101
|
Li J, Yang L, Wu Z. Toxicity of chlortetracycline and oxytetracycline on Vallisneria natans (Lour.) Hare. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62549-62561. [PMID: 34212323 DOI: 10.1007/s11356-021-14922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Tetracyclines are frequently detected in water bodies due to their widespread use in aquaculture and animal husbandry. A hydroponic experiment was conducted to explore the phytotoxic effects of Vallisneria natans (Lour.) Hare exposed to various concentrations of chlortetracycline (CTC) and oxytetracycline (OTC) (0, 0.1, 1, 10, 30, 50, and 100 mg/L) for 7 days (7 D) and 14 days (14 D), respectively. The results showed that similar to OTC treatment for 7 D, the relative growth rates (RGR) and catalase (CAT) activity of V. natans, after 7 D of CTC exposure, decreased significantly at 10 mg/L and 30 mg/L, respectively. The content of soluble protein notably decreased when CTC ≥ 10 mg/L and OTC ≥ 30 mg/L. The hydrogen peroxide (H2O2) content was significantly stimulated when OTC ≥ 10 mg/L, while it hardly changed when exposed to CTC. After 14 D, the malondialdehyde (MDA) and H2O2 contents of V. natans were significantly higher than those of the control group under a high concentration of OTC (≥ 30 mg/L), but they did not change significantly under a high concentration of CTC. The activity of polyphenol oxidase (PPO), under CTC treatment after 14 D, showed first a significant increase then decreases; the maximum value (125% of the control) was noticed at 10 mg/L CTC, while it remained unchanged when exposed to OTC. The soluble protein content significantly decreased at 10 mg/L CTC and 0.1 mg/L OTC, respectively. The RGR, CAT, and peroxidase (POD) activities, similar to OTC treatment after 14 D, decreased evidently when CTC was 10 mg/L, 30 mg/L, and 0.1 mg/L, respectively. CTC and OTC harm the chlorophyll content of V. natans after 14 D, and the reductions of chlorophyll a and carotenoid were more pronounced than chlorophyll b. The results suggest that CTC and OTC both have a negative effect on the growth of V. natans, and OTC can cause oxidative damage in V. natans but CTC harms the metabolism process without inducing oxidative damage. Overall, the toxicity of OTC to V. natans is stronger than that of CTC.
Collapse
Affiliation(s)
- Jing Li
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Lu Yang
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| |
Collapse
|
102
|
A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar. SUSTAINABILITY 2021. [DOI: 10.3390/su132111760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbamazepine (CBZ), one of the most used pharmaceuticals worldwide and a Contaminant of Emerging Concern, represents a potential risk for the environment and human health. Wastewater treatment plants (WWTPs) are a significant source of CBZ to the environment, polluting the whole water cycle. In this review, the CBZ presence and fate in the urban water cycle are addressed, with a focus on adsorption as a possible solution for its removal. Specifically, the scientific literature on CBZ removal by activated carbon and its possible substitute Biochar, is comprehensively scanned and summed up, in view of increasing the circularity in water treatments. CBZ adsorption onto activated carbon and biochar is analyzed considering several aspects, such as physicochemical characteristics of the adsorbents, operational conditions of the adsorption processes and adsorption kinetics and isotherms models. WWTPs usually show almost no removal of CBZ (even negative), whereas removal is witnessed in drinking water treatment plants through advanced treatments (even >90%). Among these, adsorption is considered one of the preferable methods, being economical and easier to operate. Adsorption capacity of CBZ is influenced by the characteristics of the adsorbent precursors, pyrolysis temperature and modification or activation processes. Among operational conditions, pH shows low influence on the process, as CBZ has no charge in most pH ranges. Differently, increasing temperature and rotational speed favor the adsorption of CBZ. The presence of other micro-contaminants and organic matter decreases the CBZ adsorption due to competition effects. These results, however, concern mainly laboratory-scale studies, hence, full-scale investigations are recommended to take into account the complexity of the real conditions.
Collapse
|
103
|
Pharmaceutical Compounds in Aquatic Environments-Occurrence, Fate and Bioremediation Prospective. TOXICS 2021; 9:toxics9100257. [PMID: 34678953 PMCID: PMC8537644 DOI: 10.3390/toxics9100257] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.
Collapse
|
104
|
Luo L, Wang G, Wang Z, Ma J, He Y, He J, Wang L, Liu Y, Xiao H, Xiao Y, Lan T, Yang H, Deng O. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147889. [PMID: 34134394 DOI: 10.1016/j.scitotenv.2021.147889] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Excess sludge contains large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), posing a risk for human health. However, most current studies usually ignored their abundance and removal in excess sludge. Therefore, this study aimed to reduce ARGs/MGEs in sludge by Fenton process, and applied single-factor experiment (SFE) and response surface methodology (RSM) to optimize the Fenton reaction condition for higher removal rates of ARGs/MGEs. The results demonstrated that the removal rates of target genes by SFE optimized condition ranged from 10.91% to 66.86%, while the removal rates caused by RSM optimized condition were 48.02% - 76.36%, indicating RSM was a useful tool to improve the removal rates of ARGs in excess sludge. Additionally, the scanning electron microscope and cell apoptosis results suggested that the Fenton treatment altered the structure of sludge and reduced the numbers of normal cells, thus causing the reductions of target genes.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Guolan Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jianhua Ma
- Changning Agricultural and Rural Bureau, Changning 644300, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jinsong He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinling Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua Yang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
105
|
Wang K, Zhuang T, Su Z, Chi M, Wang H. Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147811. [PMID: 34023602 DOI: 10.1016/j.scitotenv.2021.147811] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 05/19/2023]
Abstract
Sewage treatment plants (STPs) and pharmaceutical manufactories (PMFs) are recognized as important reservoirs for aquatic pollution with antibiotics. Although the occurrence of multiple classes of antibiotics has been mostly reported for STPs and PMFs, knowledge on the effects of wastewater treatment processes on the removal of antibiotics is not well documented. In this study, wastewaters were collected from different treatment points of two STPs and two PMFs in eastern China. Thirty-seven antibiotics within the four classes of fluoroquinolones (FQs), macrolides (MACs), sulfonamides (SAs) and tetracyclines (TCs) were analyzed. Among the investigated antibiotics, 19-33 out of 37 target compounds were detected at least once in the STPs wastewaters ranging from low ng/L to approximately 12.7 μ/L. In the wastewater samples collected from PMFs, up to 34 antibiotics were present with detection frequencies up to 100%, showing generally higher concentrations (up to 19.0 μ/L) than those at the STPs. FQs and SAs were the dominant antibiotic families, which accounted for more than 90% of the total antibiotic concentration in the wastewaters. Moreover, the removal of antibiotics by anaerobic-anoxic-oxic (A2O), membrane bioreactor (MBR) and conventional activated sludge (CAS) systems was evaluated. The MBR system exhibited the best performance, mainly due to the processes of biodegradation and sorption during biological treatments. Notably, several SAs (SMP, SMZ) and FQs (CIN, ENO) antibiotics were consistently detected at concentration levels of μ/L in the effluent samples. The culturable antibiotic-resistance tests and risk assessment indicated that the antibiotic-contaminated effluents would facilitate the development of resistant bacteria and pose high toxicity to non-target organisms in the aquatic environment. Overall, the findings suggested an urgent need for improving the wastewater treatment technologies for simultaneous removal of different classes of antibiotics.
Collapse
Affiliation(s)
- Kun Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Jinan Environmental Research Academy, Jinan, Shandong 250100, China.
| | - Tao Zhuang
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Zhaoxin Su
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Menghao Chi
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Haichao Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
106
|
Maniakova G, Salmerón I, Nahim-Granados S, Malato S, Oller I, Rizzo L, Polo-López MI. Sunlight advanced oxidation processes vs ozonation for wastewater disinfection and safe reclamation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147531. [PMID: 33991917 DOI: 10.1016/j.scitotenv.2021.147531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Solar processes (sunlight/H2O2, solar photo-Fenton with EDDS at neutral pH) were compared to a consolidated technology (ozonation) in the inactivation of target bacteria (E. coli, Salmonella spp. and Enterococcus spp.) under realistic conditions (real secondary treated urban wastewater (WW), pilot scale reactors, natural sunlight) to evaluate their possible industrial application. The highest bacteria inactivation rate (all the target pathogens were inactivated below the detection limit (DL) (100 CFU/100 mL) within 45 min treatment) was observed for ozonation (83 mgO3/L h). Similar inactivation behavior for all bacteria was observed for sunlight/H2O2 (50 mg/L) and solar photo-Fenton (SPF) with EDDS (1:1 molar ratio, 0.1 mM of Fe and 50 mg/L of H2O2). Although the DL was not reached, faster inactivation kinetics (0.007, 0.013 and 0.002 1/min for E. coli, Salmonella spp. and Enterococcus spp., respectively) and lower bacterial concentration after a 180 min treatment were observed for sunlight/H2O2 process compared to SPF (0.005, 0.01 1/min and no inactivation, respectively), Enterococcus spp. being the higher resistance microorganism. The negative effect of carbonates on disinfection performance was also evaluated. Quantitative microbial risk assessment for the ingestion of lettuce irrigated with untreated and treated WW was estimated. Disinfection by ozonation and sunlight/H2O2 processes were found to drastically decrease the associated microbiological risk (the mean risk of illness decreased from 0.10 (untreated) to 1.35 × 10-4 (treated) for E. coli and from 0.03 to 2.21 × 10-6 for Salmonella).
Collapse
Affiliation(s)
- Gulnara Maniakova
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Irene Salmerón
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Samira Nahim-Granados
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Sixto Malato
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | | |
Collapse
|
107
|
Antibiotic-Resistant Genes and Bacteria as Evolving Contaminants of Emerging Concerns (e-CEC): Is It Time to Include Evolution in Risk Assessment? Antibiotics (Basel) 2021; 10:antibiotics10091066. [PMID: 34572648 PMCID: PMC8469798 DOI: 10.3390/antibiotics10091066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The pressing issue of the abundance of antibiotic resistance genes and resistant bacteria in the environment (ARGs and ARB, respectively) requires procedures for assessing the risk to health. The chemo-centric environmental risk assessment models identify hazard(s) in a dose–response manner, obtaining exposure, toxicity, risk, impact and policy. However, this risk assessment approach based on ARGs/ARB evaluation from a quantitative viewpoint shows high unpredictability because ARGs/ARB cannot be considered as standard hazardous molecules: ARB duplicate and ARGs evolve within a biological host. ARGs/ARB are currently listed as Contaminants of Emerging Concern (CEC). In light of such characteristics, we propose to define ARGs/ARB within a new category of evolving CEC (or e-CEC). ARGs/ARB, like any other evolving determinants (e.g., viruses, bacteria, genes), escape environmental controls. When they do so, just one molecule left remaining at a control point can form the origin of a new dangerous and selection-responsive population. As a consequence, perhaps it is time to acknowledge this trait and to include evolutionary concepts within modern risk assessment of e-CEC. In this perspective we analyze the evolutionary responses most likely to influence risk assessment, and we speculate on the means by which current methods could measure evolution. Further work is required to implement and exploit such experimental procedures in future risk assessment protocols.
Collapse
|
108
|
Laabd M, Brahmi Y, El Ibrahimi B, Hsini A, Toufik E, Abdellaoui Y, Abou Oualid H, El Ouardi M, Albourine A. A novel mesoporous Hydroxyapatite@Montmorillonite hybrid composite for high-performance removal of emerging Ciprofloxacin antibiotic from water: Integrated experimental and Monte Carlo computational assessment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
109
|
Antibiotic Resistance in Wastewater and Its Impact on a Receiving River: A Case Study of WWTP Brno-Modřice, Czech Republic. WATER 2021. [DOI: 10.3390/w13162309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance has become a global threat in which the anthropogenically influenced aquatic environment represents not only a reservoir for the spread of antibiotic resistant bacteria (ARB) among humans and animals but also an environment where resistance genes are introduced into natural microbial ecosystems. Wastewater is one of the sources of antibiotic resistance. The aim of this research was the evaluation of wastewater impact on the spread of antibiotic resistance in the water environment. In this study, qPCR was used to detect antibiotic resistance genes (ARGs)—blaCTX-M-15, blaCTX-M-32, ampC, blaTEM, sul1, tetM and mcr-1 and an integron detection primer (intl1). Detection of antibiotic resistant Escherichia coli was used as a complement to the observed qPCR results. Our results show that the process of wastewater treatment significantly reduces the abundances of ARGs and ARB. Nevertheless, treated wastewater affects the ARGs and ARB number in the receiving river.
Collapse
|
110
|
Rusu L, Grigoraș CG, Simion AI, Suceveanu EM, Șuteu D, Harja M. Application of Saccharomyces cerevisiae/Calcium Alginate Composite Beads for Cephalexin Antibiotic Biosorption from Aqueous Solutions. MATERIALS 2021; 14:ma14164728. [PMID: 34443250 PMCID: PMC8398417 DOI: 10.3390/ma14164728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023]
Abstract
Cephalexin (CPX) is recognized as a water pollutant, and it has been listed in a number of countries with a risk factor greater than one. Herein, the present work focused on the synthesis, characterization and biosorption capacity evaluation of Saccharomyces cerevisiae immobilized in calcium alginate as a biosorbent to remove CPX from aqueous solutions. Biosorbent was characterized by SEM and FTIR techniques. Batch biosorption experiments were conducted in order to evaluate the effect of the initial pH, biosorbent dose and CPX initial concentration. The removal efficiency, in considered optimal conditions (pH = 4, CPX initial concentration = 30 mg/L, biosorbent dose = 1 g/L) was 86.23%. CPX biosorption was found to follow the pseudo–second-order kinetics. The equilibrium biosorption data were a good fit for the Langmuir model with correlation coefficient of 0.9814 and maximum biosorption capacity was 94.34 mg/g. This study showed that the synthesized biosorbent by immobilization technique is a low-cost one, easy to obtain and handle, eco-friendly, with high feasibility to remove CPX antibiotic from aqueous solution. The findings of this study indicate that the biosorbents based on microorganisms immobilized on natural polymers have the potential to be applied in the treatment of wastewater.
Collapse
Affiliation(s)
- Lăcrămioara Rusu
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacău, 600115 Bacău, Romania; (L.R.); (A.-I.S.); (E.M.S.)
| | - Cristina-Gabriela Grigoraș
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacău, 600115 Bacău, Romania; (L.R.); (A.-I.S.); (E.M.S.)
- Correspondence:
| | - Andrei-Ionuț Simion
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacău, 600115 Bacău, Romania; (L.R.); (A.-I.S.); (E.M.S.)
| | - Elena Mirela Suceveanu
- Department of Chemical and Food Engineering, “Vasile Alecsandri” University of Bacău, 600115 Bacău, Romania; (L.R.); (A.-I.S.); (E.M.S.)
| | - Daniela Șuteu
- Department of Organic, Biochemical and Food Engineering, “Gheorghe Asachi” Technical University of Iași, 700050 Iași, Romania;
| | - Maria Harja
- Department of Chemical Engineering, “Gheorghe Asachi” Technical University of Iași, 700050 Iași, Romania;
| |
Collapse
|
111
|
Alegbeleye O, Alisoltani A, Abia ALK, Awe AA, Adetunji AT, Rabiu S, Opeolu BO. Investigation into the bacterial diversity of sediment samples obtained from Berg River, Western Cape, South Africa. Folia Microbiol (Praha) 2021; 66:931-947. [PMID: 34224087 DOI: 10.1007/s12223-021-00893-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
This study used conventional culturing and 16S rRNA metagenomics analyses to assess the diversity of bacterial communities in sediment samples obtained from the Berg River, Western Cape, South Africa. Samples were collected from six points: a residential and recreational area, an industrial area, an informal residential settlement, a point next to a wastewater treatment plant (WWTP), a pumping station, and a residential and agricultural farming area along the river. High bacterial counts recorded on general selective and differential culture media signify substantial microbial contamination along the sampling sites. The most prevalent bacterial phyla detected (through metagenomics analyses) along the sampling sites were Proteobacteria (61%), Planctomycetes (9.5%), Firmicutes (7.8%), Bacteroidetes (5%), Acidobacteria (4.6%), and Actinobacteria (4.6%). Some members of the identified predominant bacterial phyla, genera, and classes are important public health bacteria that have been implicated in human diseases and outbreaks, while some others are metal or hydrocarbon tolerant, indicating possible significant environmental pollution. Notable human pathogenic genera such as Bacillus, Clostridium, Shigella, Legionella, Mycobacterium, and Pseudomonas were identified in varying percentages at five of the six sampling areas. Fecal contamination was particularly rife at all residential areas, with the informal housing area being the most notably polluted. Diverse functional pathways were predicted for identified bacteria, such as those associated with different chronic and infectious human diseases as well as those related to hydrocarbon and metal remediation. The point next to a WWTP contained vastly diverse groups of bacterial contaminants as well as the most abundant pathway identities and titles.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | | | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adetunji Ajibola Awe
- Department of Conservation and Marine Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Adewole Tomiwa Adetunji
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Western Cape, Wellington, 7654, South Africa
| | - Saidat Rabiu
- Department of Environmental and Occupational Studies, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Beatrice Olutoyin Opeolu
- Extended Curriculum Programmes, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000, South Africa
| |
Collapse
|
112
|
Velasco-Garduño O, González-Blanco G, Fajardo-Ortiz MDC, Beristain-Cardoso R. Influence of metronidazole on activated sludge activity. ENVIRONMENTAL TECHNOLOGY 2021; 42:2815-2822. [PMID: 31920183 DOI: 10.1080/09593330.2020.1714746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Metronidazole is potentially carcinogenic to humans and it has been detected in wastewaters. The Wastewater Treatment Plants using biological processes have been highly impacted by the emergent compounds of recalcitrant type, and the knowledge about that issue is quite relevant. Therefore, this paper was focused on how metronidazole influences the kinetics and metabolic behaviour of nitrification and heterotrophic activity on activated sludge in batch cultures. Eight concentrations of metronidazole in the range of 5-100 mg/L were evaluated, in the presence of 2109 ± 129 mg VSS/L. The increment of initial metronidazole concentration caused a decline on COD and ammonium removal efficiencies, nitrate production yields, as well as in the substrate-specific consumption rates. Metronidazole (MDZ) had a greater impact on heterotrophic activity than nitrifying activity; also, it had a greater inhibitory effect on nitrite oxidation than ammonium oxidation. The activated sludge was not able to biotransform metronidazole; however, the azole compound significantly affected the physiology of it. The inhibition of ammonium oxidation was non-competitive (qmax = 120 mg NH4+-N consumed/gVSS-d, and Ki = 41.5 mg MDZ/L) and the initial metronidazole concentration that inhibited 50% of nitrifying activity (IC50) was 43 mg MDZ/L.
Collapse
Affiliation(s)
- Oscar Velasco-Garduño
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
- Departmento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma, México
| | | | | | | |
Collapse
|
113
|
Augsburger N, Zaouri N, Cheng H, Hong PY. The use of UV/H 2O 2 to facilitate removal of emerging contaminants in anaerobic membrane bioreactor effluents. ENVIRONMENTAL RESEARCH 2021; 198:110479. [PMID: 33212130 DOI: 10.1016/j.envres.2020.110479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Effluent from anaerobic membrane bioreactor (AnMBR) contains ammonia and would require post-polishing treatment before it can be disinfected by chlorine. However, additional post-treatment steps to remove nutrients offset the energetic benefits derived from anaerobic fermentation. The use of chlorine or ozone also promotes concerns associated with disinfection byproducts. This study evaluates UV/H2O2 as a potential strategy suited for the removal of pharmaceutical compounds as well as antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from AnMBR effluent. Our findings indicate that 10 mg/L H2O2 and 61.5 mJ/cm2 of UV fluence are able to achieve a 4-log removal of both Escherichia coli PI7 and Klebsiella pneumoniae L7. However, a higher fluence of 311 mJ/cm2 with the same amount of H2O2 would be required to achieve >90% removal of atenolol, carbamazepine and estrone. The removal of the pharmaceutical compounds was driven by the hydroxyl radicals generated from H2O2, while UV exposure governed the inactivation of ARB and ARGs. UV/H2O2 increased overall mutagenicity of the treated wastewater matrix but did not result in any changes to the natural transformation rates. Instead, UV significantly reduced natural transformation rates by means of DNA damage. Overall, UV/H2O2 could be the ideal final disinfection strategy for AnMBR effluent without requiring additional post-treatment prior disinfection.
Collapse
Affiliation(s)
- Nicolas Augsburger
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Noor Zaouri
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Hong Cheng
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
114
|
Bandala ER, Kruger BR, Cesarino I, Leao AL, Wijesiri B, Goonetilleke A. Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145586. [PMID: 33607440 PMCID: PMC7862925 DOI: 10.1016/j.scitotenv.2021.145586] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 05/16/2023]
Abstract
With global number of cases 106 million and death toll surpassing 2.3 million as of mid-February 2021, the COVID-19 pandemic is certainly one of the major threats that humankind have faced in modern history. As the scientific community navigates through the overwhelming avalanche of information on the multiple health impacts caused by the pandemic, new reports start to emerge on significant ancillary effects associated with the treatment of the virus. Besides the evident health impacts, other emerging impacts related to the COVID-19 pandemic, such as water-related impacts, merits in-depth investigation. This includes strategies for the identification of these impacts and technologies to mitigate them, and to prevent further impacts not only in water ecosystems, but also in relation to human health. This paper has critically reviewed currently available knowledge on the most significant potential impacts of the COVID-19 pandemic on the wastewater pathway into surface water, as well as technologies that may serve to counteract the major threats posed, key perspectives and challenges. Additionally, current knowledge gaps and potential directions for further research and development are identified. While the COVID-19 pandemic is an ongoing and rapidly evolving situation, compiling current knowledge of potential links between wastewater and surface water pathways as related to environmental impacts and relevant associated technologies, as presented in this review, is a critical step to guide future research in this area.
Collapse
Affiliation(s)
- Erick R Bandala
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV 89119, USA.
| | - Brittany R Kruger
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV 89119, USA
| | - Ivana Cesarino
- São Paulo State University (UNESP), School of Agriculture, Botucatu, Brazil
| | - Alcides L Leao
- São Paulo State University (UNESP), School of Agriculture, Botucatu, Brazil
| | - Buddhi Wijesiri
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
115
|
Yadav D, Rangabhashiyam S, Verma P, Singh P, Devi P, Kumar P, Hussain CM, Gaurav GK, Kumar KS. Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. CHEMOSPHERE 2021; 272:129492. [PMID: 35534951 DOI: 10.1016/j.chemosphere.2020.129492] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 06/14/2023]
Abstract
In the past few decades, new contaminants of emerging concern (CECs) in the air, water, and soil have gained significant attention due to their adverse impact on human health and the environment. The sources of CECs have been identified in different forms from domestic and industrial activities such as personal care products and pharmaceuticals. It has been established that aqueous medium plays a major role in the dissemination of various contaminants, like drinking water, reservoirs, lakes, rivers and waste with water medium. There remains inadequate technology for the treatment of CECs in the wastewater systems. Though different techniques have advanced for the treatment of CECs, they still pose a severe threat to human health and disturb the ecological balance. In this review, the characteristics, recent technologies, risk assessment and management of CECs have been discussed. The primary aim is to highlight the new innovative and cost-effective technologies for the remediations of CECs in all forms. Biochar is readily and economically available in abundance and an economical adsorbent with 100% adsorptive removal for H2PO4-. The bibliometric analysis also performed to understand the emerging research trends on the treatment techniques, which can help in developing a guiding pathway to modern research in academia and industry.
Collapse
Affiliation(s)
- Deepak Yadav
- Chemical Engineering Department, Harcourt Butler Technical University (Formerly HBTI), Kanpur, India.
| | - S Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Pramit Verma
- Integrative Ecology Laboratory (IEL), Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, India
| | - Pardeep Singh
- Department of Environment Studies, PGDAV College University of Delhi, New Delhi, India.
| | - Pooja Devi
- CSIR- Central Scientific Instruments Organisation, Sector-30C, Chandigarh, India
| | - Pradeep Kumar
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environment Science, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Gajendra Kumar Gaurav
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Developmenton Shallow Lakes and College of Civil, Hohai University, Nanjing, 210098, PR China
| | - Kuppusamy Sathish Kumar
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes,Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
116
|
De Vargas JPR, Bastos MC, Al Badany M, Gonzalez R, Wolff D, Santos DRD, Labanowski J. Pharmaceutical compound removal efficiency by a small constructed wetland located in south Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30955-30974. [PMID: 33594565 DOI: 10.1007/s11356-021-12845-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The fate of pharmaceuticals during the treatment of effluents is of major concern since they are not completely degraded and because of their persistence and mobility in environment. Indeed, even at low concentrations, they represent a risk to aquatic life and human health. In this work, fourteen pharmaceuticals were monitored in a constructed wetland wastewater treatment plants (WWTP) assessed in both influent and effluent samples. The basic water quality parameters were evaluated, and the removal efficiency of pharmaceutical, potential for bioaccumulation, and the impact of WWTP were assessed using Polar Organic Chemical Integrative Sampler (POCIS) and biofilms. The pharmaceutical compounds were quantified by High Performance Liquid chromatography coupled to mass spectrometry. The sampling campaign was carried out during winter (July/2018) and summer (January/2019). The WWTP performed well regarding the removal of TSS, COD, and BOD5 and succeeded to eliminate a significant part of the organic and inorganic pollution present in domestic wastewater but has low efficiency regarding the removal of pharmaceutical compounds. Biofilms were shown to interact with pharmaceuticals and were reported to play a role in their capture from water. The antibiotics were reported to display a high risk for aquatic organisms.
Collapse
Affiliation(s)
- Jocelina Paranhos Rosa De Vargas
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil.
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France.
| | - Marília Camotti Bastos
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Maha Al Badany
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Rolando Gonzalez
- Departamento de Engenharia Ambiental, Centro de Tecnologia, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Delmira Wolff
- Departamento de Engenharia Ambiental, Centro de Tecnologia, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Danilo Rheinheimer Dos Santos
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Av. Roraima n° 1000, Cidade Universitária, Bairro Camobi, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| |
Collapse
|
117
|
Buta M, Hubeny J, Zieliński W, Harnisz M, Korzeniewska E. Sewage sludge in agriculture - the effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops - a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112070. [PMID: 33652361 DOI: 10.1016/j.ecoenv.2021.112070] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 05/17/2023]
Abstract
In line with sustainable development principles and in order to combat climate change, which contributes to progressive soil depletion, various solutions are being sought to use treated sewage sludge as a soil amendment to improve soil quality and enrich arable soils with adequate amounts of biogenic compounds. This review article focuses on the effects of the agricultural use of biosolids on the environment. The article reviews the existing knowledge on selected emerging contaminants in treated sewage sludge and describes the impact of these pollutants on the environment and living organisms based on 183 publications selected from over 16,000 papers on related topics published over the last ten years. This study deals not only with chemical contaminants but also genetic determinants of resistance to these compounds. Current research has questioned the agricultural use of biosolids due to the presence of mutual interactions between antibiotics, heavy metals, the genetic determinants of resistance (antibiotic resistance genes - ARGs and heavy metal resistance genes - HMRGs) and non-steroidal anti-inflammatory drugs as well as the risks associated with their transfer to the environment. This study emphasizes the need for more extensive legal regulations that account for other pollutants of environmental concern (PEC), particularly in countries where sewage sludge is applied in agriculture most extensively. Future research should focus on more effective methods of eliminating PEC from sewage sludge, especially from the sludge that is used to fertilize agricultural land, because even small amounts of these micropollutants can have serious implications for the health and life of humans and animals.
Collapse
Affiliation(s)
- Martyna Buta
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland.
| |
Collapse
|
118
|
Costa EP, Starling MCVM, Amorim CC. Simultaneous removal of emerging contaminants and disinfection for municipal wastewater treatment plant effluent quality improvement: a systemic analysis of the literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24092-24111. [PMID: 33447977 DOI: 10.1007/s11356-021-12363-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
This work presents a bibliographic review of the literature regarding the simultaneous removal of contaminants of emerging concern (CECs) and disinfection in domestic wastewater matrices. These two responses are usually evaluated independently, as most attention has been centered on the discussion over the removal of CECs in the last 10 years. However, the simultaneous removal of CECs and pathogens from wastewater has been recently brought to the spotlight, especially considering the removal of antibiotics and antibiotic-resistant bacteria. Aiming at a reproducible and nonbiased methodology, a combination of the construction of a bibliometric portfolio with systemic analysis was performed with peer-reviewed manuscripts published between 2008 and 2019 in five distinct databases. Several keyword combinations were necessary to achieve a relevant portfolio according to strict criteria. As a result, five highly cited papers and authors were selected. Among the advanced oxidation processes (AOPs) explored for simultaneous removal of CECs and disinfection in these papers, detailed results have been elucidated mainly for ozonation. Thus, revealing the broad range of questions that have yet to be investigated in depth for new technologies such as irradiated solar processes. In addition, there is a lack of information associated with simultaneous assessment of CEC removal and disinfection in real samples and in wastewater matrices originated from different secondary treatment technologies in diverse locations.
Collapse
Affiliation(s)
- Elizângela Pinheiro Costa
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA) Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maria Clara Vieira Martins Starling
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA) Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Camila C Amorim
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA) Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
119
|
Liu SH, Lu CC, Lin CW, Chang SH. Rapid modification of waste expanded polystyrene with H 2SO 4/trace persulfate in one pot for effective adsorption of fluoroquinolone antibiotic and its regeneration. CHEMOSPHERE 2021; 271:129529. [PMID: 33434822 DOI: 10.1016/j.chemosphere.2020.129529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Norfloxacin, a fluoroquinolone antibiotic, is widely used to treat microbial infections. However, untreated norfloxacin-containing wastewater poses serious threats to the ecosystem and human health. The treatment of waste expanded polystyrene (EPS) by landfilling or incineration could cause environmental problems. In this research, the feasibility of converting EPS into a valuable adsorbent for norfloxacin was evaluated. Results showed that EPS treated with H2SO4 (EPSH2SO4) effectively adsorbed norfloxacin. The optimal sulfonation conditions were 95% H2SO4 and 100 °C. Addition of 0.001 M of persulfate during sulfonation obviously shortened the sulfonation time to 7.5 min, and the adsorption ability of modified EPS increased with increasing persulfate dose. Under the experimental conditions of 25 mg L-1 norfloxacin, pH0 6.2, and 0.4 g L-1 EPSH2SO4+persulfate (dry weight), 97.2% of norfloxacin could be removed after 30 min of adsorption. The adsorption ability of EPSH2SO4+persulfate decreased with increasing solution pH0, and the optimal pH0 was 6.2. The Langmuir isotherm best described the adsorption behavior of EPSH2SO4+persulfate (qmax = 140.9 mg L-1, b = 1.97 L mg-1, R2 = 0.9992). 1 M HCl effectively regenerated the exhausted EPSH2SO4+persulfate at the optimal solid/solution ratio of 8 g L-1. EPSH2SO4+persulfate maintained excellent adsorption capacity (>80.9%) after eight adsorption-regeneration cycles.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Chun-Cheng Lu
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
120
|
Maniakova G, Salmerón I, Polo-López MI, Oller I, Rizzo L, Malato S. Simultaneous removal of contaminants of emerging concern and pathogens from urban wastewater by homogeneous solar driven advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144320. [PMID: 33401038 DOI: 10.1016/j.scitotenv.2020.144320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Simultaneous removal of contaminants of emerging concern and bacteria inactivation in simulated municipal wastewater effluent (SMWW) through solar advanced oxidation processes, namely sunlight/H2O2 and solar photo-Fenton with Ethylenediamine-N,N'-disuccinic acid (EDDS) at neutral pH was investigated. Process efficiency was evaluated in terms of (i) degradation of five contaminants of emerging concern (CECs, namely caffeine, carbamazepine, diclofenac, sulfamethoxazole and trimethoprim) at the initial concentration of 100 μgL-1 each and (ii) bacteria inactivation (E. coli, S. enteritidis and E. faecalis), at the initial concentration of 103 CFU mL-1 each. Solar photo-Fenton process was first investigated at lab scale in a solar simulator to evaluate the effect of iron concentration (0.1 mM and 0.05 mM) and Fe:EDDS ratio (1:2 and 1:1). Subsequently, sunlight/H2O2 and solar photo-Fenton with EDDS (molar ratio 1:1, Fe(III) 0.1 mM) at neutral pH were singularly and sequentially investigated at pilot scale in a raceway pond reactor. Sunlight/H2O2 (50 mg L-1) tests resulted in total bacteria inactivation in 60 min (0.69 kJ L-1) but low CECs removal efficiency. On the opposite, solar photo-Fenton was effective in the removal of the total CECs (87% removal after 20 min and 0.14 kJ L-1) but not in E. faecalis inactivation (the initial concentration did not change even after 180 min). However, when the two processes were operated sequentially, a complete bacteria inactivation was observed in 15 min (0.17 kJ L-1), 20 min (0.23 kJ L-1) and 60 min (0.70 kJ L-1) of treatment for E. coli, S. enteritidis and E. faecalis, respectively and 80% removal of total CECs was achieved after 10 min of Fe:EDDS addition. Sequential combination of sunlight/H2O2 and solar photo-Fenton would be an effective solution for simultaneous CECs removal and bacteria inactivation in the same photo-reactor.
Collapse
Affiliation(s)
- Gulnara Maniakova
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Irene Salmerón
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | | | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Sixto Malato
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain.
| |
Collapse
|
121
|
Solaun O, Rodríguez JG, Menchaca I, López-García E, Martínez E, Zonja B, Postigo C, López de Alda M, Barceló D, Borja Á, Manzanos A, Larreta J. Contaminants of emerging concern in the Basque coast (N Spain): Occurrence and risk assessment for a better monitoring and management decisions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142765. [PMID: 33077229 DOI: 10.1016/j.scitotenv.2020.142765] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 05/23/2023]
Abstract
The study of the presence in the aquatic environment of certain substances considered as contaminants of emerging concern (CEC) is a preliminary step to the analysis of the possible harmful effects on aquatic ecosystems and the establishment of the corresponding environmental quality standards. In order to monitor the occurrence of CECs in the aquatic environment, the European Commission established in 2015 and 2018 two watch-list of substances for Union-wide monitoring in the field of water policy (Decision (EU) 2015/495 and Decision (EU) 2018/840). In the coast of the Basque Country, southeast of the Bay of Biscay, 19 of these watch list substances were monitored quarterly from May 2017 to March 2019. Water samples were collected at the effluent of three wastewater treatment plants and five control points associated with receiving waters (transitional and coastal water bodies). The most frequently quantified substances were azithromycin (91%), imidacloprid (82%), clarithromycin (80%), diclofenac (78%) and erythromycin (73%), with frequencies of quantification higher in wastewaters (83-100%) than in receiving waters (70-85%). In general, concentrations in wastewater were also higher than in receiving waters, indicating a dilution effect in the environment. In receiving waters, six out of the nineteen substances monitored exceeded their respective Predicted No-Effect Concentrations: azithromycin (34%), imidacloprid (9%), 17β-estradiol (E2) (9%), clarithromycin (7%), ciprofloxacin (7%), and diclofenac (5%); and therefore, their levels could pose an environmental risk.
Collapse
Affiliation(s)
- Oihana Solaun
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain.
| | - José Germán Rodríguez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain
| | - Iratxe Menchaca
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Elena Martínez
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Bozo Zonja
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ángel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain
| | - Alberto Manzanos
- Basque Water Agency (URA), Orio 1-3, 01010, Vitoria-Gasteiz, Spain
| | - Joana Larreta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain
| |
Collapse
|
122
|
Grisales-Cifuentes CM, Serna Galvis EA, Porras J, Flórez E, Torres-Palma RA, Acelas N. Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. BIORESOURCE TECHNOLOGY 2021; 326:124753. [PMID: 33545628 DOI: 10.1016/j.biortech.2021.124753] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Acetaminophen (ACE), cephalexin (CPX), and valsartan (VAL) are recognized water pollutants, which can be removed by adsorption. Herein, the removal of these pharmaceuticals using a biochar (BP), prepared from oil palm fiber, was tested. It was studied the structural effects of the pharmaceuticals and biochar on the adsorption process supported by experimental and computational results, plus characterizations of the material. The biochar has 76.05 m2 g-1 of surficial area, and carboxylic groups (1.343 mmol g-1) predominantly. The maximum adsorption uptakes were 7.3, 7.9, and 23.85 mg g-1 for ACE, CPX, and VAL, respectively; following pseudo-second-order kinetics. The best pollutants removal was obtained at acidic pH (3.0). Computational analyses indicated that oxygenated groups of BP (able to generate H-bond interactions) influenced the adsorption of pharmaceuticals. It can be remarked that BP is a low-cost adsorbent synthesized easily from wastes, with high feasibility to remove pharmaceutical structures from water.
Collapse
Affiliation(s)
- Claudia M Grisales-Cifuentes
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraím A Serna Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Investigaciones Biomédicas Uniremington, Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington, Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
| | - Elizabeth Flórez
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Nancy Acelas
- Grupo de Materiales con Impacto, Mat&mpac, Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia.
| |
Collapse
|
123
|
Immobilised Humic Substances as Low-Cost Sorbents for Emerging Contaminants. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental pollution with contaminants of emerging concern (CECs) is a worldwide problem that is receiving increasing attention. Although these substances have been released in the aquatic environment for a long time, wastewater treatment plants are still incapable of removing emerging contaminants completely. Consequently, trace metals, metalloids and pharmaceuticals, as well as surfactant leftovers, are often found in environmental samples. Environmentally friendly and cost-effective sorbents such as humic substances can be used for purification if their sorption properties are increased by immobilization. To our knowledge, immobilized humic substances have not been widely studied as sorbents up to now. In this study, humic substances were immobilized to obtain low-cost sorbents. The chosen methods for characterization of the obtained sorbents showed successful immobilization. Traditional pollutants, such as Cr(III) (a metal), As(V) (a metalloid) and chlorpromazine (a pharmaceutical), were used as representative contaminants. Sorption experiments were conducted using the batch system, and sorption was also studied based on the sorbent dosage, initial concentration of the studied element or substance, solution pH and sorption time. The results show that all the obtained immobilized humic substances in this study can be used as sorbents to remove contaminants from water. At the same time, from these humic substances, only those immobilized using iron compounds are suitable for the removal of arsenic.
Collapse
|
124
|
Kuo HC, Liao YC, Cheng HW, Shih SM, Chen FJ, Kuo SC. Mobile resistomes of human pathogens in swine wastewater treatment plants. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:752-754. [PMID: 33714694 DOI: 10.1016/j.jmii.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Hung-Chih Kuo
- Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Wei Cheng
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Man Shih
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
125
|
Su D, Ben W, Strobel BW, Qiang Z. Impacts of wastewater treatment plant upgrades on the distribution and risks of pharmaceuticals in receiving rivers. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124331. [PMID: 33183833 DOI: 10.1016/j.jhazmat.2020.124331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Upgrades of wastewater treatment plant (WWTP) and full-scale application of additional advanced oxidation processes have been proven to be effective in reducing the nutrient emissions to the environment; however, the impacts of WWTP upgrades on the receiving waters with regard to the occurrence and ecological risks of pharmaceuticals are still unclear. In this study, 27 pharmaceuticals with diverse physicochemical properties were monitored in four rivers in Beijing, each of which was heavily impacted by a large-scale WWTP. Three-year sampling campaigns were conducted, covering the periods before and after the WWTP upgrades. The results show that the newly added combined treatment processes (e.g., biological filter, ultrafiltration, ozonation, and NaClO disinfection) reduced the total pharmaceutical concentrations in the effluents by 45-74%. The composition profiles reveal that the upgrades of two studied WWTPs resulted in a significant reduction of pharmaceutical concentrations in the receiving rivers, while little impacts were observed for the other rivers. The risk assessment shows that the acute toxic pressures in the studied rivers were generally low and the WWTP upgrades were conducive to reduce the risks for most of pharmaceuticals. However, erythromycin and ofloxacin still posed high risk, indicating the potential adverse effect of pharmaceuticals on aquatic environment.
Collapse
Affiliation(s)
- Du Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
126
|
Revitt DM, Lundy L, Fatta-Kassinos D. Development of a qualitative approach to assessing risks associated with the use of treated wastewater in agricultural irrigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124286. [PMID: 33342600 DOI: 10.1016/j.jhazmat.2020.124286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
The European Commission's draft regulation for minimum requirements for water reuse in agriculture addresses microbial and basic water quality parameters but does not consider the potential impacts of chemicals of emerging concern (CECs) on human and environmental health. Because insufficient data prevents the quantitative characterisation of risks posed by CECs in treated wastewater (TWW), this paper presents a framework, which combines data and expert judgement to assess likelihood of occurrence and magnitude of impact. An increasing relative scale is applied where numeric values are pre-defined to represent comparative levels of importance. Subsequently, an overall assessment of the level of risk is characterised by multiplying together allocated scores, to obtain a single discrete overall score per CEC. Guidelines to support implementation of the framework as far as soil (the initial receiving compartment and pathway to further protected targets) are developed and applied. The approach is demonstrated through its application to clarithromycin, where results indicate that - under the considered scenario - there is limited possibility of its occurrence in soil in a bioavailable form. The role of a qualitative risk assessment approach is considered and the opportunity for its outputs to inform future research agendas described.
Collapse
Affiliation(s)
- D Michael Revitt
- Middlesex University, Department of Natural Sciences, School of Science and Technology, London NW4 4BT, United Kingdom.
| | - Lian Lundy
- Middlesex University, Department of Natural Sciences, School of Science and Technology, London NW4 4BT, United Kingdom
| | - Despo Fatta-Kassinos
- University of Cyprus, NIREAS-International Water Research Center, Department of Civil and Environmental Engineering, 2109, Nicosia, Cyprus
| |
Collapse
|
127
|
Devault DA, Amalric L, Bristeau S, Cruz J, Tapie N, Karolak S, Budzinski H, Lévi Y. Removal efficiency of emerging micropollutants in biofilter wastewater treatment plants in tropical areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10940-10966. [PMID: 33105006 DOI: 10.1007/s11356-020-10868-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
We studied the removal of 61 emerging micropollutants, including illicit drugs, in a biofilter wastewater treatment plant located in the French Indies (Martinique). Raw wastewater concentrations were the highest for paracetamol followed by caffeine, naproxen, ibuprofen, its metabolite 2-hydroxyibuprofen, atenolol, ketoprofen, furosemide, methylparaben, cocaine, benzoylecgonine, and 11-nor-delta-9-carboxytetrahydrocannabinol (THC-COOH). The calculated removals were better than those reported in the literature, while the cumulative removal efficacy (i.e., removal of the total mass load) was estimated to be 92 ± 4%. However, this good performance may be partly explained by the removal of paracetamol (also named acetaminophen) and caffeine, which represented 86.4% of the total mass load. Our results point to the adsorption of some molecules on sludge, thus raising the question about local soil pollution from sludge spreading.
Collapse
Affiliation(s)
- Damien Alain Devault
- Département Sciences et Technologies, Centre Universitaire de Formation et de Recherche, RN3 BP 53, 97660, Dembeni, Mayotte, France.
- Public Health and Environment Laboratory Group, UMR 8079 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, University of Paris-Saclay, 5 rue Jean Baptiste Clément, 92290, Chatenay-Malabry, France.
| | - Laurence Amalric
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060, Orleans Cedex 2, France
| | - Sébastien Bristeau
- Division Laboratoires, BRGM, 3 Avenue Claude Guillemin, 45060, Orleans Cedex 2, France
| | - Justine Cruz
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Nathalie Tapie
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Sara Karolak
- Public Health and Environment Laboratory Group, UMR 8079 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, University of Paris-Saclay, 5 rue Jean Baptiste Clément, 92290, Chatenay-Malabry, France
| | - Hélène Budzinski
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Yves Lévi
- Public Health and Environment Laboratory Group, UMR 8079 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, University of Paris-Saclay, 5 rue Jean Baptiste Clément, 92290, Chatenay-Malabry, France
| |
Collapse
|
128
|
Electrochemical Treatment of Effluent for the Removal of Contaminants of Emergent Concern and Culturable Microorganisms. WATER 2021. [DOI: 10.3390/w13040520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work aims to study the electrochemical (EC) process applied for the removal of contaminants of emergent concern (CECs) from wastewater after secondary treatment and the effect of the process on the total culturable microorganisms. The EC experiments were performed in a cylindrical open reactor with 500 mL of effluent, and a fixed current density of 8 mA/cm² was applied through mixed metal oxide electrodes. The experiments were conducted in different sets. In the first round (Set 1), the effluent sample was spiked with three CECs (200 ppb each): caffeine (CAF), carbamazepine (CBZ), and oxybenzone (OXY). For the best treatment period, 6 h, electrodegradation rates ranged from 41 ± 7% for CAF to 95 ± 6% for OXY, with an 87% removal of total culturable microorganisms. In the second round (Set 2), aiming to assess EC process efficiency in a more complex CEC mixture, the effluent was spiked with six more CECs (200 ppb each): diclofenac (DCF), triclosan (TCS), bisphenol A (BPA), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and ibuprofen (IBU), giving a total of nine CECs. In this case, the EC process allowed decreasing the CEC content by 19–100% (below the limit of detection), depending on the effluent samples, and the culturable microorganisms by 99.98% after a 6 h treatment. By contributing to CEC degradation and microorganism removal, the EC process proved to be a viable remediation and disinfection technology for secondary effluent from wastewater treatment plants.
Collapse
|
129
|
Gonçalves NPF, Varga Z, Bouchonnet S, Dulio V, Alygizakis N, Dal Bello F, Medana C, Calza P. Study of the photoinduced transformations of maprotiline in river water using liquid chromatography high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143556. [PMID: 33190886 DOI: 10.1016/j.scitotenv.2020.143556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Maprotiline was identified as a compound of potential interest further to a suspect screening test carried out for a list of more than 40,000 substances based on specific occurrence, hazard and risk indicators. Despite the high frequency of appearance of this drug in wastewater treatment stations, his environmental fate is still unknown. Herein, we investigated for the first time the maprotiline degradation pathways in river water spiked with the drug at a concentration close to those detected in natural waters. Preliminary photocatalytic experiments in ultrapure water produced 32 transformation products (TPs) resulted mainly from the multiple hydroxylation/oxidation in different positions of the drug molecule. From the river water experiments, 12 TPs were formed by photolysis matching with those observed in ultrapure water experiments, and 2 were also formed resulted from biotic degradation. Employing HPLC-HRMS, we were able to elucidate the chemical structures of TPs and assess the overall degradation mechanism. Preliminary bioassays suggested lower toxicity of TPs relatively to the parent compound.
Collapse
Affiliation(s)
| | - Zsuzsanna Varga
- Laboratoire de Chimie Moléculaire - CNRS/Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Stéphane Bouchonnet
- Laboratoire de Chimie Moléculaire - CNRS/Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Paola Calza
- Department of Chemistry, University of Turin, Torino, Italy.
| |
Collapse
|
130
|
PFAS Degradation in Ultrapure and Groundwater Using Non-Thermal Plasma. Molecules 2021; 26:molecules26040924. [PMID: 33572434 PMCID: PMC7916234 DOI: 10.3390/molecules26040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Perfluoroalkyl substances (PFAS) represent one of the most recalcitrant class of compounds of emerging concern and their removal from water is a challenging goal. In this study, we investigated the removal efficiency of three selected PFAS from water, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and pefluorooctanesulfonic acid (PFOS) using a custom-built non-thermal plasma generator. A modified full factorial design (with 2 levels, 3 variables and the central point in which both quadratic terms and interactions between couple of variables were considered) was used to investigate the effect of plasma discharge frequency, distance between the electrodes and water conductivity on treatment efficiency. Then, the plasma treatment running on optimized conditions was used to degrade PFAS at ppb level both individually and in mixture, in ultrapure and groundwater matrices. PFOS 1 ppb exhibited the best degradation reaching complete removal after 30 min of treatment in both water matrices (first order rate constant 0.107 min-1 in ultrapure water and 0.0633 min-1 in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 83%, respectively. During plasma treatment, the production of reactive species in the liquid phase (hydroxyl radical, hydrogen peroxide) and in the gas phase (ozone, NOx) was investigated. Particular attention was dedicated to the nitrogen balance in solution where, following to NOx hydrolysis, total nitrogen (TN) was accumulated at the rate of up to 40 mgN L-1 h-1.
Collapse
|
131
|
Sodhi KK, Kumar M, Balan B, Dhaulaniya AS, Shree P, Sharma N, Singh DK. Perspectives on the antibiotic contamination, resistance, metabolomics, and systemic remediation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractAntibiotics have been regarded as the emerging contaminants because of their massive use in humans and veterinary medicines and their persistence in the environment. The global concern of antibiotic contamination to different environmental matrices and the emergence of antibiotic resistance has posed a severe impact on the environment. Different mass-spectrometry-based techniques confirm their presence in the environment. Antibiotics are released into the environment through the wastewater steams and runoff from land application of manure. The microorganisms get exposed to the antibiotics resulting in the development of antimicrobial resistance. Consistent release of the antibiotics, even in trace amount into the soil and water ecosystem, is the major concern because the antibiotics can lead to multi-resistance in bacteria which can cause hazardous effects on agriculture, aquaculture, human, and livestock. A better understanding of the correlation between the antibiotic use and occurrence of antibiotic resistance can help in the development of policies to promote the judicious use of antibiotics. The present review puts a light on the remediation, transportation, uptake, and antibiotic resistance in the environment along with a novel approach of creating a database for systemic remediation, and metabolomics for the cleaner and safer environment.
Collapse
|
132
|
Du X, Mo Z, Li Z, Zhang W, Luo Y, Nie J, Wang Z, Liang H. Boron-doped diamond (BDD) electro-oxidation coupled with nanofiltration for secondary wastewater treatment: Antibiotics degradation and biofouling. ENVIRONMENT INTERNATIONAL 2021; 146:106291. [PMID: 33395938 DOI: 10.1016/j.envint.2020.106291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
In this study, a boron-doped diamond (BDD) electro-oxidation technology coupled with nanofiltration membrane (EO-NF) technology was investigated for its effectiveness in removing antibiotics (i.e., sulfamethazine:SMZ) and mitigating biofouling during secondary wastewater treatment. The result showed that EO obtained an effective SMZ removal, owing to the ·OH generation observed by Electron paramagnetic resonance (EPR) analysis; complete elimination of SMZ was found under the high current density (30 mA/cm2) and long Electrolysis Time (ET = 60 min). Meanwhile, EO-NF process enabled to reduce COD content from 60 mg/L to nearly 5 mg/L. Furthermore, regardless of the effect of EO process, NF could retain most NH3-N because of the excellent performance of NF for ions rejection, and its permeate concentration was below 0.5 mg/L. EO was able to reduce membrane fouling notably, increasing the final flux (15 L/(m2·h)) of NF by 25.1% during long-term operation (240 h). Scanning electron microscopy-Energy dispersive spectrometry (SEM-EDS) showed that a porous layer formed on the vicinity of NF membrane in the case of filtrating EO effluent, in contrast to a uniform and dense biofouling layer generated during the direct NF. Besides, the content of adenosine triphosphate (ATP) and the number of bacterial colonies in the retentate of the EO-NF process were greater than those of the direct NF process. This resulted in a smaller amount of extracellular polymeric substances (EPS) attaching to the membrane surface, decreasing the tightness and hardness of the fouling layer in the case of EO, as indicated by CLSM analysis. Overall, considering its ability to effectively eliminate persistent contaminants and reduce membrane fouling, BDD-based EO is considered a promising pre-treatment option for future NF applications.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhuoyu Mo
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ziyang Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wenxiang Zhang
- School of Environmental Science and Engineering, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Jinxu Nie
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
133
|
Kasonga TK, Coetzee MAA, Kamika I, Ngole-Jeme VM, Benteke Momba MN. Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111485. [PMID: 33049614 DOI: 10.1016/j.jenvman.2020.111485] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/07/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Population growth followed by rapid development of industrialisation has caused serious environmental pollution with contaminants of emerging concern found in wastewater and surface water. As one of the most important resources for human survival, water is daily polluted by endocrine-disruptive chemicals (EDCs) including pharmaceuticals and personal care products, organic pollutants and heavy metals. Even at low concentrations in water bodies, chronic exposure to EDCs can cause adverse effects on human and environment health. The main concern with EDCs is the diseases they can generate in humans or wildlife by affecting the function of hormones in the body. Problems in the reproductive system, thyroid problems, Alzheimer's, cancer and obesity are some of the major effects of EDCs in humans. In wildlife, the reproductive system may be affected, including its levels of hatchability and vitellogenin. The efforts of the present review are on emphasising on the environmental concern on the occurrence and risk assessment of EDCs, their harmful effects in the ecosystem, human life, and wildlife, as a result of their incomplete removal from wastewater treatment plants. The review focuses on studies conducted in South Africa highlights the use of fungal bioreactors as a low-cost and eco-effective environmentally friendly wastewater treatment processes.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, Florida Campus, University of South Africa, Florida, Roodepoort, 1710, South Africa.
| | - Martie A A Coetzee
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology, Florida Campus, University of South Africa, P.O Box 392, Florida, Roodepoort, 1710, South Africa
| | - Veronica M Ngole-Jeme
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, Florida Campus, University of South Africa, Florida, Roodepoort, 1710, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Faculty of Sciences, Tshwane University of Technology, P/B X 680, Pretoria, 0001, South Africa
| |
Collapse
|
134
|
da Silva Rodrigues DA, da Cunha CCRF, Freitas MG, de Barros ALC, E Castro PBN, Pereira AR, de Queiroz Silva S, da Fonseca Santiago A, de Cássia Franco Afonso RJ. Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141441. [PMID: 32836119 DOI: 10.1016/j.scitotenv.2020.141441] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Sulfamethoxazole (SMX) has been commonly detected in wastewater treatment plant (WWTP) effluents. SMX and other antibiotics can be considered as environmental contaminants of emerging concern. Due to their toxicity effects and their potential for the development of bacterial resistance their presence in aquatic compartment becomes a threat to human health. This study evaluated the bioremediation of SMX in WWTP effluents using a tertiary treatment composed by microalgae-bacteria consortium under low intensity artificial LED illumination, and also the assessment of sulfonamide resistance gene (sul1). The removal of SMX from WWTP effluents were 54.34 ± 2.35%, in which the microalgae-bacteria consortium improves the removal performance of SMX. The main process of SMX removal can be attributed to the symbiotic biodegradation by bacteria due to the increase of oxygen released by the microalgae photosynthetic process. Therefore, the microalgae-bacteria consortium used in this study, demonstrated to be a promising alternative for bioremediation of SMX, with potential for removal others contaminants from wastewater effluent. However, the residual SMX and the relative abundance of antibiotics resistance genes (ARG) found in this study suggest that SMX contributes to selective pressure for ARG maintenance and proliferation in WWTP effluent. Thus, further studies to removal ARG from WWTP effluent are needed.
Collapse
Affiliation(s)
- Daniel Aparecido da Silva Rodrigues
- Multicenter Postgraduation Program in Chemistry - Minas Gerais, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
| | | | - Mylena Gomes Freitas
- Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - André Luis Corrêa de Barros
- Environmental Engineering Graduation Program, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Paulo Bernardo Neves E Castro
- Engineering Graduation Program, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Andressa Rezende Pereira
- Environmental Engineering Graduation Program, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Aníbal da Fonseca Santiago
- Department of Civil Engineering, School of Mines, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Robson José de Cássia Franco Afonso
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| |
Collapse
|
135
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
136
|
Yousef R, Malika C. Sorption behavior and mechanism of oxytetracycline from simulated wastewater by Amberlite IR-120 resin. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2366-2380. [PMID: 33339791 DOI: 10.2166/wst.2020.505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The adsorption of oxytetracycline from aqueous solution by the resin Amberlite IR 120 was studied. The effect of different experimental parameters such as contact time, initial concentration of OTC 40-200 mg/l, initial pH 2-12 of aqueous solution, adsorbent dose 0.5-3 g/l, and stirring speed 100-700 rpm on the adsorption of OTC were investigated. The kinetic adsorption experimental results were analyzed using pseudo-first order, pseudo-second order and Elovich kinetic models. The adsorption process was found to follow a pseudo-second order kinetic model and the corresponding rate constants were obtained. A film-pore diffusion (FPD) mass transfer model has been developed to predict the concentration distribution in the fluid phase, based on the external mass transfer coefficient and the effective diffusion coefficient. The values of the external mass transfer coefficient (βL) and effective diffusion coefficient (Deff) were found to decrease with increasing OTC concentration. The comparison between the experimental and the theoretical curves allowed us to note that the film-pore diffusion mass transfer model gave a good agreement with the experimental data for all the values of initial OTC concentration.
Collapse
Affiliation(s)
- Rechidi Yousef
- Laboratory of Reaction Engineering, University of Sciences and Technology Houari Boumediene, BP 32, El-Allia, Bab-Ezzouar, 16111 Algiers, Algeria and Laboratoire Génie de la réaction, Equipe : procédés durables de dépollution, Faculté de génie mécanique et génie des procédés, USTHB, BP 32, El Allia Bab Ezzouar, Alger, Algérie E-mail:
| | - Chabani Malika
- Laboratory of Reaction Engineering, University of Sciences and Technology Houari Boumediene, BP 32, El-Allia, Bab-Ezzouar, 16111 Algiers, Algeria and Laboratoire Génie de la réaction, Equipe : procédés durables de dépollution, Faculté de génie mécanique et génie des procédés, USTHB, BP 32, El Allia Bab Ezzouar, Alger, Algérie E-mail: ; Department of Environment Engineering, USTHB/FGM&GP, BP 32 EL Allia, 16111 Bab ezzouar, Alger, Algérie
| |
Collapse
|
137
|
Fang F, Zhang Y, Bai J, Li J, Mei X, Zhou C, Zhou M, Zhou B. Efficient urine removal, simultaneous elimination of emerging contaminants, and control of toxic chlorate in a photoelectrocatalytic-chlorine system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115605. [PMID: 33254651 DOI: 10.1016/j.envpol.2020.115605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Urine, which is an important waste biomass resource, is the main source of nitrogen in sewage and contains large quantities of emerging contaminants (ECs). In this study, we propose a new method to efficiently remove urine, simultaneously eliminate ECs, and control the generation of toxic chlorate during urine treatment using a photoelectrocatalytic-chlorine (PEC-Cl) system. A type-II heterojunction of WO3/BiVO4 was used as a photoanode to generate chlorine radicals (Cl•) by decreasing the oxidation potential of WO3 valence band for the highly selective conversion of urine to N2 and the simultaneous degradation of ECs in an efficient manner. The method presented surprising results. It was observed that the amount of toxic chlorate was significantly inhibited by circumventing the over-oxidation of Cl- by holes or hydroxyl radicals (•OH). Moreover, the removal of urea nitrogen reached 97% within 90 min, while the degradation rate of trimethoprim in urine was above 98.6% within 60 min, which was eight times more than that in the PEC system (12.1%). Compared to the bare WO3 photoanode, the toxic chlorate and nitrate generated by the WO3/BiVO4 heterojunction photoanode decreased by 61% and 44%, respectively. Thus, this study provides a safe, efficient, and environmentally-friendly approach for the disposal of urine.
Collapse
Affiliation(s)
- Fei Fang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jing Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaojie Mei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Mengyang Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Key Laboratory of Thin Film and Microfabrication Technology, Ministry of Education, Shanghai, 200240, PR China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan, 650034, PR China.
| |
Collapse
|
138
|
Guo X, Zhong H, Li P, Zhang C. Microbial communities responded to tetracyclines and Cu(II) in constructed wetlands microcosms with Myriophyllum aquaticum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111362. [PMID: 32979807 DOI: 10.1016/j.ecoenv.2020.111362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Combined antibiotic and heavy metal pollution has generated considerable concern. Constructed wetlands (CWs) have been shown to efficiently remove pollutants; however, the microbial community responses to combined pollutants remain enigmatic. In this study, seven microcosm CWs were planted with Myriophyllum aquaticum, spiked with tetracyclines (TCs) (300-30,000 μg/L), alone or with Cu(II), to investigate the response of plant-associated microbial communities. TCs and the Cu/TC ratio greatly affected the performance of CWs. Tetracyclines led to higher microbial diversity, evenness and richness, while UniFrac distances and principal coordinate (PCO) and redundancy analyses revealed that the co-presence of TCs and Cu(II) led to variations in bacterial communities. Proteobacteria, Cyanobacteria and Bacteroidetes were the dominant microbial phyla and Cloacibacterium, Hydrogenophaga, Rheinheimera and Denitratisoma accounted for 6.2-21.0% of all genera. Therefore, the co-occurrence of heavy metals should be considered when judging the removal potential of TCs in phytoremediation.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China.
| | - Hua Zhong
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China.
| | - Peng Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China.
| | - Chengjun Zhang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing 100097, China.
| |
Collapse
|
139
|
Carneiro RB, Mukaeda CM, Sabatini CA, Santos-Neto ÁJ, Zaiat M. Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111170. [PMID: 32763746 DOI: 10.1016/j.jenvman.2020.111170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic compounds, notably sulfamethoxazole (SMX) and ciprofloxacin (CIP), are ubiquitous emerging contaminants (ECs), which are often found in domestic sewage. They are associated with the development of antimicrobial resistance. Operational parameters, e.g. organic loading rate (OLR), hydraulic retention time (HRT) and sludge retention time, may influence EC biodegradation in wastewater treatment plants. This study assessed the impact of the OLR variation on the biodegradation of CIP and SMX, applying two configurations of anaerobic fixed bed reactors: anaerobic packed bed biofilm reactor (APBBR) and anaerobic structured bed biofilm reactor (ASBBR). A significant reduction in the biodegradation of SMX (APBBR: 93-69%; ASBBR: 94-81%) and CIP (APBBR: 85-66%; ASBBR: 85-64%) was observed increasing OLR from 0.6 to 2.0 kgCOD m-3 d-1. The decrease in the HRT from 12 to 4 h resulted in higher liquid-phase mass transfer coefficient (APBBR: ks from 0.01 to 0.05 cm h-1; ASBBR: ks from 0.07 to 0.24 cm h-1), but this was not enough to overcome the decrease in the antibiotic-biomass contact time on biofilm, thus reducing the bioreactors' performance. The ASBBR favored biomethane production (from 7 to 17 mLCH4 g-1VSS L-1 d-1) and biodegradation kinetics (kbio from 1.7 to 4.2 and for SMX and from 2.1 to 4.8 L g-1VSS d-1 for CIP) due to the higher relative abundance of the archaea community in the biofilm and the lower liquid-phase mass transfer resistance in the structured bed. CIP and SMX cometabolic biodegradation was associated to the hydrogenotrophic methanogenesis (mainly Methanobacterium genus) in co-culture with fermentative bacteria (notably the genera Clostridium, Bacillus, Lactivibrio, Syntrophobacter and Syntrophorhabdus). The anaerobic fixed bed biofilm reactors proved to be highly efficient in biodegrading the antibiotics, preventing them from spreading to the environment.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Caio M Mukaeda
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Carolina A Sabatini
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), Institute of Chemistry of São Carlos, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
140
|
Li X, Zhu W, Meng G, Zhang C, Guo R. Efficiency and kinetics of conventional pollutants and tetracyclines removal in integrated vertical-flow constructed wetlands enhanced by aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111120. [PMID: 32745882 DOI: 10.1016/j.jenvman.2020.111120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The integrated vertical-flow constructed wetland (IVCW) is considered as a potential alternative for domestic wastewater treatment of towns and small cities. Oxygen supply is the main limitation of pollutants removal in IVCWs. In the present study, a field experiment was conducted to evaluate the capacity and kinetics of pollutants removal in IVCWs with/without artificial aeration. Two IVCWs constructed with Canna indica and Phragmites australis were running in continuous flow to remove high concentrations of conventional pollutants and low concentrations of tetracyclines (TETs), which are at similar levels of domestic wastewater. The results showed that IVCWs had a good performance on COD, phosphorus, and TETs with removal efficiencies over 80%, 64%, and 75%, respectively, with a hydraulic retention time (HRT) of 3.0 d. However, the removal of nitrogen was limited, showing as TN removal efficiency of about 30%. The IVCW with Phragmites australis had a higher removal efficiency and rate. A kinetics based on Monod Equation and solved with Matlab 2018a could describe the degradation of conventional pollutants. Artificial aeration improved the oxygen supply and remarkably raised the removal capacity for COD, N, and P in IVCWs. The q1/2 values, which was defined as the average removal loading before half of the pollutants was removed and represented the removal capacity without limitation of pollutants concentration, were increased by 5-30 times after aeration. In conclusion, IVCWs could remove conventional pollutants and TETs simultaneously showing a great potential in domestic wastewater treatment. Artificial aeration enhanced removal capacity of IVCWs on conventional pollutants while showed little influence on TETs.
Collapse
Affiliation(s)
- Xuhui Li
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| | - Weigang Zhu
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Gengjian Meng
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Chaosheng Zhang
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; School of Geography, Archaeology & Irish Studies & Ryan Institute, National University of Ireland, Galway, H91 CF50, Ireland
| | - Ruichao Guo
- National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
141
|
Svendsen SB, El-Taliawy H, Carvalho PN, Bester K. Concentration dependent degradation of pharmaceuticals in WWTP effluent by biofilm reactors. WATER RESEARCH 2020; 186:116389. [PMID: 32916616 DOI: 10.1016/j.watres.2020.116389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 05/25/2023]
Abstract
Conventional wastewater treatment lacks the ability to remove many pharmaceuticals. This is leading to emissions to the natural aquatic environment, where these compounds pose a risk to the aquatic organisms. An advanced wastewater treatment technique that has shown promising results is Moving Bed Biofilm Reactors (MBBR). Initial degradation velocity and degradation rate constants of the pharmaceuticals are important parameters for designing an optimal MBBR system; however, the degradation efficiency varies across studies and one of the most plausible causes might be initial concentration. Thus, to verify the effect of initial concentration, the degradation of a mixture of 18 pharmaceuticals at different initial concentrations was studied. For this study MBBR's with very low BOD loading were used as they were conditioned with effluent water. The experiment was set up as a MBBR batch incubation, using effluent wastewater as medium, spiked with the 18 pharmaceuticals in seven different concentration levels (approximately 0-300 µg L-1). The degradation of 14 out of 18 pharmaceuticals was concentration-dependent. The initial degradation velocity of the pharmaceuticals was either proportional to the initial concentration or was following a typical Michaelis-Menten kinetic. The degradation velocity of one compound, i.e., sulfamethizole might have been inhibited at high concentrations. The degradation rate constants from single first-order fittings (KSFO) for some compounds deviated from the expected behavior at low concentrations (below 10 µg L-1). This is suggested to be caused by simplicity of the Michaelis-Menten model, not taking possible occurrence of co-metabolism and mass-transfer limitations into account at low concentrations. This study underlines the fact that K values cannot be interpreted without paying attention to the tested concentration level. Furthermore, it shows that the used MBBRs was able to handle high concentrations of pharmaceuticals, and that the most efficient removal occurs at concentrations above 100 µg L-1.
Collapse
Affiliation(s)
- Sif B Svendsen
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | - Haitham El-Taliawy
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, Roskilde 4000, Denmark; WATEC - Centre for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark.
| |
Collapse
|
142
|
Harnisz M, Kiedrzyńska E, Kiedrzyński M, Korzeniewska E, Czatzkowska M, Koniuszewska I, Jóźwik A, Szklarek S, Niestępski S, Zalewski M. The impact of WWTP size and sampling season on the prevalence of antibiotic resistance genes in wastewater and the river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140466. [PMID: 32886993 DOI: 10.1016/j.scitotenv.2020.140466] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023]
Abstract
There is a growing concern about the fate of antibiotic resistance genes (ARGs) during wastewater treatment and their potential impacts on the receiving water bodies. We hypothesised that the quantity of ARGs in effluents may be related to the size of wastewater treatment plants (WWTPs) and sampling season. To date, only several attempts have been made to investigate the impact of the above factors at the catchment scale. Therefore, the goal of the present study was to explore possible differences in the quantity of ARGs in treated wastewater from small, medium-sized and large WWTPs in the catchment of the Pilica River (9258 km2). The impact of treated wastewater on the concentration of ARGs was also determined along the river continuum from upland to lowland segments to the point of confluence with the Vistula (342 km). Treated effluent was sampled in 17 WWTPs, and river water was sampled in 7 sampling sites in four seasons. The concentrations of blaTEM, tet(A), ermF, sul1 and aac(6')-Ib-cr genes, the integrase gene intI1 and the 16S rRNA gene were analysed by quantitative PCR. The physical and chemical parameters and nutrient concentrations (23 various parameters) in the analysed samples were determined. The highest absolute concentrations of the studied genes were noted in effluent samples from small WWTPs (p < 0.01). The concentration of ARGs (gene copies/mL) peaked in winter and spring samples (p < 0.04). The results of statistical analyses indicate that in small WWTPs, the absolute concentration of ARGs can be predicted based on the biochemical oxygen demand, in routine water analyses. However, none of the studied parameters supported predictions of ARG abundance in medium-sized and large WWTPs or in river water.
Collapse
Affiliation(s)
- Monika Harnisz
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland.
| | - Edyta Kiedrzyńska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Marcin Kiedrzyński
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Ewa Korzeniewska
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Małgorzata Czatzkowska
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Izabela Koniuszewska
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Adam Jóźwik
- University of Lodz, Faculty of Physics and Applied Informatics, Department of Computer Science, Pomorska 149/153, 90-236 Lodz, Poland
| | - Sebastian Szklarek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland
| | - Sebastian Niestępski
- University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering and Environmental Microbiology, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Maciej Zalewski
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
143
|
Ding G, Chen G, Liu Y, Li M, Liu X. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139802. [PMID: 32535279 DOI: 10.1016/j.scitotenv.2020.139802] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Artificial recharge to groundwater with reclaimed water is considered a promising method to alleviate groundwater depletion and over-exploitation. However, the occurrence of fluoroquinolone antibiotics (FQs) was ubiquitous in wastewater, surface water, groundwater and even drinking water threating human health and ecology. In this study, the occurrence of six selected FQs in reclaimed water effluent and their removal by tertiary treatment units were investigated. The overall removal efficiencies in average of the tertiary treatment processes in Beijing and Changzhou were ranging from 21.2% to 55.2%. Activated carbon exhibited better performance for FQs removal than ozone and biological treatment such as membrane bioreactor, anaerobic-anoxic-oxic and biofilter. The results of two pilot study showed that the impact of reclaimed water to groundwater quality in terms of FQs concentration by direct injection in GBD was stronger than surface spreading in Changzhou, which might be due to the recharge strategy and the physical and chemical characteristics of sediment and aquifer soil. The hazard quotient (HQ) values of ofloxacin (OFL) in reclaimed water was up to 12.54, indicating the extreme eco-toxicological risk, while enrofloxacin (ENR) exhibited medium risk. After recharge with reclaimed water, the HQ values of OFL and ENR in groundwater ranged from low to medium ecological risk to the environment. Thus, the FQs in reclaimed water need to be paid more attention during their reuse for groundwater recharge, especially by direct injection. It is suggested that FQs should be considered in the priority substances lists in standards and guidelines of reclaimed water reuse for groundwater recharge to ensure the safety of groundwater.
Collapse
Affiliation(s)
- Guoyu Ding
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing 100044, China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guoli Chen
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Yuedong Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
144
|
Liu Y, Pang Y, Yang L, Ning S, Wang D, Wu Z. Responses of Hydrocharis dubia (Bl.) Backer and Trapa bispinosa roxb. to tetracycline exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110890. [PMID: 32593096 DOI: 10.1016/j.ecoenv.2020.110890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The presence of tetracycline is ubiquitous and has adverse effects on aquatic systems. A hydroponic experiment was conducted to investigate the ecological sensitivity of Hydrocharis dubia (Bl.) Backer and Trapa bispinosa Roxb. Exposed to different concentrations of tetracycline (0, 0.1, 1, 10, 30 and 50 mg/L) for one day (1D) and 14 days (14D). The results showed that after 1D of tetracycline exposure, the physiological indices of H. dubia had no remarkable change except for proline which was significantly stimulated under 0.1 mg/L tetracycline. For T. bispinosa, guaiacol peroxidase (POD), polyphenol oxidase (PPO) and ascorbate peroxidase (APX) activity and protein and proline content were notably promoted under different concentrations of tetracycline, but PPO activity was significantly decreased in 50 mg/L. After 14D, tetracycline caused no harm to the growth and protein content of H. dubia, but negatively influenced lipid peroxidation product and chlorophyll content in H. dubia under high tetracycline concentrations. Superoxide dismutase (SOD) and POD activity of H. dubia significantly increased at high tetracycline concentrations, while catalase (CAT) and PPO activity significantly decreased. APX activity in H. dubia increased with tetracycline concentrations at low tetracycline concentrations. For T. bispinosa, high concentrations of tetracycline application significantly inhibited its growth and the content of protein and chlorophyll. SOD, POD, CAT, and PPO activity of T. bispinosa were induced under different concentrations of tetracycline and no lipid peroxidation was observed. APX activity in T. bispinosa was significantly inhibited at high tetracycline concentrations. The results suggest that tetracycline can cause oxidative damage in H. dubia but harm the metabolism process of T. bispinosa without inducing oxidative damage. Overall, the sensitivity of T. bispinosa exposed to tetracycline exposure is higher than that of H. dubia.
Collapse
Affiliation(s)
- Yilin Liu
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, PR China
| | - Yijian Pang
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, PR China
| | - Lu Yang
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, PR China
| | - Shiqi Ning
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, PR China
| | - Donghan Wang
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, PR China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, PR China.
| |
Collapse
|
145
|
Bhatt A, Arora P, Prajapati SK. Occurrence, fates and potential treatment approaches for removal of viruses from wastewater: A review with emphasis on SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104429. [PMID: 32895629 PMCID: PMC7467108 DOI: 10.1016/j.jece.2020.104429] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 05/03/2023]
Abstract
The world is combating the emergence of Coronavirus disease 2019 (COVID-19) caused by novel coronavirus; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further, due to the presence of SARS-CoV-2 in sewage and stool samples, its transmission through water routes cannot be neglected. Thus, the efficient treatment of wastewater is a matter of utmost importance. The conventional wastewater treatment processes demonstrate a wide variability in absolute removal of viruses from wastewater, thereby posing a severe threat to human health and environment. The fate of SARS-CoV-2 in the wastewater treatment plants and its removal during various treatment stages remains unexplored and demands immediate attention; particularly, where treated effluent is utilised as reclaimed water. Consequently, understanding the prevalence of pathogenic viruses in untreated/treated waters and their removal techniques has become the topical issue of the scientific community. The key objective of the present study is to provide an insight into the distribution of viruses in wastewater, as well as the prevalence of SARS-CoV-2, and its possible transmission by the faecal-oral route. The review also gives a detailed account of the major waterborne and non-waterborne viruses, and environmental factors governing the survival of viruses. Furthermore, a comprehensive description of the potential methods (physical, chemical, and biological) for removal of viruses from wastewater has been presented. The present study also intends to analyse the research trends in microalgae-mediated virus removal and, inactivation. The review also addresses the UN SDG 'Clean Water and Sanitation' as it is aimed at providing pathogenically safe water for recycling purposes.
Collapse
Key Words
- ASP, Activated Sludge Process
- COVID-19
- COVID-19, Coronavirus Disease 2019
- DUV-LED, Deep Ultraviolet Light-Emitting Diode
- E.coli, Escherichia coli
- EPS, Exopolysaccharide
- LRV, Log Reduction Value
- MBR, Membrane Bioreactor
- MERS-CoV, Middle East Respiratory Syndrome Coronavirus
- MLSS, Mixed Liquor Suspended Solids
- Microalgaee
- PMR, Photocatalytic Membrane Reactor
- Phycoremediationn
- RH, Relative Humidity
- SARS-CoV, Severe Acute Respiratory Syndrome Coronavirus
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SBBGR, Sequencing Batch Biofilter Granular Reactor
- SEM, Scanning Electron Microscopy
- SSF, Slow Sand Filtration
- UASB, Upflow Anaerobic Sludge Blanket
- UN SDG, United Nations Sustainable Development Goal
- UV, Ultraviolet
- WHO, World Health Organisation
- WWTP, Wastewater Treatment Plant
- Waterbornee
- dsDNA, Double stranded Deoxyribonucleic Acid
- dsRNA, Double stranded Ribonucleic acid
- ssRNA, Single stranded Ribonucleic Acid
Collapse
Affiliation(s)
- Ankita Bhatt
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pratham Arora
- Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
146
|
Tang Y, Zhong Y, Li H, Huang Y, Guo X, Yang F, Wu Y. Contaminants of emerging concern in aquatic environment: Occurrence, monitoring, fate, and risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1811-1817. [PMID: 33463864 DOI: 10.1002/wer.1438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
The present work provides a review focusing on contaminants of emerging concern (CECs) in aquatic environment, with an emphasis on their occurrence, monitoring, fate, and risk assessment in the research published in the scientific literature in 2019. Several studies revealed that these organic contaminants were detected in many water bodies and suspect, nontarget, and target screening provided an efficient detection for the co-existing organic substances with complex components. Wastewater resource recovery facilities were concurrently considered as a central source, and several specific chemicals have been found to be used as chemical markers to track the source of CECs in some urban watersheds. Reliable monitoring, reliable fate/toxicity assessment, and effective removal that consider CECs as a heterogeneous group rather than single substances will be the challenges for the research community in the future.
Collapse
Affiliation(s)
- Yankui Tang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yaxuan Zhong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Huilan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yiting Huang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Xinye Guo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Fan Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yu Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
147
|
Di Cesare A, De Carluccio M, Eckert EM, Fontaneto D, Fiorentino A, Corno G, Prete P, Cucciniello R, Proto A, Rizzo L. Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H 2O 2 vs UVC/H 2O 2/Cu-IDS processes on pathogens and antibiotic resistant genes in secondary wastewater effluents. WATER RESEARCH 2020; 184:116194. [PMID: 32711221 DOI: 10.1016/j.watres.2020.116194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of a new Advanced Oxidation Process (AOP), namely the photo Fenton like process UV-C/H2O2/IDS-Cu, in removing determinants of antibiotic resistance and pathogenic bacteria was compared to a consolidated AOP (namely UV-C/H2O2) in a secondary treated municipal WasteWater (WW). A reductionist experimental laboratory-based approach was applied on real WW and the parameters were collected by an alternative integrated approach using (i) flow cytometry to enumerate bacteria and test for the fitness of the bacterial communities and (ii) molecular analyses to define the community composition (16S rRNA amplicon sequencing) and the abundances of Antibiotic Resistance Genes (ARGs) and of the class 1 integron (intI1 gene) (by quantitative PCR). The same approach was applied also to post-treatment regrowth tests (24 h) to define the potential persistence of the tested parameters. These experiments were performed in both, human pathogens favorable conditions (HPC, in rich medium and 37°C) and in environmental mimicking conditions (EMC, original WW and 20°C). UV-C/H2O2/IDS-Cu process resulted to be more effective than the UV-C/H2O2in inactivating bacterial cells in the EMC post-treatment regrowth experiments. Both AOPs were efficiently abating potential human pathogenic bacteria and ARGs in the HPC regrowth experiments, although this trend could not be detected in the measurements taken immediately after the disinfection. In comparison with the UV-C/H2O2, the UV-C/H2O2/IDS-Cu process did not apparently offer significant improvements in the abatement of the tested parameters in the WW effluent but, by evaluating the results of the regrowth experiments it was possible to extrapolate more complex trends, suggesting contrasting efficiencies visible only after a few hours. This study offers a detailed view on the abatement efficiency of microbiological/genetic parameters for the UV-C/H2O2/IDS-Cu process, calling for technical adjustments for this very promising technology. At the same time, our results clearly demonstrated the inadequacy of currently applied methodologies in the evaluation of specific parameters (e.g. determinants of antibiotic resistance and pathogenic bacteria) in WW.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Marco De Carluccio
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Ester M Eckert
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Diego Fontaneto
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Gianluca Corno
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy.
| | - Prisco Prete
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Raffaele Cucciniello
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy.
| |
Collapse
|
148
|
Guo X, Liu M, Zhong H, Li P, Zhang C, Wei D, Zhao T. Potential of Myriophyllum aquaticum for phytoremediation of water contaminated with tetracycline antibiotics and copper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110867. [PMID: 32507744 DOI: 10.1016/j.jenvman.2020.110867] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Water pollution caused by antibiotics and heavy metals has attracted considerable concern, and efficient approaches are urgently needed for their removal. The objective of this study was to investigate the potential of Myriophyllum aquaticum for long-term phytoremediation of wastewater containing tetracycline (TC) antibiotics and copper. Seven hydroponic microcosms were constructed, spiked with tetracycline, oxytetracycline (OTC) and chlortetracycline (CTC) (300-30,000 μg/L), alone or simultaneously with Cu (II), and operated for 12 weeks. The TC removal efficiencies using the hydroponic microcosms here were commensurate or higher than those in previous studies. However, the Cu/TC ratio greatly affected the removal, accumulation of TCs by M. aquaticum, and plant growth. Low levels of Cu (II) (<1000 μg/L) promoted TC removal, but excessive Cu (II) (>10,000 μg/L) impeded it. Mass balance analysis showed that most TCs (45%-64% on average) accumulated in the roots of M. aquaticum. Plant biomass was correlated with the removal of COD, TN, TP, and NH4+-N (p ≤ 0.05) but not with removal of the TCs. Proteobacteria, Bacteroidetes, and Fusobacteria were dominant in the microbial communities, but they showed little correlation with the TC removal. M. aquaticum can be employed as an effective means of TC removal from water. The co-existence of heavy metals should be considered when evaluating the removal potential of TCs in phytoremediation.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Mingming Liu
- Beijing Beike Environmental Engineering Co., Ltd., Beijing, 100080, China
| | - Hua Zhong
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Peng Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China.
| | - Chengjun Zhang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China.
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| | - Tongke Zhao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China
| |
Collapse
|
149
|
Nika CE, Gusmaroli L, Ghafourian M, Atanasova N, Buttiglieri G, Katsou E. Nature-based solutions as enablers of circularity in water systems: A review on assessment methodologies, tools and indicators. WATER RESEARCH 2020; 183:115988. [PMID: 32683049 DOI: 10.1016/j.watres.2020.115988] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Water has been pushed into a linear model, which is increasingly acknowledged of causing cumulative emissions of pollutants, waste stocks, and impacting on the irreversible deterioration of water and other resources. Moving towards a circular model in the water sector, the configuration of future water infrastructure changes through the integration of grey and green infrastructure, forming Nature-based Solutions (NBS) as an integral component that connects human-managed to nature-managed water systems. In this study, a thorough appraisal of the latest literature is conducted, providing an overview of the existing tools, methodologies and indicators that have been used to assess NBS for water management, as well as complete water systems considering the need of assessing both anthropogenic and natural elements. Furthermore, facilitators and barriers with respect to existing policies and regulations on NBS and circularity have been identified. The study concludes that the co-benefits of NBS for water management are not adequately assessed. A holistic methodology assessing complete water systems from a circularity perspective is still needed integrating existing tools (i.e. hydro-biogeochemical models), methods (i.e. MFA-based and LCA) and incorporating existing and/or newly-developed indicators.
Collapse
Affiliation(s)
- C E Nika
- Department of Civil & Environmental Engineering, Institute of Environment, Health and Societies, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK
| | - L Gusmaroli
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - M Ghafourian
- Department of Civil & Environmental Engineering, Institute of Environment, Health and Societies, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK
| | - N Atanasova
- Faculty of Civic and Geodetic Engineering, University of Ljubljana, Hajdrihova 28, Ljubljana, Slovenia
| | - G Buttiglieri
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - E Katsou
- Department of Civil & Environmental Engineering, Institute of Environment, Health and Societies, Brunel University London, Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK.
| |
Collapse
|
150
|
Riva F, Riva V, Eckert EM, Colinas N, Di Cesare A, Borin S, Mapelli F, Crotti E. An Environmental Escherichia coli Strain Is Naturally Competent to Acquire Exogenous DNA. Front Microbiol 2020; 11:574301. [PMID: 33013812 PMCID: PMC7494812 DOI: 10.3389/fmicb.2020.574301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
The diffusion of antibiotic resistance determinants in different environments, e.g., soil and water, has become a public concern for global health and food safety and many efforts are currently devoted to clarify this complex ecological and evolutionary issue. Horizontal gene transfer (HGT) has an important role in the spread of antibiotic resistance genes (ARGs). However, among the different HGT mechanisms, the capacity of environmental bacteria to acquire naked exogenous DNA by natural competence is still poorly investigated. This study aimed to characterize the ability of the environmental Escherichia coli strain ED1, isolated from the crustacean Daphnia sp., to acquire exogenous DNA by natural competence. Transformation experiments were carried out varying different parameters, i.e., cell growth phase, amount of exogenous DNA and exposition to artificial lake water (ALW) and treated wastewater to mimic environmental-like conditions that may be encountered in the agri-food system. Results were compared with those showed by the laboratory E. coli strain DH5α. Our experimental data, supported by genomic sequencing, showed that, when exposed to pure water, ED1 strain was able to acquire exogenous DNA with frequencies (10–8–10–9) statistically higher than the ones observed for DH5α strain (10–10). Interestingly, higher values were retrieved for ED1 than DH5α strains exposed to ALW (10–7 vs. 10–9, respectively) or treated wastewater (10–8 vs. 10–10, respectively). We tested, therefore, ED1 strain ability to colonize the rhizosphere of lettuce, a model plant representative of raw-consumed vegetables of high economic importance in the ready-to-eat food industry. Results showed that ED1 strain was able to efficiently colonize lettuce rhizosphere, revealing a stable colonization for 14 days-long period. In conclusion, ED1 strain ability to acquire exogenous DNA in environmental-like conditions by natural competence, combined with its ability to efficiently and stably colonize plant rhizosphere, poses the attention to food and human safety showing a possible route of diffusion of antibiotic resistance in the agri-food system, sustaining the “One Health” warnings related to the antibiotic spread.
Collapse
Affiliation(s)
- Francesco Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Ester M Eckert
- Molecular Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Noemi Colinas
- Molecular Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy.,Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - Andrea Di Cesare
- Molecular Ecology Group, National Research Council - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|