101
|
Gut bacteria-derived 5-hydroxyindole is a potent stimulant of intestinal motility via its action on L-type calcium channels. PLoS Biol 2021; 19:e3001070. [PMID: 33481771 PMCID: PMC7857600 DOI: 10.1371/journal.pbio.3001070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Microbial conversion of dietary or drug substrates into small bioactive molecules represents a regulatory mechanism by which the gut microbiota alters intestinal physiology. Here, we show that a wide variety of gut bacteria can metabolize the dietary supplement and antidepressant 5-hydroxytryptophan (5-HTP) to 5-hydroxyindole (5-HI) via the tryptophanase (TnaA) enzyme. Oral administration of 5-HTP results in detection of 5-HI in fecal samples of healthy volunteers with interindividual variation. The production of 5-HI is inhibited upon pH reduction in in vitro studies. When administered orally in rats, 5-HI significantly accelerates the total gut transit time (TGTT). Deciphering the underlying mechanisms of action reveals that 5-HI accelerates gut contractility via activation of L-type calcium channels located on the colonic smooth muscle cells. Moreover, 5-HI stimulation of a cell line model of intestinal enterochromaffin cells results in significant increase in serotonin production. Together, our findings support a role for bacterial metabolism in altering gut motility and lay the foundation for microbiota-targeted interventions.
Collapse
|
102
|
Chojnacki C, Popławski T, Gasiorowska A, Chojnacki J, Blasiak J. Serotonin in the Pathogenesis of Lymphocytic Colitis. J Clin Med 2021; 10:jcm10020285. [PMID: 33466782 PMCID: PMC7830326 DOI: 10.3390/jcm10020285] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Lymphocytic colitis (LC) is a chronic inflammatory disease associated with watery diarrhea, abdominal pain, and colonic intraepithelial lymphocytosis. Serotonin (5-hydroxytryptamine, 5-HT) is reported to increase in certain colon diseases; however, little is known regarding its metabolism in LC. In the present work, the level of 5-HT in serum and the number of enteroendocrine cells (EECs) as well as the expression of the 5-HT rate-limiting enzyme tryptophan hydroxylase 1 (TPH1) in colonic biopsies and urine 5-hydroxyindoeoacetic acid (5-HIAA) were determined in 36 LC patients that were treated with budesonide and 32 healthy controls. The 5-HT serum and 5-HIAA urine levels were measured using ELISA, the EEC number was determined immunohistochemically, and the colonic TPH1 mRNA expression was determined using RT-PCR. The levels of 5-HT and 5-HIAA and the number of EECs were higher in LC patients than in the controls, and positive correlations were observed between the 5-HT and 5-HIAA levels, 5-HT and EEC number, TPH1 mRNA and EEC number, as well as the severity of disease symptoms and 5-HIAA. Budesonide decreased the levels of 5-HT, 5-HIAA, and TPH1 expression and the number of EECs to values that did not differ from those for controls. In conclusion, the serotonin metabolism may be important for LC pathogenesis, and the urinary level of 5-HIAA may be considered as a non-invasive marker of this disease activity.
Collapse
Affiliation(s)
- Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-639-3040
| | - Tomasz Popławski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (T.P.); (J.B.)
| | - Anita Gasiorowska
- Department of Gastroenterology, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (T.P.); (J.B.)
| |
Collapse
|
103
|
Zhu C, Gong H, Luo P, Dong L, Zhang G, Shi X, Rong W. Oral Administration of Penicillin or Streptomycin May Alter Serum Serotonin Level and Intestinal Motility via Different Mechanisms. Front Physiol 2021; 11:605982. [PMID: 33424630 PMCID: PMC7785965 DOI: 10.3389/fphys.2020.605982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background/Aims Enterochromaffin cells (EC cells) constitute the largest population of enteroendocrine cells and release serotonin (5-HT) in response to mechanical and chemical cues of the gastrointestinal tract (GIT). How EC cells respond to altered microbiota such as due to antibiotic treatments remain poorly understood. We hypothesized that the pacemaker channel HCN2 might contribute to the regulation of EC cells functions and their responses to antibiotics-induced changes in intestinal flora. Methods Mice were given either penicillin or streptomycin or both in drinking water for 10 consecutive days. The changes in the profile of short chain fatty acids (SCFAs) in the cecum following penicillin or streptomycin treatments were tested by GC-MS. Serum 5-HT content, whole intestinal transit time, fecal water content, cecum weight and expression of HCN2 and TPH1 in cecal mucosa were measured. Ivabradine (a HCN channels blocker) was used to explore the role of HCN2 in penicillin-induced changes in 5-HT availability and intestinal motility. Results HCN2 immunofluorescence was detected on intestinal EC cells. Both penicillin and streptomycin caused significant reduction in total SCFAs in the cecum, with the penicillin-treated group showing greater reductions in butyrate, isobutyrate and isovalerate levels than the streptomycin group. The expression of HCN2 was increased in the mice treated with penicillin, whereas TPH1 expression was increased in the mice treated with streptomycin. Mice treated with antibiotics all had larger and heavier cecum, elevated serum 5-HT level and increased fecal water content. Besides, mice treated with penicillin had prolonged intestinal transit time. Intraperitoneal injection of Ivabradine attenuated the effect of penicillin on serum 5-HT level, cecum size and weight, intestinal motility, and fecal water content. Conclusion Disruptions of the intestinal flora structure due to oral administration of penicillin may significantly increase serum 5-HT level and inhibit intestinal motility, at least partially through up-regulating the expression of HCN2. Oral administration of streptomycin may alter 5-HT availability by up-regulating TPH1 expression thus increasing synthesis of 5-HT. Alterations of intestinal flora composition due to exposure to different antibiotics may regulate 5-HT availability and intestinal motility through different mechanisms.
Collapse
Affiliation(s)
- Cuihong Zhu
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huashan Gong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Luo
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Dong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Zhang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyin Shi
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifang Rong
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
104
|
Martins PR, Fakhry J, de Oliveira AJ, Moreira TB, Fothergill LJ, de Oliveira EC, Reis DD, Furness JB. The distribution and chemical coding of enteroendocrine cells in Trypanosoma cruzi-infected individuals with chagasic megacolon. Histochem Cell Biol 2021; 155:451-462. [PMID: 33404704 DOI: 10.1007/s00418-020-01947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Chagas disease is caused by the parasite, Trypanosoma cruzi that causes chronic cardiac and digestive dysfunction. Megacolon, an irreversible dilation of the left colon, is the main feature of the gastrointestinal form of Chagas disease. Patients have severe constipation, a consequence of enteric neuron degeneration associated with chronic inflammation. Dysmotility, infection, neuronal loss and a chronic exacerbated inflammation, all observed in Chagas disease, can affect enteroendocrine cells (EEC) expression, which in turn, could influence the inflammatory process. In this study, we investigated the distribution and chemical coding of EEC in the dilated and non-dilated portion of T. cruzi-induced megacolon and in non-infected individuals (control colon). Using immunohistochemistry, EECs were identified by applying antibodies to chromogranin A (CgA), glucagon-like peptide 1 (GLP-1), 5-hydroxytryptamine (5-HT), peptide YY (PYY) and somatostatin (SST). Greater numbers of EEC expressing GLP-1 and SST occurred in the dilated portion compared to the non-dilated portion of the same patients with Chagas disease and in control colon, but numbers of 5-HT and PYY EEC were not significantly different. However, it was noticeable that EEC in which 5-HT and PYY were co-expressed were common in control colon, but were rare in the non-dilated and absent in the dilated portion of chagasic megacolon. An increase in the number of CgA immunoreactive EEC in chagasic patients reflected the increases in EEC numbers summarised above. Our data suggests that the denervation and associated chronic inflammation are accompanied by changes in the number and coding of EEC that could contribute to disorders of motility and defence in the chagasic megacolon.
Collapse
Affiliation(s)
- Patrícia Rocha Martins
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Josiane Fakhry
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | - Thayse Batista Moreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Linda J Fothergill
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | | | | | - John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| |
Collapse
|
105
|
Smitka K, Prochazkova P, Roubalova R, Dvorak J, Papezova H, Hill M, Pokorny J, Kittnar O, Bilej M, Tlaskalova-Hogenova H. Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders. Front Endocrinol (Lausanne) 2021; 12:613983. [PMID: 33953692 PMCID: PMC8092392 DOI: 10.3389/fendo.2021.613983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
The equilibrium and reciprocal actions among appetite-stimulating (orexigenic) and appetite-suppressing (anorexigenic) signals synthesized in the gut, brain, microbiome and adipose tissue (AT), seems to play a pivotal role in the regulation of food intake and feeding behavior, anxiety, and depression. A dysregulation of mechanisms controlling the energy balance may result in eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). AN is a psychiatric disease defined by chronic self-induced extreme dietary restriction leading to an extremely low body weight and adiposity. BN is defined as out-of-control binge eating, which is compensated by self-induced vomiting, fasting, or excessive exercise. Certain gut microbiota-related compounds, like bacterial chaperone protein Escherichia coli caseinolytic protease B (ClpB) and food-derived antigens were recently described to trigger the production of autoantibodies cross-reacting with appetite-regulating hormones and neurotransmitters. Gut microbiome may be a potential manipulator for AT and energy homeostasis. Thus, the regulation of appetite, emotion, mood, and nutritional status is also under the control of neuroimmunoendocrine mechanisms by secretion of autoantibodies directed against neuropeptides, neuroactive metabolites, and peptides. In AN and BN, altered cholinergic, dopaminergic, adrenergic, and serotonergic relays may lead to abnormal AT, gut, and brain hormone secretion. The present review summarizes updated knowledge regarding the gut dysbiosis, gut-barrier permeability, short-chain fatty acids (SCFA), fecal microbial transplantation (FMT), blood-brain barrier permeability, and autoantibodies within the ghrelin and melanocortin systems in eating disorders. We expect that the new knowledge may be used for the development of a novel preventive and therapeutic approach for treatment of AN and BN.
Collapse
Affiliation(s)
- Kvido Smitka
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czechia
- *Correspondence: Kvido Smitka,
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Papezova
- Psychiatric Clinic, Eating Disorder Center, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Martin Hill
- Steroid Hormone and Proteofactors Department, Institute of Endocrinology, Prague, Czechia
| | - Jaroslav Pokorny
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Otomar Kittnar
- First Faculty of Medicine, Institute of Physiology, Charles University, Prague, Czechia
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
106
|
Etayo A, Le HTMD, Araujo P, Lie KK, Sæle Ø. Dietary Lipid Modulation of Intestinal Serotonin in Ballan Wrasse ( Labrus bergylta)- In Vitro Analyses. Front Endocrinol (Lausanne) 2021; 12:560055. [PMID: 33833735 PMCID: PMC8021958 DOI: 10.3389/fendo.2021.560055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Serotonin (5-HT) is pivotal in the complex regulation of gut motility and consequent digestion of nutrients via multiple receptors. We investigated the serotonergic system in an agastric fish species, the ballan wrasse (Labrus bergylta) as it represents a unique model for intestinal function. Here we present evidence of the presence of enterochromaffin cells (EC cells) in the gut of ballan wrasse comprising transcriptomic data on EC markers like adra2a, trpa1, adgrg4, lmxa1, spack1, serpina10, as well as the localization of 5-HT and mRNA of the rate limiting enzyme; tryptophan hydroxylase (tph1) in the gut epithelium. Second, we examined the effects of dietary marine lipids on the enteric serotonergic system in this stomach-less teleost by administrating a hydrolyzed lipid bolus in ex vivo guts in an organ bath system. Modulation of the mRNA expression from the tryptophan hydroxylase tph1 (EC cells isoform), tph2 (neural isoform), and other genes involved in the serotonergic machinery were tracked. Our results showed no evidence to confirm that the dietary lipid meal did boost the production of 5-HT within the EC cells as mRNA tph1 was weakly regulated postprandially. However, dietary lipid seemed to upregulate the post-prandial expression of tph2 found in the serotonergic neurons. 5-HT in the intestinal tissue increased 3 hours after "exposure" of lipids, as was observed in the mRNA expression of tph2. This suggest that serotonergic neurons and not EC cells are responsible for the substantial increment of 5-HT after a lipid-reach "meal" in ballan wrasse. Cells expressing tph1 were identified in the gut epithelium, characteristic for EC cells. However, Tph1 positive cells were also present in the lamina propria. Characterization of these cells together with their implications in the serotonergic system will contribute to broad the scarce knowledge of the serotonergic system across teleosts.
Collapse
|
107
|
Ní Dhonnabháín R, Xiao Q, O’Malley D. Aberrant Gut-To-Brain Signaling in Irritable Bowel Syndrome - The Role of Bile Acids. Front Endocrinol (Lausanne) 2021; 12:745190. [PMID: 34917022 PMCID: PMC8669818 DOI: 10.3389/fendo.2021.745190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Functional bowel disorders such as irritable bowel syndrome (IBS) are common, multifactorial and have a major impact on the quality of life of individuals diagnosed with the condition. Heterogeneity in symptom manifestation, which includes changes in bowel habit and visceral pain sensitivity, are an indication of the complexity of the underlying pathophysiology. It is accepted that dysfunctional gut-brain communication, which incorporates efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones and local paracrine and neurocrine factors, such as host and microbially-derived signaling molecules, underpins symptom manifestation. This review will focus on the potential role of hepatic bile acids in modulating gut-to-brain signaling in IBS patients. Bile acids are amphipathic molecules synthesized in the liver, which facilitate digestion and absorption of dietary lipids. They are also important bioactive signaling molecules however, binding to bile acid receptors which are expressed on many different cell types. Bile acids have potent anti-microbial actions and thereby shape intestinal bacterial profiles. In turn, bacteria with bile salt hydrolase activity initiate the critical first step in transforming primary bile acids into secondary bile acids. Individuals with IBS are reported to have altered microbial profiles and modified bile acid pools. We have assessed the evidence to support a role for bile acids in the pathophysiology underlying the manifestation of IBS symptoms.
Collapse
Affiliation(s)
- Róisín Ní Dhonnabháín
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Qiao Xiao
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dervla O’Malley
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- *Correspondence: Dervla O’Malley,
| |
Collapse
|
108
|
Joly A, Leulier F, De Vadder F. Microbial Modulation of the Development and Physiology of the Enteric Nervous System. Trends Microbiol 2020; 29:686-699. [PMID: 33309188 DOI: 10.1016/j.tim.2020.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
The gastrointestinal tract harbors an intrinsic neuronal network, the enteric nervous system (ENS). The ENS controls motility, fluid homeostasis, and blood flow, but also interacts with other components of the intestine such as epithelial and immune cells. Recent studies indicate that gut microbiota diversification, which occurs alongside postnatal ENS maturation, could be critical for the development and function of the ENS. Here we discuss the possibility that this functional relationship starts in utero, whereby the maternal microbiota would prime the developing ENS and shape its physiology. We review ENS/microbiota interactions and their modulation in physiological and pathophysiological contexts. While microbial modulation of the ENS physiology is now well established, further studies are required to understand the contribution of the gut microbiota to the development and pathology of the ENS and to reveal the precise mechanisms underlying microbiota-to-ENS communications.
Collapse
Affiliation(s)
- Amélie Joly
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France.
| |
Collapse
|
109
|
Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int J Mol Sci 2020; 21:ijms21239234. [PMID: 33287416 PMCID: PMC7730936 DOI: 10.3390/ijms21239234] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a global threat to mental health that affects around 264 million people worldwide. Despite the considerable evolution in our understanding of the pathophysiology of depression, no reliable biomarkers that have contributed to objective diagnoses and clinical therapy currently exist. The discovery of the microbiota-gut-brain axis induced scientists to study the role of gut microbiota (GM) in the pathogenesis of depression. Over the last decade, many of studies were conducted in this field. The productions of metabolites and compounds with neuroactive and immunomodulatory properties among mechanisms such as the mediating effects of the GM on the brain, have been identified. This comprehensive review was focused on low molecular weight compounds implicated in depression as potential products of the GM. The other possible mechanisms of GM involvement in depression were presented, as well as changes in the composition of the microbiota of patients with depression. In conclusion, the therapeutic potential of functional foods and psychobiotics in relieving depression were considered. The described biomarkers associated with GM could potentially enhance the diagnostic criteria for depressive disorders in clinical practice and represent a potential future diagnostic tool based on metagenomic technologies for assessing the development of depressive disorders.
Collapse
|
110
|
Haas-Neill S, Forsythe P. A Budding Relationship: Bacterial Extracellular Vesicles in the Microbiota-Gut-Brain Axis. Int J Mol Sci 2020; 21:ijms21238899. [PMID: 33255332 PMCID: PMC7727686 DOI: 10.3390/ijms21238899] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of the microbiota-gut-brain axis has revolutionized our understanding of systemic influences on brain function and may lead to novel therapeutic approaches to neurodevelopmental and mood disorders. A parallel revolution has occurred in the field of intercellular communication, with the realization that endosomes, and other extracellular vesicles, rival the endocrine system as regulators of distant tissues. These two paradigms shifting developments come together in recent observations that bacterial membrane vesicles contribute to inter-kingdom signaling and may be an integral component of gut microbe communication with the brain. In this short review we address the current understanding of the biogenesis of bacterial membrane vesicles and the roles they play in the survival of microbes and in intra and inter-kingdom communication. We identify recent observations indicating that bacterial membrane vesicles, particularly those derived from probiotic organisms, regulate brain function. We discuss mechanisms by which bacterial membrane vesicles may influence the brain including interaction with the peripheral nervous system, and modulation of immune activity. We also review evidence suggesting that, unlike the parent organism, gut bacteria derived membrane vesicles are able to deliver cargo, including neurotransmitters, directly to the central nervous system and may thus constitute key components of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Sandor Haas-Neill
- McMaster Brain-Body Institute, The Research Institute of St. Joseph’s Hamilton, Hamilton, ON L8N 4A6, Canada;
| | - Paul Forsythe
- McMaster Brain-Body Institute, The Research Institute of St. Joseph’s Hamilton, Hamilton, ON L8N 4A6, Canada;
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare and Department of Medicine, McMaster University, Hamilton, ON L8N 4A6, Canada
- Correspondence: ; Tel.: +01-905-522-1155 (ext. 35890)
| |
Collapse
|
111
|
Chung JY, Jeong JH, Song J. Resveratrol Modulates the Gut-Brain Axis: Focus on Glucagon-Like Peptide-1, 5-HT, and Gut Microbiota. Front Aging Neurosci 2020; 12:588044. [PMID: 33328965 PMCID: PMC7732484 DOI: 10.3389/fnagi.2020.588044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Resveratrol is a natural polyphenol that has anti-aging and anti-inflammatory properties against stress condition. It is reported that resveratrol has beneficial functions in various metabolic and central nervous system (CNS) diseases, such as obesity, diabetes, depression, and dementia. Recently, many researchers have emphasized the connection between the brain and gut, called the gut-brain axis, for treating both CNS neuropathologies and gastrointestinal diseases. Based on previous findings, resveratrol is involved in glucagon-like peptide 1 (GLP-1) secreted by intestine L cells, the patterns of microbiome in the intestine, the 5-hydroxytryptamine (5-HT) level, and CNS inflammation. Here, we review recent evidences concerning the relevance and regulatory function of resveratrol in the gut-brain axis from various perspectives. Here, we highlight the necessity for further study on resveratrol's specific mechanism in the gut-brain axis. We present the potential of resveratrol as a natural therapeutic substance for treating both neuropathology and gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, South Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
112
|
Müller M, Hermes GDA, Emanuel E. C, Holst JJ, Zoetendal EG, Smidt H, Troost F, Schaap FG, Damink SO, Jocken JWE, Lenaerts K, Masclee AAM, Blaak EE. Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit. Gut Microbes 2020; 12:1704141. [PMID: 31983281 PMCID: PMC7524158 DOI: 10.1080/19490976.2019.1704141] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute intake of the wheat bran extract Arabinoxylan-Oligosaccharide (AXOS) modulates the gut microbiota, improves stool characteristics and postprandial glycemia in healthy humans. Yet, little is known on how long-term AXOS intake influences gastrointestinal (GI) functioning, gut microbiota, and metabolic health. In this randomized, placebo-controlled, double-blind study, we evaluated the effects of AXOS intake on GI function and metabolic health in adults with slow GI transit without constipation. Forty-eight normoglycemic adults were included with whole-gut transit time (WGTT) of >35 h receiving either 15 g/day AXOS or placebo (maltodextrin) for 12-wks. The primary outcome was WGTT, and secondary outcomes included stool parameters, gut permeability, short-chain fatty acids (SCFA), microbiota composition, energy expenditure, substrate oxidation, glucose, insulin, lipids, gut hormones, and adipose tissue (AT) function. WGTT was unchanged, but stool consistency softened after AXOS. 12-wks of AXOS intake significantly changed the microbiota by increasing Bifidobacterium and decreasing microbial alpha-diversity. With a good classification accuracy, overall microbiota composition classified responders with decreased WGTT after AXOS. The incretin hormone Glucagon-like protein 1 was reduced after AXOS compared to placebo. Energy expenditure, plasma metabolites, AT parameters, SCFA, and gut permeability were unchanged. In conclusion, intake of wheat bran extract increases fecal Bifidobacterium and softens stool consistency without major effects on energy metabolism in healthy humans with a slow GI transit. We show that overall gut microbiota classified responders with decreased WGTT after AXOS highlighting that GI transit and change thereof were associated with gut microbiota independent of Bifidobacterium. NCT02491125.
Collapse
Affiliation(s)
- Mattea Müller
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gerben D. A. Hermes
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Canfora Emanuel E.
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jens J. Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Freddy Troost
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands,Food Innovation and Health Research, Centre for Healthy Eating and Food Innovation, Maastricht University, Venlo, The Netherlands
| | - Frank G. Schaap
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Steven Olde Damink
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Johan W. E. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ad A. M. Masclee
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands,CONTACT Ellen E. Blaak Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht6200, The Netherlands
| |
Collapse
|
113
|
Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 2020; 21:717-731. [DOI: 10.1038/s41583-020-00381-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
|
114
|
Bioaminergic Responses in an In Vitro System Studying Human Gut Microbiota-Kiwifruit Interactions. Microorganisms 2020; 8:microorganisms8101582. [PMID: 33066564 PMCID: PMC7602194 DOI: 10.3390/microorganisms8101582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
Whole kiwifruit ('Hayward' and 'Zesy002') were examined for their bioaminergic potential after being subjected to in vitro gastrointestinal digestion and colonic fermentation. Controls included the prebiotic inulin and water, a carbohydrate-free vehicle. The dopamine precursor l-dihydroxyphenylalanine (L-DOPA) and the serotonin precursor 5-hydroxytryptophan were increased in the kiwifruit gastrointestinal digesta ('Hayward' > 'Zesy002') in comparison to the water digesta. Fermentation of the digesta with human fecal bacteria for 18 h modulated the concentrations of bioamine metabolites. The most notable were the significant increases in L-DOPA ('Zesy002' > 'Hayward') and γ-aminobutyric acid (GABA) ('Hayward' > 'Zesy002'). Kiwifruit increased Bifidobacterium spp. and Veillonellaceae (correlating with L-DOPA increase), and Lachnospira spp. (correlating with GABA). The digesta and fermenta were incubated with Caco-2 cells for 3 h followed by gene expression analysis. Effects were seen on genes related to serotonin synthesis/re-uptake/conversion to melatonin, gut tight junction, inflammation and circadian rhythm with different digesta and fermenta from the four treatments. These indicate potential effects of the substrates and the microbially generated organic acid and bioamine metabolites on intestinal functions that have physiological relevance. Further studies are required to confirm the potential bioaminergic effects of gut microbiota-kiwifruit interactions.
Collapse
|
115
|
Foata F, Sprenger N, Rochat F, Damak S. Activation of the G-protein coupled receptor GPR35 by human milk oligosaccharides through different pathways. Sci Rep 2020; 10:16117. [PMID: 32999316 PMCID: PMC7528069 DOI: 10.1038/s41598-020-73008-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Numerous benefits of breastfeeding over infant formula are fully established. The superiority of human milk over bovine milk-based formula is partly due to human milk oligosaccharides (HMOs), a family of over 100 molecules present specifically and substantially in human milk that resemble mucosal glycans. To uncover novel physiological functions and pathways of HMOs, we screened a panel of 165 G-protein coupled receptors (GPCRs) using a blend of 6 HMOs (3'-O-sialyllactose (3'SL), 6'-O-sialyllactose (6'SL), lacto-N-tetraose (LNT), lacto-N-neo-tetraose (LNnT), 2-O-fucosyllactose (2'FL), and difucosyllactose (diFL)), and followed up positive hits with standard receptor assays. The HMO blend specifically activated GPR35. LNT and 6'SL individually activated GPR35, and they showed synergy when used together. In addition, in vitro fermentation of infant stool samples showed that 2'FL upregulates the production of the GPR35 agonist kynurenic acid (KYNA) by the microbiota. LNT + 6'SL and KYNA showed additive activation of GPR35. Activation by 6'SL and LNT of GPR35, a receptor mediating attenuation of pain and colitis, is to our knowledge the first demonstration of GPCR activation by any HMO. In addition, we demonstrated a remarkable cooperation between nutrition and microbiota towards activation of a host receptor highlighting the close interplay between environment and host-microbe interactions.
Collapse
Affiliation(s)
- Francis Foata
- Société des Produits Nestlé S.A., Nestlé Research, Route du Jorat, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Norbert Sprenger
- Société des Produits Nestlé S.A., Nestlé Research, Route du Jorat, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Florence Rochat
- Société des Produits Nestlé S.A., Nestlé Research, Route du Jorat, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Sami Damak
- Société des Produits Nestlé S.A., Nestlé Research, Route du Jorat, Vers-chez-les-Blanc, 1000, Lausanne 26, Switzerland.
| |
Collapse
|
116
|
Huang KP, Goodson ML, Vang W, Li H, Page AJ, Raybould HE. Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet. Int J Obes (Lond) 2020; 45:348-357. [PMID: 32917985 PMCID: PMC7854885 DOI: 10.1038/s41366-020-00678-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/30/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
Objective: Activation of vagal afferent neurons (VAN) by postprandial gastrointestinal signals terminates feeding and facilitates nutrient digestion and absorption. Leptin modulates responsiveness of VAN to meal-related gastrointestinal signals. Rodents with high-fat diet (HF) feeding develop leptin resistance that impairs responsiveness of VAN. We hypothesized that lack of leptin signaling in VAN reduces responses to meal-related signals, which in turn decreases absorption of nutrients and energy storage from high-fat, calorically dense food. Methods: Mice with conditional deletion of the leptin receptor from VAN (Nav1.8-Cre/LepRfl/fl; KO) were used in this study. Six-week-old male mice were fed a 45% HF for 4 weeks; metabolic phenotype, food intake, and energy expenditure were measured. Absorption and storage of nutrients were investigated in the refed state. Results: After 4 weeks of HF feeding, KO mice gained less body weight and fat mass that WT controls, but this was not due to differences in food intake or energy expenditure. KO mice had reduced expression of carbohydrate transporters and absorption of carbohydrate in the jejunum. KO mice had fewer hepatic lipid droplets and decreased expression of de novo lipogenesis-associated enzymes and lipoproteins for endogenous lipoprotein pathway in liver, suggesting decreased long-term storage of carbohydrate in KO mice. Conclusions: Impairment of leptin signaling in VAN reduces responsiveness to gastrointestinal signals, which reduces intestinal absorption of carbohydrates and de novo lipogenesis resulting in reduced long-term energy storage. This study reveals a novel role of vagal afferents to support digestion and energy storage that may contribute to the effectiveness of vagal blockade to induce weight loss.
Collapse
Affiliation(s)
- Kuei-Pin Huang
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Michael L Goodson
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Wendie Vang
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Hui Li
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Helen E Raybould
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
117
|
Chapin AA, Rajasekaran PR, Quan DN, Hu L, Herberholz J, Bentley WE, Ghodssi R. Electrochemical measurement of serotonin by Au-CNT electrodes fabricated on microporous cell culture membranes. MICROSYSTEMS & NANOENGINEERING 2020; 6:90. [PMID: 34567700 PMCID: PMC8433419 DOI: 10.1038/s41378-020-00184-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 05/06/2023]
Abstract
Gut-brain axis (GBA) communication relies on serotonin (5-HT) signaling between the gut epithelium and the peripheral nervous system, where 5-HT release patterns from the basolateral (i.e., bottom) side of the epithelium activate nerve afferents. There have been few quantitative studies of this gut-neuron signaling due to a lack of real-time measurement tools that can access the basolateral gut epithelium. In vitro platforms allow quantitative studies of cultured gut tissue, but they mainly employ offline and endpoint assays that cannot resolve dynamic molecular-release patterns. Here, we present the modification of a microporous cell culture membrane with carbon nanotube-coated gold (Au-CNT) electrodes capable of continuous, label-free, and direct detection of 5-HT at physiological concentrations. Electrochemical characterization of single-walled carbon nanotube (SWCNT)-coated Au electrodes shows increased electroactive surface area, 5-HT specificity, sensitivity, and saturation time, which are correlated with the CNT film drop-cast volume. Two microliters of CNT films, with a 10-min saturation time, 0.6 μA/μM 5-HT sensitivity, and reliable detection within a linear range of 500 nM-10 μM 5-HT, can be targeted for high-concentration, high-time-resolution 5-HT monitoring. CNT films (12.5 μL) with a 2-h saturation time, 4.5 μA/μM 5-HT sensitivity, and quantitative detection in the linear range of 100 nM-1 μM can target low concentrations with low time resolution. These electrodes achieved continuous detection of dynamic diffusion across the porous membrane, mimicking basolateral 5-HT release from cells, and detection of cell-released 5-HT from separately cultured RIN14B cell supernatant. Electrode-integrated cell culture systems such as this can improve in vitro molecular detection mechanisms and aid in quantitative GBA signaling studies.
Collapse
Affiliation(s)
- Ashley A. Chapin
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Systems Research, College Park, MD 20740 USA
| | | | - David N. Quan
- Fischell Department of Bioengineering, College Park, MD 20742 USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, College Park, MD 20740 USA
| | - Jens Herberholz
- Department of Psychology and Neuroscience and Cognitive Science Program, College Park, MD 20740 USA
| | - William E. Bentley
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850 USA
- Robert E. Fischell Institute for Biomedical Devices, Rockville, MD 20850 USA
| | - Reza Ghodssi
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Systems Research, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, Rockville, MD 20850 USA
- Department of Electrical and Computer Engineering, College Park, MD 20742 USA
| |
Collapse
|
118
|
Gunn D, Murthy R, Major G, Wilkinson-Smith V, Hoad C, Marciani L, Remes-Troche J, Gill S, Rossi M, Harris H, Ahn-Jarvis J, Warren F, Whelan K, Spiller R. Contrasting effects of viscous and particulate fibers on colonic fermentation in vitro and in vivo, and their impact on intestinal water studied by MRI in a randomized trial. Am J Clin Nutr 2020; 112:595-602. [PMID: 32619212 DOI: 10.1093/ajcn/nqaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Wheat bran, nopal, and psyllium are examples of particulate, viscous and particulate, and viscous fibers, respectively, with laxative properties yet contrasting fermentability. OBJECTIVES We assessed the fermentability of these fibers in vitro and their effects on intestinal function relevant to laxation in vivo using MRI. METHODS Each fiber was predigested prior to measuring gas production in vitro during 48-h anaerobic incubation with healthy fecal samples. We performed a randomized, 3-way crossover trial in 14 healthy volunteers who ingested 7.5 g fiber twice on the day prior to study initiation and once with the study test meal. Serial MRI scans obtained after fasting and hourly for 4 h following meal ingestion were used to assess small bowel water content (SBWC), colonic volumes, and T1 of the ascending colon (T1AC) as measures of colonic water. Breath samples for hydrogen analysis were obtained while patients were in the fasted state and every 30 min for 4 h following meal ingestion. RESULTS In vitro, the onset of gas production was significantly delayed with psyllium (mean ± SD: 14 ± 5 h) compared with wheat bran (6 ± 2 h, P = 0.003) and was associated with a smaller total gas volume (P = 0.01). Prefeeding all 3 fibers for 24 h was associated with an increased fasting T1AC (>75% of values >90th centile of the normal range). There was a further rise during the 4 h after psyllium (0.3 ± 0.3 s P = 0.009), a fall with wheat bran (-0.2 ± 0.2 s; P = 0.02), but no change with nopal (0.0 ± 0.1 s, P = 0.2). SBWC increased for all fibers; nopal stimulated more water than wheat bran [AUC mean (95% CI) difference: 7.1 (0.6, 13.8) L/min, P = 0.03].Breath hydrogen rose significantly after wheat bran and nopal but not after psyllium (P < 0.0001). CONCLUSION Both viscous and particulate fibers are equally effective at increasing colonic T1 over a period of 24 h. Mechanisms include water trapping in the small bowel by viscous fibers and delivery of substrates to the colonic microbiota by more fermentable particulate fiber. This trial was registered at clinicaltrials.gov as NCT03263065.
Collapse
Affiliation(s)
- David Gunn
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Rajani Murthy
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Giles Major
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Victoria Wilkinson-Smith
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Hoad
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, University of Nottingham, United Kingdom
| | - Luca Marciani
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jose Remes-Troche
- Digestive Physiology and Motility Lab, Medical Biological Research Institute, University of Veracruz, Veracruz, Mexico
| | - Samantha Gill
- King's College London, Department of Nutritional Sciences, London, United Kingdom
| | - Megan Rossi
- King's College London, Department of Nutritional Sciences, London, United Kingdom
| | - Hannah Harris
- Quadram Institute of Biosciences, Food, Innovation and Health, Norwich Research Park, Norwich, United Kingdom
| | - Jennifer Ahn-Jarvis
- Quadram Institute of Biosciences, Food, Innovation and Health, Norwich Research Park, Norwich, United Kingdom
| | - Fred Warren
- Quadram Institute of Biosciences, Food, Innovation and Health, Norwich Research Park, Norwich, United Kingdom
| | - Kevin Whelan
- King's College London, Department of Nutritional Sciences, London, United Kingdom
| | - Robin Spiller
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
119
|
Wang Y, Sims CE, Allbritton NL. Enterochromaffin Cell-Enriched Monolayer Platform for Assaying Serotonin Release from Human Primary Intestinal Cells. Anal Chem 2020; 92:12330-12337. [PMID: 32819098 DOI: 10.1021/acs.analchem.0c02016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enteroendocrine (EE) cells within the intestinal epithelium produce a range of hormones that have key roles in modulating satiety and feeding behavior in humans. The regulation of hormone release from EE cells as a potential therapeutic strategy to treat metabolic disorders is highly sought after by the pharmaceutical industry. However, functional studies are limited by the scarcity of EE cells (or surrogates) in both in vivo and in vitro systems. Enterochromaffin (EC) cells are a subtype of EE cells that produce serotonin (5HT). Here, we explored simple strategies to enrich EC cells in in vitro monolayer systems derived from human primary intestinal stem cells. During differentiation of the monolayers, the EC cell lineage was significantly altered by both the culture method [air-liquid interface (ALI) vs submerged] and the presence of vasoactive intestinal peptide (VIP). Compared with traditional submerged cultures without VIP, VIP-assisted ALI culture significantly boosted the number of EC cells and their 5HT secretion by up to 430 and 390%, respectively. The method also increased the numbers of other subtypes of EE cells such as L cells. Additionally, this method generated monolayers with enhanced barrier integrity, so that directional (basal or apical) 5HT secretion was measurable. For all donor tissues, the enriched EC cells improved the signal-to-background ratio and reliability of 5HT release assays. The enhancement in the 5HT secretion behavior was consistent over time from a single donor, but significant variation in the amount of secreted 5HT was present among tissues derived from five different donors. To demonstrate the utility of the EC-enriched monolayer system, 13 types of pungent food ingredients were screened for their ability to stimulate 5HT secretion. Curcumin found in the spice turmeric derived from the Curcuma longa plant was found to be the most potent secretagogue. This EC-enriched cell monolayer platform can provide a valuable analytical tool for the high-throughput screening of nutrients and gut microbial components that alter the secretion of 5HT.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Christopher E Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Nancy L Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
120
|
Okumura M, Hamada A, Ohsaka F, Tsuruta T, Hira T, Sonoyama K. Expression of serotonin receptor HTR4 in glucagon-like peptide-1-positive enteroendocrine cells of the murine intestine. Pflugers Arch 2020; 472:1521-1532. [DOI: 10.1007/s00424-020-02453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
|
121
|
Engevik MA, Luck B, Visuthranukul C, Ihekweazu FD, Engevik AC, Shi Z, Danhof HA, Chang-Graham AL, Hall A, Endres BT, Haidacher SJ, Horvath TD, Haag AM, Devaraj S, Garey KW, Britton RA, Hyser JM, Shroyer NF, Versalovic J. Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut-Brain Axis. Cell Mol Gastroenterol Hepatol 2020; 11:221-248. [PMID: 32795610 PMCID: PMC7683275 DOI: 10.1016/j.jcmgh.2020.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Berkley Luck
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Chonnikant Visuthranukul
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas,Department of Pediatrics, Pediatric Nutrition Special Task Force for Activating Research (STAR), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Faith D. Ihekweazu
- Pediatric Gastroenterology, Hepatology and Nutrition, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Amy C. Engevik
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville Tennessee
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Heather A. Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Bradley T. Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas
| | - Kevin W. Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Robert A. Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M. Hyser
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F. Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,Department of Pathology, Texas Children’s Hospital, Houston, Texas,Correspondence Address correspondence to: James Versalovic, MD, PhD, Department of Pathology and Immunology, Baylor College of Medicine, 1102 Bates Avenue, Suite 830, Houston, Texas 7703. fax: (832) 825-1165.
| |
Collapse
|
122
|
Martin AM, Jones LA, Jessup CF, Sun EW, Keating DJ. Diet differentially regulates enterochromaffin cell serotonin content, density and nutrient sensitivity in the mouse small and large intestine. Neurogastroenterol Motil 2020; 32:e13869. [PMID: 32378785 DOI: 10.1111/nmo.13869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Enterochromaffin (EC) cells are specialized enteroendocrine cells lining the gastrointestinal (GI) tract and the source of almost all serotonin (5-hydroxytryptamine; 5-HT) in the body. Gut-derived 5-HT has a plethora of physiological roles, including regulation of gastrointestinal motility, and has been implicated as a driver of obesity and metabolic disease. This is due to 5-HT influencing key metabolic processes, such as hepatic gluconeogenesis, adipose tissue lipolysis and hindering thermogenic capacity. Increased circulating 5-HT occurs in humans with obesity and type 2 diabetes. However, despite the known metabolic roles of gut-derived 5-HT, the mechanisms underlying the cellular-level change in EC cells under obesogenic conditions remains unknown. METHODS We use a mouse model of diet-induced obesity (DIO) to identify the regional changes that occur in primary EC cells from the duodenum and colon. Transcriptional changes in the nutrient sensing profile of primary EC cells were assessed, and responses to nutrient stimuli in culture were determined by 5-HT ELISA. KEY RESULTS We find that obesogenic conditions affect EC cells in a region-dependent manner. Duodenal EC cells from DIO mice have impaired sugar sensing even in the presence of increased 5-HT content per cell, while colonic EC cell numbers are significantly increased, but have unaltered nutrient sensing capacity. CONCLUSIONS & INFERENCES Our findings from this study add novel insights into the mechanisms by which functional changes to EC cells occur at a cellular level, which may contribute to the altered circulating 5-HT seen with obesity and metabolic disease, and associated gastrointestinal disorders.
Collapse
Affiliation(s)
- Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Claire F Jessup
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Emily W Sun
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
123
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020; 43:337-353. [PMID: 32101483 PMCID: PMC7573801 DOI: 10.1146/annurev-neuro-091619-022657] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
- Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
124
|
Kaelberer MM, Rupprecht LE, Liu WW, Weng P, Bohórquez DV. Neuropod Cells: The Emerging Biology of Gut-Brain Sensory Transduction. Annu Rev Neurosci 2020. [PMID: 32101483 DOI: 10.1146/annurev‐neuro‐091619‐022657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology-that of gut-brain sensory transduction.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Laura E Rupprecht
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA;
| | - Winston W Liu
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Peter Weng
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,School of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Diego V Bohórquez
- Gut-Brain Neurobiology Laboratory, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina 27710, USA; .,Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
125
|
Lewis JE, Miedzybrodzka EL, Foreman RE, Woodward ORM, Kay RG, Goldspink DA, Gribble FM, Reimann F. Selective stimulation of colonic L cells improves metabolic outcomes in mice. Diabetologia 2020; 63:1396-1407. [PMID: 32342115 PMCID: PMC7286941 DOI: 10.1007/s00125-020-05149-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Insulin-like peptide-5 (INSL5) is found only in distal colonic L cells, which co-express glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). GLP-1 is a well-known insulin secretagogue, and GLP-1 and PYY are anorexigenic, whereas INSL5 is considered orexigenic. We aimed to clarify the metabolic impact of selective stimulation of distal colonic L cells in mice. METHODS Insl5 promoter-driven expression of Gq-coupled Designer Receptor Exclusively Activated by Designer Drugs (DREADD) was employed to activate distal colonic L cells (LdistalDq). IPGTT and food intake were assessed with and without DREADD activation. RESULTS LdistalDq cell stimulation with clozapine N-oxide (CNO; 0.3 mg/kg i.p.) increased plasma GLP-1 and PYY (2.67- and 3.31-fold, respectively); INSL5 was not measurable in plasma but was co-secreted with GLP-1 and PYY in vitro. IPGTT (2 g/kg body weight) revealed significantly improved glucose tolerance following CNO injection. CNO-treated mice also exhibited reduced food intake and body weight after 24 h, and increased defecation, the latter being sensitive to 5-hydroxytryptamine (5-HT) receptor 3 inhibition. Pre-treatment with a GLP1 receptor-blocking antibody neutralised the CNO-dependent improvement in glucose tolerance but did not affect the reduction in food intake, and an independent group of animals pair-fed to the CNO-treatment group demonstrated attenuated weight loss. Pre-treatment with JNJ-31020028, a neuropeptide Y receptor type 2 antagonist, abolished the CNO-dependent effect on food intake. Assessment of whole body physiology in metabolic cages revealed LdistalDq cell stimulation increased energy expenditure and increased activity. Acute CNO-induced food intake and glucose homeostasis outcomes were maintained after 2 weeks on a high-fat diet. CONCLUSIONS/INTERPRETATION This proof-of-concept study demonstrates that selective distal colonic L cell stimulation has beneficial metabolic outcomes. Graphical abstract.
Collapse
Affiliation(s)
- Jo E Lewis
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Emily L Miedzybrodzka
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Rachel E Foreman
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Orla R M Woodward
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Richard G Kay
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Deborah A Goldspink
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK.
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 OQQ, UK.
| |
Collapse
|
126
|
The ever-changing roles of serotonin. Int J Biochem Cell Biol 2020; 125:105776. [PMID: 32479926 DOI: 10.1016/j.biocel.2020.105776] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Serotonin (5-HT) has traditional roles as a key neurotransmitter in the central nervous system and as a regulatory hormone controlling a broad range of physiological functions. Perhaps the most classically-defined functions of 5-HT are centrally in the control of mood, sleep and anxiety and peripherally in the modulation of gastrointestinal motility. A more recently appreciated role for 5-HT has emerged, however, as an important metabolic hormone contributing to glucose homeostasis and adiposity, with a causal relationship existing between circulating 5-HT levels and metabolic diseases. Almost all peripheral 5-HT is derived from specialised enteroendocrine cells, called enterochromaffin (EC) cells, located throughout the length of the lining of the gastrointestinal tract. EC cells are important luminal sensory cells that can detect and respond to an array of ingested nutrients, as well as luminal gut microbiota and their associated metabolites. Intriguingly, the interaction between gut microbiota and EC cells is dynamic in nature and has strong implications for host physiology. In this review, we discuss the traditional and modern functions of 5-HT and highlight an emerging pathway by which gut microbiota influences host health. Serotonin, also known as 5-hydroxytryptamine (5-HT), is an important neurotransmitter, growth factor and hormone that mediates a range of physiological functions. In mammals, serotonin is synthesized from the essential amino acid tryptophan by the rate-limiting enzyme tryptophan hydroxylase (TPH), for which there are two isoforms expressed in distinct cell types throughout the body. Tph1 is mainly expressed by specialized gut endocrine cells known as enterochromaffin (EC) cells and by other non-neuronal cell types such as adipocytes (Walther et al., 2003). Tph2 is primarily expressed in neurons of the raphe nuclei of the brain stem and a subset of neurons in the enteric nervous system (ENS) (Yabut et al., 2019). As 5-HT cannot readily cross the blood-brain barrier, the central and peripheral pools of 5-HT are anatomically separated and as such, act in their own distinct manners (Martin et al., 2017c). In this review we discuss the peripheral roles of serotonin, with particular focus on the interaction of gut-derived serotonin with the gut microbiota, and address emerging evidence linking this relationship with host homeostasis.
Collapse
|
127
|
Xie Y, Wang C, Zhao D, Wang C, Li C. Dietary Proteins Regulate Serotonin Biosynthesis and Catabolism by Specific Gut Microbes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5880-5890. [PMID: 32363863 DOI: 10.1021/acs.jafc.0c00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
More than 90% of serotonin is produced in the intestine. Previous studies have shown that different protein diets significantly affect serum serotonin levels. Here, the colonic microbiota and intestinal serotonin were measured to elaborate how protein diets affect serotonin production in a mouse model. The emulsion-type sausage protein and cooked pork protein diets increased the mRNA levels of tryptophan hydroxylase 1 (Tph1) and monoamine oxidase A (Maoa) and serotonin level as well but reduced the number of enterochromaffin cells. However, the soy protein diet increased the number of enterochromaffin cells and Tph1 mRNA level but decreased the Maoa mRNA level and the serotonin content. Specific gut microbes that responded to dietary changes and affected the content of short-chain fatty acids were significantly related to serotonin-associated biomarkers. These results suggest that dietary proteins may regulate serotonin biosynthesis and catabolism by altering specific gut microbes.
Collapse
Affiliation(s)
- Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chong Wang
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chao Wang
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Joint International Research Laboratory of Animal Health and Food Safety, MOE, Nanjing Agricultural University, Nanjing 210095, P. R. China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
128
|
Li R, Li Y, Li C, Zheng D, Chen P. Gut Microbiota and Endocrine Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:143-164. [DOI: 10.1007/978-981-15-2385-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
129
|
Wang SZ, Yu YJ, Adeli K. Role of Gut Microbiota in Neuroendocrine Regulation of Carbohydrate and Lipid Metabolism via the Microbiota-Gut-Brain-Liver Axis. Microorganisms 2020; 8:microorganisms8040527. [PMID: 32272588 PMCID: PMC7232453 DOI: 10.3390/microorganisms8040527] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota play an important role in maintaining intestinal health and are involved in the metabolism of carbohydrates, lipids, and amino acids. Recent studies have shown that the central nervous system (CNS) and enteric nervous system (ENS) can interact with gut microbiota to regulate nutrient metabolism. The vagal nerve system communicates between the CNS and ENS to control gastrointestinal tract functions and feeding behavior. Vagal afferent neurons also express receptors for gut peptides that are secreted from enteroendocrine cells (EECs), such as cholecystokinin (CCK), ghrelin, leptin, peptide tyrosine tyrosine (PYY), glucagon-like peptide-1 (GLP-1), and 5-hydroxytryptamine (5-HT; serotonin). Gut microbiota can regulate levels of these gut peptides to influence the vagal afferent pathway and thus regulate intestinal metabolism via the microbiota-gut-brain axis. In addition, bile acids, short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), and Immunoglobulin A (IgA) can also exert metabolic control through the microbiota-gut-liver axis. This review is mainly focused on the role of gut microbiota in neuroendocrine regulation of nutrient metabolism via the microbiota-gut-brain-liver axis.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China;
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Yi-Jing Yu
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
- Correspondence: ; Tel.: +1-416-813-8682; Fax: +1-416-813-6257
| |
Collapse
|
130
|
Lund ML, Sorrentino G, Egerod KL, Kroone C, Mortensen B, Knop FK, Reimann F, Gribble FM, Drucker DJ, de Koning EJP, Schoonjans K, Bäckhed F, Schwartz TW, Petersen N. L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes 2020; 69:614-623. [PMID: 32041793 PMCID: PMC7224989 DOI: 10.2337/db19-0764] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) mimetics are effective drugs for treatment of type 2 diabetes, and there is consequently extensive interest in increasing endogenous GLP-1 secretion and L-cell abundance. Here we identify G-protein-coupled bile acid receptor 1 (GPBAR1) as a selective regulator of intestinal L-cell differentiation. Lithocholic acid and the synthetic GPBAR1 agonist, L3740, selectively increased L-cell density in mouse and human intestinal organoids and elevated GLP-1 secretory capacity. L3740 induced expression of Gcg and transcription factors Ngn3 and NeuroD1 L3740 also increased the L-cell number and GLP-1 levels and improved glucose tolerance in vivo. Further mechanistic examination revealed that the effect of L3740 on L cells required intact GLP-1 receptor and serotonin 5-hydroxytryptamine receptor 4 (5-HT4) signaling. Importantly, serotonin signaling through 5-HT4 mimicked the effects of L3740, acting downstream of GLP-1. Thus, GPBAR1 agonists and other powerful GLP-1 secretagogues facilitate L-cell differentiation through a paracrine GLP-1-dependent and serotonin-mediated mechanism.
Collapse
Affiliation(s)
- Mari Lilith Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Sorrentino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristoffer Lihme Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal Kroone
- Department of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Brynjulf Mortensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip Krag Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Frank Reimann
- Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | - Fiona M Gribble
- Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | - Daniel J Drucker
- Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands
- Hubrecht Institute/Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular and Clinical Medicine at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
131
|
Ku K, Park I, Kim D, Kim J, Jang S, Choi M, Choe HK, Kim K. Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts. Mol Cells 2020; 43:276-285. [PMID: 32155689 PMCID: PMC7103884 DOI: 10.14348/molcells.2020.2309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dosedependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.
Collapse
Affiliation(s)
- Kyojin Ku
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Inah Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Doyeon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Jeongah Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Sangwon Jang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Mijung Choi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
132
|
Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods 2020; 9:foods9030330. [PMID: 32178261 PMCID: PMC7143261 DOI: 10.3390/foods9030330] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022] Open
Abstract
Melatonin is a multifunctional antioxidant neurohormone found in plant foods such as lentil sprouts. We aim to evaluate the effect of lentil sprout intake on the plasmatic levels of melatonin and metabolically related compounds (plasmatic serotonin and urinary 6-sulfatoxymelatonin), total phenolic compounds, and plasmatic antioxidant status, and compare it with synthetic melatonin. The germination of lentils increases the content of melatonin. However, the phenolic content diminished due to the loss of phenolic acids and flavan-3-ols. The flavonol content remained unaltered, being the main phenolic family in lentil sprouts, primarily composed of kaempferol glycosides. Sprague Dawley rats were used to investigate the pharmacokinetic profile of melatonin after oral administration of a lentil sprout extract and to evaluate plasma and urine melatonin and related biomarkers and antioxidant capacity. Melatonin showed maximum concentration (45.4 pg/mL) 90 min after lentil sprout administration. The plasmatic melatonin levels increased after lentil sprout intake (70%, p < 0.05) with respect to the control, 1.2-fold more than after synthetic melatonin ingestion. These increments correlated with urinary 6-sulfatoxymelatonin content (p < 0.05), a key biomarker of plasmatic melatonin. Nonetheless, the phenolic compound content did not exhibit any significant variation. Plasmatic antioxidant status increased in the antioxidant capacity upon both lentil sprout and synthetic melatonin administration. For the first time, we investigated the bioavailability of melatonin from lentil sprouts and its role in plasmatic antioxidant status. We concluded that their intake could increase melatonin plasmatic concentration and attenuate plasmatic oxidative stress.
Collapse
|
133
|
Flamar AL, Klose CSN, Moeller JB, Mahlakõiv T, Bessman NJ, Zhang W, Moriyama S, Stokic-Trtica V, Rankin LC, Putzel GG, Rodewald HR, He Z, Chen L, Lira SA, Karsenty G, Artis D. Interleukin-33 Induces the Enzyme Tryptophan Hydroxylase 1 to Promote Inflammatory Group 2 Innate Lymphoid Cell-Mediated Immunity. Immunity 2020; 52:606-619.e6. [PMID: 32160524 PMCID: PMC7218677 DOI: 10.1016/j.immuni.2020.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/15/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) regulate immunity, inflammation, and tissue homeostasis. Two distinct subsets of ILC2s have been described: steady-state natural ILC2s and inflammatory ILC2s, which are elicited following helminth infection. However, how tissue-specific cues regulate these two subsets of ILC2s and their effector functions remains elusive. Here, we report that interleukin-33 (IL-33) promotes the generation of inflammatory ILC2s (ILC2INFLAM) via induction of the enzyme tryptophan hydroxylase 1 (Tph1). Tph1 expression was upregulated in ILC2s upon activation with IL-33 or following helminth infection in an IL-33-dependent manner. Conditional deletion of Tph1 in lymphocytes resulted in selective impairment of ILC2INFLAM responses and increased susceptibility to helminth infection. Further, RNA sequencing analysis revealed altered gene expression in Tph1 deficient ILC2s including inducible T cell co-stimulator (Icos). Collectively, these data reveal a previously unrecognized function for IL-33, Tph1, and ICOS in promoting inflammatory ILC2 responses and type 2 immunity at mucosal barriers.
Collapse
Affiliation(s)
- Anne-Laure Flamar
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christoph S N Klose
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Jesper B Moeller
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Tanel Mahlakõiv
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Saya Moriyama
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Vladislava Stokic-Trtica
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany; Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Lucille C Rankin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory Garbès Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Zhengxiang He
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lili Chen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
134
|
Widmayer P, Partsch V, Pospiech J, Kusumakshi S, Boehm U, Breer H. Distinct Cell Types With the Bitter Receptor Tas2r126 in Different Compartments of the Stomach. Front Physiol 2020; 11:32. [PMID: 32116750 PMCID: PMC7019106 DOI: 10.3389/fphys.2020.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Cells expressing bitter taste receptors (T2Rs or Tas2rs) in extraoral tissues are considered to be chemosensory cells mediating protective responses to potentially harmful or even antiinflammatory or antimicrobial compounds. In a previous study the activity of the Tas2R143/Tas2R135/Tas2r126 cluster promoter in the stomach was monitored using a Cre-reporter mouse line. Reporter gene expression and Tas2r126 mRNA were found in brush cells located at the distal wall of the gastric groove. In this study, we explored whether brush cells and epithelial cells of the stomach in fact contain the Tas2r126 receptor protein. Using immunohistochemistry, we demonstrate the presence of Tas2r126 immunoreactivity in different cell populations in the glandular stomach, in a subset of brush cells at the gastric groove and in unique glandular units as well as in certain enteroendocrine cells. In brush cells at the gastric groove, a strong immunofluorescence signal for the Tas2r126 receptor was observed at the most apical region of the cells, i.e., the microvillar tuft. In addition, we found a high density of Tas2r126-positive brush cells in the unique glandular units. These invaginations are located distally to the groove, open directly into the furrow and are enwrapped by smoothelin-immunoreactive muscles. In the corpus, Tas2r126 immunoreactivity was found in histamine-producing ECL cells and in ghrelin-producing X/A-like cells, the main enteroendcrine cells of this compartment. In the antrum, Tas2r126 labeling was observed in serotonin-storing EC cells and ghrelin cells, both representing only minor populations of enteroendocrine cells in this compartment. In conclusion, our data provide evidence for the presence of the Tas2r126 receptor protein in distinct cell types in the epithelium lining the mouse stomach which render the stomach responsive to agonists for bitter receptors.
Collapse
Affiliation(s)
- Patricia Widmayer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Vanessa Partsch
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jonas Pospiech
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling, School of Medicine, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, School of Medicine, Saarland University, Homburg, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
135
|
Yong SJ, Tong T, Chew J, Lim WL. Antidepressive Mechanisms of Probiotics and Their Therapeutic Potential. Front Neurosci 2020; 13:1361. [PMID: 32009871 PMCID: PMC6971226 DOI: 10.3389/fnins.2019.01361] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
The accumulating knowledge of the host-microbiota interplay gives rise to the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom communication between the gut microbiota and the brain. This communication process involves the endocrine, immune and neurotransmitters systems. Dysfunction of these systems, along with the presence of gut dysbiosis, have been detected among clinically depressed patients. This implicates the involvement of a maladaptive MGB axis in the pathophysiology of depression. Depression refers to symptoms that characterize major depressive disorder (MDD), a mood disorder with a disease burden that rivals that of heart diseases. The use of probiotics to treat depression has gained attention in recent years, as evidenced by increasing numbers of animal and human studies that have supported the antidepressive efficacy of probiotics. Physiological changes observed in these studies allow for the elucidation of probiotics antidepressive mechanisms, which ultimately aim to restore proper functioning of the MGB axis. However, the understanding of mechanisms does not yet complete the endeavor in applying probiotics to treat MDD. Other challenges remain which include the heterogeneous nature of both the gut microbiota composition and depressive symptoms in the clinical setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical antidepressants, in terms of residual symptoms, side effects and stigma involved. This review outlines antidepressive mechanisms of probiotics based on the currently available literature and discusses therapeutic potentials of probiotics for depression.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Tommy Tong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
136
|
McCauley HA. Enteroendocrine Regulation of Nutrient Absorption. J Nutr 2020; 150:10-21. [PMID: 31504661 DOI: 10.1093/jn/nxz191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Enteroendocrine cells (EECs) in the intestine regulate many aspects of whole-body physiology and metabolism. EECs sense luminal and circulating nutrients and respond by secreting hormones that act on multiple organs and organ systems, such as the brain, gallbladder, and pancreas, to control satiety, digestion, and glucose homeostasis. In addition, EECs act locally, on enteric neurons, endothelial cells, and the gastrointestinal epithelium, to facilitate digestion and absorption of nutrients. Many recent reports raise the possibility that EECs and the enteric nervous system may coordinate to regulate gastrointestinal functions. Loss of all EECs results in chronic malabsorptive diarrhea, placing EECs in a central role regulating nutrient absorption in the gut. Because there is increasing evidence that EECs can directly modulate the efficiency of nutrient absorption, it is possible that EECs are master regulators of a feed-forward loop connecting appetite, digestion, metabolism, and abnormally augmented nutrient absorption that perpetuates metabolic disease. This review focuses on the roles that specific EEC hormones play on glucose, peptide, and lipid absorption within the intestine.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology and the Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
137
|
O’Callaghan AA, Corr SC. Establishing Boundaries: The Relationship That Exists between Intestinal Epithelial Cells and Gut-Dwelling Bacteria. Microorganisms 2019; 7:microorganisms7120663. [PMID: 31818022 PMCID: PMC6956261 DOI: 10.3390/microorganisms7120663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022] Open
Abstract
The human gastrointestinal (GI) tract is a highly complex organ in which various dynamic physiological processes are tightly coordinated while interacting with a complex community of microorganisms. Within the GI tract, intestinal epithelial cells (IECs) create a structural interface that separates the intestinal lumen from the underlying lamina propria. In the lumen, gut-dwelling microbes play an essential role in maintaining gut homeostasis and functionality. Whether commensal or pathogenic, their interaction with IECs is inevitable. IECs and myeloid immune cells express an array of pathogen recognition receptors (PRRs) that define the interaction of both pathogenic and beneficial bacteria with the intestinal mucosa and mount appropriate responses including induction of barrier-related factors which enhance the integrity of the epithelial barrier. Indeed, the integrity of this barrier and induction of appropriate immune responses is critical to health status, with defects in this barrier and over-activation of immune cells by invading microbes contributing to development of a range of inflammatory and infectious diseases. This review describes the complexity of the GI tract and its interactions with gut bacteria.
Collapse
|
138
|
He Q, Li M, Wang X, Xia Z, Du Y, Li Y, Wei L, Shang J. A simple, efficient and rapid HPLC-UV method for the detection of 5-HT in RIN-14B cell extract and cell culture medium. BMC Chem 2019; 13:76. [PMID: 31384823 PMCID: PMC6661732 DOI: 10.1186/s13065-019-0591-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
5-Hydroxytryptamine (also known as 5-HT, serotonin) is one of the monoamine neurotransmitters which is distributed widely in plasma and brain of mammals and plays important roles in physiological manipulations. In the present method, we describe the development of a simple, efficient and rapid high performance liquid chromatographic method coupled with ultraviolet (HPLC-UV) detector for the qualitative and quantitative analysis of 5-HT in both cell extract and cell culture medium (RIN-14B). The experiments use repeated freeze-thaw cycles followed by centrifugation and direct injection of the supernatant into the chromatography. An analytical C18 column (Agilent Zorbax Extend, 4.6 × 250 mm, 5 μm.) was taken for chromatographic separation; the mobile phase was 0.05 mol/L potassium dihydrogen phosphate (KH2PO4)/acetonitrile (90:10 v/v). Isocratic elution is established at the flow rate of 1.0 mL/min. The time required for this chromatographic run is 8 min. Over the concentration range of 0.1-10 μg/mL, the calibration curve is linear in this method. Other unique characteristics and advantages include high accuracy (92.02-103.28%) and high precision (intra- and inter-day coefficients of variation ≤ 4.69%). This method is applicable for the investigation of drug/condition-response relationships in the function of synthesis and secretion of 5-HT in cultured RIN-14B cells in various in vitro studies.
Collapse
Affiliation(s)
- Qiangqiang He
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Maoru Li
- 0000 0000 9776 7793grid.254147.1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 21198 China
- 0000 0000 9776 7793grid.254147.1Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198 China
- 0000 0000 9776 7793grid.254147.1School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Xuechun Wang
- 0000 0000 9776 7793grid.254147.1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 21198 China
| | - Zhenjiang Xia
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yuzhi Du
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
| | - Yan Li
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000 0004 1797 8419grid.410726.6University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lixin Wei
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
| | - Jing Shang
- 0000000119573309grid.9227.eQinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000000119573309grid.9227.eKey Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences - Northwest Institute of Plateau Biology, Xining, 810008 Qinghai China
- 0000 0000 9776 7793grid.254147.1State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 21198 China
- 0000 0000 9776 7793grid.254147.1Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198 China
- 0000 0000 9776 7793grid.254147.1School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| |
Collapse
|
139
|
Stoeger V, Lieder B, Riedel J, Schweiger K, Hoi J, Ruzsanyi V, Klieber M, Rust P, Hans J, Ley JP, Krammer GE, Somoza V. Wheat Protein Hydrolysate Fortified With l-Arginine Enhances Satiation Induced by the Capsaicinoid Nonivamide in Moderately Overweight Male Subjects. Mol Nutr Food Res 2019; 63:e1900133. [PMID: 31535460 PMCID: PMC6916637 DOI: 10.1002/mnfr.201900133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/29/2019] [Indexed: 12/12/2022]
Abstract
SCOPE Increasing the intake of satiety-enhancing food compounds represents a promising strategy for maintaining a healthy body weight. Recently, satiating effects for the capsaicinoid nonivamide have been demonstrated. As various proteins and amino acids have also been demonstrated to decrease energy intake, oral glucose tolerance test (oGTT)-based bolus interventions of 75 g glucose + 0.15 mg nonivamide (NV control) are tested with/without combination of a wheat protein hydrolysate (WPH: 2 g) and/or l-arginine (ARG: 3.2 g) for their satiating effects in 27 moderately overweight male subjects. METHODS AND RESULTS Compared to NV control intervention, ARG and WPH + ARG treatment both reduce (p < 0.01) total calorie intake from a standardized breakfast by -5.9 ± 4.15% and -6.07 ± 4.38%, respectively. For the WPH + ARG intervention, increased mean plasma serotonin concentrations (AUC: 350 ± 218), quantitated by ELISA, and delayed gastric emptying, assessed by 13 C-Na-acetate breath test (-2.10 ± 0.51%, p < 0.05), are demonstrated compared to NV control. Correlation analysis between plasma serotonin and gastric emptying reveals a significant association after WPH ± ARG intervention (r = -0.396, p = 0.045). CONCLUSION Combination of WPH and ARG enhances the satiating effect of nonivamide, providing opportunities to optimize satiating food formulations by low amounts of the individual food constituents.
Collapse
Affiliation(s)
- Verena Stoeger
- Christian Doppler Laboratory for Bioactive CompoundsAlthanstrasse 14 (UZA II)Vienna1090Austria
| | - Barbara Lieder
- Department of Physiological ChemistryUniversity of ViennaAlthanstrasse 14 (UZA II)Vienna1090Austria
| | - Johanna Riedel
- Department of Physiological ChemistryUniversity of ViennaAlthanstrasse 14 (UZA II)Vienna1090Austria
| | - Kerstin Schweiger
- Department of Physiological ChemistryUniversity of ViennaAlthanstrasse 14 (UZA II)Vienna1090Austria
| | - Julia Hoi
- Christian Doppler Laboratory for Bioactive CompoundsAlthanstrasse 14 (UZA II)Vienna1090Austria
| | - Veronika Ruzsanyi
- Institute for Breath ResearchUniversity of InnsbruckInnrain 66Innsbruck6020Austria
| | - Martin Klieber
- Institute for Breath ResearchUniversity of InnsbruckInnrain 66Innsbruck6020Austria
| | - Petra Rust
- Department of Nutritional SciencesUniversity of ViennaAlthanstrasse 14 (UZA II)Vienna1090Austria
| | - Joachim Hans
- Symrise AGResearch & Technology Flavors Division37603HolzmindenGermany
| | - Jakob P Ley
- Symrise AGResearch & Technology Flavors Division37603HolzmindenGermany
| | - Gerhard E Krammer
- Symrise AGResearch & Technology Flavors Division37603HolzmindenGermany
| | - Veronika Somoza
- Department of Physiological ChemistryUniversity of ViennaAlthanstrasse 14 (UZA II)Vienna1090Austria
- Christian Doppler Laboratory for Bioactive CompoundsAlthanstrasse 14 (UZA II)Vienna1090Austria
| |
Collapse
|
140
|
Martin AM, Sun EW, Keating DJ. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J Endocrinol 2019; 244:R1-R15. [PMID: 31751295 PMCID: PMC6892457 DOI: 10.1530/joe-19-0399] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
Abstract
The homoeostatic regulation of metabolism is highly complex and involves multiple inputs from both the nervous and endocrine systems. The gut is the largest endocrine organ in our body and synthesises and secretes over 20 different hormones from enteroendocrine cells that are dispersed throughout the gut epithelium. These hormones include GLP-1, PYY, GIP, serotonin, and CCK, each of whom play pivotal roles in maintaining energy balance and glucose homeostasis. Some are now the basis of several clinically used glucose-lowering and weight loss therapies. The environment in which these enteroendocrine cells exist is also complex, as they are exposed to numerous physiological inputs including ingested nutrients, circulating factors and metabolites produced from neighbouring gut microbiome. In this review, we examine the diverse means by which gut-derived hormones carry out their metabolic functions through their interactions with different metabolically important organs including the liver, pancreas, adipose tissue and brain. Furthermore, we discuss how nutrients and microbial metabolites affect gut hormone secretion and the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Alyce M Martin
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Emily W Sun
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Correspondence should be addressed to D J Keating:
| |
Collapse
|
141
|
Li S, Hua D, Wang Q, Yang L, Wang X, Luo A, Yang C. The Role of Bacteria and Its Derived Metabolites in Chronic Pain and Depression: Recent Findings and Research Progress. Int J Neuropsychopharmacol 2019; 23:26-41. [PMID: 31760425 PMCID: PMC7064053 DOI: 10.1093/ijnp/pyz061] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic pain is frequently comorbid with depression in clinical practice. Recently, alterations in gut microbiota and metabolites derived therefrom have been found to potentially contribute to abnormal behaviors and cognitive dysfunction via the "microbiota-gut-brain" axis. METHODS PubMed was searched and we selected relevant studies before October 1, 2019. The search keyword string included "pain OR chronic pain" AND "gut microbiota OR metabolites"; "depression OR depressive disorder" AND "gut microbiota OR metabolites". We also searched the reference lists of key articles manually. RESULTS This review systematically summarized the recent evidence of gut microbiota and metabolites in chronic pain and depression in animal and human studies. The results showed the pathogenesis and therapeutics of chronic pain and depression might be partially due to gut microbiota dysbiosis. Importantly, bacteria-derived metabolites, including short-chain fatty acids, tryptophan-derived metabolites, and secondary bile acids, offer new insights into the potential linkage between key triggers in gut microbiota and potential mechanisms of depression. CONCLUSION Studying gut microbiota and its metabolites has contributed to the understanding of comorbidity of chronic pain and depression. Consequently, modulating dietary structures or supplementation of specific bacteria may be an available strategy for treating chronic pain and depression.
Collapse
Affiliation(s)
- Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaoyan Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xinlei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Correspondence: Chun Yang, MD, PhD, Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China (; )
| |
Collapse
|
142
|
Karras SN, Koufakis T, Mustafa OG, Kotsa K. Anti-incretin effect: The other face of Janus in human glucose homeostasis. Obes Rev 2019; 20:1597-1607. [PMID: 31347774 DOI: 10.1111/obr.12917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The provocative idea that type 2 diabetes (T2D) may be a surgically treated disorder is based on accumulating evidence suggesting impressive remission rates of obesity and diabetes following bariatric surgery interventions. According to the "anti-incretin" theory, ingestion of food in the gastrointestinal (GI) tract, apart from activating the well-described incretin effect, also results in the parallel stimulation of a series of negative feedback mechanisms (anti-incretin effect). The primary goal of these regulations is to counteract the effects of incretins and other postprandial glucose-lowering adaptive mechanisms. Disruption of the equilibrium between incretins and anti-incretins could be an additional pathway leading to the development of insulin resistance and hyperglycemia. This theory provides an alternative theoretical framework to explain the mechanisms behind the optimal effects of metabolic surgery on T2D and underlines the importance of the GI tract in the homeostatic regulation of energy balance in humans. The anti-incretin concept is currently based on a limited amount of evidence and certainly requires further validation by additional studies. The aim of the present review is to discuss and critically evaluate recent evidence on the anti-incretin theory, providing an insight into current state and future perspectives.
Collapse
Affiliation(s)
- Spyridon N Karras
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Omar G Mustafa
- Department of Diabetes, King's College Hospital, London, UK
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
143
|
Lee E, Miedzybrodzka EL, Zhang X, Hatano R, Miyamoto J, Kimura I, Fujimoto K, Uematsu S, Rodriguez-Cuenca S, Vidal-Puig A, Gribble FM, Reimann F, Miki T. Diet-Induced Obese Mice and Leptin-Deficient Lepob/ob Mice Exhibit Increased Circulating GIP Levels Produced by Different Mechanisms. Int J Mol Sci 2019; 20:ijms20184448. [PMID: 31509948 PMCID: PMC6769670 DOI: 10.3390/ijms20184448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/23/2022] Open
Abstract
As glucose-dependent insulinotropic polypeptide (GIP) possesses pro-adipogenic action, the suppression of the GIP hypersecretion seen in obesity might represent a novel therapeutic approach to the treatment of obesity. However, the mechanism of GIP hypersecretion remains largely unknown. In the present study, we investigated GIP secretion in two mouse models of obesity: High-fat diet-induced obese (DIO) mice and leptin-deficient Lepob/ob mice. In DIO mice, plasma GIP was increased along with an increase in GIP mRNA expression in the lower small intestine. Despite the robust alteration in the gut microbiome in DIO mice, co-administration of maltose and the α-glucosidase inhibitor (α-GI) miglitol induced the microbiome-mediated suppression of GIP secretion. The plasma GIP levels of Lepob/ob mice were also elevated and were suppressed by fat transplantation. The GIP mRNA expression in fat tissue was not increased in Lepob/ob mice, while the expression of an interleukin-1 receptor antagonist (IL-1Ra) was increased. Fat transplantation suppressed the expression of IL-1Ra. The plasma IL-1Ra levels were positively correlated with the plasma GIP levels. Accordingly, although circulating GIP levels are increased in both DIO and Lepob/ob mice, the underlying mechanisms differ, and the anti-obesity actions of α-GIs and leptin sensitizers may be mediated partly by the suppression of GIP secretion.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Emily L Miedzybrodzka
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Xilin Zhang
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Ryo Hatano
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
| | - Kosuke Fujimoto
- Department of Immunology and Genomics, Osaka City University School of Medicine, Osaka 545-8585, Japan.
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan.
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University School of Medicine, Osaka 545-8585, Japan.
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku 108-8639, Japan.
| | - Sergio Rodriguez-Cuenca
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Takashi Miki
- Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba 260-8670, Japan.
| |
Collapse
|
144
|
Billing LJ, Larraufie P, Lewis J, Leiter A, Li J, Lam B, Yeo GS, Goldspink DA, Kay RG, Gribble FM, Reimann F. Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice - Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol Metab 2019; 29:158-169. [PMID: 31668387 PMCID: PMC6812004 DOI: 10.1016/j.molmet.2019.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Enteroendocrine cells (EECs) of the large intestine, found scattered in the epithelial layer, are known to express different hormones, with at least partial co-expression of different hormones in the same cell. Here we aimed to categorize colonic EECs and to identify possible targets for selective recruitment of hormones. Methods Single cell RNA-sequencing of sorted enteroendocrine cells, using NeuroD1-Cre x Rosa26-EYFP mice, was used to cluster EECs from the colon and rectum according to their transcriptome. G-protein coupled receptors differentially expressed across clusters were identified, and, as a proof of principle, agonists of Agtr1a and Avpr1b were tested as candidate EEC secretagogues in vitro and in vivo. Results EECs from the large intestine separated into 7 clear clusters, 4 expressing higher levels of Tph1 (enzyme required for serotonin (5-HT) synthesis; enterochromaffin cells), 2 enriched for Gcg (encoding glucagon-like peptide-1, GLP-1, L-cells), and the 7th expressing somatostatin (D-cells). Restricted analysis of L-cells identified 4 L-cell sub-clusters, exhibiting differential expression of Gcg, Pyy (Peptide YY), Nts (neurotensin), Insl5 (insulin-like peptide 5), Cck (cholecystokinin), and Sct (secretin). Expression profiles of L- and enterochromaffin cells revealed the clustering to represent gradients along the crypt-surface (cell maturation) and proximal-distal gut axes. Distal colonic/rectal L-cells differentially expressed Agtr1a and the ligand angiotensin II was shown to selectively increase GLP-1 and PYY release in vitro and GLP-1 in vivo. Conclusion EECs in the large intestine exhibit differential expression gradients along the crypt-surface and proximal-distal axes. Distal L-cells can be differentially stimulated by targeting receptors such as Agtr1a. Large intestinal enteroendocrine cells group into subclusters by single cell RNAseq. Enteroendocrine-cell subclusters differ along crypt-surface and longitudinal axes. L-cells differ longitudinally by production of NTS (proximal colon) or INSL5 (rectum). INSL5-positive cells express distinct GPCRs enabling cluster-specific stimulation. Targeted stimulation of INSL5-producing L-cells elevates plasma GLP-1 and PYY in vivo.
Collapse
Affiliation(s)
- Lawrence J Billing
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Pierre Larraufie
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Jo Lewis
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Andrew Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Brian Lam
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Giles Sh Yeo
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Deborah A Goldspink
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Richard G Kay
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Fiona M Gribble
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| | - Frank Reimann
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
145
|
Hypophagia induced by hindbrain serotonin is mediated through central GLP-1 signaling and involves 5-HT2C and 5-HT3 receptor activation. Neuropsychopharmacology 2019; 44:1742-1751. [PMID: 30959513 PMCID: PMC6784912 DOI: 10.1038/s41386-019-0384-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/01/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
The overlap in neurobiological circuitry mediating the physiological and behavioral response to satiation and noxious/stressful stimuli are not well understood. The interaction between serotonin (5-HT) and glucagon-like peptide-1 (GLP-1) could play a role as upstream effectors involved in mediating associations between anorectic and noxious/stressful stimuli. We hypothesize that 5-HT acts as an endogenous modulator of the central GLP-1 system to mediate satiation and malaise in rats. Here, we investigate whether interactions between central 5-HT and GLP-1 signaling are behaviorally and physiologically relevant for the control of food intake and pica (i.e., behavioral measure of malaise). Results show that the anorexia and body weight changes induced by administration of exogenous hindbrain 5-HT are dependent on central GLP-1 receptor signaling. Furthermore, anatomical evidence shows mRNA expression of 5-HT2C and 5-HT3 receptors on GLP-1-producing preproglucagon (PPG) neurons in the medial nucleus tractus solitarius by fluorescent in situ hybridization, suggesting that PPG neurons are likely to express both of these receptors. Behaviorally, the hypophagia induced by the pharmacological activation of both of these receptors is also dependent on GLP-1 signaling. Finally, 5-HT3, but not 5-HT2C receptors, are required for the anorectic effects of the interoceptive stressor LiCl, suggesting the hypophagia induced by these 5-HT receptors may be driven by different mechanisms. Our findings highlight 5-HT as a novel endogenous modulator of the central GLP-1 system and suggest that the central interaction between 5-HT and GLP-1 is involved in the control of food intake in rats.
Collapse
|
146
|
Martin AM, Sun EW, Rogers GB, Keating DJ. The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Front Physiol 2019; 10:428. [PMID: 31057420 PMCID: PMC6477058 DOI: 10.3389/fphys.2019.00428] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
The microbial community of the gut conveys significant benefits to host physiology. A clear relationship has now been established between gut bacteria and host metabolism in which microbial-mediated gut hormone release plays an important role. Within the gut lumen, bacteria produce a number of metabolites and contain structural components that act as signaling molecules to a number of cell types within the mucosa. Enteroendocrine cells within the mucosal lining of the gut synthesize and secrete a number of hormones including CCK, PYY, GLP-1, GIP, and 5-HT, which have regulatory roles in key metabolic processes such as insulin sensitivity, glucose tolerance, fat storage, and appetite. Release of these hormones can be influenced by the presence of bacteria and their metabolites within the gut and as such, microbial-mediated gut hormone release is an important component of microbial regulation of host metabolism. Dietary or pharmacological interventions which alter the gut microbiome therefore pose as potential therapeutics for the treatment of human metabolic disorders. This review aims to describe the complex interaction between intestinal microbiota and their metabolites and gut enteroendocrine cells, and highlight how the gut microbiome can influence host metabolism through the regulation of gut hormone release.
Collapse
Affiliation(s)
- Alyce M Martin
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Emily W Sun
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Geraint B Rogers
- Microbiome Research Laboratory, Flinders University, Adelaide, SA, Australia.,Infection and Immunity, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Damien J Keating
- Molecular and Cellular Physiology Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
147
|
Abstract
Gut hormones have many key roles in the control of metabolism, as they target diverse tissues involved in the control of intestinal function, insulin secretion, nutrient assimilation and food intake. Produced by scattered cells found along the length of the intestinal epithelium, gut hormones generate signals related to the rate of nutrient absorption, the composition of the luminal milieu and the integrity of the epithelial barrier. Gut hormones already form the basis for existing and developing therapeutics for type 2 diabetes mellitus and obesity, exemplified by the licensed glucagon-like peptide 1 (GLP1) mimetics and dipeptidyl peptidase inhibitors that enhance GLP1 receptor activation. Modulating the release of the endogenous stores of GLP1 and other gut hormones is thought to be a promising strategy to mimic bariatric surgery with its multifaceted beneficial effects on food intake, body weight and blood glucose levels. This Review focuses on the molecular mechanisms underlying the modulation of gut hormone release by food ingestion, obesity and the gut microbiota. Depending on the nature of the stimulus, release of gut hormones involves recruitment of a variety of signalling pathways, including G protein-coupled receptors, nutrient transporters and ion channels, which are targets for future therapeutics for diabetes mellitus and obesity.
Collapse
Affiliation(s)
- Fiona M Gribble
- Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Frank Reimann
- Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
148
|
Adenosine triphosphate is co-secreted with glucagon-like peptide-1 to modulate intestinal enterocytes and afferent neurons. Nat Commun 2019; 10:1029. [PMID: 30833673 PMCID: PMC6399286 DOI: 10.1038/s41467-019-09045-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 02/01/2019] [Indexed: 02/02/2023] Open
Abstract
Enteroendocrine cells are specialised sensory cells located in the intestinal epithelium and generate signals in response to food ingestion. Whilst traditionally considered hormone-producing cells, there is evidence that they also initiate activity in the afferent vagus nerve and thereby signal directly to the brainstem. We investigate whether enteroendocrine L-cells, well known for their production of the incretin hormone glucagon-like peptide-1 (GLP-1), also release other neuro-transmitters/modulators. We demonstrate regulated ATP release by ATP measurements in cell supernatants and by using sniffer patches that generate electrical currents upon ATP exposure. Employing purinergic receptor antagonists, we demonstrate that evoked ATP release from L-cells triggers electrical responses in neighbouring enterocytes through P2Y2 and nodose ganglion neurones in co-cultures through P2X2/3-receptors. We conclude that L-cells co-secrete ATP together with GLP-1 and PYY, and that ATP acts as an additional signal triggering vagal activation and potentially synergising with the actions of locally elevated peptide hormone concentrations.
Collapse
|
149
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Bile Acid Receptors and Gastrointestinal Functions. LIVER RESEARCH 2019; 3:31-39. [PMID: 32368358 PMCID: PMC7197881 DOI: 10.1016/j.livres.2019.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids modulate several gastrointestinal functions including electrolyte secretion and absorption, gastric emptying, and small intestinal and colonic motility. High concentrations of bile acids lead to diarrhea and are implicated in the development of esophageal, gastric and colonic cancer. Alterations in bile acid homeostasis are also implicated in the pathophysiology of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Our understanding of the mechanisms underlying these effects of bile acids on gut functions has been greatly enhanced by the discovery of bile acid receptors, including the nuclear receptors: farnesoid X receptor (FXR), vitamin D receptor (VDR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR); and the G protein-coupled receptors: Takeda G protein-coupled receptor (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic acetylcholine receptor M3 (M3R).. For example, various studies provided evidence demonstrating the anti-inflammatory effects FXR and TGR5 activation in models of intestinal inflammation. In addition, TGR5 activation in enteric neurons was recently shown to increase colonic motility, which may lead to bile acid-induced diarrhea. Interestingly, TGR5 induces the secretion of glucagon-like peptide-1 (GLP-1) from L-cells to enhance insulin secretion and modulate glucose metabolism. Because of the importance of these receptors, agonists of TGR5 and intestine-specific FXR agonists are currently being tested as an option for the treatment of diabetes mellitus and primary bile acid diarrhea, respectively. This review summarizes current knowledge of the functional roles of bile acid receptors in the gastrointestinal tract.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago,Jesse Brown VA Medical Center, Chicago, IL,To whom correspondence should be addressed: Waddah A. Alrefai, MD: Research Career Scientist, Jesse Brown VA Medical Center, Professor of Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612; ; Tel. (312) 569-7429; Fax. (312) 569-8114
| |
Collapse
|
150
|
Huston NJ, Brenner LA, Taylor ZC, Ritter RC. NPY2 receptor activation in the dorsal vagal complex increases food intake and attenuates CCK-induced satiation in male rats. Am J Physiol Regul Integr Comp Physiol 2019; 316:R406-R416. [PMID: 30726118 DOI: 10.1152/ajpregu.00011.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuropeptide Y (NPY), peptide YY (PYY), and their cognate receptors (YR) are expressed by subpopulations of central and peripheral nervous system neurons. Intracerebroventricular injections of NPY or PYY increase food intake, and intrahypothalamic NPY1 or NPY5 receptor agonist injections also increase food intake. In contrast, injection of PYY in the periphery reduces food intake, apparently by activating peripheral Y2R. The dorsal vagal complex (DVC) of the hindbrain is the site where vagal afferents relay gut satiation signals to the brain. While contributions of the DVC are increasingly investigated, a role for DVC YR in control of food intake has not been examined systematically. We used in situ hybridization to confirm expression of Y1R and Y2R, but not Y5R, in the DVC and vagal afferent neurons. We found that nanoinjections of a Y2R agonist, PYY-(3-36), into the DVC significantly increased food intake over a 4-h period in satiated male rats. PYY-(3-36)-evoked food intake was prevented by injection of a selective Y2R antagonist. Injection of a Y1R/Y5R-preferring agonist into the DVC failed to increase food intake at doses reported to increase food intake following hypothalamic injection. Finally, injection of PYY-(3-36) into the DVC prevented reduction of 30-min food intake following intraperitoneal injection of cholecystokinin (CCK). Our results indicate that activation of DVC Y2R, unlike hypothalamic or peripheral Y2R, increases food intake. Furthermore, in the context of available electrophysiological observations, our results are consistent with the hypothesis that DVC Y2R control food intake by dampening vagally mediated satiation signals in the DVC.
Collapse
Affiliation(s)
- Nathaneal J Huston
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Lynne A Brenner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Zachary C Taylor
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Robert C Ritter
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|