101
|
Cao Y, Koh SS, Han Y, Tan JJ, Kim D, Chua NH, Urano D, Marelli B. Drug Delivery in Plants Using Silk Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205794. [PMID: 36245320 DOI: 10.1002/adma.202205794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
New systems for agrochemical delivery in plants will foster precise agricultural practices and provide new tools to study plants and design crop traits, as standard spray methods suffer from elevated loss and limited access to remote plant tissues. Silk-based microneedles can circumvent these limitations by deploying a known amount of payloads directly in plants' deep tissues. However, plant response to microneedles' application and microneedles' efficacy in deploying physiologically relevant biomolecules are unknown. Here, it is shown that gene expression associated with Arabidopsis thaliana wounding response decreases within 24 h post microneedles' application. Additionally, microinjection of gibberellic acid (GA3 ) in A. thaliana mutant ft-10 provides a more effective and efficient mean than spray to activate GA3 pathways, accelerating bolting and inhibiting flower formation. Microneedle efficacy in delivering GA3 is also observed in several monocot and dicot crop species, i.e., tomato (Solanum lycopersicum), lettuce (Lactuca sativa), spinach (Spinacia oleracea), rice (Oryza Sativa), maize (Zea mays), barley (Hordeum vulgare), and soybean (Glycine max). The wide range of plants that can be successfully targeted with microinjectors opens the doors to their use in plant science and agriculture.
Collapse
Affiliation(s)
- Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sally Shuxian Koh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 119077, Singapore
| | - Yangyang Han
- Singapore-MIT Alliance for Research and Technology, Singapore, 119077, Singapore
| | - Javier Jingheng Tan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Doyoon Kim
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, 119077, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 119077, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore, 119077, Singapore
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Singapore, 119077, Singapore
| |
Collapse
|
102
|
Li Y, Zhang P, Li M, Shakoor N, Adeel M, Zhou P, Guo M, Jiang Y, Zhao W, Lou B, Rui Y. Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases. PEST MANAGEMENT SCIENCE 2023; 79:21-36. [PMID: 36196678 DOI: 10.1002/ps.7218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology is a young branch of the discipline generated by nanomaterials. Its development has greatly contributed to technological progress and product innovation in the field of agriculture. The antimicrobial properties of nanoparticles (NPs) can be used to develop nanopesticides for plant protection. Plant diseases caused by bacterial and fungal infestations are the main types of crop diseases. Once infected, they will seriously threaten crop growth, reduce yield and quality, and affect food safety, posing a health risk to humans. We reviewed the application of metal-based nanoparticles in inhibiting plant pathogenic bacteria and fungi, and discuss the antibacterial mechanisms of metal-based nanoparticles from two aspects: the direct interaction between nanoparticles and pathogens, and the indirect effects of inducing plant resilience to disease. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Manlin Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - BenZhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
103
|
Husted S, Minutello F, Pinna A, Tougaard SL, Møs P, Kopittke PM. What is missing to advance foliar fertilization using nanotechnology? TRENDS IN PLANT SCIENCE 2023; 28:90-105. [PMID: 36153275 DOI: 10.1016/j.tplants.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
An urgent challenge within agriculture is to improve fertilizer efficiency in order to reduce the environmental footprint associated with an increased production of crops on existing farmland. Standard soil fertilization strategies are often not very efficient due to immobilization in the soil and losses of nutrients by leaching or volatilization. Foliar fertilization offers an attractive supplementary strategy as it bypasses the adverse soil processes, but implementation is often hampered by a poor penetration through leaf barriers, leaf damage, and a limited ability of nutrients to translocate. Recent advances within bionanotechnology offer a range of emerging possibilities to overcome these challenges. Here we review how nanoparticles can be tailored with smart properties to interact with plant tissue for a more efficient delivery of nutrients.
Collapse
Affiliation(s)
- Søren Husted
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark.
| | - Francesco Minutello
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Andrea Pinna
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Stine Le Tougaard
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Pauline Møs
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia 4072, Queensland, Australia
| |
Collapse
|
104
|
Borak B, Gediga K, Piszcz U, Sacała E. Foliar Fertilization by the Sol-Gel Particles Containing Cu and Zn. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:165. [PMID: 36616075 PMCID: PMC9824736 DOI: 10.3390/nano13010165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Silica particles with the size of 150-200 nm containing Ca, P, Cu or Zn ions were synthesized with the sol-gel method and tested as a foliar fertilizer on three plant species: maize Zea mays, wheat Triticum sativum and rape Brassica napus L. var napus growing on two types of soils: neutral and acidic. The aqueous suspensions of the studied particles were sprayed on the chosen leaves and also on the whole tested plants. At a specific stage of plant development determined according to the BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Industrie) scale, the leaves and the whole plants were harvested and dried, and the content of Cu and Zn was determined with the AAS (atomic absorption spectroscopy) method. The engineered particles were compared with a water solution of CuSO4 and ZnSO4 (0.1%) used as a conventional fertilizer. In many cases, the copper-containing particles improved the metal supply to plants more effectively than the CuSO4. The zinc-containing particles had less effect on both the growth of plants and the metal concentration in the plants. All the tested particles were not toxic to the examined plants, although some of them caused a slight reduction in plants growth.
Collapse
Affiliation(s)
- Beata Borak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego Str. 25, 50-370 Wroclaw, Poland
| | - Krzysztof Gediga
- Department of Plant Nutrition, Institute of Soil Science, Plant Nutrition and Environmental Protection, The Faculty of Life Sciences and Technology, Grunwaldzka Str. 53, 50-357 Wroclaw, Poland
| | - Urszula Piszcz
- Department of Plant Nutrition, Institute of Soil Science, Plant Nutrition and Environmental Protection, The Faculty of Life Sciences and Technology, Grunwaldzka Str. 53, 50-357 Wroclaw, Poland
| | - Elżbieta Sacała
- Department of Plant Nutrition, Institute of Soil Science, Plant Nutrition and Environmental Protection, The Faculty of Life Sciences and Technology, Grunwaldzka Str. 53, 50-357 Wroclaw, Poland
| |
Collapse
|
105
|
Miladinova-Georgieva K, Geneva M, Stancheva I, Petrova M, Sichanova M, Kirova E. Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010153. [PMID: 36616282 PMCID: PMC9824860 DOI: 10.3390/plants12010153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
Stevia rebaudiana Bertoni is a valuable plant whose products are increasingly used in medicine, pharmacy and the food industry. This necessitates the use of biotechnological approaches for its mass propagation. Establishing optimal conditions for in vitro cultivation is essential for obtaining high biomass and secondary metabolites production. A large number of articles considering the role of plant growth regulators and other additives in the culture medium in the growth and development of Stevia are available in the literature. However, there are no summarized data about the use of nanoparticles in Stevia tissue cultures. Therefore, this review also includes the research conducted so far on the effect of nanoparticles on Stevia micropropagation. Furthermore, the influence of different elicitors on secondary metabolite production and antioxidant activity of in vitro-cultivated Stevia plants have been discussed. By referring to the collected literature, we concluded that biotechnological approaches applied to S. rebaudiana cultivation might improve the agronomic traits of plants and steviol glycosides production.
Collapse
|
106
|
Sreelatha S, Kumar N, Rajani S. Biological effects of Thymol loaded chitosan nanoparticles (TCNPs) on bacterial plant pathogen Xanthomonas campestris pv. campestris. Front Microbiol 2022; 13:1085113. [PMID: 36620059 PMCID: PMC9815552 DOI: 10.3389/fmicb.2022.1085113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Engineered nanomaterials can provide eco-friendly alternatives for crop disease management. Chitosan based nanoparticles has shown beneficial applications in sustainable agricultural practices and effective healthcare. Previously we demonstrated that Thymol loaded chitosan nanoparticles (TCNPs) showed bactericidal activity against Xanthomonas campestris pv campestris (Xcc), a bacterium that causes black rot disease in brassica crops. Despite the progress in assessing the antibacterial action of TCNPs, the knowledge about the molecular response of Xcc when exposed to TCNPs is yet to be explored. In the present study, we combined physiological, spectroscopic and untargeted metabolomics studies to investigate the response mechanisms in Xcc induced by TCNPs. Cell proliferation and membrane potential assays of Xcc cells exposed to sub-lethal concentration of TCNPs showed that TCNPs affects the cell proliferation rate and damages the cell membrane altering the membrane potential. FTIR spectroscopy in conjunction with untargeted metabolite profiling using mass spectrometry of TCNPs treated Xcc cells revealed alterations in amino acids, lipids, nucleotides, fatty acids and antioxidant metabolites. Mass spectroscopy analysis revealed a 10-25% increase in nucleic acid, fatty acids and antioxidant metabolites and a 20% increase in lipid metabolites while a decrease of 10-20% in amino acids and carbohydrates was seen in in TCNP treated Xcc cells. Overall, our results demonstrate that the major metabolic perturbations induced by TCNPs in Xcc are associated with membrane damage and oxidative stress, thus providing information on the mechanism of TCNPs mediated cytotoxicity. This will aid towards the development of nano- based agrochemicals as an alternative to chemical pesticides in future.
Collapse
|
107
|
Zhao B, Luo Z, Zhang H, Zhang H. Imaging tools for plant nanobiotechnology. Front Genome Ed 2022; 4:1029944. [PMID: 36569338 PMCID: PMC9772283 DOI: 10.3389/fgeed.2022.1029944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The successful application of nanobiotechnology in biomedicine has greatly changed the traditional way of diagnosis and treating of disease, and is promising for revolutionizing the traditional plant nanobiotechnology. Over the past few years, nanobiotechnology has increasingly expanded into plant research area. Nanomaterials can be designed as vectors for targeted delivery and controlled release of fertilizers, pesticides, herbicides, nucleotides, proteins, etc. Interestingly, nanomaterials with unique physical and chemical properties can directly affect plant growth and development; improve plant resistance to disease and stress; design as sensors in plant biology; and even be used for plant genetic engineering. Similarly, there have been concerns about the potential biological toxicity of nanomaterials. Selecting appropriate characterization methods will help understand how nanomaterials interact with plants and promote advances in plant nanobiotechnology. However, there are relatively few reviews of tools for characterizing nanomaterials in plant nanobiotechnology. In this review, we present relevant imaging tools that have been used in plant nanobiotechnology to monitor nanomaterial migration, interaction with and internalization into plants at three-dimensional lengths. Including: 1) Migration of nanomaterial into plant organs 2) Penetration of nanomaterial into plant tissues (iii)Internalization of nanomaterials by plant cells and interactions with plant subcellular structures. We compare the advantages and disadvantages of current characterization tools and propose future optimal characterization methods for plant nanobiotechnology.
Collapse
Affiliation(s)
- Bin Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Zhongxu Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Honglu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
108
|
Chang X, Fang Y, Wang Y, Wang F, Shang L, Zhong R. Microplastic pollution in soils, plants, and animals: A review of distributions, effects and potential mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157857. [PMID: 35932864 DOI: 10.1016/j.scitotenv.2022.157857] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Increasing production of synthetic plastics and poor management of plastic wastes have dramatically increased the amount of plastics in the environment. In 2014, at the first United Nations Environment Assembly, marine plastic waste pollution was listed as one of the 10 most pressing environmental issues. In addition, there is much plastic waste in terrestrial ecosystems due to substantial residues from agricultural mulching and packing. As a recently recognized pollutant, microplastics (MPs) have attracted significant attention from the public and various governments. Concentrations of MPs in the environment vary among locations, from <100 to >1 × 106 particles per cubic meter. Many studies have addressed the impacts and potential mechanisms of MPs on the environment and organisms. Humans and other organisms can ingest or carry MPs in a variety of passive ways and these MPs can have a range of negative effects on metabolism, function, and health. Additionally, given their large surface area, MPs can sorb various pollutants, including heavy metals and persistent organic pollutants, with serious implications for animals and human wellbeing. However, due to their complexity and a lack of accurate determination methods, the systematic impacts of MP pollution on whole foodwebs are not clearly established. Therefore, this review summarizes current research advances in MP pollution, particularly the impact of MPs on soils, plants, and animals, and proposes potential future research prospects to better characterize MPs.
Collapse
Affiliation(s)
- Xiao Chang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Ying Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Ministry of Education, Jilin Jianzhu University, Changchun, Jilin 130118, China
| | - Fei Wang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Liyuan Shang
- Jilin Provincial Institute of Animal Science and Veterinary Medicine, Changchun, Jilin 130102, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China.
| |
Collapse
|
109
|
Khalid MF, Iqbal Khan R, Jawaid MZ, Shafqat W, Hussain S, Ahmed T, Rizwan M, Ercisli S, Pop OL, Alina Marc R. Nanoparticles: The Plant Saviour under Abiotic Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213915. [PMID: 36364690 PMCID: PMC9658632 DOI: 10.3390/nano12213915] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 05/15/2023]
Abstract
Climate change significantly affects plant growth and productivity by causing different biotic and abiotic stresses to plants. Among the different abiotic stresses, at the top of the list are salinity, drought, temperature extremes, heavy metals and nutrient imbalances, which contribute to large yield losses of crops in various parts of the world, thereby leading to food insecurity issues. In the quest to improve plants' abiotic stress tolerance, many promising techniques are being investigated. These include the use of nanoparticles, which have been shown to have a positive effect on plant performance under stress conditions. Nanoparticles can be used to deliver nutrients to plants, overcome plant diseases and pathogens, and sense and monitor trace elements that are present in soil by absorbing their signals. A better understanding of the mechanisms of nanoparticles that assist plants to cope with abiotic stresses will help towards the development of more long-term strategies against these stresses. However, the intensity of the challenge also warrants more immediate approaches to mitigate these stresses and enhance crop production in the short term. Therefore, this review provides an update of the responses (physiological, biochemical and molecular) of plants affected by nanoparticles under abiotic stress, and potentially effective strategies to enhance production. Taking into consideration all aspects, this review is intended to help researchers from different fields, such as plant science and nanoscience, to better understand possible innovative approaches to deal with abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Immokalee, FL 34142, USA
| | - Rashid Iqbal Khan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | | | - Waqar Shafqat
- Department of Forestry, College of Forest Resources, Mississippi State University, Starkville, MI 39759, USA
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha 2713, Qatar
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| | - Romina Alina Marc
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence: (M.R.); (O.L.P.); (R.A.M.)
| |
Collapse
|
110
|
The impact of nanofertilizer on agro-morphological criteria, yield, and genomic stability of common bean (Phaseolus vulgaris L.). Sci Rep 2022; 12:18552. [PMID: 36329080 PMCID: PMC9633613 DOI: 10.1038/s41598-022-21834-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
The use of agricultural fertilizers is one of the methods to beat the desired enormous increase in universal food production. The application of nanotechnology in agriculture is regarded as one of the promising approaches to elevate crop production. Whereas mineral nutrients play a crucial role in the growth and yield of the common bean. The experiments were conducted to investigate the application effect of micronutrients as nanoparticles (MN-NPs) on the common ben plants. The trial was performed in the field in El-Menofya, Egypt, through two seasons (2019 & 2020) in a randomized complete block design with three replicates and four combinations of MN-NPs (ZnO, MnO2 and MoO3) with concentrations 0, 10, 20, 30, 40 mg/L as a foliar application. The data exhibited that the foliar application of MN-NPs significantly upgraded the vegetative growth characters, flower number/plant, photosynthetic pigments, and yield. The concentration of 40 mg/L of MN-NPs leads to improving the vegetative growth, flowering number, and yield characteristics of the common bean. While the biochemical components varied in their response to MN-NPs combinations. The recommended MN-NPs concentration to ameliorate the common bean growth and yield was 40 mg/L.
Collapse
|
111
|
Subotić A, Jevremović S, Milošević S, Trifunović-Momčilov M, Đurić M, Koruga Đ. Physiological Response, Oxidative Stress Assessment and Aquaporin Genes Expression of Cherry Tomato ( Solanum lycopersicum L.) Exposed to Hyper-Harmonized Fullerene Water Complex. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212810. [PMID: 36365262 PMCID: PMC9655305 DOI: 10.3390/plants11212810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 05/30/2023]
Abstract
The rapid production and numerous applications of nanomaterials warrant the necessity and importance of examining nanoparticles in terms to their environmental and biological effects and implications. In this study, the effects of a water-soluble hyper-harmonized hydroxyl-modified fullerene (3HFWC) on cherry tomato seed germination, seedlings growth, physiological response and fruiting was evaluated. Changes in the photosynthetic pigments content, oxidative stress assessment, and aquaporin genes expression in cherry tomato plants were studied after during short- and long-term continuous exposure to 3HFWC nanosubstance (200 mg/L). Increased levels of photosynthetic pigments in leaves, lycopene in fruits, decreased levels of hydrogen peroxide content, activation of cellular antioxidant enzymes such as superoxide dismutase, catalase and peroxidase and increased aquaporin gene expression (PIP1;3, PIP1;5 and PIP2;4) were observed in 3HFWC nanosubstance-exposed plants in comparison to control, untreated cherry tomato plants. The 3HFWC nanosubstance showed positive effects on cherry tomato seed germination, plantlet growth and lycopene content in fruits and may be considered as a promising nanofertilizer.
Collapse
Affiliation(s)
- Angelina Subotić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Slađana Jevremović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Snežana Milošević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milana Trifunović-Momčilov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Marija Đurić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Đuro Koruga
- TFT Nano Center, Vojislava Ilića 88, 11050 Belgrade, Serbia
| |
Collapse
|
112
|
Rustgi S, Naveed S, Windham J, Zhang H, Demirer GS. Plant biomacromolecule delivery methods in the 21st century. Front Genome Ed 2022; 4:1011934. [PMID: 36311974 PMCID: PMC9614364 DOI: 10.3389/fgeed.2022.1011934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The 21st century witnessed a boom in plant genomics and gene characterization studies through RNA interference and site-directed mutagenesis. Specifically, the last 15 years marked a rapid increase in discovering and implementing different genome editing techniques. Methods to deliver gene editing reagents have also attempted to keep pace with the discovery and implementation of gene editing tools in plants. As a result, various transient/stable, quick/lengthy, expensive (requiring specialized equipment)/inexpensive, and versatile/specific (species, developmental stage, or tissue) methods were developed. A brief account of these methods with emphasis on recent developments is provided in this review article. Additionally, the strengths and limitations of each method are listed to allow the reader to select the most appropriate method for their specific studies. Finally, a perspective for future developments and needs in this research area is presented.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Salman Naveed
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Jonathan Windham
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gözde S. Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
113
|
Li S, Li J, Du M, Deng G, Song Z, Han H. Efficient Gene Silencing in Intact Plant Cells Using siRNA Delivered By Functional Graphene Oxide Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202210014. [DOI: 10.1002/anie.202210014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shuojun Li
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Jiaying Li
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Moqing Du
- State Key Laboratory of Agricultural Microbiology College of Science Huazhong Agricultural University Wuhan 430070 China
| | - Guiyun Deng
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology College of Science Huazhong Agricultural University Wuhan 430070 China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology College of Life Science and Technology Huazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
114
|
Raba DA, Kerfeld CA. The potential of bacterial microcompartment architectures for phytonanotechnology. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:700-710. [PMID: 35855583 DOI: 10.1111/1758-2229.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The application of nanotechnology to plants, termed phytonanotechnology, has the potential to revolutionize plant research and agricultural production. Advancements in phytonanotechnology will allow for the time-controlled and target-specific release of bioactive compounds and agrochemicals to alter and optimize conventional plant production systems. A diverse range of engineered nanoparticles with unique physiochemical properties is currently being investigated to determine their suitability for plants. Improvements in crop yield, disease resistance and nutrient and pesticide management are all possible using designed nanocarriers. However, despite these prospective benefits, research to thoroughly understand the precise activity, localization and potential phytotoxicity of these nanoparticles within plant systems is required. Protein-based bacterial microcompartment shell proteins that self-assemble into spherical shells, nanotubes and sheets could be of immense value for phytonanotechnology due to their ease of manipulation, multifunctionality, rapid and efficient producibility and biodegradability. In this review, we explore bacterial microcompartment-based architectures within the scope of phytonanotechnology.
Collapse
Affiliation(s)
- Daniel A Raba
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
115
|
Lü P, Liu Y, Yu X, Shi CL, Liu X. The right microbe-associated molecular patterns for effective recognition by plants. Front Microbiol 2022; 13:1019069. [PMID: 36225366 PMCID: PMC9549324 DOI: 10.3389/fmicb.2022.1019069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes’ complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.
Collapse
Affiliation(s)
- Pengpeng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Xixi Yu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | | | - Xiaokun Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- *Correspondence: Xiaokun Liu,
| |
Collapse
|
116
|
Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T, Chattopadhyay S, El-Zahaby SA, Alexiou A, Koshy EP, Kumar V, Malik S, Dey A, Proćków J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 2022; 155:113658. [PMID: 36162370 DOI: 10.1016/j.biopha.2022.113658] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Doiwala, Dehradun 248016, India
| | - Subham Preetam
- Institute of Technical Education and Research, Siksha O Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Samudra Bhaumik
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Sihi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Pal
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata 700013, West Bengal, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW2770, Australia & AFNP Med, Wien 1030, Austria
| | - Eapen P Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
117
|
Wang Z, Wu J, Sun Z, Jiang W, Liu Y, Tang J, Meng X, Su X, Wu L, Wang L, Guo X, Peng D, Xing S. ICP-MS based metallomics and GC-MS based metabolomics reveals the physiological and metabolic responses of Dendrobium huoshanense plants exposed to Fe 3O 4 nanoparticles. Front Nutr 2022; 9:1013756. [PMID: 36245500 PMCID: PMC9558897 DOI: 10.3389/fnut.2022.1013756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
It is found that the growth of Dendrobium huoshanense was dependent on Fe3O4, while the bioavailability of plants to ordinary Fe3O4 was low on the earth. In order to improve the growth, quality and yield of D. huoshanense, we used Fe3O4 NPs (100 or 200 mg/L) that was easily absorbed by plants as nano-fertilizer to hydroponically treat seedlings of D. huoshanense for 3 weeks. Fe3O4 NPs induced not only earlier flowering and increased sugar content and photosynthesis, but also stressed to plants, increased MDA content and related antioxidant enzymes activities. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) revealed that Fe3O4 NPs caused a significant accumulation of Fe and some other nutrient elements (Mn, Co, B, Mo) in stems of D. huoshanense. Metabolomics revealed that the metabolites were reprogrammed in D. huoshanense when under Fe3O4 NPs exposure. Fe3O4 NPs inhibited antioxidant defense-related pathways, demonstrating that Fe3O4 NPs have antioxidant capacity to protect D. huoshanense from damage. As the first study associating Fe3O4 NPs with the quality of D. huoshanense, it provided vital insights into the molecular mechanisms of how D. huoshanense responds to Fe3O4 NPs, ensuring the reasonable use of Fe3O4 NPs as nano-fertilizer.
Collapse
Affiliation(s)
- Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zongping Sun
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Tang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, United States
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
118
|
Interaction of the Nanoparticles and Plants in Selective Growth Stages—Usual Effects and Resulting Impact on Usage Perspectives. PLANTS 2022; 11:plants11182405. [PMID: 36145807 PMCID: PMC9502563 DOI: 10.3390/plants11182405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022]
Abstract
Nanotechnologies have received tremendous attention since their discovery. The current studies show a high application potential of nanoparticles for plant treatments, where the general properties of nanoparticles such as their lower concentrations for an appropriate effects, the gradual release of nanoparticle-based nutrients or their antimicrobial effect are especially useful. The presented review, after the general introduction, analyzes the mechanisms that are described so far in the uptake and movement of nanoparticles in plants. The following part evaluates the available literature on the application of nanoparticles in the selective growth stage, namely, it compares the observed effect that they have when they are applied to seeds (nanopriming), to seedlings or adult plants. Based on the research that has been carried out, it is evident that the most common beneficial effects of nanopriming are the improved parameters for seed germination, the reduced contamination by plant pathogens and the higher stress tolerance that they generate. In the case of plant treatments, the most common applications are for the purpose of generating protection against plant pathogens, but better growth and better tolerance to stresses are also frequently observed. Hypotheses explaining these observed effects were also mapped, where, e.g., the influence that they have on photosynthesis parameters is described as a frequent growth-improving factor. From the consortium of the used nanoparticles, those that were most frequently applied included the principal components that were derived from zinc, iron, copper and silver. This observation implies that the beneficial effect that nanoparticles have is not necessarily based on the nutritional supply that comes from the used metal ions, as they can induce these beneficial physiological changes in the treated cells by other means. Finally, a critical evaluation of the strengths and weaknesses of the wider use of nanoparticles in practice is presented.
Collapse
|
119
|
Santana I, Jeon SJ, Kim HI, Islam MR, Castillo C, Garcia GFH, Newkirk GM, Giraldo JP. Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts. ACS NANO 2022; 16:12156-12173. [PMID: 35943045 DOI: 10.1021/acsnano.2c02714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW-1) above control plant levels (0.03441 μmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.
Collapse
Affiliation(s)
- Israel Santana
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Su-Ji Jeon
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Hye-In Kim
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Md Reyazul Islam
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Christopher Castillo
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Gail F H Garcia
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Gregory M Newkirk
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California 92521, United States
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
120
|
Miyamoto T, Tsuchiya K, Toyooka K, Goto Y, Tateishi A, Numata K. Relaxation of the Plant Cell Wall Barrier via Zwitterionic Liquid Pretreatment for Micelle-Complex-Mediated DNA Delivery to Specific Plant Organelles. Angew Chem Int Ed Engl 2022; 61:e202204234. [PMID: 35670289 PMCID: PMC9401069 DOI: 10.1002/anie.202204234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Targeted delivery of genes to specific plant organelles is a key challenge for fundamental plant science, plant bioengineering, and agronomic applications. Nanoscale carriers have attracted interest as a promising tool for organelle‐targeted DNA delivery in plants. However, nanocarrier‐mediated DNA delivery in plants is severely hampered by the barrier of the plant cell wall, resulting in insufficient delivery efficiency. Herein, we propose a unique strategy that synergistically combines a cell wall‐loosening zwitterionic liquid (ZIL) with a peptide‐displaying micelle complex for organelle‐specific DNA delivery in plants. We demonstrated that ZIL pretreatment can enhance cell wall permeability without cytotoxicity, allowing micelle complexes to translocate across the cell wall and carry DNA cargo into specific plant organelles, such as nuclei and chloroplasts, with significantly augmented efficiency. Our work offers a novel concept to overcome the plant cell wall barrier for nanocarrier‐mediated cargo delivery to specific organelles in living plants.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource ScienceSaitama351-0198Japan
| | - Kousuke Tsuchiya
- Department of Material ChemistryGraduate School of EngineeringKyoto University Kyoto-Daigaku-Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Kiminori Toyooka
- Technology Platform DivisionMass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceYokohama230-0045Japan
| | - Yumi Goto
- Technology Platform DivisionMass Spectrometry and Microscopy UnitRIKEN Center for Sustainable Resource ScienceYokohama230-0045Japan
| | - Ayaka Tateishi
- Department of Material ChemistryGraduate School of EngineeringKyoto University Kyoto-Daigaku-Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Keiji Numata
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource ScienceSaitama351-0198Japan
- Department of Material ChemistryGraduate School of EngineeringKyoto University Kyoto-Daigaku-Katsura, Nishikyo-kuKyoto615-8510Japan
| |
Collapse
|
121
|
Li S, Li J, Du M, Deng G, Song Z, Han H. Efficient Gene Silencing in Intact Plant Cells Using siRNA Delivered By Functional Graphene Oxide Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuojun Li
- Huazhong Agriculture University College of Life Sciences and Technology College of Life Science and Technology CHINA
| | - Jiaying Li
- Huazhong Agriculture University College of Life Sciences and Technology College of Life Science and Technology CHINA
| | - Moqing Du
- Huazhong Agriculture University College of Science College of Science CHINA
| | - Guiyun Deng
- Huazhong Agriculture University College of Life Sciences and Technology College of Life Science and Technology CHINA
| | - Zhiyong Song
- HZAU: Huazhong Agriculture University College of Science CHINA
| | - Heyou Han
- Huazhong Agriculture University: Huazhong Agricultural University College of Science No.1,Shizishan Street, Hongshan District, Wuhan Wuhan CHINA
| |
Collapse
|
122
|
Overview on Recent Developments in the Design, Application, and Impacts of Nanofertilizers in Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14159397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nutrient management is always a great concern for better crop production. The optimized use of nutrients plays a key role in sustainable crop production, which is a major global challenge as it depends mainly on synthetic fertilizers. A novel fertilizer approach is required that can boost agricultural system production while being more ecologically friendly than synthetic fertilizers. As nanotechnology has left no field untouched, including agriculture, by its scientific innovations. The use of nanofertilizers in agriculture is in the early stage of development, but they appear to have significant potential in different ways, such as increased nutrient-use efficiency, the slow release of nutrients to prevent nutrient loss, targeted delivery, improved abiotic stress tolerance, etc. This review summarizes the current knowledge on various developments in the design and formulation of nanoparticles used as nanofertilizers, their types, their mode of application, and their potential impacts on agricultural crops. The main emphasis is given on the potential benefits of nanofertilizers, and we highlight the current limitations and future challenges related to the wide-scale application before field applications. In particular, the unprecedent release of these nanomaterials into the environment may jeopardize human health and the ecosystem. As the green revolution has occurred, the production of food grains has increased at the cost of the disproportionate use of synthetic fertilizers and pesticides, which have severely damaged our ecosystem. We need to make sure that the use of these nanofertilizers reduces environmental damage, rather than increasing it. Therefore, future studies should also check the environmental risks associated with these nanofertilizers, if there are any; moreover, it should focus on green manufactured and biosynthesized nanofertilizers, as well as their safety, bioavailability, and toxicity issues, to safeguard their application for sustainable agriculture environments.
Collapse
|
123
|
Jariwala H, Santos RM, Lauzon JD, Dutta A, Wai Chiang Y. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53967-53995. [PMID: 35624378 DOI: 10.1007/s11356-022-20890-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Fertilizers play an essential role in increasing crop yield, maintaining soil fertility, and provide a steady supply of nutrients for plant requirements. The excessive use of conventional fertilizers can cause environmental problems associated with nutrient loss through volatilization in the atmosphere, leaching to groundwater, surface run-off, and denitrification. To mitigate environmental issues and improve the longevity of fertilizer in soil, controlled release fertilizers (CRFs) have been developed. The application of CRFs can reduce the loss of nutrients, provide higher nutrient use efficiency, and improve soil health simultaneously to achieve the goals of climate-smart agricultural (CSA) practices. The major findings of this review paper are (1) CRFs can prevent direct exposure of fertilizer granule to soil and prevent loss of nutrients such as nitrate and nitrous oxide emissions; (2) CRFs are less affected by the change in environmental parameters, and that can increase longevity in soil compared to conventional fertilizers; and (3) CRFs can maintain required soil nitrogen levels, increase water retention, reduce GHG emissions, lead to optimum pH for plant growth, and increase soil organic matter content. This paper could give good insights into the ongoing development and future perspectives of CRFs for CSA practices.
Collapse
Affiliation(s)
- Hiral Jariwala
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Rafael M Santos
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - John D Lauzon
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Yi Wai Chiang
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
124
|
Mou Q, Xue X, Ma Y, Banik M, Garcia V, Guo W, Wang J, Song T, Chen LQ, Lu Y. Efficient delivery of a DNA aptamer-based biosensor into plant cells for glucose sensing through thiol-mediated uptake. SCIENCE ADVANCES 2022; 8:eabo0902. [PMID: 35767607 PMCID: PMC9242441 DOI: 10.1126/sciadv.abo0902] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA aptamers have been widely used as biosensors for detecting a variety of targets. Despite decades of success, they have not been applied to monitor any targets in plants, even though plants are a major platform for providing oxygen, food, and sustainable products ranging from energy fuels to chemicals, and high-value products such as pharmaceuticals. A major barrier to progress is a lack of efficient methods to deliver DNA into plant cells. We herein report a thiol-mediated uptake method that more efficiently delivers DNA into Arabidopsis and tobacco leaf cells than another state-of-the-art method, DNA nanostructures. Such a method allowed efficient delivery of a glucose DNA aptamer sensor into Arabidopsis for sensing glucose. This demonstration opens a new avenue to apply DNA aptamer sensors for functional studies of various targets, including metabolites, plant hormones, metal ions, and proteins in plants for a better understanding of the biodistribution and regulation of these species and their functions.
Collapse
Affiliation(s)
- Quanbing Mou
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Xueyi Xue
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuan Ma
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Mandira Banik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Valeria Garcia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Weijie Guo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Jiang Wang
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Li-Qing Chen
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Corresponding author. (Y.L.); (L.-Q.C.)
| | - Yi Lu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author. (Y.L.); (L.-Q.C.)
| |
Collapse
|
125
|
Agrawal S, Kumar V, Kumar S, Shahi SK. Plant development and crop protection using phytonanotechnology: A new window for sustainable agriculture. CHEMOSPHERE 2022; 299:134465. [PMID: 35367229 DOI: 10.1016/j.chemosphere.2022.134465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 05/12/2023]
Abstract
Most developing nations' economies are built on agriculture and most of their citizens rely on it for survival. Global agricultural systems are experiencing tough and unprecedented challenges in the age of changing climate. Every year, the world's population grows, necessitating increased agrarian productivity. As a result, there has been a movement toward utilizing emerging technologies, such as nanotechnology. Nanotechnology with plant systems has inspired great interest in the current scenario in developing areas that come under the umbrella of agriculture and develop environmental remediation strategies. Plant-mediated synthesized nanoparticle (NPs) are eco-friendly, less time consuming, less expensive, and provide long-term product safety. Simultaneously, it provides tools that have the potentiality as "magic bullets" containing nutrients, fungicides, fertilizers, herbicides, or nucleic acids that target specific plant tissues and deliver their payload to the targeting location of the plant to achieve the intended results for environmental monitoring and pollution resistance. In this perspective, the classification and biological activities of different NPs on agroecosystem are focused. Furthermore, absorption, transport, and modification of NPs in plants were thoroughly examined. Some of the most promising new technologies e.g., nanotechnology to increase crop agricultural input efficiency and reduce biotic and abiotic stresses are also discussed. Potential development and implementation challenges were explored, highlighting the importance of using a systems approach when creating suggested nanotechnologies.
Collapse
Affiliation(s)
- Sakshi Agrawal
- Bio-Resource Tech Laboratory, Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Vineet Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sushil Kumar Shahi
- Bio-Resource Tech Laboratory, Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
126
|
Miyamoto T, Tsuchiya K, Toyooka K, Goto Y, Tateishi A, Numata K. Relaxation of the Plant Cell Wall Barrier via Zwitterionic Liquid Pretreatment for Micelle‐Complex‐Mediated DNA Delivery to Specific Plant Organelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyoto-Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kiminori Toyooka
- Technology Platform Division Mass Spectrometry and Microscopy Unit RIKEN Center for Sustainable Resource Science Yokohama 230-0045 Japan
| | - Yumi Goto
- Technology Platform Division Mass Spectrometry and Microscopy Unit RIKEN Center for Sustainable Resource Science Yokohama 230-0045 Japan
| | - Ayaka Tateishi
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyoto-Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Keiji Numata
- Biomacromolecules Research Team RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
- Department of Material Chemistry Graduate School of Engineering Kyoto University Kyoto-Daigaku-Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
127
|
Prospects of Hydrogels in Agriculture for Enhancing Crop and Water Productivity under Water Deficit Condition. INT J POLYM SCI 2022. [DOI: 10.1155/2022/4914836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In arid and semiarid regions and under rainfed conditions, water availability is one of the principal ecological constraints that hinder agriculture’s sustainability. The super absorbent polymer (agricultural) is water-absorbing and is cross-linked to absorb aqueous solutions through bonding with water molecules. It is a new approach to water management under water-stressed conditions to conserve soil moisture in the active rooting zone of crops by reducing the evaporation, deep percolation, and runoff losses. Agricultural hydrogels are water retention granules which swell their original size to numerous intervals when they come in contact with water. It can absorb and retain a huge amount of moisture under plentiful rainfall and irrigation events and release it back to the soil for mitigating crop water demand when the rhizosphere zone dries up under drought conditions. It plays multifarious roles in agriculture including soil-water retainer, nutrient and pesticide carriers, seed coating, soil erosion reducer, and food additives. It has the extraordinary ability in improving different physicochemical, hydrophysical, and biological properties of soil, simultaneously decreasing irrigation frequency, enhancing the water and nutrient use efficiencies, and increasing the yield and quality of the field, plantation, ornamental, and vegetable crops. These biodegradable materials are nontoxic to the soil, crop, and environment. Hence, the addition of the hydrogel polymer will be a promising and feasible technological tool for augmenting crop productivity under moisture stressed conditions.
Collapse
|
128
|
Heinemann D, Zabic M, Terakawa M, Boch J. Laser-based molecular delivery and its applications in plant science. PLANT METHODS 2022; 18:82. [PMID: 35690858 PMCID: PMC9188231 DOI: 10.1186/s13007-022-00908-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Lasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection. Laser-based molecular delivery was first reported in 1984, when normal kidney cells were successfully transfected with a frequency-multiplied Nd:YAG laser. Due to the rapid development of optical technologies, far more sophisticated laser platforms have become available. In particular, near infrared femtosecond (NIR fs) laser sources enable an increasing progress of laser-based molecular delivery procedures and opened up multiple variations and applications of this technique.This review is intended to provide a plant science audience with the physical principles as well as the application potentials of laser-based molecular delivery. The historical origins and technical development of laser-based molecular delivery are summarized and the principle physical processes involved in these approaches and their implications for practical use are introduced. Successful cases of laser-based molecular delivery in plant science will be reviewed in detail, and the specific hurdles that plant materials pose will be discussed. Finally, we will give an outlook on current limitations and possible future applications of laser-based molecular delivery in the field of plant science.
Collapse
Affiliation(s)
- Dag Heinemann
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167, Hannover, Germany.
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1, 30167, Hannover, Germany.
| | - Miroslav Zabic
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167, Hannover, Germany
- Institute of Horticultural Production Systems, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Mitsuhiro Terakawa
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Jens Boch
- Institute of Plant Genetics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
129
|
Wang J, Zou A, Xiang S, Liu C, Peng H, Wen Y, Ma X, Chen H, Ran M, Sun X. Transcriptome analysis reveals the mechanism of zinc ion-mediated plant resistance to TMV in Nicotiana benthamiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105100. [PMID: 35715039 DOI: 10.1016/j.pestbp.2022.105100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/12/2023]
Abstract
Zinc ions (Zn2+) are used to promote plant growth and treat multiple diseases. However, it is still unclear which pathways in plants respond to Zn2+. In this study, we found that supplying (CH3COO)2Zn can effectively delay tobacco mosaic virus (TMV) replication and movement in Nicotiana benthamiana. To further understand the regulatory mechanism of antiviral activity mediated by Zn2+, we examined the transcriptomic changes of leaves treated with Zn2+. Three days after treatment, 7575 differential expression genes (DEGs) were enriched in the Zn2+ treatment group compared with the control group. Through GO and KEGG analysis, the pathway of phosphatidylinositol signaling system and inositol phosphate metabolism were significantly enriched after treated with Zn2+, and a large number of ethylene-responsive transcription factors (ERFs) involved in inositol phosphate metabolism were found to be enriched. We identified ERF5 performed a positive effect on plant immunity. Our findings demonstrated that Zn2+-mediated resistance in N. benthamiana activated signal transduction and regulated the expression of resistance-related genes. The results of the study uncover a global view of mRNA changes in Zn2+-mediated cellular processes involved in the competition between plants and viruses.
Collapse
Affiliation(s)
- Jing Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Aihong Zou
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Shunyu Xiang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Changyun Liu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Haoran Peng
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yuxia Wen
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Xiaozhou Ma
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Haitao Chen
- Chongqing Tobacco Science Research Institute, Chongqing 400715, China
| | - Mao Ran
- Chongqing Tobacco Science Research Institute, Chongqing 400715, China
| | - Xianchao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| |
Collapse
|
130
|
Impact of silver nanoparticles on multiplication, rooting of shoots and biochemical analyses of date palm Hayani cv. by in vitro. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
131
|
Gulzar ABM, Mazumder PB. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40319-40341. [PMID: 35316490 DOI: 10.1007/s11356-022-19756-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals (HMs) are not destroyable or degradable and persist in the environment for a long duration. Thus, eliminating and counteracting the HMs pollution of the soil environment is an urgent task to develop a safe and sustainable environment. Plants are in close contact with the soil and can play an important role in soil clean-up, and the process is known as phytoremediation. However, under HM contaminated conditions, plants suffer from several complications, like nutrient and mineral deficiencies, alteration of various physiological and biological processes, which reduces the plant's growth rate. On the other hand, the bioavailability of HMs is another factor for reduced phytoremediation, as most of the HMs are not bioavailable to plants for efficient phytoremediation. The altered plant growth and reduced bioavailability of HMs could be overcome and enhance the phytoremediation efficiency by incorporating either nanotechnology, i.e., nanoparticles (NPs) or plant growth promoting rhizobacteria (PGPR) along with phytoremediation. Single incorporation of NPs and PGPR might improve the growth rate in plants by enhancing nutrient availability and uptake and also by regulating plant growth regulators under HM contaminated conditions. However, there are certain limitations, like a high dose of NPs that might have toxic effects on plants. Thus, the combination of two techniques such as PGPR and NPs-based remediation can conquer the limitations of individual techniques and consequently enhance phytoremediation efficiency. Considering the negative impacts of HMs on the environment and living organisms, this review is aimed at highlighting the concept of phytoremediation, the single or combined integration of NPs and PGPR to help plants deal with HMs and their basic mechanisms involved in the process of phytoremediation. Additionally, the complications of using NPs and PGPR in the phytoremediation process are discussed to determine future research questions and this will assist to stimulate further research in this field and increase its effectiveness in practical application.
Collapse
Affiliation(s)
- Abu Barkat Md Gulzar
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Plant & Microbial Molecular Biology Laboratory, Department of Biotechnology, Assam University, Silchar, India.
| |
Collapse
|
132
|
Bueno V, Gao X, Abdul Rahim A, Wang P, Bayen S, Ghoshal S. Uptake and Translocation of a Silica Nanocarrier and an Encapsulated Organic Pesticide Following Foliar Application in Tomato Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6722-6732. [PMID: 35467849 DOI: 10.1021/acs.est.1c08185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pesticide nanoencapsulation and its foliar application are promising approaches for improving the efficiency of current pesticide application practices, whose losses can reach 99%. Here, we investigated the uptake and translocation of azoxystrobin, a systemic pesticide, encapsulated within porous hollow silica nanoparticles (PHSNs) of a mean diameter of 253 ± 73 nm, following foliar application on tomato plants. The PHSNs had 67% loading efficiency for azoxystrobin and enabled its controlled release over several days. Thus, the nanoencapsulated pesticide was taken up and distributed more slowly than the nonencapsulated pesticide. A total of 8.7 ± 1.3 μg of the azoxystrobin was quantified in different plant parts, 4 days after 20 μg of nanoencapsulated pesticide application on a single leaf of each plant. In parallel, the uptake and translocation of the PHSNs (as total Si and particulate SiO2) in the plant were characterized. The total Si translocated after 4 days was 15.5 ± 1.6 μg, and the uptake rate and translocation patterns for PHSNs were different from their pesticide load. Notably, PHSNs were translocated throughout the plant, although they were much larger than known size-exclusion limits (reportedly below 50 nm) in plant tissues, which points to knowledge gaps in the translocation mechanisms of nanoparticles in plants. The translocation patterns of azoxystrobin vary significantly following foliar uptake of the nanosilica-encapsulated and nonencapsulated pesticide formulations.
Collapse
Affiliation(s)
- Vinicius Bueno
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Xiaoyu Gao
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Arshath Abdul Rahim
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Peiying Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
133
|
Zhu J, Wang J, Chen R, Feng Q, Zhan X. Cellular Process of Polystyrene Nanoparticles Entry into Wheat Roots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6436-6444. [PMID: 35475335 DOI: 10.1021/acs.est.1c08503] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale plastic particles are widely found in the terrestrial environment and being increasingly studied in recent years. However, the knowledge of their translocation and accumulation mechanism controlled by nanoplastic characterizations in plant tissues is limited, especially in plant cells. Here, 20 mg L-1 polystyrene nanoparticles (PS NPs) with different sizes and amino/carboxy groups were employed to investigate the internalization process in wheat roots and cells. From the results, we found that the uptake of small-size PS NPs in the root tissues was increased compared to that of large-size ones, but no PS NPs were observed in the vascular cylinder. Similar results were observed in their cellular uptake process. Besides, the cell wall could block the entry of large-size PS NPs while the cell membrane could not. The -NH2 group on the PS NPs surface could benefit their tissular/cellular translocation compared to the -COOH group. The internalization of PS NPs was controlled by both particle size and surface functional group, and the size should be the primary factor. Our findings offer important information for understanding the PS NPs behaviors in plant tissues, especially at the cellular level, and assessing their potential risk to food safety, quality, and agricultural sustainability.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jia Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Ruonan Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| |
Collapse
|
134
|
Delgado-Martín J, Delgado-Olidén A, Velasco L. Carbon Dots Boost dsRNA Delivery in Plants and Increase Local and Systemic siRNA Production. Int J Mol Sci 2022; 23:5338. [PMID: 35628147 PMCID: PMC9141514 DOI: 10.3390/ijms23105338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, we obtained carbon dots from glucose or saccharose as the nucleation source and passivated them with branched polyethylenimines for developing dsRNA nanocomposites. The CDs were fully characterized using hydrodynamic analyses, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The ζ potential determined that the CDs had positive charges, good electrophoretic mobility and conductivity, and were suitable for obtaining dsRNA nanocomposites. DsRNA naked or coated with the CDs were delivered to leaves of cucumber plants by spraying. Quantitation of the dsRNA that entered the leaves showed that when coated with the CDs, 50-fold more dsRNA was detected than when naked dsRNA. Moreover, specific siRNAs derived from the sprayed dsRNAs were 13 times more abundant when the dsRNA was coated with the CDs. Systemic dsRNAs were determined in distal leaves and showed a dramatic increase in concentration when delivered as a nanocomposite. Similarly, systemic siRNAs were significantly more abundant in distal leaves when spraying with the CD-dsRNA nanocomposite. Furthermore, FITC-labeled dsRNA was shown to accumulate in the apoplast and increase its entry into the plant when coated with CDs. These results indicate that CDs obtained by hydrothermal synthesis are suitable for dsRNA foliar delivery in RNAi plant applications.
Collapse
Affiliation(s)
- Josemaría Delgado-Martín
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA), Churriana, 290140 Malaga, Spain; (J.D.-M.); (A.D.-O.)
- Universidad de Málaga, 29010 Malaga, Spain
| | - Alejo Delgado-Olidén
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA), Churriana, 290140 Malaga, Spain; (J.D.-M.); (A.D.-O.)
| | - Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria (IFAPA), Churriana, 290140 Malaga, Spain; (J.D.-M.); (A.D.-O.)
| |
Collapse
|
135
|
Le Wee J, Law MC, Chan YS, Choy SY, Tiong ANT. The Potential of Fe‐Based Magnetic Nanomaterials for the Agriculture Sector. ChemistrySelect 2022. [DOI: 10.1002/slct.202104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Le Wee
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Ming Chiat Law
- Department of Mechanical Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Yen San Chan
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Sook Yan Choy
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Angnes Ngieng Tze Tiong
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| |
Collapse
|
136
|
Zhang J, Lei W, Meng Y, Zhou C, Zhang B, Yuan J, Wang M, Xu D, Meng X, Chen W. Expression of PEI-coated gold nanoparticles carrying exogenous gene in periwinkle mesophyll cells and its practice in Huanglongbing research. iScience 2022; 25:104479. [PMID: 35712078 PMCID: PMC9192802 DOI: 10.1016/j.isci.2022.104479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Huanglongbing (HLB) is a devastating disease of citrus, which is mostly caused by Candidatus Liberibacter asiaticus (CLas). To realize the specific application of nano-transgenic technology in HLB, AuNPs-PEI (Gold Nanoparticles-Polyethylenimine) was used to carry foreign genes into the leaves of periwinkle (Catharanthus roseus) by infiltration. Here, we demonstrated that NPR1-GFP protein expression was observed from the 12th hour to the 10th day after infiltrating AuNPs-PEI-pNPR1 (Arabidopsis thaliana nonexpressor of pathogenesis-related gene 1)-GFP. Fluorescence of mCherry was observed 6 h after AuNPs-PEI-pNLS (nuclear localization signal sequence)-mCherry infiltration and fluorescence of FAM was observed in the nucleus 4 h after AuNPs-PEI-FAM-siRNANPR1 infiltration. In addition, NPR1-GFP expression in CLas-infected periwinkle leaves was significantly higher than that in healthy periwinkle leaves after infiltration. Our work confirmed that the expression of exogenous NPR1-GFP could reduce the CLas titers by promoting the expression of PR (pathogenesis related) genes and ICS (isochorismate synthase) gene. AuNPs-PEI-FAM-siRNANPR1 entered the nucleus within 4 h after infiltration AuNPs-PEI-pNLS-mCherry expressed the corresponding protein within 6 h AuNPs-PEI-pNPR1-GFP continued to express the corresponding protein for 14 days After AuNPs-PEI-pNPR1-GFP infiltration for 2 days, CLas titer decreased significantly
Collapse
|
137
|
Machado TO, Grabow J, Sayer C, de Araújo PHH, Ehrenhard ML, Wurm FR. Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Adv Colloid Interface Sci 2022; 303:102645. [PMID: 35358807 DOI: 10.1016/j.cis.2022.102645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Devastating plant diseases and soil depletion rationalize an extensive use of agrochemicals to secure the food production worldwide. The sustained release of fertilizers and pesticides in agriculture is a promising solution to the eco-toxicological impacts and it might reduce the amount and increase the effectiveness of agrochemicals administration in the field. This review article focusses on carriers with diameters below 1 μm, such as capsules, spheres, tubes and micelles that promote the sustained release of actives. Biopolymer nanocarriers represent a potentially environmentally friendly alternative due to their renewable origin and biodegradability, which prevents the formation of microplastics. The social aspects, economic potential, and success of commercialization of biopolymer based nanocarriers are influenced by the controversial nature of nanotechnology and depend on the use case. Nanotechnology's enormous innovative power is only able to unfold its potential to limit the effects of climate change and to counteract current environmental developments if the perceived risks are understood and mitigated.
Collapse
Affiliation(s)
- Thiago O Machado
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Justin Grabow
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands; Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Pedro H H de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC 88040-900, Brazil
| | - Michel L Ehrenhard
- Faculty of Behavioural Management and Social Sciences, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
138
|
Kandhol N, Aggarwal B, Bansal R, Parveen N, Singh VP, Chauhan DK, Sonah H, Sahi S, Grillo R, Peralta-Videa J, Deshmukh R, Tripathi DK. Nanoparticles as a potential protective agent for arsenic toxicity alleviation in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118887. [PMID: 35077838 DOI: 10.1016/j.envpol.2022.118887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Aggrandized technological and industrial progression in past decades have occasioned immense depreciation in the quality of environment and ecosystem, majorly due to augmentation in the number of obnoxious pollutants incessantly being released in soil, water or air. Arsenic (As) is one such hazardous metalloid contaminating the environment which has the potential to detrimentally affect the life on earth. Even in minute quantity, As is known to cause various critical diseases in humans and toxicity in plants. Recent studies on nanoparticles (NPs) approve of their ability to qualify the criterion of becoming a potent tool for mitigating As-induced phytotoxicity. Nanoparticles are reported to promote plant growth under As-stress by stimulating various alterations at physiological, biochemical, and molecular levels. In this review, we provide an up-to-date compilation of research that has been carried out in comprehending the mechanisms utilized by nanoparticles including controlled As uptake and distribution in plants, maintenance of ROS homeostasis during stress and chelation and vacuolar sequestration of As so as to reduce the severity of toxicity induced by As, and potential areas of research in this field will also be indicated for future perspectives.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Bharti Aggarwal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ruchi Bansal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Nishat Parveen
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, 211002, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Shivendra Sahi
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, 19104-4495, USA
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, School of Engineering, Ilha Solteira, SP, 15385-000, Brazil
| | - José Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968, United States
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
139
|
Wang XJ, Luo Q, Li T, Meng PH, Pu YT, Liu JX, Zhang J, Liu H, Tan GF, Xiong AS. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. HORTICULTURE RESEARCH 2022; 9:uhac076. [PMID: 38239769 PMCID: PMC10795576 DOI: 10.1093/hr/uhac076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2024]
Abstract
Many of the world's most important vegetables and medicinal crops, including carrot, celery, coriander, fennel, and cumin, belong to the Apiaceae family. In this review, we summarize the complex origins of Apiaceae and the current state of research on the family, including traditional and molecular breeding practices, bioactive compounds, medicinal applications, nanotechnology, and omics research. Numerous molecular markers, regulatory factors, and functional genes have been discovered, studied, and applied to improve vegetable and medicinal crops in Apiaceae. In addition, current trends in Apiaceae application and research are also briefly described, including mining new functional genes and metabolites using omics research, identifying new genetic variants associated with important agronomic traits by population genetics analysis and GWAS, applying genetic transformation, the CRISPR-Cas9 gene editing system, and nanotechnology. This review provides a reference for basic and applied research on Apiaceae vegetable and medicinal plants.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping-Hong Meng
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Yu-Ting Pu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
140
|
Gelaw TA, Sanan-Mishra N. Nanomaterials coupled with microRNAs for alleviating plant stress: a new opening towards sustainable agriculture. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:791-818. [PMID: 35592477 PMCID: PMC9110591 DOI: 10.1007/s12298-022-01163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/21/2021] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development is influenced by their continuous interaction with the environment. Their cellular machinery is geared to make rapid changes for adjusting the morphology and physiology to withstand the stressful changes in their surroundings. The present scenario of climate change has however intensified the occurrence and duration of stress and this is getting reflected in terms of yield loss. A number of breeding and molecular strategies are being adopted to enhance the performance of plants under abiotic stress conditions. In this context, the use of nanomaterials is gaining momentum. Nanotechnology is a versatile field and its application has been demonstrated in almost all the existing fields of science. In the agriculture sector, the use of nanoparticles is still limited, even though it has been found to increase germination and growth, enhance physiological and biochemical activities and impact gene expression. In this review, we have summarized the use and role of nanomaterial and small non-coding RNAs in crop improvement while highlighting the potential of nanomaterial assisted eco-friendly delivery of small non-coding RNAs as an innovative strategy for mitigating the effect of abiotic stress.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, 445, Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| |
Collapse
|
141
|
Bouyahya A, El Omari N, Hakkour M, El Menyiy N, Benali T, Kulikov D, Karpukhin M, Shariati MA, Venkidasamy B, Thiruvengadam M, Chamkhi I. A review on transcriptomic and metabolomic responses of plants to nanopollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22913-22929. [PMID: 35064510 DOI: 10.1007/s11356-022-18659-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are tiny substances that can exist in the soil with different forms at different concentrations. In general, they present enormous effects on the growth, physiology, and molecular responses in plants. Indeed, they can penetrate the roots, stem, and leaves via different ways like stomata, plasmodesmata, xylem, and phloem and through transporter proteins like aquaporins. Once entered the plants, NPs induce reactive oxygen species (ROS) formation, and the plants respond to ROS by stimulates the production of antioxidants and antioxidant enzymes as well as the production of various primary and secondary metabolites like flavonoids and phenolic compounds. In addition, NPs have significantly affected the distribution of mineral profiles in plants. NPs considerably affect plant growth and yield in a dose-dependent fashion. At higher concentrations, they induced potent cytotoxicity and genotoxicity and thus reduced the growth and development of plants in turn decrease the yield. NPs exert potent changes in the transcriptome and metabolome pattern of plants to counteract the ROS imposed by NPs. This review depicts the overview of transcriptomic and metabolomic responses of plants towards nanopollution.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Raba, Morocco
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Department of Biology, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Dmitriy Kulikov
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Mikhail Karpukhin
- Department of vegetable growing and fruit growing of the prof. N.F. Konyaev, Ural State Agrarian University, 42 K.Liebknecht st, 620075, Yekaterinburg, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641062, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, 05029, Seoul, Republic of Korea.
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite Et Patrimoine Naturel, Université Mohammed V de Rabat, Institut Scientifique Rabat, Rabat, Morocco
- University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco
| |
Collapse
|
142
|
Wu T, Liao X, Zou Y, Liu Y, Yang K, White JC, Lin D. Fe-based nanomaterial transformation to amorphous Fe: Enhanced alfalfa rhizoremediation of PCBs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127973. [PMID: 34894512 DOI: 10.1016/j.jhazmat.2021.127973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Nano-enabled phytoremediation is an emerging remediation strategy for soils that are moderately contaminated with persistent organic contaminants, and there is a significant need for increased mechanistic understanding and for case studies. Herein, we evaluated the remediation of PCB28-contaminated soil using combined alfalfa and Fe-based materials, including zero-valent iron at 20 nm, 100 nm, and 5 µm, and also iron oxide nanomaterials including α-Fe2O3, γ-Fe2O3, and Fe3O4 around 20-30 nm. Compared with alfalfa remediation alone (63.2%), Fe-based nanomaterials increased PCB28 removal values to 72.4-93.5% in planted soil, with α-Fe2O3 treatment promoting the most effective pollutant removal. Mechanistically, the crystalline Fe-based nanoparticles were transformed into amorphous forms in the plant rhizosphere, resulting in greater availability and enhanced iron nutrition. This nutritional shift induced root metabolic reprogramming of amino acid and carbohydrate cycling, and related functional bacterial enrichment of Ramlibacter, Dyella, Bacillus, and Paraburkholderia in rhizosphere. A significant positive correlation between amorphous iron and root metabolites-associated microbes with PCB28 removal was evident, implying that iron supplementation selected for rhizospheric microorganisms favored PCBs degradation. Overall, this rhizoremediation promotion strategy of Fe species-metabolites-microbes highlights the potential for the hybrid application of nano-enabled phytotechnology in the remediation of soils contaminated with persistent organic xenobiotics.
Collapse
Affiliation(s)
- Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Liao
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yiting Zou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
143
|
Abideen Z, Hanif M, Munir N, Nielsen BL. Impact of Nanomaterials on the Regulation of Gene Expression and Metabolomics of Plants under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050691. [PMID: 35270161 PMCID: PMC8912827 DOI: 10.3390/plants11050691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 05/14/2023]
Abstract
Plant salinity resistance results from a combination of responses at the physiological, molecular, cellular, and metabolic levels. This article focuses on plant stress tolerance mechanisms for controlling ion homeostasis, stress signaling, hormone metabolism, anti-oxidative enzymes, and osmotic balance after nanoparticle applications. Nanoparticles are used as an emerging tool to stimulate specific biochemical reactions related to plant ecophysiological output because of their small size, increased surface area and absorption rate, efficient catalysis of reactions, and adequate reactive sites. Regulated ecophysiological control in saline environments could play a crucial role in plant growth promotion and survival of plants under suboptimal conditions. Plant biologists are seeking to develop a broad profile of genes and proteins that contribute to plant salt resistance. These plant metabolic profiles can be developed due to advancements in genomic, proteomic, metabolomic, and transcriptomic techniques. In order to quantify plant stress responses, transmembrane ion transport, sensors and receptors in signaling transduction, and metabolites involved in the energy supply require thorough study. In addition, more research is needed on the plant salinity stress response based on molecular interactions in response to nanoparticle treatment. The application of nanoparticles as an aspect of genetic engineering for the generation of salt-tolerant plants is a promising area of research. This review article addresses the use of nanoparticles in plant breeding and genetic engineering techniques to develop salt-tolerant crops.
Collapse
Affiliation(s)
- Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan;
| | - Maria Hanif
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan;
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan;
- Correspondence: (N.M.); (B.L.N.)
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
- Correspondence: (N.M.); (B.L.N.)
| |
Collapse
|
144
|
Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydr Polym 2022; 288:119356. [DOI: 10.1016/j.carbpol.2022.119356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023]
|
145
|
Small open reading frames in plant research: from prediction to functional characterization. 3 Biotech 2022; 12:76. [PMID: 35251879 PMCID: PMC8873315 DOI: 10.1007/s13205-022-03147-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 02/11/2022] [Indexed: 11/01/2022] Open
Abstract
Gene prediction is a laborious and time-consuming task. The advancement of sequencing technologies and bioinformatics tools, coupled with accelerated rate of ribosome profiling and mass spectrometry development, have made identification of small open reading frames (sORFs) (< 100 codons) in various plant genomes possible. The past 50 years have seen sORFs being isolated from many organisms. However, to date, a comprehensive sORF annotation pipeline is as yet unavailable, hence, addressed in our review. Here, we also provide current information on classification and functions of plant sORFs and their potential applications in crop improvement programs.
Collapse
|
146
|
Naseer M, Zhu Y, Li FM, Yang YM, Wang S, Xiong YC. Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118724. [PMID: 34942289 DOI: 10.1016/j.envpol.2021.118724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Arbuscular mycorrhizal fungi display desired potential to boost crop productivity and drought acclimation. Yet, whether nanoparticles can be incorporated into arbuscular mycorrhizal fungi for better improvement and its relevant morphologic and anatomical evidences are little documented. Pot culture experiment on wheat (Triticum aestivum L.) was conducted under drought stress (30% FWC) as well as well watered conditions (80% FWC) that involved priming of wheat seeds with iron nanoparticles at different concentrations (5mg L-1, 10 mg L-1 and 15 mg L-1) with and without the inoculation of Glomus intraradices. The effects of treatments were observed on morphological and physiological parameters across jointing, anthesis and maturity stage. Root colonization and nanoparticle uptake trend by seeds and roots was also recorded. We observed strikingly high enhancement in biomass up to 109% under drought and 71% under well-watered conditions, and grain yield increased to 163% under drought and 60% under well-watered conditions. Iron nanoparticles at 10 mg L-1 when combined with Glomus intraradices resulted in maximum wheat growth and yield, which mechanically resulted from higher rhizosphere colonization level, water use efficiency and photosynthetic rate under drought stress (P < 0.01). Across growth stages, optical micrograph observations affirmed higher root infection rate when combined with nanoparticles. Transmission electron microscopy indicated the penetration of nanoparticles into the seeds and translocation across roots whereas energy dispersive X-ray analyses further confirmed the presence of Fe in these organs. Iron nanoparticles significantly enhanced the growth-promoting and drought-tolerant effects of Glomus intraradices on wheat.
Collapse
Affiliation(s)
- Minha Naseer
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ying Zhu
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Feng-Min Li
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yu-Miao Yang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Song Wang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
147
|
Effects of Biogenic ZnO Nanoparticles on Growth, Physiological, Biochemical Traits and Antioxidants on Olive Tree In Vitro. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, there is an increasing interest in nanotechnology, since some nanomaterials can enhance crop growth, yield, nutritional status, and antioxidant defences. This work aimed to investigate for the first time the influence of zinc oxide nanoparticles (ZnO-NPs) on the in vitro growth and biochemical parameters of the olive tree (cv. Moraiolo). With this goal, biogenic ZnO-NPs (spherical shape and dimensions in the range of 10–20 nm), deriving from a green synthesis carried out with a Lemna minor L. extract were used. Different concentrations (0, 2, 6 and 18 mg L−1) of ZnO-NPs were added to the olive growth medium (OM substrate), and three sub-cultures of 45 days each were carried out. ZnO-NPs at 6 and 18 mg L−1 enhanced some growth parameters in the olive tree explants, such as the number of shoots, green fresh and total dry weight. Moreover, the abovementioned concentrations raised the chlorophyll a and b content and soluble protein. Finally, concerning the dosage applied, the treatments stimulated the content of carotenoids, anthocyanins, total phenol content (TPC), and the radical scavenging activity towards DPPH (2.2-diphenyl-1-picrylhydrazyl). In conclusion, this study highlighted that biogenic ZnO-NPs exerted beneficial effects on the olive tree explants in vitro, improving the effectiveness of the micropropagation technique.
Collapse
|
148
|
Wu H, Zhang H, Li X, Zhang Y, Wang J, Wang Q, Wan Y. Optimized synthesis of layered double hydroxide lactate nanosheets and their biological effects on Arabidopsis seedlings. PLANT METHODS 2022; 18:17. [PMID: 35144635 PMCID: PMC8830088 DOI: 10.1186/s13007-022-00850-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/27/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND Layered double hydroxide lactate nanosheets (LDH-lactate-NS) are powerful carriers for delivering macro-molecules into intact plant cells. In the past few years, some studies have been carried out on DNA/RNA transformation and plant disease resistance, but little attention has been paid to these factors during LDH-lactate-NS synthesis and delamination, nor has their relationship to the DNA adsorption capacity or transformation efficiency of plant cells been considered. RESULTS Since the temperature during delamination alters particle sizes and zeta potentials of LDH-lactate-NS products, we compared the LDH-lactate-NS stability, DNA adsorption rate and delivery efficiency of fluorescein isothiocyanate isomer I (FITC) of them, found that the LDH-lactate-NS obtained at 25 °C has the best characters for delivering biomolecules into plant cell. To understand the potential side effects and cytotoxicity of LDH-lactate-NS to plants, we compared the root growth rate between the Arabidopsis thaliana seedlings grown in the culture medium with 1-300 μg/mL LDH-lactate-NS and equivalent raw material, Mg(lactate)2 and Al (lactate)3. Phenotypic analysis showed LDH in a range of 1-300 μg/mL can enhance the root elongation, whereas the same concentration of raw materials dramatically inhibited root elongation, suggesting the nanocrystallization has a dramatical de-toxic effect to Mg(lactate)2 and Al (lactate)3. Since enhancing of root elongation by LDH is an unexpected phenomenon, we further designed experiments to investigate influence of LDH to Arabidopsis seedlings. We further used the gravitropic bending test, qRT-PCR analysis of auxin transport proteins, non-invasive micro-test technology and liquid chromatography-mass spectrometry to investigate the auxin transport and distribution in Arabidopsis root. Results indicated that LDH-lactate-NS affect root growth by increasing the polar auxin transport. CONCLUSIONS Optimal synthesized LDH-lactate-NS can delivery biomolecules into intact plant cells with high efficiency and low cytotoxity. The working solution of LDH-lactate-NS can promote root elongation via increase the polar auxin transport in Arabidopsis roots.
Collapse
Affiliation(s)
- Hongyang Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - He Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xinyu Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Yu Zhang
- College of Environment, Beijing Forestry University, Beijing, 100083, China
| | - Jiankun Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qiang Wang
- College of Environment, Beijing Forestry University, Beijing, 100083, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
149
|
Salam A, Khan AR, Liu L, Yang S, Azhar W, Ulhassan Z, Zeeshan M, Wu J, Fan X, Gan Y. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127021. [PMID: 34488098 DOI: 10.1016/j.jhazmat.2021.127021] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 05/07/2023]
Abstract
It is widely known that cobalt (Co) stress adversely affects plant growth and biomass accumulation, posing serious threats to crop production and food security. Nanotechnology is an emerging field in crop sciences for its potential in improving crop production and mitigating various stresses. Although there have been several studies reporting the toxic effects of zinc oxide nanoparticles (ZnO NPs) on different crops, their role in ameliorating heavy metal toxicity are still poorly understood. This study aimed to investigate the beneficial effects of seed priming with ZnO NPs in mitigating the phytotoxicity induced by Co stress. Our results demonstrated that ZnO NPs significantly improved the plant growth, biomass, and photosynthetic machinery in maize under Co stress. The NPs priming reduced ROS and MDA accumulations in maize shoots. More importantly, ZnO NPs alleviated the toxic effects of Co by decreasing its uptake and conferred stability to plant ultra-cellular structures and photosynthetic apparatus. Furthermore, a higher accumulation of nutrient content and antioxidant enzymes were found in NPs-primed seedlings. Collectively, we provide first evidence to demonstrate the alleviation of Co toxicity via ZnO NPs seed priming in maize, thus, illustrating the potential role of ZnO NPs to be applied as a stress mitigation agent for the crops grown in Co contaminated areas to enhance crop growth and yield.
Collapse
Affiliation(s)
- Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Li Liu
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Zeeshan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Junyu Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China.
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan Province 572025, China.
| |
Collapse
|
150
|
Kots SY, Rybachenko LI, Khrapova AV, Kukol KP, Rybachenko OR, Кhomenko YO. Composition of pigment complex in leaves of soybean plants, inoculated by Bradyrhizobium japonicum, subject to metal nanocarboxylates and various-levels of water supply. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A distinctive feature of legumes is the ability to combine two most important processes: photosynthesis and nitrogen fixation. However, the course of those processes, and therefore seed potential of those crops depend on a number of biotic and abiotic factors, the commonest being drought. Therefore, interest in physical-biochemical resistance of the plant organism to abiotic stress factors is increasing, as well as search for optimum ways to increase its adaptability. Success of adaptation of a plant’s organism to unfavourable environmental factors is known to largely depend on optimal functioning of assimilative apparatus. Some indicators of the condition of the apparatus are the content and ratio of photosynthesis pigments. Therefore, we aimed at determining the reaction of the pigment complex of Glycine max (L.) Merr. plants, grown against the background of optimal and insufficient watering, to inoculation of seeds with rhizobia bacteria Bradyrhizobium japonicum, cultivated using nanocarboxylates of chromium, cobalt, iron, copper and germanium. Research has shown that utilization of germanium nanocarboxylate as a component of inoculative suspension led to the highest content of chlorophylls in leaves of soybean of the studied variants in the blossoming phase during optimal watering, as well as significant increase in the content of carotenoids compared with the control plants regardless of the level of watering. At the same time, this element caused no significant effect on the chlorophyll content in plants grown in drought. It was confirmed that among soybean plants that were in stress conditions (blossoming phase) for two weeks, the highest content of chlorophylls was in leaves of plants grown from seeds inoculated with rhizobial suspension with addition of chromium and copper nanocarboxylates, which caused 25.3% and 22.8% increase in chlorophyll а, 29.4% and 32.3% in chlorophyll b and 26.4%% and 23.8% in them respectively, compared with the control. Furthermore, chromium and copper nanocarboxylates stimulated the content of carotenoids in the same plants, though it was less expressed than after adding germanium nanocarboxylate. The highest content of photosynthetic pigments in plants after the watering was resumed (phase of bean formation) was in cases of applying chromium and germanium nanocarboxylates. It was confirmed that the most efficient way to protect the pigment complex of soybean plants during drought was using chromium and germanium nanocarboxylates as components of inoculation suspension. The results we obtained indicate the possibility of applying chromium nanocarboxylate in the technology of cultivating soybean in the conditions of water deficiency as an effective way to improve biosynthesis of chlorophylls, as well as using germanium nanocarboxyllate as a component that provides a high level of activity of protective mechanisms of the pigment system of soybean, associated with resisting stress caused by water deficiency.
Collapse
|