially rich phenomenological content of psychedelic-induced experiences. Yet although the subjective stream of consciousness is a constant ebb and flow, no studies to date have investigated how LSD influences the dynamics of functional connectivity in the human brain. Focusing on the two fundamental network properties of integration and segregation, here we combined graph theory and dynamic functional connectivity from resting-state functional MRI to examine time-resolved effects of LSD on brain networks properties and subjective experiences. Our main finding is that the effects of LSD on brain function and subjective experience are non-uniform in time: LSD makes globally segregated sub-states of dynamic functional connectivity more complex, and weakens the relationship between functional and anatomical connectivity. On a regional level, LSD reduces functional connectivity of the anterior medial prefrontal cortex, specifically during states of high segregation. Time-specific effects were correlated with different aspects of subjective experiences; in particular, ego dissolution was predicted by increased small-world organisation during a state of high global integration. These results reveal a more nuanced, temporally-specific picture of altered brain connectivity and complexity under psychedelics than has previously been reported.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, United Kingdom
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, United Kingdom
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
140
|
Müller F, Holze F, Dolder P, Ley L, Vizeli P, Soltermann A, Liechti ME, Borgwardt S. MDMA-induced changes in within-network connectivity contradict the specificity of these alterations for the effects of serotonergic hallucinogens. Neuropsychopharmacology 2021; 46:545-553. [PMID: 33219313 PMCID: PMC8027447 DOI: 10.1038/s41386-020-00906-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
It has been reported that serotonergic hallucinogens like lysergic acid diethylamide (LSD) induce decreases in functional connectivity within various resting-state networks. These alterations were seen as reflecting specific neuronal effects of hallucinogens and it was speculated that these shifts in connectivity underlie the characteristic subjective drug effects. In this study, we test the hypothesis that these alterations are not specific for hallucinogens but that they can be induced by monoaminergic stimulation using the non-hallucinogenic serotonin-norepinephrine-dopamine releasing agent 3,4-methylenedioxymethamphetamine (MDMA). In a randomized, placebo-controlled, double-blind, crossover design, 45 healthy participants underwent functional magnetic resonance imaging (fMRI) following oral administration of 125 mg MDMA. The networks under question were identified using independent component analysis (ICA) and were tested with regard to within-network connectivity. Results revealed decreased connectivity within two visual networks, the default mode network (DMN), and the sensorimotor network. These findings were almost identical to the results previously reported for hallucinogenic drugs. Therefore, our results suggest that monoaminergic substances can induce widespread changes in within-network connectivity in the absence of marked subjective drug effects. This contradicts the notion that these alterations can be regarded as specific for serotonergic hallucinogens. However, changes within the DMN might explain antidepressants effects of some of these substances.
Collapse
Affiliation(s)
- Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland.
| | - Friederike Holze
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Dolder
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Laura Ley
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Patrick Vizeli
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Alain Soltermann
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, 4002, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| |
Collapse
|
141
|
Andersen KAA, Carhart-Harris R, Nutt DJ, Erritzoe D. Therapeutic effects of classic serotonergic psychedelics: A systematic review of modern-era clinical studies. Acta Psychiatr Scand 2021; 143:101-118. [PMID: 33125716 DOI: 10.1111/acps.13249] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To conduct a systematic review of modern-era (post-millennium) clinical studies assessing the therapeutic effects of serotonergic psychedelics drugs for mental health conditions. Although the main focus was on efficacy and safety, study characteristics, duration of antidepressants effects across studies, and the role of the subjective drug experiences were also reviewed and presented. METHOD A systematic literature search (1 Jan 2000 to 1 May 2020) was conducted in PubMed and PsychINFO for studies of patients undergoing treatment with a serotonergic psychedelic. RESULTS Data from 16 papers, representing 10 independent psychedelic-assisted therapy trials (psilocybin = 7, ayahuasca = 2, LSD = 1), were extracted, presented in figures and tables, and narratively synthesized and discussed. Across these studies, a total of 188 patients suffering either cancer- or illness-related anxiety and depression disorders (C/I-RADD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD) or substance use disorder (SUD) were included. The reviewed studies established feasibility and evidence of safety, alongside promising early data of efficacy in the treatment of depression, anxiety, OCD, and tobacco and alcohol use disorders. For a majority of patients, the therapeutic effects appeared to be long-lasting (weeks-months) after only 1 to 3 treatment session(s). All studies were conducted in line with guidelines for the safe conduct of psychedelic therapy, and no severe adverse events were reported. CONCLUSION The resurrection of clinical psychedelic research provides early evidence for treatment efficacy and safety for a range of psychiatric conditions, and constitutes an exciting new treatment avenue in a health area with major unmet needs.
Collapse
Affiliation(s)
- Kristoffer A A Andersen
- Centre for Psychedelic Research, Division of Psychiatry, Imperial College London, London, UK.,Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, London, UK
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Imperial College London, London, UK
| | - David J Nutt
- Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, London, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Division of Psychiatry, Imperial College London, London, UK.,Centre for Neuropsychopharmacology, Division of Psychiatry, Imperial College London, London, UK
| |
Collapse
|
142
|
Jobst BM, Atasoy S, Ponce-Alvarez A, Sanjuán A, Roseman L, Kaelen M, Carhart-Harris R, Kringelbach ML, Deco G. Increased sensitivity to strong perturbations in a whole-brain model of LSD. Neuroimage 2021; 230:117809. [PMID: 33524579 PMCID: PMC8063176 DOI: 10.1016/j.neuroimage.2021.117809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 02/09/2023] Open
Abstract
Novel offline perturbational method applied on functional magnetic resonance imaging (fMRI) data under the effect of lysergic acid diethylamide (LSD). Shift of brain's global working point to more complex dynamics after LSD intake. Consistently longer recovery time after model perturbation under LSD influence. Strongest effects in resting state networks relevant for psychedelic experience. Higher response diversity across brain regions under LSD influence after an external in silico perturbation.
Lysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and pharmacological research within recent years. Human neuroimaging studies have shown fundamental changes in brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational approach based on a whole-brain computational model, which opens up the possibility to externally perturb different brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded under the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index (PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynamical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of the brain's global working point further away from a stable equilibrium as compared to normal conditions. On a local level, we found that the largest differences were measured within the limbic network, the visual network and the default mode network. Additionally, we found a higher variability of PILI values across different brain regions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular psychiatric disorders.
Collapse
Affiliation(s)
- Beatrice M Jobst
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain.
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Denmark
| | - Adrián Ponce-Alvarez
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain
| | - Ana Sanjuán
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Mendel Kaelen
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, United Kingdom
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|
143
|
Jalal B. "Men Fear Most What They Cannot See." sleep paralysis "Ghost Intruders" and faceless "Shadow-People"-The role of the right hemisphere and economizing nature of vision. Med Hypotheses 2021; 148:110521. [PMID: 33573871 DOI: 10.1016/j.mehy.2021.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 11/26/2022]
Abstract
Sleep paralysis is a curious condition where the paralyzed person may hallucinate terrifying ghosts. These hypnogogic and hypnopompic visions are common worldwide. They often entail seeing and sensing shadow beings; although hallucinating full-fledged figures (e.g., cat-like creatures and witches) are not uncommon. In this paper, I propose a neuroscientific account (building on previous work) for why people see ghosts during sleep paralysis and why these tend to manifest as faceless shadows. This novel venture considers the distinct computational styles of the right and left hemisphere and their functional specializations vis-à-vis florid intruder hallucinations and out-of-body experiences (OBEs) during these dream-like states. Additionally, I provide a brain-based explanation for dissociative phenomena common during sleep paralysis. Specifically, I posit that these ghost hallucinations and OBEs are chiefly mediated by activity in key regions in the right hemisphere; and outline how the functional organization of the visual system (evoking concepts like surface interpolation) and its economizing nature (i.e., proclivity to minimize computational load and take short-cuts) can explain faceless humanoid-shadows and sensed presence hallucinations during sleep paralysis; and how the hypothalamus and anterior cingulate may be implicated during related dissociative states. Ultimately empirical research must shed light on the validity of this account. If this hypothesis is correct, patients with right hemisphere damage (i.e., in implicated areas) should be less likely to hallucinate ghosts during sleep paralysis; i.e., compared to those with intact hemispheres or damage to the left only. It may also be possible to temporarily disable right hemisphere functions during sleep paralysis using transcranial magnetic stimulation. Accordingly, this procedure should eradicate sleep paralysis ghost hallucinations.
Collapse
Affiliation(s)
- Baland Jalal
- Harvard University, USA; University of Cambridge, UK.
| |
Collapse
|
144
|
Contreras A, Khumnark M, Hines RM, Hines DJ. Behavioral arrest and a characteristic slow waveform are hallmark responses to selective 5-HT 2A receptor activation. Sci Rep 2021; 11:1925. [PMID: 33479368 PMCID: PMC7820508 DOI: 10.1038/s41598-021-81552-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Perception, emotion, and mood are powerfully modulated by serotonin receptor (5-HTR) agonists including hallucinogens. The 5-HT2AR subtype has been shown to be central to hallucinogen action, yet the precise mechanisms mediating the response to 5-HT2AR activation remain unclear. Hallucinogens induce the head twitch response (HTR) in rodents, which is the most commonly used behavioral readout of hallucinogen pharmacology. While the HTR provides a key behavioral signature, less is known about the meso level changes that are induced by 5-HT2AR activation. In response to administration of the potent and highly selective 5-HT2AR agonist 25I-NBOH in mice, we observe a disorganization of behavior which includes frequent episodes of behavioral arrest that consistently precede the HTR by a precise interval. By combining behavioral analysis with electroencephalogram (EEG) recordings we describe a characteristic pattern composed of two distinctive EEG waveforms, Phase 1 and Phase 2, that map onto behavioral arrest and the HTR respectively, with the same temporal separation. Phase 1, which underlies behavioral arrest, is a 3.5-4.5 Hz waveform, while Phase 2 is slower at 2.5-3.2 Hz. Nicotine pretreatment, considered an integral component of ritualistic hallucinogen practices, attenuates 25I-NBOH induced HTR and Phase 2 waveforms, yet increases behavioral arrest and Phase 1 waveforms. Our results suggest that in addition to the HTR, behavioral arrest and characteristic meso level slow waveforms are key hallmarks of the response to 5-HT2AR activation. Increased understanding of the response to serotonergic hallucinogens may provide mechanistic insights into perception and hallucinations, as well as regulation of mood.
Collapse
Affiliation(s)
- April Contreras
- University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Matthew Khumnark
- University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Rochelle M Hines
- University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154, USA
| | - Dustin J Hines
- University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154, USA.
| |
Collapse
|
145
|
Blatchford E, Bright S, Engel L. Tripping over the other: Could psychedelics increase empathy? JOURNAL OF PSYCHEDELIC STUDIES 2021. [DOI: 10.1556/2054.2020.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractThere is increasing evidence that psychedelic-assisted psychotherapy is effective for a range of psychological conditions. There are likely numerous mechanisms of action that contribute to these clinical effects. One such mechanism of action might involve psychedelics increasing levels of empathic functioning. This paper synthesises research concerning the relationship between psychedelics and empathy, emphasising neuroscientific and clinical contexts. We conclude that neuropsychological and clinical evidence imply psychedelics could lead to increased empathic functioning. The effects of psychedelics on the 5-HT system, default mode network, neural connectivity and ego dissolution are implicated in these changes. Changes in empathic functioning also likely relate to increases in the personality trait of openness associated with psychedelic drug use, which is well documented. Increased empathic function likely has clinical implications, leading to increased social connectedness as well as prosocial attitudes and behaviours more broadly.
Collapse
Affiliation(s)
- Emily Blatchford
- 1School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Stephen Bright
- 1School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- 2National Drug Research Institute, Curtin University, Perth, Australia
| | - Liam Engel
- 1School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
146
|
Cortical influences of serotonin and glutamate on layer V pyramidal neurons. PROGRESS IN BRAIN RESEARCH 2021; 261:341-378. [PMID: 33785135 DOI: 10.1016/bs.pbr.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Layer V pyramidal neurons constitute principle output neurons of the medial prefrontal cortex (mPFC)/neocortex to subcortical regions including the intralaminar/midline thalamic nuclei, amygdala, basal ganglia, brainstem nuclei and the spinal cord. The effects of 5-hydroxytryptamine (5-HT) on layer V pyramidal cells primarily reflect a range of excitatory influences through 5-HT2A receptors and inhibitory influences through non-5-HT2A receptors, including 5-HT1A receptors. While the 5-HT2A receptor is primarily a postsynaptic receptor on throughout the apical dendritic field of 5-HT2A receptors, activation of a minority of 5-HT2A receptors also appears to increase spontaneous excitatory postsynaptic currents/potentials (EPSCs/EPSPs) via a presynaptic effect on thalamocortical terminals arising from the midline and intralaminar thalamic nuclei. Activation of 5-HT2A receptors by the phenethylamine hallucinogen also appears to increase asynchronous release of glutamate upon the layer V pyramidal dendritic field, an effect that is suppressed by 5-HT itself through non-5-HT2A receptors. Serotonergic hallucinogens acting on 5-HT2A receptors also appears to increase gene expression of immediate early genes (iEG) and other receptors appearing to induce an iEG-like response like BDNF. Psychedelic hallucinogens acting on 5-HT2A receptors also induce head twitches in rodents that appear related to induction of glutamate release. These electrophysiological, biochemical and behavioral effects of serotonergic hallucinogens appear to be related to modulating glutamatergic thalamocortical neurotransmission and/or shifting the balance toward 5-HT2A receptor activation and away from non-5-HT2A receptor activation. These 5-HT2A receptor induced responses are modulated by feedback homeostatic mechanisms through mGlu2, mGlu4, and mGlu8 presynaptic receptors on thalamocortical terminals. These 5-HT2A receptor and glutamatergic interactions also appear to play a role on higher cortical functions of the mPFC such as motoric impulsivity and antidepressant-like behavioral responses on the differential-reinforcement-of low rate 72-s (DRL 72-s schedule). These mutually opposing effects between 5-HT2A receptor and mGlu autoreceptor activation (e.g., blocking 5-HT2A receptors and enhancing activity at mGlu2 receptors) may play a clinical role with respect to currently prescribed or novel antidepressant drugs. Thus, there is an important balance between 5-HT2A receptor activation and activation of mGlu autoreceptors on prefrontal cortical layer V pyramidal cells with respect to the electrophysiological, biochemical and behavioral effects serotonergic hallucinogenic drugs.
Collapse
|
147
|
Avram M, Rogg H, Korda A, Andreou C, Müller F, Borgwardt S. Bridging the Gap? Altered Thalamocortical Connectivity in Psychotic and Psychedelic States. Front Psychiatry 2021; 12:706017. [PMID: 34721097 PMCID: PMC8548726 DOI: 10.3389/fpsyt.2021.706017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Psychiatry has a well-established tradition of comparing drug-induced experiences to psychotic symptoms, based on shared phenomena such as altered perceptions. The present review focuses on experiences induced by classic psychedelics, which are substances capable of eliciting powerful psychoactive effects, characterized by distortions/alterations of several neurocognitive processes (e.g., hallucinations). Herein we refer to such experiences as psychedelic states. Psychosis is a clinical syndrome defined by impaired reality testing, also characterized by impaired neurocognitive processes (e.g., hallucinations and delusions). In this review we refer to acute phases of psychotic disorders as psychotic states. Neuropharmacological investigations have begun to characterize the neurobiological mechanisms underpinning the shared and distinct neurophysiological changes observed in psychedelic and psychotic states. Mounting evidence indicates changes in thalamic filtering, along with disturbances in cortico-striato-pallido-thalamo-cortical (CSPTC)-circuitry, in both altered states. Notably, alterations in thalamocortical functional connectivity were reported by functional magnetic resonance imaging (fMRI) studies. Thalamocortical dysconnectivity and its clinical relevance are well-characterized in psychotic states, particularly in schizophrenia research. Specifically, studies report hyperconnectivity between the thalamus and sensorimotor cortices and hypoconnectivity between the thalamus and prefrontal cortices, associated with patients' psychotic symptoms and cognitive disturbances, respectively. Intriguingly, studies also report hyperconnectivity between the thalamus and sensorimotor cortices in psychedelic states, correlating with altered visual and auditory perceptions. Taken together, the two altered states appear to share clinically and functionally relevant dysconnectivity patterns. In this review we discuss recent findings of thalamocortical dysconnectivity, its putative extension to CSPTC circuitry, along with its clinical implications and future directions.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Helena Rogg
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Christina Andreou
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| |
Collapse
|
148
|
Sanz C, Pallavicini C, Carrillo F, Zamberlan F, Sigman M, Mota N, Copelli M, Ribeiro S, Nutt D, Carhart-Harris R, Tagliazucchi E. The entropic tongue: Disorganization of natural language under LSD. Conscious Cogn 2021; 87:103070. [PMID: 33307427 DOI: 10.1016/j.concog.2020.103070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/10/2020] [Accepted: 11/28/2020] [Indexed: 02/09/2023]
Abstract
Serotonergic psychedelics have been suggested to mirror certain aspects of psychosis, and, more generally, elicit a state of consciousness underpinned by increased entropy of on-going neural activity. We investigated the hypothesis that language produced under the effects of lysergic acid diethylamide (LSD) should exhibit increased entropy and reduced semantic coherence. Computational analysis of interviews conducted at two different time points after 75 μg of intravenous LSD verified this prediction. Non-semantic analysis of speech organization revealed increased verbosity and a reduced lexicon, changes that are more similar to those observed during manic psychoses than in schizophrenia, which was confirmed by direct comparison with reference samples. Importantly, features related to language organization allowed machine learning classifiers to identify speech under LSD with accuracy comparable to that obtained by examining semantic content. These results constitute a quantitative and objective characterization of disorganized natural speech as a landmark feature of the psychedelic state.
Collapse
Affiliation(s)
- Camila Sanz
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina
| | - Carla Pallavicini
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina; Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Montañeses 2325, C1428 CABA, Buenos Aires, Argentina
| | - Facundo Carrillo
- Applied Artificial Intelligence Lab (ICC-CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina
| | - Federico Zamberlan
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina
| | - Mariano Sigman
- Universidad Torcuato Di Tella, Juan Pablo Sáenz Valiente 1010, C1428BIJ CABA, Buenos Aires, Argentina
| | - Natalia Mota
- Brain Institute, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho, 3000 Candelária, Natal, Brazil
| | - Mauro Copelli
- Physics Department, Federal University of Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, Recife, PE 50670-901, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho, 3000 Candelária, Natal, Brazil
| | - David Nutt
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, Kensington, London SW7 2DD, United Kingdom
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Department of Medicine, Imperial College London, Kensington, London SW7 2DD, United Kingdom
| | - Enzo Tagliazucchi
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires (IFIBA - CONICET), Pabellón I, Ciudad Universitaria (1428), CABA, Buenos Aires, Argentina.
| |
Collapse
|
149
|
Eleftheriou ME, Thomas E. Examining the Potential Synergistic Effects Between Mindfulness Training and Psychedelic-Assisted Therapy. Front Psychiatry 2021; 12:707057. [PMID: 34456763 PMCID: PMC8386240 DOI: 10.3389/fpsyt.2021.707057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Mindfulness-based interventions and psychedelic-assisted therapy have been experimentally utilised in recent years as alternative treatments for various psychopathologies with moderate to great success. Both have also demonstrated significant post-acute and long-term decreases in clinical symptoms and enhancements in well-being in healthy participants. These two therapeutic interventions share various postulated salutogenic mechanisms, such as the ability to alter present-moment awareness and anti-depressive action, via corresponding neuromodulatory effects. Recent preliminary evidence has also demonstrated that psychedelic administration can enhance mindfulness capacities which has already been demonstrated robustly as a result of mindfulness-based interventions. These shared mechanisms between mindfulness-based interventions and psychedelic therapy have led to scientists theorising, and recently demonstrating, synergistic effects when both are used in combination, in the form of potentiated therapeutic benefit. These synergistic results hold great promise but require replication in bigger sample groups and better controlled methodologies, to fully delineate the effect of set and setting, before they can be extended onto clinical populations.
Collapse
Affiliation(s)
- Maria Eleni Eleftheriou
- Department of Clinical Psychopharmacology, University College London, London, United Kingdom
| | - Emily Thomas
- Department of Clinical Psychopharmacology, University College London, London, United Kingdom
| |
Collapse
|
150
|
Kočárová R, Horáček J, Carhart-Harris R. Does Psychedelic Therapy Have a Transdiagnostic Action and Prophylactic Potential? Front Psychiatry 2021; 12:661233. [PMID: 34349678 PMCID: PMC8327748 DOI: 10.3389/fpsyt.2021.661233] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Addressing global mental health is a major 21st-century challenge. Current treatments have recognized limitations; in this context, new ones that are prophylactic and effective across diagnostic boundaries would represent a major advance. The view that there exists a core of transdiagnostic overlap between psychiatric disorders has re-emerged in recent years, and evidence that psychedelic therapy holds promise for a range of psychiatric disorders supports the position that it may be transdiagnostically effective. Here, we propose that psychedelic therapy's core, transdiagnostically relevant action lies in its ability to increase neuronal and mental plasticity, thus enhancing the potential for change, which we consider to be a key to its therapeutic benefits. Moreover, we suggest that enhanced plasticity via psychedelics, combined with a psychotherapeutic approach, can aid healthy adaptability and resilience, which are protective factors for long-term well-being. We present candidate neurological and psychological markers of this plasticity and link them with a predictive processing model of the action of psychedelics. We propose that a model of psychedelic-induced plasticity combined with an adequate therapeutic context has prophylactic and transdiagnostic potential, implying that it could have a broad, positive impact on public health.
Collapse
Affiliation(s)
- Rita Kočárová
- Department of Translational Neuroscience, National Institute of Mental Health, Klecany, Czechia.,Department of Psychology, Faculty of Arts, Charles University, Prague, Czechia.,Beyond Psychedelics, Prague, Czechia
| | - Jiří Horáček
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| |
Collapse
|