101
|
Shu Y, Wang Q, Hong P, Ruan Y, Lin H, Xu J, Zhang H, Deng S, Wu H, Chen L, Leung KMY. Legacy and Emerging Per- and Polyfluoroalkyl Substances Surveillance in Bufo gargarizans from Inlet Watersheds of Chaohu Lake, China: Tissue Distribution and Bioaccumulation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13148-13160. [PMID: 37565447 DOI: 10.1021/acs.est.3c02660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Amphibians are sensitive biomonitors of environmental pollutants but reports regarding per- and polyfluoroalkyl substances (PFAS), a class of synthetic organofluorine substances, are limited. In this study, samples of water and Chinese toads (Bufo gargarizans) were collected in Chaohu Lake, China. Tissue-specific bioaccumulation characteristics of 39 PFAS, including 19 perfluoroalkyl acids (PFAAs), 8 emerging PFAS, and 12 PFAA precursors, were investigated, and the levels of some biochemical indicators were determined. The highest PFAS concentrations were found in the liver [215.97 ng/g dry weight (dw)] of Chinese toads, followed by gonads (135.42 ng/g dw) and intestine (114.08 ng/g dw). A similar tissue distribution profile was found between legacy and emerging PFAS in the toads, and the occurrence of two emerging PFAS, 2,3,3,3-tetrafluoro-2-propanoate (HFPO-DA) and 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) in the amphibians were for the first time reported. Field-based bioaccumulation factors of HFPO-DA were higher than perfluorooctanoic acid, indicating the higher bioaccumulation potential of this emerging PFAS than the legacy C8 compound. Males had significantly higher gonad PFAS levels than females while estradiol levels in gonads increased with increasing concentrations of certain PFAS (e.g., 6:2 H-PFESA), implying that PFAS may trigger estrogenic effects in the toads, especially for male toads.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jing Xu
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai 200336, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
102
|
Xu W, Li S, Wang W, Sun P, Yin C, Li X, Yu L, Ren G, Peng L, Wang F. Distribution and potential health risks of perfluoroalkyl substances (PFASs) in water, sediment, and fish in Dongjiang River Basin, Southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99501-99510. [PMID: 37610541 DOI: 10.1007/s11356-023-29327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted worldwide attention due to their high stability, refractory degradation, and bioaccumulation. The Dongjiang River is one of the most important water sources in the Pearl River Delta region. It flows from Jiangxi Province to Guangdong Province and finally into the Pearl River, providing domestic water for cities such as Guangzhou, Shenzhen, and Hong Kong. In this study, 17 PFASs in water, sediment, and fish in the Dongjiang River Basin in southern China were investigated using high-performance liquid chromatography-mass spectrometry. Total PFAS concentrations ranged from 20.83 to 372.8 ng/L in water, from 1.050 to 3.050 ng/g in sediments, and from 12.28 to 117.4 ng/g in fish. Among six species of fish, Oreochromis mossambicus (mean: 68.55 ng/g) had the highest concentration of PFASs, while Tilapia zillii (36.90 ng/g) had the lowest concentration. Perfluorooctanoic acid (PFOA) predominates in water and sediments, while perfluorooctanesulfonic acid (PFOS) predominates in fish. Long-chain perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs) showed higher bioaccumulation, and the field-sourced sediment-water partition coefficients (Kd) and bioaccumulation factors (BAFs) of PFASs increased with the length of perfluorocarbon chains. PFAS concentration in the lower reaches (urban area) of the Dongjiang River is higher than that in the upper and middle reaches (rural area). The calculated hazard ratio (HR) of PFOS and PFOA levels in fish in the Dongjiang River Basin was far less than 1; hence, the potential risk to human health was limited.
Collapse
Affiliation(s)
- Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Shibo Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
| | - Weimin Wang
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Ping Sun
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Chunyang Yin
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Xuxia Li
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Liang Yu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Gang Ren
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
103
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
104
|
Fremlin KM, Elliott JE, Letcher RJ, Harner T, Gobas FA. Developing Methods for Assessing Trophic Magnification of Perfluoroalkyl Substances within an Urban Terrestrial Avian Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12806-12818. [PMID: 37590934 PMCID: PMC10469464 DOI: 10.1021/acs.est.3c02361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
We investigated the trophic magnification potential of perfluoroalkyl substances (PFAS) in a terrestrial food web by using a chemical activity-based approach, which involved normalizing concentrations of PFAS in biota to their relative biochemical composition in order to provide a thermodynamically accurate basis for comparing concentrations of PFAS in biota. Samples of hawk eggs, songbird tissues, and invertebrates were collected and analyzed for concentrations of 18 perfluoroalkyl acids (PFAAs) and for polar lipid, neutral lipid, total protein, albumin, and water content. Estimated mass fractions of PFCA C8-C11 and PFSA C4-C8 predominantly occurred in albumin within biota samples from the food web with smaller estimated fractions in polar lipids > structural proteins > neutral lipids and insignificant amounts in water. Estimated mass fractions of longer-chained PFAS (i.e., C12-C16) mainly occurred in polar lipids with smaller estimated fractions in albumin > structural proteins > neutral lipids > and water. Chemical activity-based TMFs indicated that PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFOS, and PFDS biomagnified in the food web; PFOA, PFHxDA, and PFHxS did not appear to biomagnify; and PFBS biodiluted. Chemical activity-based TMFs for PFCA C8-C11 and PFSA C4-C8 were in good agreement with corresponding TMFs derived with concentrations normalized to only total protein in biota, suggesting that concentrations normalized to total protein may be appropriate proxies of chemical activity-based TMFs for PFAS, which predominantly partition to albumin. Similarly, TMFs derived with concentrations normalized to albumin may be suitable proxies of chemical activity-based TMFs for longer-chained PFAS, which predominantly partition to polar lipids.
Collapse
Affiliation(s)
- Katharine M. Fremlin
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - John E. Elliott
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - Robert J. Letcher
- Ecotoxicology
and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1A
0H3, Canada
| | - Tom Harner
- Air
Quality Research Division, Environment and
Climate Change Canada, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada
| | - Frank A.P.C. Gobas
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- School
of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, BC V5A
1S6, Canada
| |
Collapse
|
105
|
Pozzebon EA, Seifert L. Emerging environmental health risks associated with the land application of biosolids: a scoping review. Environ Health 2023; 22:57. [PMID: 37599358 PMCID: PMC10440945 DOI: 10.1186/s12940-023-01008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Over 40% of the six million dry metric tons of sewage sludge, often referred to as biosolids, produced annually in the United States is land applied. Biosolids serve as a sink for emerging pollutants which can be toxic and persist in the environment, yet their fate after land application and their impacts on human health have not been well studied. These gaps in our understanding are exacerbated by the absence of systematic monitoring programs and defined standards for human health protection. METHODS The purpose of this paper is to call critical attention to the knowledge gaps that currently exist regarding emerging pollutants in biosolids and to underscore the need for evidence-based testing standards and regulatory frameworks for human health protection when biosolids are land applied. A scoping review methodology was used to identify research conducted within the last decade, current regulatory standards, and government publications regarding emerging pollutants in land applied biosolids. RESULTS Current research indicates that persistent organic compounds, or emerging pollutants, found in pharmaceuticals and personal care products, microplastics, and per- and polyfluoroalkyl substances (PFAS) have the potential to contaminate ground and surface water, and the uptake of these substances from soil amended by the land application of biosolids can result in contamination of food sources. Advanced technologies to remove these contaminants from wastewater treatment plant influent, effluent, and biosolids destined for land application along with tools to detect and quantify emerging pollutants are critical for human health protection. CONCLUSIONS To address these current risks, there needs to be a significant investment in ongoing research and infrastructure support for advancements in wastewater treatment; expanded manufacture and use of sustainable products; increased public communication of the risks associated with overuse of pharmaceuticals and plastics; and development and implementation of regulations that are protective of health and the environment.
Collapse
Affiliation(s)
- Elizabeth A Pozzebon
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA
| | - Lars Seifert
- California Conference of Directors of Environmental Health, P.O. Box 2017, Cameron Park, CA, 95682-2017, USA.
| |
Collapse
|
106
|
Zhou S, Fu M, Ling S, Qiao Z, Luo K, Peng C, Zhang W, Lei J, Zhou B. Legacy and novel brominated flame retardants in a lab-constructed freshwater ecosystem: Distribution, bioaccumulation, and trophic transfer. WATER RESEARCH 2023; 242:120176. [PMID: 37301001 DOI: 10.1016/j.watres.2023.120176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The extensive utilization of both legacy and novel brominated flame retardants (BFRs) leads to high environmental concentrations, which would be bioaccumulated by organisms and further transferred through the food webs, causing potential risks to humans. In this study, five BFRs, that showed high detection frequencies and concentrations in sediments from an e-waste dismantling site in Southern China, namely 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209), were selected as target pollutants in the lab-constructed aquatic food web as part of a micro-ecosystem, to investigate their distribution, bioaccumulation, and trophic transfer patterns. The significant correlations between different samples in the food web indicated that the dietary uptake appeared to influence the levels of BFRs in organisms. Significant negative correlations were observed between the trophic level of organisms and the lipid-normalized concentrations of BTBPE and DBDPE, indicating the occurrence of trophic dilution after 5-month exposure. However, the average values of bioaccumulation factors (BAFs) were from 2.49 to 5.17 L/kg, underscoring the importance of continued concern for environmental risks of BFRs. The organisms occupying higher trophic levels with greater bioaccumulation capacities may play a pivotal role in determining the trophic magnification potentials of BFRs. This research provides a helpful reference for studying the impacts of feeding habits on bioaccumulation and biomagnification, as well as for identifying the fate of BFRs in aquatic environment.
Collapse
Affiliation(s)
- Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailun Luo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Juying Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
107
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
108
|
Peritore AF, Gugliandolo E, Cuzzocrea S, Crupi R, Britti D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int J Mol Sci 2023; 24:11707. [PMID: 37511474 PMCID: PMC10380748 DOI: 10.3390/ijms241411707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Perfluorinated and polyfluorinated alkyl substances (PFAS), more than 4700 in number, are a group of widely used man-made chemicals that accumulate in living things and the environment over time. They are known as "forever chemicals" because they are extremely persistent in our environment and body. Because PFAS have been widely used for many decades, their presence is evident globally, and their persistence and potential toxicity create concern for animals, humans and environmental health. They can have multiple adverse health effects, such as liver damage, thyroid disease, obesity, fertility problems, and cancer. The most significant source of living exposure to PFAS is dietary intake (food and water), but given massive industrial and domestic use, these substances are now punctually present not only domestically but also in the outdoor environment. For example, livestock and wildlife can be exposed to PFAS through contaminated water, soil, substrate, air, or food. In this review, we have analyzed and exposed the characteristics of PFAS and their various uses and reported data on their presence in the environment, from industrialized to less populated areas. In several areas of the planet, even in areas far from large population centers, the presence of PFAS was confirmed, both in marine and terrestrial animals (organisms). Among the most common PFAS identified are undoubtedly perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), two of the most widely used and, to date, among the most studied in terms of toxicokinetics and toxicodynamics. The objective of this review is to provide insights into the toxic potential of PFAS, their exposure, and related mechanisms.
Collapse
Affiliation(s)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy
| | - Domenico Britti
- Department of Health Sciences, Campus Universitario "Salvatore Venuta" Viale Europa, "Magna Græcia University" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
109
|
Hedgespeth ML, Taylor DL, Balint S, Schwartz M, Cantwell MG. Ecological characteristics impact PFAS concentrations in a U.S. North Atlantic food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163302. [PMID: 37031936 PMCID: PMC10451026 DOI: 10.1016/j.scitotenv.2023.163302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
This is the first comprehensive study of per- and polyfluoroalkyl substances (PFAS) in a coastal food web of the U.S. North Atlantic, in which we characterize the presence and concentrations of 24 targeted PFAS across 18 marine species from Narragansett Bay, Rhode Island, and surrounding waters. These species reflect the diversity of a typical North Atlantic Ocean food web with organisms from a variety of taxa, habitat types, and feeding guilds. Many of these organisms have no previously reported information on PFAS tissue concentrations. We found significant relationships of PFAS concentrations with respect to various ecological characteristics including species, body size, habitat, feeding guild, and location of collection. Based upon the 19 PFAS detected in the study (5 were not detected in samples), benthic omnivores (American lobsters = 10.5 ng/g ww, winter skates = 5.77 ng/g ww, Cancer crabs = 4.59 ng/g ww) and pelagic piscivores (striped bass = 8.50 ng/g ww, bluefish = 4.30 ng/g ww) demonstrated the greatest average ∑PFAS concentrations across all species sampled. Further, American lobsters had the highest concentrations detected in individuals (∑PFAS up to 21.1 ng/g ww, which consisted primarily of long-chain PFCAs). The calculation of field-based trophic magnification factors (TMFs) for the top 8 detected PFAS determined that perfluorodecanoic acid (PFDA), perfluorooctane sulfonic acid (PFOS), and perfluorooctane sulfonamide (FOSA) associated with the pelagic habitat biomagnified, whereas perfluorotetradecanoic acid (PFTeDA) associated with the benthic habitat demonstrated trophic dilution in this food web (calculated trophic levels ranged from 1.65 to 4.97). While PFAS exposure to these organisms may have adverse implications for ecological impacts via toxicological effects, many of these species are also key recreational and commercial fisheries resulting in potential for human exposure via dietary consumption.
Collapse
Affiliation(s)
- Melanie L Hedgespeth
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA.
| | - David L Taylor
- Department of Marine Biology, Roger Williams University, One Old Ferry Road, Bristol, RI 02809, USA
| | - Sawyer Balint
- ORISE Research Participant at the US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| | - Morgan Schwartz
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| | - Mark G Cantwell
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, USA
| |
Collapse
|
110
|
Forthun IH, Roelants M, Haug LS, Knutsen HK, Schell LM, Jugessur A, Bjerknes R, Sabaredzovic A, Bruserud IS, Juliusson PB. Levels of per- and polyfluoroalkyl substances (PFAS) in Norwegian children stratified by age and sex - Data from the Bergen Growth Study 2. Int J Hyg Environ Health 2023; 252:114199. [PMID: 37295275 DOI: 10.1016/j.ijheh.2023.114199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIM Due to the persistence, bioaccumulation and potential adverse health effects, there have been restrictions and phase out in the production of certain per- and polyfluoroalkyl substances (PFAS) since the early 2000s. Published serum levels of PFAS during childhood are variable and may reflect the impact of age, sex, sampling year and exposure history. Surveying the concentrations of PFAS in children is vital to provide information regarding exposure during this critical time of development. The aim of the current study was therefore to evaluate serum concentrations of PFAS in Norwegian schoolchildren according to age and sex. MATERIAL AND METHODS Serum samples from 1094 children (645 girls and 449 boys) aged 6-16 years, attending schools in Bergen, Norway, were analyzed for 19 PFAS. The samples were collected in 2016 as part of the Bergen Growth Study 2. Statistical analyses included Student t-test, one-way ANOVA and Spearman's correlation analysis of log-transformed data. RESULTS Of the 19 PFAS examined, 11 were detected in the serum samples. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS) and perfluorononaoic acid (PFNA) were present in all samples with geometric means of 2.67, 1.35, 0.47 and 0.68 ng/mL, respectively. In total, 203 children (19%) had PFAS levels above the safety limits set by the German Human Biomonitoring Commission. Significantly higher serum concentrations were found in boys compared to girls for PFOS, PFNA, PFHxS and perfluoroheptanesulfonic acid (PFHpS). Furthermore, serum concentrations of PFOS, PFOA, PFHxS and PFHpS were significantly higher in children under the age of 12 years than in older children. CONCLUSIONS PFAS exposure was widespread in the sample population of Norwegian children analyzed in this study. Approximately one out of five children had PFAS levels above safety limits, indicating a potential risk of negative health effects. The majority of the analyzed PFAS showed higher levels in boys than in girls and decreased serum concentrations with age, which may be explained by changes related to growth and maturation.
Collapse
Affiliation(s)
- Ingvild Halsør Forthun
- Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| | - Mathieu Roelants
- Department of Public Health and Primary Care, Centre for Environment and Health KU Leuven, Leuven, Belgium
| | - Line Småstuen Haug
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway; Center for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle Katrine Knutsen
- Department of Food Safety, Norwegian Institute of Public Health, Oslo, Norway; Center for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Lawrence M Schell
- Department of Epidemiology and Biostatistics, University at Albany, Albany, NY, USA
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Robert Bjerknes
- Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Ingvild Særvold Bruserud
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Faculty of Health, VID Specialized University, Bergen, Norway
| | - Petur Benedikt Juliusson
- Department of Clinical Science, University of Bergen, Bergen, Norway; Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway; Department of Health Registry Research and Development, Norwegian Institute of Public Health, Bergen, Norway
| |
Collapse
|
111
|
Mohona TM, Ye Z, Dai N, Nalam PC. Adsorption behavior of long-chain perfluoroalkyl substances on hydrophobic surface: A combined molecular characterization and simulation study. WATER RESEARCH 2023; 239:120074. [PMID: 37207455 DOI: 10.1016/j.watres.2023.120074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Hydrophobic interaction is a prevalent sorption mechanism of poly- and perfluoroalkyl substances (PFAS) in natural and engineered environments. In this study, we combined quartz crystal microbalance with dissipation (QCM-D), atomic force microscope (AFM) with force mapping, and molecular dynamics (MD) simulation to probe the molecular behavior of PFAS at the hydrophobic interface. On a CH3-terminated self-assembled monolayer (SAM), perfluorononanoic acid (PFNA) showed ∼2-fold higher adsorption than perfluorooctane sulfonate (PFOS) that has the same fluorocarbon tail length but a different head group. Kinetic modeling using the linearized Avrami model suggests that the PFNA/PFOS-surface interaction mechanisms can evolve over time. This is confirmed by AFM force-distance measurements, which shows that while the adsorbed PFNA/PFOS molecules mostly lay flat, a portion of them formed aggregates/hierarchical structures of 1-10 nm in size after lateral diffusion on surface. PFOS showed a higher affinity to aggregate than PFNA. Association with air nanobubbles is observed for PFOS but not PFNA. MD simulations further showed that PFNA has a greater tendency than PFOS to have its tail inserted into the hydrophobic SAM, which can enhance adsorption but limit lateral diffusion, consistent with the relative behavior of PFNA/PFOS in QCM and AFM experiments. This integrative QCM-AFM-MD study reveals that the interfacial behavior of PFAS molecules can be heterogeneous even on a relatively homogeneous surface.
Collapse
Affiliation(s)
- Tashfia M Mohona
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA; Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, USA
| | - Zhijiang Ye
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH, USA
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA.
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
112
|
Yang Z, Zhuo Q, Wang W, Guo S, Chen J, Li Y, Lv S, Yu G, Qiu Y. Fabrication and characterizations of Zn-doped SnO 2-Ti 4O 7 anode for electrochemical degradation of hexafluoropropylene oxide dimer acid and its homologues. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131605. [PMID: 37196440 DOI: 10.1016/j.jhazmat.2023.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) and its homologues, as perfluorinated ether alkyl substances with strong antioxidant properties, have rarely been reported by electrooxidation processes to achieve good results. Herein, we report the use of an oxygen defect stacking strategy to construct Zn-doped SnO2-Ti4O7 for the first time and enhance the electrochemical activity of Ti4O7. Compared with the original Ti4O7, the Zn-doped SnO2-Ti4O7 showed a 64.4% reduction in interfacial charge transfer resistance, a 17.5% increase in the cumulative rate of •OH generation, and an enhanced oxygen vacancy concentration. The Zn-doped SnO2-Ti4O7 anode exhibited high catalytic efficiency of 96.4% for HFPO-DA within 3.5 h at 40 mA/cm2. Hexafluoropropylene oxide trimer and tetramer acid exhibit more difficult degradation due to the protective effect of the -CF3 branched chain and the addition of the ether oxygen atom leading to a significant increase in the C-F bond dissociation energy. The degradation rates of 10 cyclic degradation experiments and the leaching concentrations of Zn and Sn after 22 electrolysis experiments demonstrated the good stability of the electrodes. In addition, the aqueous toxicity of HFPO-DA and its degradation products was evaluated. This study analyzed the electrooxidation process of HFPO-DA and its homologues for the first time, and provided some new insights.
Collapse
Affiliation(s)
- Zehong Yang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Qiongfang Zhuo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Dongguan Key Laboratory of Emerging Contaminants, Dongguan 523808, Guangdong, China.
| | - Wenlong Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Shuting Guo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Jianfeng Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Sihao Lv
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519000, Guangdong, China
| | - Yongfu Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| |
Collapse
|
113
|
Meeks J, Mass S, Adgate JL, Barton K, Singha K, McCray JE, Starling AP, Higgins CP. Estimating historical exposure to perfluoroalkyl acids in Security, Fountain, and Widefield Colorado: use of water-infrastructure blending and toxicokinetic models. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:996-1006. [PMID: 37133397 DOI: 10.1039/d2em00337f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Drinking water can be a major source of poly- and perfluoroalkyl substance (PFAS) exposure for humans. The lack of historic data on PFAS drinking-water concentrations and consumption patterns are a limiting factor for developing estimates of past exposure. Here, in contribution to a community-scale PFAS health effects study near fire training facilities that contaminated a local aquifer with PFASs, we present a novel water-infrastructure, mass-balance mixing model coupled to a non-steady state, single-compartment toxicokinetic model that used Monte Carlo simulations to estimate the start of PFAS exposure in drinking water for individuals within three PFAS-impacted communities in El Paso County, Colorado. Our modeling focused on perfluorohexane sulfonic acid (PFHxS) because median serum PFHxS concentrations in a sample of local residents (n = 213) were twelve times the median observed in the U.S. National Health and Nutrition Examination Survey (2015-2016). Modeling results for study participants were grouped according to their community of residence, revealing a median start of exposure for the town of Fountain of 1998 (25-75% interquartile range [IQR], 1992 to 2010), 2006 (IQR 1995 to 2012) for Security, and 2009 (IQR 1996-2012) for Widefield. Based on the towns' locations relative to an identified hydraulically upgradient PFAS source, the modeled exposure sequencing does not completely align with this conceptual flow model, implying the presence of an additional PFAS source for the groundwater between Widefield and Fountain.
Collapse
Affiliation(s)
- Jessica Meeks
- Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA.
- Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Sarah Mass
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, 13001 East 17th Place, Mail Stop B119, Aurora, CO 80045, USA
| | - Kelsey Barton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, 13001 East 17th Place, Mail Stop B119, Aurora, CO 80045, USA
| | - Kamini Singha
- Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA.
- Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - John E McCray
- Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA.
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Anne P Starling
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, 13001 East 17th Place, Mail Stop B119, Aurora, CO 80045, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher P Higgins
- Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA.
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| |
Collapse
|
114
|
Hartz WF, Björnsdotter MK, Yeung LWY, Hodson A, Thomas ER, Humby JD, Day C, Jogsten IE, Kärrman A, Kallenborn R. Levels and distribution profiles of Per- and Polyfluoroalkyl Substances (PFAS) in a high Arctic Svalbard ice core. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161830. [PMID: 36716880 DOI: 10.1016/j.scitotenv.2023.161830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of persistent organic contaminants of which some are toxic and bioaccumulative. Several PFAS can be formed from the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs) as well as hydrochlorofluorocarbons (HFCs) and other ozone-depleting chlorofluorocarbon (CFC) replacement compounds. Svalbard ice cores have been shown to provide a valuable record of long-range atmospheric transport of contaminants to the Arctic. This study uses a 12.3 m ice core from the remote Lomonosovfonna ice cap on Svalbard to understand the atmospheric deposition of PFAS in the Arctic. A total of 45 PFAS were targeted, of which 26 were detected, using supercritical fluid chromatography (SFC) tandem mass spectrometry (MS/MS) and ultra-performance liquid chromatography (UPLC) MS/MS. C2 to C11 perfluoroalkyl carboxylic acids (PFCAs) were detected continuously in the ice core and their fluxes ranged from 2.5 to 8200 ng m-2 yr-1 (9.51-16,500 pg L-1). Trifluoroacetic acid (TFA) represented 71 % of the total mass of C2 - C11 PFCAs in the ice core and had increasing temporal trends in deposition. The distribution profile of PFCAs suggested that FTOHs were likely the atmospheric precursor to C8 - C11 PFCAs, whereas C2 - C6 PFCAs had alternative sources, such as HFCs and other CFC replacement compounds. Perfluorooctanesulfonic acid (PFOS) was also widely detected in 82 % of ice core subsections, and its isomer profile (81 % linear) indicated an electrochemical fluorination manufacturing source. Comparisons of PFAS concentrations with a marine aerosol proxy showed that marine aerosols were insignificant for the deposition of PFAS on Lomonosovfonna. Comparisons with a melt proxy showed that TFA and PFOS were mobile during meltwater percolation. This indicates that seasonal snowmelt and runoff from post-industrial accumulation on glaciers could be a significant seasonal source of PFAS to ecosystems in Arctic fjords.
Collapse
Affiliation(s)
- William F Hartz
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom; Department of Arctic Geology, University Centre in Svalbard (UNIS), NO-9171, Longyearbyen, Svalbard, Norway.
| | - Maria K Björnsdotter
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona, 18-26, 08034 Barcelona, Catalonia, Spain; Man-Technology-Environment Research Centre (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Leo W Y Yeung
- Man-Technology-Environment Research Centre (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Andrew Hodson
- Department of Arctic Geology, University Centre in Svalbard (UNIS), NO-9171, Longyearbyen, Svalbard, Norway; Department of Environmental Sciences, Western Norway University of Applied Sciences, NO-6851 Sogndal, Norway
| | - Elizabeth R Thomas
- Ice Dynamics and Paleoclimate, British Antarctic Survey, High Cross, Cambridge CB3 0ET, United Kingdom
| | - Jack D Humby
- Ice Dynamics and Paleoclimate, British Antarctic Survey, High Cross, Cambridge CB3 0ET, United Kingdom
| | - Chris Day
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom
| | - Ingrid Ericson Jogsten
- Man-Technology-Environment Research Centre (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Anna Kärrman
- Man-Technology-Environment Research Centre (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway; Department of Arctic Technology, University Centre in Svalbard (UNIS), NO-9171, Longyearbyen, Svalbard, Norway
| |
Collapse
|
115
|
Hegner K, Hinduja C, Butt HJ, Vollmer D. Fluorine-Free Super-Liquid-Repellent Surfaces: Pushing the Limits of PDMS. NANO LETTERS 2023; 23:3116-3121. [PMID: 37039578 PMCID: PMC10141414 DOI: 10.1021/acs.nanolett.2c03779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Methods for fabricating super-liquid-repellent surfaces have typically relied on perfluoroalkyl substances. However, growing concerns about the environmental and health effects of perfluorinated compounds have caused increased interest in fluorine-free alternatives. Polydimethylsiloxane (PDMS) is most promising. In contrast to fluorinated surfaces, PDMS-coated surfaces showed only superhydrophobicity. This raises the question whether the poor liquid repellency is caused by PDMS interacting with the probe liquid or whether it results from inappropriate surface morphology. Here, we demonstrate that a well-designed two-tier structure consisting of silicon dioxide nanoparticles combined with surface-tethered PDMS chains allows super-liquid-repellency toward a range of low surface tension liquids. Drops of water-ethanol solutions with surface tensions as low as 31.0 mN m-1 easily roll and bounce off optimized surface structures. Friction force measurements demonstrate excellent surface homogeneity and easy mobility of drops. Our work shows that fluorine-free super-liquid-repellent surfaces can be achieved using scalable fabrication methods and environmentally friendly surface functionalization.
Collapse
|
116
|
Mao W, Li M, Xue X, Cao W, Wang X, Xu F, Jiang W. Bioaccumulation and toxicity of perfluorooctanoic acid and perfluorooctane sulfonate in marine algae Chlorella sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161882. [PMID: 36731575 DOI: 10.1016/j.scitotenv.2023.161882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The ocean is an important sink for perfluorinated alkyl acids (PFAAs), but the toxic mechanisms of PFAAs to marine organisms have not been clearly studied. In this study, the growth rate, photosynthetic activity, oxidative stress and bioaccumulation were investigated using marine algae Chlorella sp. after the exposure of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate acid (PFOS). The results showed that PFOA of <40 mg/L and PFOS of <20 mg/L stimulated algal reproduction, and high doses inhibited the algal growth. The absorbed PFOA and PFOS by algal cells damaged cell membrane and caused metabolic disorder. The photosynthesis activity was inhibited, which was revealed by the significantly reduced maximal quantum yield (Fv/Fm), relative electron transfer rate (rETR) and carbohydrate synthesis. However, the chlorophyll a content increased along with the up-regulation of its encoding genes (psbB and chlB), probably due to an overcompensation effect. The increase of ROS and antioxidant substances (SOD, CAT and GSH) indicated that PFOA and PFOS caused oxidative stress. The BCF of marine algae Chlorella sp. to PFOA and PFOS was calculated to be between 82 and 200, confirming the bioaccumulation of PFOA and PFOS in marine algae. In summary, PFOA and PFOS can accumulate in Chlorella sp. cells, disrupt photosynthesis, trigger oxidative stress and inhibit algal growth. PFOS shows higher toxicity and bioaccumulation than PFOA. The information is important to evaluate the environmental risks of PFAAs.
Collapse
Affiliation(s)
- Wenqian Mao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mingyang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xingyan Xue
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Cao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
117
|
Khan B, Burgess RM, Cantwell MG. Occurrence and Bioaccumulation Patterns of Per- and Polyfluoroalkyl Substances (PFAS) in the Marine Environment. ACS ES&T WATER 2023; 3:1243-1259. [PMID: 37261084 PMCID: PMC10228145 DOI: 10.1021/acsestwater.2c00296] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic compounds used in commercial applications, household products, and industrial processes. The concern around the environmental persistence, bioaccumulation and toxicity of this vast contaminant class continues to rise. We conducted a review of the scientific literature to compare patterns of PFAS bioaccumulation in marine organisms and identify compounds of potential concern. PFAS occurrence data in seawater, sediments, and several marine taxa was analyzed from studies published between the years 2000 and 2020. Taxonomic and tissue-specific differences indicated elevated levels in protein-rich tissues and in air-breathing organisms compared to those that respire in water. Long-chain perfluoroalkyl carboxylic acids, particularly perfluoroundecanoic acid, were detected at high concentrations across several taxa and across temporal studies indicating their persistence and bioaccumulative potential. Perfluorooctanesulfonic acid was elevated in various tissue types across taxa. Precursors and replacement PFAS were detected in several marine organisms. Identification of these trends across habitats and taxa can be applied towards biomonitoring efforts, determination of high-risk taxa, and criteria development. This review also highlights challenges related to PFAS biomonitoring including (i) effects of environmental and biological variables, (ii) evaluation of protein binding sites and affinities, and (iii) biotransformation of precursors.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | - Mark G. Cantwell
- US Environmental Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| |
Collapse
|
118
|
Guo J, Tu K, Zhou C, Lin D, Wei S, Zhang X, Yu H, Shi W. Methodology for Effect-Based Identification of Bioconcentratable Endocrine Disrupting Chemicals (EDCs) in Water: Establishment, Validation, and Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6284-6295. [PMID: 37013483 DOI: 10.1021/acs.est.2c08025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Since the wide occurrence of endocrine disrupting chemicals (EDCs) in water is associated with various adverse effects in aquatic organisms, it is urgent to identify key bioconcentratable EDCs. Currently, bioconcentration is generally ignored during the identification of key EDCs. Thus, a methodology for effect-based identification of bioconcentratable EDCs was established in Microcosm, validated in the field, and applied to typical surface water in Taihu Lake. In Microcosm, an inverted U-shaped relationship between logBCFs and logKows was observed for typical EDCs, with medium hydrophobic EDCs (3 ≤ logKow ≤ 7) exhibiting the greatest bioconcentration potentials. On this basis, enrichment methods for bioconcentratable EDCs were established using POM and LDPE, which better fitted the bioconcentration characteristics and enabled the enrichment of 71 ± 8% and 69 ± 6% bioconcentratable compounds. The enrichment methods were validated in the field, where LDPE exhibited a more significant correlation with the bioconcentration characteristics than POM, with mean correlation coefficients of 0.36 and 0.15, respectively, which was selected for further application. By application of the new methodology in Taihu Lake, 7 EDCs were prioritized from 79 identified EDCs as key bioconcentratable EDCs on consideration of their great abundance, bioconcentration potentials, and anti-androgenic potencies. The established methodology could support the evaluation and identification of bioconcentratable contaminants.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Keng Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chengzhuo Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Die Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
119
|
Li D, Pan B, Han X, Lu Y, Wang X. Toxicity risks associated with trace metals call for conservation of threatened fish species in heavily sediment-laden Yellow River. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130928. [PMID: 36746087 DOI: 10.1016/j.jhazmat.2023.130928] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Trace metals and metalloids in aquatic ecosystems may lead to adverse effects on the survival of fish, especially in the sensitive life stages of vulnerable species. It is still unknown whether threatened fish species in the heavily sediment-laden Yellow River are exposed to toxicity risks associated with multiple trace metals. Herein, we analyzed the concentrations of trace metals in aquatic environmental media and fish tissues across the Yellow River mainstream and assessed the level of metal toxicity to threatened fish. Significantly different concentrations of trace metals in fish tissues were measured between at least two categories among near-threatened, vulnerable, endangered, and critically endangered fish. No metal showed a higher concentration in demersal fish than in pelagic fish. Substantially low metal toxicity was observed for the gill of Rhinogobio nasutus (near-threatened) in the upper reaches, as well as for the gill and liver of Silurus lanzhouensis (endangered) in the middle reaches. High contents of suspended sediment in water and high metal concentrations in sediment and suspended matter could influence the survival and reproduction of fish, especially those already with threatened status.
Collapse
Affiliation(s)
- Dianbao Li
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China.
| | - Xu Han
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Yue Lu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Xinyuan Wang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| |
Collapse
|
120
|
Barber LB, Pickard HM, Alvarez DA, Becanova J, Keefe SH, LeBlanc DR, Lohmann R, Steevens JA, Vajda AM. Uptake of Per- and Polyfluoroalkyl Substances by Fish, Mussel, and Passive Samplers in Mobile-Laboratory Exposures Using Groundwater from a Contamination Plume at a Historical Fire Training Area, Cape Cod, Massachusetts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5544-5557. [PMID: 36972291 PMCID: PMC10116195 DOI: 10.1021/acs.est.2c06500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aqueous film-forming foams historically were used during fire training activities on Joint Base Cape Cod, Massachusetts, and created an extensive per- and polyfluoroalkyl substances (PFAS) groundwater contamination plume. The potential for PFAS bioconcentration from exposure to the contaminated groundwater, which discharges to surface water bodies, was assessed with mobile-laboratory experiments using groundwater from the contamination plume and a nearby reference location. The on-site continuous-flow 21-day exposures used male and female fathead minnows, freshwater mussels, polar organic chemical integrative samplers (POCIS), and polyethylene tube samplers (PETS) to evaluate biotic and abiotic uptake. The composition of the PFAS-contaminated groundwater was complex and 9 PFAS were detected in the reference groundwater and 17 PFAS were detected in the contaminated groundwater. The summed PFAS concentrations ranged from 120 to 140 ng L-1 in reference groundwater and 6100 to 15,000 ng L-1 in contaminated groundwater. Biotic concentration factors (CFb) for individual PFAS were species, sex, source, and compound-specific and ranged from 2.9 to 1000 L kg-1 in whole-body male fish exposed to contaminated groundwater for 21 days. The fish and mussel CFb generally increased with increasing fluorocarbon chain length and were greater for sulfonates than for carboxylates. The exception was perfluorohexane sulfonate, which deviated from the linear trend and had a 10-fold difference in CFb between sites, possibly because of biotransformation of precursors such as perfluorohexane sulfonamide. Uptake for most PFAS in male fish was linear over time, whereas female fish had bilinear uptake indicated by an initial increase in tissue concentrations followed by a decrease. Uptake of PFAS was less for mussels (maximum CFb = 200) than for fish, and mussel uptake of most PFAS also was bilinear. Although abiotic concentration factors were greater than CFb, and values for POCIS were greater than for PETS, passive samplers were useful for assessing PFAS that potentially bioconcentrate in fish but are present at concentrations below method quantitation limits in water. Passive samplers also accumulate short-chain PFAS that are not bioconcentrated.
Collapse
Affiliation(s)
- Larry B Barber
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Heidi M Pickard
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - David A Alvarez
- U.S. Geological Survey, 4200 New Haven Road, Columbia, Missouri 65201, United States
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Horn Building 118, 215 South Ferry Road, Narragansett, Rhode Island 02882, United States
| | - Steffanie H Keefe
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Denis R LeBlanc
- U.S. Geological Survey, 10 Bearfoot Road, Northborough, Massachusetts 01532, United States
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Horn Building 118, 215 South Ferry Road, Narragansett, Rhode Island 02882, United States
| | - Jeffery A Steevens
- U.S. Geological Survey, 4200 New Haven Road, Columbia, Missouri 65201, United States
| | - Alan M Vajda
- University of Colorado Denver, P.O. Box 173364, Denver, Colorado 80217, United States
| |
Collapse
|
121
|
Lewis AJ, Ebrahimi F, McKenzie ER, Suri R, Sales CM. Influence of microbial weathering on the partitioning of per- and polyfluoroalkyl substances (PFAS) in biosolids. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:415-431. [PMID: 36637091 DOI: 10.1039/d2em00350c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of man-made fluorinated organic chemicals that can accumulate in the environment. In water resource recovery facilities (WRRFs), some commonly detected PFAS tend to partition to and concentrate in biosolids where they can act as a source to ecological receptors and may leach to groundwater when land-applied. Although biosolids undergo some stabilization to reduce pathogens before land application, they still contain many microorganisms, contributing to the eventual decomposition of different components of the biosolids. This work demonstrates ways in which microbial weathering can influence biosolids decomposition, degrade PFAS, and impact PFAS partitioning in small-scale, controlled laboratory experiments. In the microbial weathering experiments, compound-specific PFAS biosolids-water partitioning coefficients (Kd) were demonstrated to decrease, on average, 0.4 logs over the course of the 91 day study, with the most rapid changes occurring during the first 10 days. Additionally, the highest rates of lipid, protein, and organic matter removal occurred during the same time. Among the evaluated independent variables, statistical analyses demonstrated that the most significant solids characteristics that impacted PFAS partitioning were organic matter, proteins, lipids, and molecular weight of organics. A multiple linear regression model was built to predict PFAS partitioning behavior in biosolids based on solid characteristics of the biosolids and PFAS characteristics with a R2 value of 0.7391 when plotting predicted and measured log Kd. The findings from this work reveal that microbial weathering can play a significant role in the eventual fate and transport of PFAS and their precursors from biosolids.
Collapse
Affiliation(s)
- Asa J Lewis
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3100 Market St., Philadelphia, PA, 19104, USA.
| | - Farshad Ebrahimi
- Department of Civil and Environmental Engineering, Temple University, 1947 N 12th St., Philadelphia, PA, 19122, USA
| | - Erica R McKenzie
- Department of Civil and Environmental Engineering, Temple University, 1947 N 12th St., Philadelphia, PA, 19122, USA
| | - Rominder Suri
- Department of Civil and Environmental Engineering, Temple University, 1947 N 12th St., Philadelphia, PA, 19122, USA
| | - Christopher M Sales
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3100 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
122
|
Nesse AS, Jasinska A, Ali AM, Sandblom O, Sogn TA, Benskin JP. Uptake of Ultrashort Chain, Emerging, and Legacy Per- and Polyfluoroalkyl Substances (PFAS) in Edible Mushrooms ( Agaricus spp.) Grown in a Polluted Substrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4458-4465. [PMID: 36883363 PMCID: PMC10037327 DOI: 10.1021/acs.jafc.2c03790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Uptake of 19 per- and polyfluoroalkyl substances (PFAS), including C3-C14 perfluoroalkyl carboxylic acids (PFCAs), C4, C6, and C8 perfluoroalkyl sulfonates (PFSAs), and four emerging PFAS, was investigated in two mushroom species (Agaricus bisporus and Agaricus subrufescens) cultivated in a biogas digestate-based substrate. Accumulation of PFAS in mushrooms was low and strongly chain-length dependent. Among the different PFCAs, bioaccumulation factors (log BAFs) decreased from a maximum of -0.3 for perfluoropropanoic acid (PFPrA; C3) to a minimum of -3.1 for perfluoroheptanoate (PFHpA; C7), with only minor changes from PFHpA to perfluorotridecanoate (PFTriDA; C13). For PFSAs, log BAFs decreased from perfluorobutane sulfonate (PFBS; -2.2) to perfluorooctane sulfonate (PFOS; -3.1) while mushroom uptake was not observed for the alternatives 3H-perfluoro-3-[(3-methoxy-propoxy)propanoic acid] (ADONA) and two chlorinated polyfluoro ether sulfonates. To the best of our knowledge, this is the first investigation of the uptake of emerging and ultra-short chain PFAS in mushrooms, and generally the results indicate very low accumulation of PFAS.
Collapse
Affiliation(s)
- Astrid Solvåg Nesse
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Agnieszka Jasinska
- Lindum
AS, 3036 Drammen, Norway
- Department
of Vegetable Crops, Faculty of Horticulture, Poznan University of Life Sciences, 60-637 Poznań, Poland
| | - Aasim Musa Ali
- Department
of Contaminants and Biohazards, Institute
of Marine Research, 5005 Bergen, Norway
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Oskar Sandblom
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Trine A. Sogn
- Faculty
of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
123
|
Ye MX, Luo XJ, Liu Y, Zhu CH, Feng QJ, Zeng YH, Mai BX. Sex-Specific Bioaccumulation, Maternal Transfer, and Tissue Distribution of Legacy and Emerging Per- and Polyfluoroalkyl Substances in Snakes ( Enhydris chinensis) and the Impact of Pregnancy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4481-4491. [PMID: 36881938 DOI: 10.1021/acs.est.2c09063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The effects of sex and pregnancy on the bioaccumulation and tissue distribution of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Chinese water snakes were investigated. The bioaccumulation factor of PFASs showed a positive correlation with their protein-water partition coefficients (log KPW), and steric hindrance effects were observed when the molecular volume was > 357 Å3. PFAS levels in females were significantly lower than those in males. The chemical composition of pregnant females was significantly different from that of non-pregnant females and males. The maternal transfer efficiencies of perfluorooctane sulfonic acid were higher than those of other PFASs, and a positive correlation between the maternal transfer potential and log KPW was observed for other PFASs. Tissues with high phospholipid content exhibited higher concentrations of ∑PFASs. Numerous physiological changes occurred in maternal organ systems during pregnancy, leading to the re-distribution of chemicals among different tissues. The change in tissue distribution of PFASs that are easily and not-so-easily maternally transferred was in the opposite direction. The extent of compound transfer from the liver to the egg determined tissue re-distribution during pregnancy.
Collapse
Affiliation(s)
- Mei-Xia Ye
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Chu-Hong Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qun-Jie Feng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
124
|
Zango ZU, Khoo KS, Garba A, Kadir HA, Usman F, Zango MU, Da Oh W, Lim JW. A review on superior advanced oxidation and photocatalytic degradation techniques for perfluorooctanoic acid (PFOA) elimination from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115326. [PMID: 36690243 DOI: 10.1016/j.envres.2023.115326] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) has been identified as the most toxic specie of the family of perfluorinated carboxylic acids (PFCAs). It has been widely distributed and frequently detected in environmental wastewater. The compound's unique features such as inherent stability, rigidity, and resistance to harsh chemical and thermal conditions, due to its multiple and strong C-F bonds have resulted in its resistance to conventional wastewater remediations. Photolysis and bioremediation methods have been proven to be inefficient in their elimination, hence this article presents intensive literature studies and summarized findings reported on the application of advanced oxidation processes (AOPs) and photocatalytic degradation techniques as the best alternatives for the PFOA elimination from wastewater. Techniques of persulfate, photo-Fenton, electrochemical, photoelectrochemical and photocatalytic degradation have been explored and their mechanisms for the degradation and defluorination of the PFOA have been demonstrated. The major advantage of AOPs techniques has been centralized on the generation of active radicals such as sulfate (SO4•-) hydroxyl (•OH). While for the photocatalytic process, photogenerated species (electron (e) and holes (h + vb)) initiated the process. These active radicals and photogenerated species possessed potentiality to attack the PFOA molecule and caused the cleavage of the C-C and C-F bonds, resulting in its efficient degradation. Shorter-chain PFCAs have been identified as the major intermediates detected and the final stage entails its complete mineralization to carbon dioxide (CO2) and fluoride ion (F-). The prospects and challenges associated with the outlined techniques have been highlighted for better understanding of the subject matter for the PFOA elimination from real wastewaters.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi, Nigeria
| | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
125
|
Hopkins KE, McKinney MA, Letcher RJ, Fernie KJ. The influence of environmental and ecological factors on the accumulation and distribution of short- and long-chain perfluoroalkyl acids in a mid-trophic avian insectivore. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121133. [PMID: 36690292 DOI: 10.1016/j.envpol.2023.121133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Perfluoroalkyl acids (PFAAs) include perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorodecane sulfonic acid (PFDS), as well as increasingly used alternative short-chain perfluorosulfonic acids (PFSAs) and short- and long-chain (≥C9) perfluorocarboxylic acids (PFCAs). In the present study, tissues of tree swallows (Tachycineta bicolor) from two sites in southern Ontario, Canada, were analyzed for 17 individual PFAAs and showed egg and nestling tissue (liver, carcass) profiles dominated by PFOS (57-66%). The remaining PFAAs contributed ≤7% each, although collectively the long-chain PFCAs comprised 21-29% of the PFAAs. The short-chain PFSAs and PFCAs were among the lowest concentrations, suggesting that despite increased production and use of these alternative PFAAs, they are not accumulated to the same extent as the long-chain PFSAs and PFCAs. PFOS, PFDS, and some long-chain PFCAs were significantly higher in eggs than in livers and carcasses, whereas PFOA and the two short-chain PFCAs were significantly higher in nestling tissues than in eggs. For the two short-chain PFSAs, concentrations were similar among tissues. Tree swallow tissues at the site near a wastewater treatment plant (WWTP) outfall showed higher concentrations of PFOS, PFDS, PFHxS, and some long-chain PFCAs than tree swallows sampled at the nearby reference site; however, the influence of the WWTP was more equivocal for PFOA, other long-chain PFCAs, and short-chain PFSAs and PFCAs. Carbon stable isotopes (δ13C) and fatty acid signatures indicated that the diets of the WWTP swallows were more terrestrial than the reference swallows. Nonetheless, models considering environmental and ecological variables indicated that site was often the primary driver of PFAA variation among the swallows, with less or no influence of dietary patterns, or sex or body condition, revealing that of WWTP effluent can be an important environmental source of the major PFAAs in tree swallows.
Collapse
Affiliation(s)
- Kailee E Hopkins
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1A 0H3, Canada
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
126
|
Bao M, Feng H, Zheng Y, Luo H, Sun C, Pan Y. Determination of Perfluorooctane Sulfonyl Fluoride and Perfluorohexane Sulfonyl Fluoride in Soil by Chemical Derivatization and Liquid Chromatography-Tandem Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4180-4186. [PMID: 36848521 DOI: 10.1021/acs.est.2c06958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perfluorooctane sulfonyl fluoride (PFOSF) and perfluorohexane sulfonyl fluoride (PFHxSF) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and 2022, respectively. To date, their concentrations in environmental samples have not been reported due to the lack of sensitive methods. Herein, a novel chemical derivatization was developed for quantitative analysis of trace PFOSF and PFHxSF in soil by derivatizing them to the corresponding perfluoroalkane sulfinic acids. The method showed good linearity in the range from 25 to 500 ng L-1 with correlation coefficients (R2) better than 0.99. The detection limit of PFOSF in soil was 0.066 ng g-1 with recoveries in the range of 96-111%. Meanwhile, the detection limit of PFHxSF was 0.072 ng g-1 with recoveries in the range of 72-89%. Simultaneously, perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) were also detected accurately without being affected by the derivative reaction. By applying this method in an abandoned fluorochemical manufacturing facility, PFOSF and PFHxSF were successfully detected at concentrations ranging from 2.7 to 357 ng g-1 and 0.23 to 26 ng g-1 dry weight, respectively. It is very interesting that 2 years after factory relocation, there still exists high concentrations of PFOSF and PFHxSF, which is of concern.
Collapse
Affiliation(s)
- Mian Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Yuanyuan Zheng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Haiwei Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
127
|
Zhang Y, Chen Y, Chen H, Zhang Y, Yang L, Zhong W, Zhu L. Direct evidence of the important role of proteins in bioconcentration and biomagnification of PFASs in benthic organisms based on comparison with OPEs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161012. [PMID: 36549529 DOI: 10.1016/j.scitotenv.2022.161012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Despite the wide acceptance that bioconcentration and biomagnification of per/polyfluoroalkyl substances (PFASs) is related to proteins in organisms, few direct evidences are available. Here, bioconcentration and biomagnification of 9 organophosphate esters (OPEs) and 16 PFASs, which have similar range of log Kow (octanol-water partitioning coefficient) values, were compared in the benthic food chain of biofilm-snail in Taihu Lake, China. The ∑OPEs level in water (150-23,036 ng/L) was significantly higher than ∑PFASs (57.3-351 ng/L). Although the logarithm of bioconcentration factors of both OPEs and PFASs in biofilm positively correlated with their log Kow, the slope of PFASs was 4 times of that of OPEs, which might be due to the strong interactions of PFASs with biofilm extracellular proteins. Additionally, PFASs exhibited distinctly greater biomagnification factors from biofilm to snails (3.09-17.8) than OPEs (0.39-3.48). Significant correlations between the concentrations and protein contents in snails were observed for most long-chain PFASs, but not for any OPEs. Multiple receptor models identified polyurethane foam (77.9 %) and food packaging/metal plating (56.9 %) were the primary sources of OPEs and PFASs in Taihu Lake, respectively. We provided strong and direct evidences that proteins facilitated bioconcentration and biomagnification of PFASs.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Ying Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Huijuan Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
128
|
Wen W, Xiao L, Hu D, Zhang Z, Xiao Y, Jiang X, Zhang S, Xia X. Fractionation of perfluoroalkyl acids (PFAAs) along the aquatic food chain promoted by competitive effects between longer and shorter chain PFAAs. CHEMOSPHERE 2023; 318:137931. [PMID: 36706813 DOI: 10.1016/j.chemosphere.2023.137931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are proteinophilic pollutants. We hypothesized that fractionation of PFAAs may occur along a food chain. To testify this hypothesis, we investigated the bioconcentration, bioaccumulation, and fractionation of 11 kinds of PFAAs (C-F = 3-11) along an aquatic food chain consisting of D. magna, zebrafish, and cichlid. The results showed that the proportions of PFNA, PFOA, and all shorter chain PFAAs in the D. magna and fish tissues were lower than the ones in exposure water, opposing to the other longer chain PFAAs. Predation promoted such fractionation differences, and the proportions of PFNA, PFOA, and all shorter chain PFAAs in organisms decreased while those of the other longer chain PFAAs increased along the food chain. The results of isothermal titration calorimetry and molecular docking experiments showed that binding affinities of PFAAs and fish proteins increased with the number of perfluorinated carbons, resulting in a substitution of shorter chain PFAAs by their longer chain analogues. It also triggered the differences in the uptake and elimination of PFFAs and competitive bioaccumulation between longer and shorter chain PFAAs. This study suggests that fractionation should be considered in studying environmental behaviors and evaluating ecological risks of multiple PFAAs.
Collapse
Affiliation(s)
- Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University at ZhaiHai, 519087, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Lu Xiao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University at ZhaiHai, 519087, China; Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Diexuan Hu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Zhining Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Yilin Xiao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875 China.
| |
Collapse
|
129
|
Stahl LL, Snyder BD, McCarty HB, Kincaid TM, Olsen AR, Cohen TR, Healey JC. Contaminants in fish from U.S. rivers: Probability-based national assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160557. [PMID: 36574550 PMCID: PMC9948096 DOI: 10.1016/j.scitotenv.2022.160557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Most fish consumption advisories in the United States (U.S.) are issued for mercury and polychlorinated biphenyls (PCBs), and recently per- and polyfluoroalkyl substances (PFAS) have become a contaminant group that warrants fish consumption advice. An unequal probability survey design was developed to allow a comprehensive characterization of mercury, PCB, and PFAS contamination in fish from U.S. rivers on a national scale. During 2013-14 and 2018-19, fish fillet samples were collected from 353 and 290 river sites, respectively, selected randomly from the target population of rivers (≥5th order in size) in the conterminous U.S. These comprised nationally representative samples, with results extrapolated to chemical-specific sampled populations of 48,826-79,448 river kilometers (km) in 2013-14 and 66,142 river km in 2018-19. National distribution estimates were developed for total mercury, all 209 PCB congeners, and up to 33 PFAS (including perfluorooctane sulfonate or PFOS) in river fish. All fillet tissue samples contained detectable levels of mercury and PCBs. One or more PFAS were detected in 99.7 % and 95.2 % of the fillet samples from fish collected in 2013-14 and 2018-19, respectively. Fish tissue screening levels applied to national contaminant probability distributions allowed an estimation of the percentage of the sampled population of river lengths that contained fish with fillet concentrations above a level protective of human health. Fish tissue screening level exceedances for an average level of fish consumption ranged from 23.5 % to 26.0 % for mercury, 17.3 % to 51.6 % for PCBs, and 0.7 % to 9.1 % for PFOS.
Collapse
Affiliation(s)
- Leanne L Stahl
- U.S. Environmental Protection Agency, Office of Water/Office of Science and Technology, 1200 Pennsylvania Avenue, NW (MC 4305T), Washington, DC 20460, USA.
| | - Blaine D Snyder
- Tetra Tech, Inc., Center for Ecological Sciences, 10711 Red Brook Boulevard, Suite 105, Owings Mills, MD 21117, USA.
| | - Harry B McCarty
- General Dynamics Information Technology, 3170 Fairview Park Drive, Falls Church, VA 22042, USA.
| | - Thomas M Kincaid
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 S.W. 35(th) Street, Corvallis, OR 97333, USA
| | - Anthony R Olsen
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 S.W. 35(th) Street, Corvallis, OR 97333, USA.
| | - Tara R Cohen
- Tetra Tech, Inc., Center for Ecological Sciences, 10711 Red Brook Boulevard, Suite 105, Owings Mills, MD 21117, USA.
| | - John C Healey
- U.S. Environmental Protection Agency, Office of Water/Office of Science and Technology, 1200 Pennsylvania Avenue, NW (MC 4305T), Washington, DC 20460, USA.
| |
Collapse
|
130
|
Li J, Xi B, Zhu G, Yuan Y, Liu W, Gong Y, Tan W. A critical review of the occurrence, fate and treatment of per- and polyfluoroalkyl substances (PFASs) in landfills. ENVIRONMENTAL RESEARCH 2023; 218:114980. [PMID: 36460077 DOI: 10.1016/j.envres.2022.114980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The aim of this critical review is i) to summarize the occurrence of Per- and polyfluoroalkyl substances (PFASs) in landfills; ii) to outline the environmental fate and transport of PFASs in landfills; iii) to compare the treatment technologies of PFASs in landfill leachate and remediation methods of PFASs in surrounding groundwater; iv) to identify the research gaps and suggest future research directions. In recent years, PFASs have been detected in landfills around the world, among which Perfluoroalkyl acids (PFAAs) especially Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonic acid (PFOS) are mostly studied due to their long-term stability. Short-chain PFASs (<8 carbons) are more common than long-chain PFASs (≧8 carbons) in landfill leachate. PFASs in landfill leachate are eventually transported to the surrounding groundwater, surface water and soil. Some PFASs evaporate from landfills to the ambient air. To avoid the environmental and health risks of PFASs in landfills, new technologies and combined use of existing technologies have been implemented to treat PFASs in landfill leachate. Integrated remediation methods are applied to control the diffusion of PFASs in groundwater surrounding landfills. In future, the mechanisms of PFAAs precursors degradation, the correlation among PFASs in different environmental media around landfills, as well as the environmental behavior and toxic effect of combined pollutants together with PFASs in landfill leachate and surrounding groundwater should be studied.
Collapse
Affiliation(s)
- Jia Li
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Weijiang Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
131
|
Lee K, Alava JJ, Cottrell P, Cottrell L, Grace R, Zysk I, Raverty S. Emerging Contaminants and New POPs (PFAS and HBCDD) in Endangered Southern Resident and Bigg's (Transient) Killer Whales ( Orcinus orca): In Utero Maternal Transfer and Pollution Management Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:360-374. [PMID: 36512803 DOI: 10.1021/acs.est.2c04126] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Killer whales (Orcinus orca) have been deemed one of the most contaminated cetacean species in the world. However, concentrations and potential health implications of selected 'contaminants of emerging concern' (CECs) and new persistent organic pollutants (POPs) in endangered Southern Resident and threatened Bigg's (Transient) killer whales in the Northeastern Pacific (NEP) have not yet been documented. Here, we quantify CECs [alkylphenols (APs), triclosan, methyl triclosan, and per- and polyfluoroalkyl substances (PFAS)] and new POPs [hexabromocyclododecane (HBCCD), PFOS, PFOA, and PFHxS] in skeletal muscle and liver samples of these sentinel species and investigate in utero transfer of these contaminants. Samples were collected from necropsied individuals from 2006 to 2018 and analyzed by LC-MS/MS or HRBC/HRMS. AP and PFAS contaminants were the most prevalent compounds; 4-nonylphenol (4NP) was the predominant AP (median 40.84 ng/g ww), and interestingly, 7:3-fluorotelomer carboxylic acid (7:3 FTCA) was the primary PFAS (median 66.35 ng/g ww). Maternal transfer ratios indicated 4NP as the most transferred contaminant from the dam to the fetus, with maternal transfer rates as high as 95.1%. Although too few killer whales have been screened for CECs and new POPs to infer the magnitude of contamination impact, these results raise concerns regarding pathological implications and potential impacts on fetal development and production of a viable neonate. This study outlines CEC and new POP concentrations in killer whales of the NEP and provides scientifically derived evidence to support and inform regulation to mitigate pollutant sources and contamination of Southern Resident killer whale critical habitat and other marine ecosystems.
Collapse
Affiliation(s)
- Kiah Lee
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver V6T 1Z4, Canada
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver V6T 1Z4, Canada
| | - Paul Cottrell
- Fisheries and Oceans Canada (DFO), Fisheries and Aquaculture Management, 401 Burrard Street, Vancouver V6C 3S4, Canada
| | - Lauren Cottrell
- Department of Biology, University of Victoria, Cunningham Building 202, Victoria V8P 5C2, Canada
| | - Richard Grace
- SGS AXYS Analytical Services Ltd, 2045 Mills Road W, Sidney V8L 5X2, Canada
| | - Ivona Zysk
- SGS AXYS Analytical Services Ltd, 2045 Mills Road W, Sidney V8L 5X2, Canada
| | - Stephen Raverty
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver V6T 1Z4, Canada
- Animal Health Centre, BC Ministry of Agriculture, Food and Fisheries, 1767 Angus Campbell Road, Abbotsford V3G 2M3, Canada
| |
Collapse
|
132
|
Aker A, Ayotte P, Caron-Beaudoin E, De Silva A, Ricard S, Gaudreau É, Lemire M. Plasma concentrations of perfluoroalkyl acids and their determinants in youth and adults from Nunavik, Canada. CHEMOSPHERE 2023; 310:136797. [PMID: 36244416 DOI: 10.1016/j.chemosphere.2022.136797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Perfluoroalkyl acids (PFAAs), a subset of per- and poly-fluoroalkyl substances (PFAS), are environmentally stable, mobile and bioaccumulative compounds. This leads to high concentrations in wildlife species essential to the cultural identity and subsistence of Arctic populations. Our objective was to characterize the distribution and exposure determinants of PFAAs among Nunavik Inuit adults. The study included up to 1322 Nunavik residents aged 16-80 years who participated in the Qanuilirpitaa? 2017 Nunavik Inuit Health Survey (Q2017). Plasma concentrations were compared to those the general Canadian population using data from the Canadian Health Measures Survey Cycle 5 (2016-2017). Associations between plasma concentrations of nine PFAAs, determined by liquid chromatography-tandem mass spectrometry, and sociodemographic factors and traditional activity participation were examined using multiple linear regression models. Overall exposure to PFAAs was twice as high compared to the general Canadian population and less regulated perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUnDA) concentrations were 7-fold higher, and perfluorodecanoic acid (PFDA) concentrations were 4-fold higher. Males had higher concentrations of perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS), whereas females had higher concentrations of PFDA and PFUnDA. PFAAs concentrations increased with age and were highest among those aged 60+ years. PFNA and PFOA concentrations followed a J-shaped pattern: those aged 16-29 years had higher concentrations than those aged 20-29 and 30-39 years. Ungava Bay generally had lower concentrations of all PFAAs congeners compared to Hudson Bay and Hudson Strait, with the exception of PFNA, which tended to have the lowest concentration in Hudson Strait. PFAAs concentrations were highly associated with hunting activity, omega-3 polyunsaturated fatty acids, and drinking water from environmental sources. The results highlight the importance of characterizing PFAAs exposure sources in Arctic communities and provide further evidence for the long-range transport of long-chain PFAAs and their precursors that necessitate international action.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada.
| | - Pierre Ayotte
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, QC, Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Melanie Lemire
- Axe santé des Populations et Pratiques Optimales en santé, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada; Département de médecine sociale et Préventive, Université Laval, Québec, Quebec, Canada; Institut de Biologie Intégrative et des systèmes (IBIS), Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
133
|
Zheng W, Hu L, Chen Z, Tang J, Pan Y, Yan W, Chen X, Peng Y, Chen L. Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114458. [PMID: 38321677 DOI: 10.1016/j.ecoenv.2022.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 02/08/2024]
Abstract
Perfluorinated compounds (PFCs), as an important class of new persistent organic pollutants, are widely distributed in the environment. Yet the effects of different types and concentrations of PFCs on soil microbial community in urban forest ecosystems are remain uncertain. Here, two typical PFCs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were selected to carry out a pot experiment in greenhouse with singly and joint treatment at different concentrations, to examine their effects on composition and diversity of soil microorganisms and availability of soil macronutrients by using high-throughput Illumina sequencing approach. The results showed both PFOA and PFOS application significantly increased soil NO3--N and NH4+-N content, but did not alter total phosphorus content, compared to the control check (CK) treatments. Total potassium content was reduced in PFOA treatments but increased in PFOS and PFOA×PFOS treatments. The most dominant bacterial phylum was Chloroflexi in low and medium PFCs concentrations and the CK treatments, but it was switched to Acidobacteria in high concentrations. No obvious change was detected for the composition of the dominant fungi community in PFCs treatments compared to the CK treatments. With the increase of PFCs concentrations, soil bacterial richness decreased but its diversity increased, whereas the richness and diversity of fungal community usually decreased. Redundancy analyses revealed that soil fungal community was more sensitive to PFCs pollutants than soil bacterial communities. Further data analysis revealed by structural equation model (SEM) that the PFCs exposed for 60 days indirectly affects the diversity and richness of soil bacteria and fungi by directly affecting NO3--N and NH4+-N content. The results suggested the concentration of PFCs pollutants played a primary role in determining the composition, richness and diversity of forest soil microbial communities.
Collapse
Affiliation(s)
- Wei Zheng
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Lei Hu
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Zekai Chen
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Jun Tang
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Yuliang Pan
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China.
| | - Wende Yan
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China; Laboratory of Urban Forest Ecology of Hunan Province, Changsha, Hunan 410004, China
| | - Xiaoyong Chen
- College of Arts and Science, Governors State University, University Park, IL 60484, USA
| | - Yuanying Peng
- Natural Sciences Division, College of DuPage, Glen Ellyn, IL 60137, USA
| | - Lijun Chen
- Faculty of Forestry, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
134
|
Herzke D, Nikiforov V, Yeung LWY, Moe B, Routti H, Nygård T, Gabrielsen GW, Hanssen L. Targeted PFAS analyses and extractable organofluorine - Enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife. ENVIRONMENT INTERNATIONAL 2023; 171:107640. [PMID: 36525896 DOI: 10.1016/j.envint.2022.107640] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
With the current possible presence of thousands of PFAS compounds in industrial emissions, there is an increasing need to assess the impacts of PFAS regulation of conventional PFAS on one hand and the exposure to emerging and yet unknown PFAS on the other. Today's analytical methodologies using targeted approaches are not sufficient to determine the complete suite of PFAS present. To evaluate the presence of unknown PFAS, we investigated in this study the occurrence of an extended range of target PFAS in various species from the marine and terrestrial Norwegian environment, in relation to the extractable organofluorine (EOF), which yields the total amount of organofluorine. The results showed a varying presence of extractable fluorinated organics, with glaucous gull eggs, otter liver and polar bear plasma showing the highest EOF and a high abundance of PFAS as well. The targeted PFAS measurements explained 1% of the organofluorine for moose liver as the lowest and 94% for otter liver as the highest. PFCAs like trifluoroacetic acid (TFA, reported semi-quantitatively), played a major role in explaining the organic fluorine present. Emerging PFAS as the perfluoroethylcyclohexane sulfonate (PFECHS), was found in polar bear plasma in quantifiable amounts for the first time, confirming earlier detection in arctic species far removed from emission sources. To enable a complete organic fluorine mass balance in wildlife, new approaches are needed, to uncover the presence of new emerging PFAS as cyclic- or ether PFAS together with chlorinated PFAS as well as fluorinated organic pesticides and pharmaceuticals.
Collapse
Affiliation(s)
- Dorte Herzke
- NILU - Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway.
| | - Vladimir Nikiforov
- NILU - Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | - Leo W Y Yeung
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82, Sweden
| | - Børge Moe
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - Torgeir Nygård
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | | | - Linda Hanssen
- NILU - Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| |
Collapse
|
135
|
Dao DQ, Taamalli S, Louis F, Kdouh D, Srour Z, Ngo TC, Truong DH, Fèvre-Nollet V, Ribaucour M, El Bakali A, Černuśák I. Hydroxyl radical-initiated decomposition of metazachlor herbicide in the gaseous and aqueous phases: Mechanism, kinetics, and toxicity evaluation. CHEMOSPHERE 2023; 312:137234. [PMID: 36375615 DOI: 10.1016/j.chemosphere.2022.137234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The oxidation of widely-used herbicide metazachlor (MTZ) by hydroxyl radical (HO•) in the gas and the aqueous phases was investigated in terms of mechanistic and kinetic behaviors using the M06-2X/6-311++G (3df, 3pd)//M06-2X/6-31 + G (d,p) level of theory over the temperature range 250-400 K. The formal hydrogen transfer, HO•-addition, and single electron transfer mechanisms were considered. The overall rate constants in the gas phase range from 8.40 × 1010 to 8.31 × 109 M-1 s-1 at the temperature from 250 to 400 K, respectively, while the ones in the aqueous phase are close to diffusion-controlled rates, with diffusion-corrected rate constants being 1.31 × 109 to 1.27 × 109 M-1 s-1. The formal hydrogen transfer mechanism is the most dominant in the gas phase, whereas the HO•-addition is the most favorable in the aqueous phase. The H-abstraction at two methyl groups and the HO•-addition to C11 and C12 atoms (pyrazole ring), C16 and C18 atoms (benzyl ring) are significant. The short lifetime in the environment, equal to only 4.16 h, requires more attention to this herbicide compound, whereas its lifetime in the aqueous condition varies sharply from half second to several thousand days depending on the HO• concentration. The ecotoxicity estimation of MTZ and its principal transformation products to aquatic organisms suggests that they are harmful or toxic substances. Moreover, the MTZ is a developmental toxicant and mutagenicity-positive, while its decomposed products are developmental toxicants with no mutagenic toxicity. Their bioaccumulation in aquatic organisms is negligible.
Collapse
Affiliation(s)
- Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Sonia Taamalli
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France.
| | - Florent Louis
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Doha Kdouh
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Zainab Srour
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Valerie Fèvre-Nollet
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Marc Ribaucour
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Abderrahman El Bakali
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Ivan Černuśák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
136
|
Gogoi P, Yao Y, Li YC. Understanding PFOS Adsorption on a Pt Electrode for Electrochemical Sensing Applications. ChemElectroChem 2022. [DOI: 10.1002/celc.202201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pratahdeep Gogoi
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 USA
| | - Yu Yao
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 USA
| | - Yuguang C. Li
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 USA
| |
Collapse
|
137
|
Lupton SJ, Smith DJ, Scholljegerdes E, Ivey S, Young W, Genualdi S, DeJager L, Snyder A, Esteban E, Johnston JJ. Plasma and Skin Per- and Polyfluoroalkyl Substance (PFAS) Levels in Dairy Cattle with Lifetime Exposures to PFAS-Contaminated Drinking Water and Feed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15945-15954. [PMID: 36475664 DOI: 10.1021/acs.jafc.2c06620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plasma and ear notch samples were removed from 164 Holstein cows and heifers, which had lifetime exposures to per- and polyfluoroalkyl substances (PFAS) through consumption of contaminated feed and water sources. A suite of nine PFAS including five perfluoroalkyl carboxylic acids (PFCA) and four perfluoroalkyl sulfonic acids (PFSA) was quantified in plasma and ear notch samples by liquid chromatography-mass spectrometry. Bioaccumulation of four- to nine-carbon PFCAs did not occur in plasma or skin, but PFSAs longer than four carbons accumulated in both plasma and skin. Exposure periods of at least 1 year were necessary for PFSAs to reach steady-state concentrations in plasma. Neither parity (P = 0.76) nor lactation status (P = 0.30) affected total PFSA concentrations in mature cow plasma. In contrast, lactation status greatly affected (P < 0.0001) total PFSA concentrations in ear notch samples. Skin samples could be used for biomonitoring purposes in instances when on-farm blood collection and plasma preparation are not practical.
Collapse
Affiliation(s)
- Sara J Lupton
- USDA ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, North Dakota58102, United States
| | - David J Smith
- USDA ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, North Dakota58102, United States
| | - Eric Scholljegerdes
- Department of Animal and Range Sciences, New Mexico State University, Box 30003, Las Cruces, New Mexico88003, United States
| | - Shanna Ivey
- Department of Animal and Range Sciences, New Mexico State University, Box 30003, Las Cruces, New Mexico88003, United States
| | - Wendy Young
- U.S. FDA Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland20740, United States
| | - Susan Genualdi
- U.S. FDA Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland20740, United States
| | - Lowri DeJager
- U.S. FDA Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland20740, United States
| | - Abigail Snyder
- USDA ARS, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Boulevard, Fargo, North Dakota58102, United States
| | - Emilio Esteban
- USDA FSIS, Office of Public Health Science, 1400 Independence Avenue South West, Washington, District of Columbia20250, United States
| | - John J Johnston
- USDA FSIS, Office of Public Health Science, 2150 Centre Avenue, Fort Collins, Colorado80526, United States
| |
Collapse
|
138
|
Zhou J, Baumann K, Surratt JD, Turpin BJ. Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM 2.5 filters in close proximity to a fluoropolymer manufacturing facility. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2272-2283. [PMID: 36349377 PMCID: PMC11089768 DOI: 10.1039/d2em00358a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large fluoropolymer manufacturing facilities are major known sources of per- and polyfluoroalkyl substances (PFAS), many of which accumulate in groundwater, surface water, crops, wildlife, and people. Prior studies have measured high PFAS concentrations in groundwater, drinking water, soil, as well as dry and wet deposition near fluoropolymer facilities; however, much less is known about near-source PFAS air concentrations. We measured airborne PFAS on PM2.5 filters in close proximity to a major fluoropolymer manufacturing facility (Chemours' Fayetteville Works) located near Fayetteville, North Carolina, USA. Weekly PM2.5 filter samples collected over a six-month field campaign using high-volume air samplers at locations 3.7 km apart, north-northeast and south-southwest of the facility were analyzed for thirty-four targeted ionic PFAS species by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Twelve emerging and ten legacy PFAS compounds were detected. Thirteen PFAS were found at higher concentrations in these nearfield samples than at regional background sites, suggesting a local source for these compounds. Five emerging and five legacy PFAS compounds had maximum concentrations exceeding 1 pg m-3. PFBA, PFHxA, PFHxDA, PFOS, PMPA, NVHOS, PFO5DoA, and Nafion BP1 contributed the most to the total (legacy + emerging) PFAS concentration (86%). Six PFAS, specifically PFBA, PFOS, PFO5DoA, Nafion BP1, Nafion BP2, and Nafion BP4, provide a consistent representative profile of elevated species across the two sites (with detection frequency >50%). To our knowledge, this is the first study to report both legacy and emerging ionic PFAS in air in close proximity to a U.S. fluoropolymer manufacturing facility.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karsten Baumann
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Picarro Inc., Santa Clara, CA, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
139
|
Wu X, Nguyen H, Kim D, Peng H. Chronic toxicity of PFAS-free AFFF alternatives in terrestrial plant Brassica rapa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158100. [PMID: 35987222 DOI: 10.1016/j.scitotenv.2022.158100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Fluorine (F)-free firefighting foams will be replacing per- and polyfluoroalkyl substances (PFAS)-containing aqueous film-forming foams (AFFFs) at U.S. military installations imminently, yet the environmental impacts of F-free foams are largely unknown. Ecotoxicity assessment of F-free foams is urgently needed to avoid replacement regret. In this study, we comparatively assessed phytotoxicity of six F-free formulations and one current short-chain fluorinated AFFF in terrestrial plant Brassica rapa. Five of six F-free formulations exerted higher toxicity than the short-chain AFFF to the growth and reproduction of B. rapa, with 8-51 times and > 10 times lower EC50 values, respectively. Nontargeted analysis indicated the occurrence of transformation products of the test formulations in the above-ground plant tissues. In agreement with their phytotoxicity, the five highly toxic F-free formulations generated more transformation products with higher peak intensities in plant tissues than the two weakly toxic formulations. The most abundant transformation products detected in plant extracts were suspect transformation products derived from diethylene glycol monobutyl ether, a common ingredient of the five toxic formulations. This study provides ecotoxicological data that, combined with data from all related ongoing research, should be used in decision making regarding recommendations for manufacturing and use of candidate F-free foams.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Helen Nguyen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Damian Kim
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; University of California, Berkeley, CA 94720, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada; School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
140
|
McDermett K, Anderson T, Jackson WA, Guelfo J. Assessing Potential Perfluoroalkyl Substances Trophic Transfer to Crickets (Acheta domesticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2981-2992. [PMID: 36102845 DOI: 10.1002/etc.5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Although many studies have assessed the bioaccumulation of perfluoroalkyl substances (PFAS) in plant tissues, to date there has been minimal research on the bioaccumulation of PFAS in soil invertebrates that results from consuming PFAS-contaminated media. The present study focused on two different consumption pathways in a population of crickets: individuals consuming PFAS-contaminated alfalfa and individuals consuming PFAS-spiked drinking water. Alfalfa was grown in a greenhouse and irrigated with PFAS-spiked water (∼1 ppm) containing seven unique PFAS. The alfalfa was then harvested and fed to crickets. Another population of crickets was supplied with PFAS-spiked drinking water at similar concentrations to irrigation water for direct consumption. Alfalfa accumulation of PFAS and subsequent consumption by the crickets resulted in overall similar tissue concentrations in the crickets who consumed PFAS-spiked water directly. This indicates that source concentration (water) may be an important factor in assessing the bioaccumulation of PFAS in organisms. To our knowledge, ours is the first study not only to assess the direct trophic transfer of PFAS from contaminated vegetation to invertebrates, but also to highlight the similarities in bioaccumulation regardless of ingestion pathway. Environ Toxicol Chem 2022;41:2981-2992. © 2022 SETAC.
Collapse
Affiliation(s)
- Kaylin McDermett
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas, USA
- Geosyntec Consultants, Pittsburgh, Pennsylvania, USA
| | - Todd Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, USA
| | - W Andrew Jackson
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Jennifer Guelfo
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
141
|
Xu L, Chen H, Han X, Yu K, Wang Y, Du B, Zeng L. First report on per- and polyfluoroalkyl substances (PFASs) in coral communities from the Northern South China sea: Occurrence, seasonal variation, and interspecies differences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120214. [PMID: 36150619 DOI: 10.1016/j.envpol.2022.120214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, the contamination levels and seasonal variation of 22 PFASs were investigated in coastal reef-building corals (n = 68) from the northern South China Sea (SCS) during wet and dry seasons. Perfluorohexane sulfonate (PFHxS) was the predominant PFASs in all coral samples, representing 43% of the total PFAS. Long-chain PFASs, as well as PFAS alternatives, were frequently detected above the MQL (>88%) but showed relatively low concentrations compared to short-chain PFASs in most species and seasons. Seasonal variation of PFAS concentrations were observed in branching corals, indicating that the accumulation of PFASs may be associated with coral morphological structures. Interspecies differences in PFAS levels agree well with different bioaccumulation potentials among coral species. Redundancy analysis (RDA) showed that seasonal factor and coral genus could partly influence PFAS concentrations in coral tissues. In summary, our study firstly reported the occurrence of PFASs in coral communities from the SCS and highlights the necessity for future investigations on more toxicity data for coral communities.
Collapse
Affiliation(s)
- Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
142
|
Coy CO, Steele AN, Abdulelah SA, Belanger RM, Crile KG, Stevenson LM, Moore PA. Differing behavioral changes in crayfish and bluegill under short- and long-chain PFAS exposures: Field study in Northern Michigan, USA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114212. [PMID: 36274321 DOI: 10.1016/j.ecoenv.2022.114212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The emergent contaminant family, per- and poly-fluorinated alkyl substances (PFAS) has gained research attention due to their widespread detection and stability within the environment. Despite the growing amount of research on perfluorooctanesulfonic acid (PFOS) and perfluoro-n-octanoic acid (PFOA) in aquatic organisms, investigations detailing behavioral and physiological effects of aquatic organisms exposed to a mixture of PFAS analytes in the wild have been limited. The objective of this study was to evaluate the potential behavioral and histological effects of environmental exposure to PFAS compounds within multiple trophic levels of aquatic ecosystems. The current study investigates effects of environmentally relevant PFAS concentration exposures in crayfish (Faxonius immunis, F. rusticus, F. virilis) and bluegill (Lepomis macrochirus) sourced from four water bodies in Northern Michigan. Antipredator response and foraging behavioral assays were used to investigate potential effects on crayfish; a swimming speed behavioral assay and liver and gill histology analysis were used to investigate potential effects on fish. Linear mixed model and multiple regression analyses resulted in significant relationships between tissue accumulation levels of long chain PFAS compounds and crayfish foraging and fish critical swimming speed responses. Crayfish foraging decreased and fish critical swim speeds increased with PFAS exposure which may lead to energetic and population concerns. Antipredator response in crayfish and liver and gill histology in fish were not significantly related to PFAS tissue or water concentrations. The sensitivity of crayfish and bluegill behavior contributes to the growing body of research regarding the differential toxicity of short-chain and long-chain PFAS compounds. The sensitivity of some aquatic organism behaviors to PFAS accumulated in tissue may have implications for PFAS transfer and alterations to ecosystem functioning; based on the results of this field study, further laboratory research is recommended to further evaluate these relationships.
Collapse
Affiliation(s)
- Carrie O Coy
- Laboratory for Sensory Ecology, Bowling Green State University, Department of Biological Sciences, 226 Life Sciences Building, Bowling Green, OH 43403, USA; University of Michigan Biological Station, 9133 Biological Road, Pellston, MI 49769, USA.
| | | | - Sara A Abdulelah
- Biology Department, University of Detroit Mercy, 4001 W. McNichols Road, Detroit, MI 48221, USA.
| | - Rachelle M Belanger
- Biology Department, University of Detroit Mercy, 4001 W. McNichols Road, Detroit, MI 48221, USA.
| | - Karen G Crile
- Biology Department, University of Detroit Mercy, 4001 W. McNichols Road, Detroit, MI 48221, USA.
| | - Louise M Stevenson
- Biodiversity and Ecosystem Health Group, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA; Department of Biological Sciences, Bowling Green State University, 217 Life Sciences Building, Bowling Green, OH 43403, USA.
| | - Paul A Moore
- Laboratory for Sensory Ecology, Bowling Green State University, Department of Biological Sciences, 226 Life Sciences Building, Bowling Green, OH 43403, USA; University of Michigan Biological Station, 9133 Biological Road, Pellston, MI 49769, USA.
| |
Collapse
|
143
|
Pickard HM, Ruyle BJ, Thackray CP, Chovancova A, Dassuncao C, Becanova J, Vojta S, Lohmann R, Sunderland EM. PFAS and Precursor Bioaccumulation in Freshwater Recreational Fish: Implications for Fish Advisories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15573-15583. [PMID: 36280234 PMCID: PMC9670858 DOI: 10.1021/acs.est.2c03734] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/08/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse class of fluorinated anthropogenic chemicals that include perfluoroalkyl acids (PFAA), which are widely used in modern commerce. Many products and environmental samples contain abundant precursors that can degrade into terminal PFAA associated with adverse health effects. Fish consumption is an important dietary exposure source for PFAS that bioaccumulate in food webs. However, little is known about bioaccumulation of PFAA precursors. Here, we identify and quantify PFAS in recreational fish species collected from surface waters across New Hampshire, US, using a toolbox of analytical methods. Targeted analysis of paired water and tissue samples suggests that many precursors below detection in water have a higher bioaccumulation potential than their terminal PFAA. Perfluorobutane sulfonamide (FBSA), a short-chain precursor produced by electrochemical fluorination, was detected in all fish samples analyzed for this compound. The total oxidizable precursor assay interpreted using Bayesian inference revealed fish muscle tissue contained additional, short-chain precursors in high concentration samples. Suspect screening analysis indicated these were perfluoroalkyl sulfonamide precursors with three and five perfluorinated carbons. Fish consumption advisories are primarily being developed for perfluorooctane sulfonate (PFOS), but this work reinforces the need for risk evaluations to consider additional bioaccumulative PFAS, including perfluoroalkyl sulfonamide precursors.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Colin P. Thackray
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Adela Chovancova
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Clifton Dassuncao
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Eastern
Research Group, Inc., Arlington, Virginia 22201, United States
| | - Jitka Becanova
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Department
of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
144
|
Guo J, Zhou J, Liu S, Shen L, Liang X, Wang T, Zhu L. Underlying Mechanisms for Low-Molecular-Weight Dissolved Organic Matter to Promote Translocation and Transformation of Chlorinated Polyfluoroalkyl Ether Sulfonate in Wheat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15617-15626. [PMID: 36272151 DOI: 10.1021/acs.est.2c04356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) such as fulvic acid (FA) and humic acid (HA) in soil considerably affects the fate of per- and polyfluoroalkyl substances (PFASs). However, the effect of DOM on their behavior in plants remains unclear. Herein, hydroponic experiments indicate that FA and HA reduce the accumulation of an emerging PFAS of high concern, 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), in wheat roots by reducing its bioavailability in the solution. Nevertheless, FA with low molecular weight (MW) promotes its absorption and translocation from the roots to the shoots by stimulating the activity and the related genes of the plasma membrane H+-ATPase, whereas high-MW HA shows the opposite effect. Moreover, in vivo and in vitro experiments indicate that 6:2 Cl-PFESA undergoes reductive dechlorination, which is regulated mainly using nitrate reductase and glutathione transferase. HA and FA, particularly the latter, promote the dechlorination of 6:2 Cl-PFESA in wheat by enhancing electron transfer efficiency and superoxide production. Transcriptomic analysis indicates that FA also stimulates catalytic activity, cation binding, and oxidoreductase activity, facilitating 6:2 Cl-PFESA transformation in wheat.
Collapse
Affiliation(s)
- Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Lina Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Xiaoxue Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Xianyang, Shaanxi712100, P. R. China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300071, P. R. China
| |
Collapse
|
145
|
Jang M, Shim WJ, Han GM, Ha SY, Cho Y, Kim M, Hong SH. Spatial distribution and temporal trends of classical and emerging persistent organic pollutants (POPs) in black-tailed gull (Larus crassirostris) eggs from Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157244. [PMID: 35817107 DOI: 10.1016/j.scitotenv.2022.157244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
This study monitored the spatiotemporal trends of persistent organic pollutants (POPs) contamination along the Korean coasts using eggs of the black-tailed gull, a resident bird that occupies a high trophic position in the marine food web. Black-tailed gull eggs were collected from three breeding islands located in the western (Seoman-do), southern (Hong-do), and eastern (Dok-do) seas of Korea during 2015-2019, and egg contents were analyzed for classical and emerging POPs. Among the target analytes, levels of emerging POPs such as brominated flame retardants (BFRs) and perfluoroalkyl acids (PFAAs) were significantly higher in eggs from Seoman-do than other islands. Global positioning system tracking data show that seagulls from Seoman-do traveled frequently to two neighboring major cities (Incheon and Seoul), indicating that the accumulation of BFRs and PFAAs in bird eggs is directly affected by the pollution characteristics of urban areas. Overall, the ratios of PFAA and BFR to the total POPs in eggs from the islands increased over time, while the proportion of classical POPs decreased. A shift from classical POPs to BFRs and PFAAs in seagull eggs was identified. Interestingly, perfluorooctanoic acid (PFOA), which exhibits limited bioaccumulation, was detected at higher levels in eggs from Seoman-do, indicating widespread use of PFOA and maternal transfer to seabird eggs. Continuous monitoring of PFAAs in marine environments of Korea is needed. This study demonstrates that monitoring of seabird eggs is effective for detecting spatial and temporal trends of POPs in the marine environment, and provides insights into emerging POPs such as PFAAs.
Collapse
Affiliation(s)
- Mi Jang
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Won Joon Shim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Gi Myung Han
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sung Yong Ha
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Youna Cho
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Miran Kim
- Seabirds Lab. of Korea, Wonju 26353, Republic of Korea
| | - Sang Hee Hong
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
146
|
Kang Y, Zhang R, Yu K, Han M, Pei J, Chen Z, Wang Y. Organochlorine pesticides (OCPs) in corals and plankton from a coastal coral reef ecosystem, south China sea. ENVIRONMENTAL RESEARCH 2022; 214:114060. [PMID: 35981611 DOI: 10.1016/j.envres.2022.114060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have indicated that coral mucus plays an important role in the bioaccumulation of a few organic pollutants by corals, but no relevant studies have been conducted on organochlorine pesticides (OCPs). Previous studies have also indicated that OCPs widely occur in a few coral reef ecosystems and have a negative effect on coral health. Therefore, this study focused on the occurrence and bioaccumulation of a few OCPs, such as dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB) and p,p'-methoxychlor (MXC), in the coral tissues and mucus as well as in plankton and seawater from a coastal reef ecosystem (Weizhou Island) in the South China Sea. The results indicated that DDTs were the predominant OCPs in seawater and marine biota. Higher concentrations of OCPs in plankton may contribute to the enrichment of OCPs by corals. The significantly higher total OCP concentration (∑8OCPs) found in coral mucus than in coral tissues suggested that coral mucus played an essential role in resisting enrichment of OCPs by coral tissues. This study explored the different functions of coral tissues and mucus in OCP enrichment and biodegradation for the first time, highlighting the need for OCP toxicity experiments from both tissue and mucus perspectives.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhenghua Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
147
|
Fiedler H, Sadia M, Baabish A, Sobhanei S. Perfluoroalkane substances in national samples from global monitoring plan projects (2017-2019). CHEMOSPHERE 2022; 307:136038. [PMID: 35977568 DOI: 10.1016/j.chemosphere.2022.136038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The global monitoring plan (GMP) established under the Stockholm Convention on Persistent Organic Pollutants (POPs) had defined ambient air, human milk or blood, and water as core matrices to be analyzed and assessed for spatial and temporal distribution. Within projects coordinated by the United Nations Environment Programme (UNEP), developing countries were offered to have other matrices analyzed for perfluoroalkane substances (PFAS) in one experienced laboratory. A total of 266 samples from 26 countries located in Africa, Asia, and Latin America were collected during 2018-2019 and analyzed for 15 PFAS. The limits of quantification were 6.2 pg/g fresh weight for most PFAS. The statistical assessment of 262 samples, four were excluded due to extreme values, showed that across abiotic and biota samples, perfluorooctane sulfonic acid (PFOS) had the highest detection frequency (80%) and the highest median value (19.2 pg/g), followed by perfluorooctanoic acid (PFOA) with 73% and a median value of 7.67 pg/g. Among the matrices, water (55%), sediment (49%) and fish (44%) had the most complex pattern, i.e., number of PFAS quantified. Dairy products and chicken meat had less PFAS present. From the 137 foods, fish, meat, eggs, analyzed in this study, only two fish samples would exceed one of the limit values proposed by the European Commission. To assess human exposure, we suggest including dairy products and drinking water since selective and sensitive methods would allow quantification of the four proposed PFAS.
Collapse
Affiliation(s)
- Heidelore Fiedler
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82, Örebro, Sweden.
| | - Mohammad Sadia
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82, Örebro, Sweden; Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, NL-1090, GE, Amsterdam, the Netherlands
| | - Abeer Baabish
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82, Örebro, Sweden
| | - Siamak Sobhanei
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82, Örebro, Sweden
| |
Collapse
|
148
|
Munschy C, Spitz J, Bely N, Héas-Moisan K, Olivier N, Pollono C, Chouvelon T. A large diversity of organohalogen contaminants reach the meso- and bathypelagic organisms in the Bay of Biscay (northeast Atlantic). MARINE POLLUTION BULLETIN 2022; 184:114180. [PMID: 36183511 DOI: 10.1016/j.marpolbul.2022.114180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Deep-sea ecosystems play a key role in the cycling and vertical transfer of matter and energy in oceans. Although the contamination of deep-sea demersal and benthic organisms by persistent organic pollutants has been proven, deep pelagic species have been far less studied. To fill these gaps, we studied the occurrence of a large variety of hydrophobic organic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy and alternative brominated flame retardants (BFRs) and per- and polyfluoroalkyl substances (PFASs) in crustaceans and fish species collected in the Bay of Biscay, northeast Atlantic. The results highlighted the global predominance of PCBs in fish, followed by OCPs, PFASs and PBDEs, with highly variable concentrations among species. Most of the chlorinated or brominated contaminants showed increasing concentrations with increasing δ15N values, while most PFASs showed inverse trends. The contaminant profiles and diagnostic ratios revealed species-specific metabolic capacities and peculiar contribution of highly-brominated BFRs.
Collapse
Affiliation(s)
- C Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France.
| | - J Spitz
- Centre d'Etude Biologique de Chizé (CEBC), UMR 7372, Université de La Rochelle / CNRS, 79360 Villiers-en-Bois, France; Observatoire PELAGIS, UAR 3462, Université de La Rochelle / CNRS, 17000 La Rochelle, France
| | - N Bely
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - K Héas-Moisan
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - N Olivier
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - C Pollono
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France
| | - T Chouvelon
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France; Observatoire PELAGIS, UAR 3462, Université de La Rochelle / CNRS, 17000 La Rochelle, France
| |
Collapse
|
149
|
Mroczko O, Preisendanz HE, Wilson C, Mashtare ML, Elliott HA, Veith TL, Soder KJ, Watson JE. Spatiotemporal patterns of PFAS in water and crop tissue at a beneficial wastewater reuse site in central Pennsylvania. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1282-1297. [PMID: 36070520 PMCID: PMC9828414 DOI: 10.1002/jeq2.20408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a collective name for thousands of synthetic compounds produced to enhance consumer and industrial products since the 1940s. They do not easily degrade, and some are known to pose serious ecological and human health concerns at trace concentrations (ng L-1 levels). Per- and polyfluoroalkyl substances persist in treated wastewater and are inadvertently introduced into the environment when treated wastewater is reused as an irrigation source. The Pennsylvania State University (PSU) has been spray-irrigating its wastewater at a 2.45 km2 mixed-use agricultural and forested site known as the "Living Filter" since the 1960s. To understand the spatiotemporal patterns of 20 PFAS at the Living Filter, water samples were collected bimonthly from fall 2019 through winter 2021 from the PSU's wastewater effluent and from each of the site's 13 monitoring wells. Crop tissue was collected at the time of harvest to assess PFAS presence in corn silage and tall fescue grown at the study site. Total measured PFAS concentrations in the monitoring wells ranged from nondectable to 155 ng L-1 , with concentrations increasing with the direction of groundwater flow. Concentrations within each well exhibited little temporal variability across sampling events, with mixed relationships between PFAS and groundwater elevation observed between wells. Further, >84% of the PFAS present in livestock feed crops were short-chain compounds, with PFAS consumed annually by livestock fed crops harvested from the site estimated to be 2.46-7.67 mg animal-1 yr-1 . This research provides insight into the potential impacts of long-term beneficial reuse of treated wastewater on groundwater and crop tissue quality.
Collapse
Affiliation(s)
- Olivia Mroczko
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Heather E Preisendanz
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
- Institute for Sustainable Agricultural, Food, and Environmental Science, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Christopher Wilson
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Michael L Mashtare
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Herschel A Elliott
- Dep. of Agricultural and Biological Engineering, The Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Tamie L Veith
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Kathy J Soder
- USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - John E Watson
- Dep. of Ecosystem Science and Management, The Pennsylvania State Univ., University Park, PA, 16802, USA
| |
Collapse
|
150
|
Miranda DDA, Peaslee GF, Zachritz AM, Lamberti GA. A worldwide evaluation of trophic magnification of per- and polyfluoroalkyl substances in aquatic ecosystems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1500-1512. [PMID: 35029321 DOI: 10.1002/ieam.4579] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
A review of the published literature on the trophic magnification factor (TMF) for per- and polyfluoroalkyl substances (PFAS) was conducted to assess how biomagnification varies across aquatic systems worldwide. Although the TMF has been recognized as the most reliable tool for assessing the biomagnification of organic contaminants, peer-reviewed studies reporting TMFs for PFAS are few and with limited geographical distribution. We found 25 published studies of the biomagnification of 35 specific PFAS, for which the TMF was generated through linear regression of individual log-PFAS concentration and the δ15 N-based trophic position of each organism in the food webs. Studies were concentrated mainly in China, North America, and Europe, and the most investigated compound was perfluorooctane sulfonate (PFOS), which was frequently shown to be biomagnified in the food web (TMFs ranging from 0.8 to 20). Other long-chain carboxylates displayed substantial variation in trophic magnification. Observed differences in the TMF were associated with length of the food web, geographic location, sampling methodologies, tissue analyzed, and distance from known direct PFAS inputs. In addition to biomagnification of legacy PFAS, precursor substances were observed to bioaccumulate in the food web, which suggests they may biotransform to more persistent PFAS compounds in upper trophic levels. This review discusses the variability of environmental characteristics driving PFAS biomagnification in natural ecosystems and highlights the different approaches used by each study, which can make comparisons among studies challenging. Suggestions on how to standardize TMFs for PFAS are also provided in this review. Integr Environ Assess Manag 2022;18:1500-1512. © 2022 SETAC.
Collapse
Affiliation(s)
- Daniele de A Miranda
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, USA
| | - Graham F Peaslee
- Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Physics, University of Notre Dame, Notre Dame, Indiana, USA
| | - Alison M Zachritz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|