101
|
Fang Z, Zhu Z, Zhang H, Peng Y, Liu J, Lu H, Li J, Liang L, Xia S, Wang Q, Fu B, Wu K, Zhang L, Ginzburg Y, Liu J, Chen H. GDF11 contributes to hepatic hepcidin (HAMP) inhibition through SMURF1-mediated BMP-SMAD signalling suppression. Br J Haematol 2019; 188:321-331. [PMID: 31418854 DOI: 10.1111/bjh.16156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Hepcidin (HAMP) synthesis is suppressed by erythropoiesis to increase iron availability for red blood cell production. This effect is thought to result from factors secreted by erythroid precursors. Growth differentiation factor 11 (GDF11) expression was recently shown to increase in erythroid cells of β-thalassaemia, and decrease with improvement in anaemia. Whether GDF11 regulates hepatic HAMP production has never been experimentally studied. Here, we explore GDF11 function during erythropoiesis-triggered HAMP suppression. Our results confirm that exogenous erythropoietin significantly increases Gdf11 as well as Erfe (erythroferrone) expression, and Gdf11 is also increased, albeit at a lower degree than Erfe, in phlebotomized wild type and β-thalassaemic mice. GDF11 is expressed predominantly in erythroid burst forming unit- and erythroid colony-forming unit- cells during erythropoiesis. Exogeneous GDF11 administration results in HAMP suppression in vivo and in vitro. Furthermore, exogenous GDF11 decreases BMP-SMAD signalling, enhances SMAD ubiquitin regulatory factor 1 (SMURF1) expression and induces ERK1/2 (MAPK3/1) signalling. ERK1/2 signalling activation is required for GDF11 or SMURF1-mediated suppression in BMP-SMAD signalling and HAMP expression. This research newly characterizes GDF11 in erythropoiesis-mediated HAMP suppression, in addition to ERFE.
Collapse
Affiliation(s)
- Zheng Fang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Zesen Zhu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Haihang Zhang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Yuanliang Peng
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Jin Liu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Hongyu Lu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Jiang Li
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, Changsha, China
| | - Long Liang
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Shenghua Xia
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Qiguang Wang
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, Changsha, China
| | - Bin Fu
- Department of Haematology, Central South University Xiangya Hospital, Changsha, China
| | - Kunlu Wu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Centre of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yelena Ginzburg
- Division of Haematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| | - Huiyong Chen
- Molecular Biology Research Centre, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
102
|
Arnò B, Galli F, Roostalu U, Aldeiri BM, Miyake T, Albertini A, Bragg L, Prehar S, McDermott JC, Cartwright EJ, Cossu G. TNAP limits TGF-β-dependent cardiac and skeletal muscle fibrosis by inactivating the SMAD2/3 transcription factors. J Cell Sci 2019; 132:jcs.234948. [PMID: 31289197 DOI: 10.1242/jcs.234948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022] Open
Abstract
Fibrosis is associated with almost all forms of chronic cardiac and skeletal muscle diseases. The accumulation of extracellular matrix impairs the contractility of muscle cells contributing to organ failure. Transforming growth factor β (TGF-β) plays a pivotal role in fibrosis, activating pro-fibrotic gene programmes via phosphorylation of SMAD2/3 transcription factors. However, the mechanisms that control de-phosphorylation of SMAD2 and SMAD3 (SMAD2/3) have remained poorly characterized. Here, we show that tissue non-specific alkaline phosphatase (TNAP, also known as ALPL) is highly upregulated in hypertrophic hearts and in dystrophic skeletal muscles, and that the abrogation of TGF-β signalling in TNAP-positive cells reduces vascular and interstitial fibrosis. We show that TNAP colocalizes and interacts with SMAD2. The TNAP inhibitor MLS-0038949 increases SMAD2/3 phosphorylation, while TNAP overexpression reduces SMAD2/3 phosphorylation and the expression of downstream fibrotic genes. Overall our data demonstrate that TNAP negatively regulates TGF-β signalling and likely represents a mechanism to limit fibrosis.
Collapse
Affiliation(s)
- Benedetta Arnò
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Medicines Discovery Catapult, Mereside, Alderley Edge SK104TG, UK
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Urmas Roostalu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Gubra Hørsholm Kongevej 11B 2970 Hørsholm, Denmark
| | - Bashar M Aldeiri
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,King's College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Tetsuaki Miyake
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Alessandra Albertini
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,TIGET-HSR, Ospedale San Raffele, Via Olgettina 60, 20132 Milan, Italy
| | - Laricia Bragg
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
103
|
Physiological functions of CKIP-1: From molecular mechanisms to therapy implications. Ageing Res Rev 2019; 53:100908. [PMID: 31082489 DOI: 10.1016/j.arr.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
The casein kinase 2 interacting protein-1 (CKIP-1, also known as PLEKHO1) is initially identified as a specific CK2α subunit-interacting protein. Subsequently, various proteins, including CPα, PAK1, Arp2/3, HDAC1, c-Jun, ATM, Smurf1, Rpt6, Akt, IFP35, TRAF6, REGγ and CARMA1, were reported to interact with CKIP-1. Owing to the great diversity of interacted proteins, CKIP-1 exhibits multiple biologic functions in cell morphology, cell differentiation and cell apoptosis. Besides, these functions are subcellular localization, cell type, and regulatory signaling dependent. CKIP-1 is involved in biological processes consisting of bone formation, tumorigenesis and immune regulation. Importantly, deregulation of CKIP-1 results in osteoporosis, tumor, and atherosclerosis. In this review, we introduce the molecular functions, biological processes and promising of therapeutic strategies. Through summarizing the intrinsic mechanisms, we expect to open new therapeutic avenues for CKIP-1.
Collapse
|
104
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|
105
|
Baptista R, Marques C, Catarino S, Enguita FJ, Costa MC, Matafome P, Zuzarte M, Castro G, Reis A, Monteiro P, Pêgo M, Pereira P, Girão H. MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1. Cardiovasc Res 2019; 114:53-64. [PMID: 29016730 DOI: 10.1093/cvr/cvx187] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 09/11/2017] [Indexed: 01/26/2023] Open
Abstract
Aims MicroRNAs (miRNAs) have been implicated in the pathogenesis of pulmonary hypertension (PH), a multifactorial and progressive condition associated with an increased afterload of the right ventricle leading to heart failure and death. The main aim of this study was to correlate the levels of miR-424(322) with the severity and prognosis of PH and with right ventricle hypertrophy progression. Additionally, we intended to evaluate the mechanisms and signalling pathways whereby miR-424(322) secreted by pulmonary arterial endothelial cells (PAECs) impacts cardiomyocytes. Methods and results Using quantitative real-time PCR, we showed that the levels of circulating miR-424(322) are higher in PH patients when compared with healthy subjects. Moreover, we found that miR-424(322) levels correlated with more severe symptoms and haemodynamics. In the subgroup of Eisenmenger syndrome patients, miR-424(322) displayed independent prognostic value. Furthermore, we demonstrated that miR-424(322) targets SMURF1, through which it sustains bone morphogenetic protein receptor 2 signalling. Moreover, we showed that hypoxia induces the secretion of miR-424(322) by PAECs, which after being taken up by cardiomyocytes leads to down-regulation of SMURF1. In the monocrotaline rat model of PH, we found an association between circulating miR-424(322) levels and the stage of right ventricle hypertrophy, as well as an inverse correlation between miR-424(322) and SMURF1 levels in the hypertrophied right ventricle. Conclusions This study shows that miR-424(322) has diagnostic and prognostic value in PH patients, correlating with markers of disease severity. Additionally, miR-424(322) can target proteins with a direct effect on heart function, suggesting that this miRNA can act as a messenger linking pulmonary vascular disease and right ventricle hypertrophy.
Collapse
Affiliation(s)
- Rui Baptista
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Carla Marques
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Steve Catarino
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Paulo Matafome
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| | - Mónica Zuzarte
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Graça Castro
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal
| | - Abílio Reis
- Unidade de Doença Vascular Pulmonar, Departamento de Medicina, Centro Hospitalar do Porto, EPE, 4099-001 Porto, Portugal
| | - Pedro Monteiro
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Mariano Pêgo
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal
| | - Paulo Pereira
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,CEDOC, NOVA Medical School, Nova University of Lisbon, 1169-056 Lisboa, Portugal
| | - Henrique Girão
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
106
|
Roh JD, Hobson R, Chaudhari V, Quintero P, Yeri A, Benson M, Xiao C, Zlotoff D, Bezzerides V, Houstis N, Platt C, Damilano F, Lindman BR, Elmariah S, Biersmith M, Lee SJ, Seidman CE, Seidman JG, Gerszten RE, Lach-Trifilieff E, Glass DJ, Rosenzweig A. Activin type II receptor signaling in cardiac aging and heart failure. Sci Transl Med 2019; 11:eaau8680. [PMID: 30842316 PMCID: PMC7124007 DOI: 10.1126/scitranslmed.aau8680] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Activin type II receptor (ActRII) ligands have been implicated in muscle wasting in aging and disease. However, the role of these ligands and ActRII signaling in the heart remains unclear. Here, we investigated this catabolic pathway in human aging and heart failure (HF) using circulating follistatin-like 3 (FSTL3) as a potential indicator of systemic ActRII activity. FSTL3 is a downstream regulator of ActRII signaling, whose expression is up-regulated by the major ActRII ligands, activin A, circulating growth differentiation factor-8 (GDF8), and GDF11. In humans, we found that circulating FSTL3 increased with aging, frailty, and HF severity, correlating with an increase in circulating activins. In mice, increasing circulating activin A increased cardiac ActRII signaling and FSTL3 expression, as well as impaired cardiac function. Conversely, ActRII blockade with either clinical-stage inhibitors or genetic ablation reduced cardiac ActRII signaling while restoring or preserving cardiac function in multiple models of HF induced by aging, sarcomere mutation, or pressure overload. Using unbiased RNA sequencing, we show that activin A, GDF8, and GDF11 all induce a similar pathologic profile associated with up-regulation of the proteasome pathway in mammalian cardiomyocytes. The E3 ubiquitin ligase, Smurf1, was identified as a key downstream effector of activin-mediated ActRII signaling, which increased proteasome-dependent degradation of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), a critical determinant of cardiomyocyte function. Together, our findings suggest that increased activin/ActRII signaling links aging and HF pathobiology and that targeted inhibition of this catabolic pathway holds promise as a therapeutic strategy for multiple forms of HF.
Collapse
Affiliation(s)
- Jason D Roh
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Hobson
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vinita Chaudhari
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pablo Quintero
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Yeri
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyang Xiao
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Zlotoff
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vassilios Bezzerides
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Houstis
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin Platt
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Federico Damilano
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Brian R Lindman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Sammy Elmariah
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Biersmith
- Division of Cardiovascular Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, CT 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02114, USA
| | | | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | - David J Glass
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
107
|
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019; 12:12/570/eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Encoded in mammalian cells by 33 genes, the transforming growth factor-β (TGF-β) family of secreted, homodimeric and heterodimeric proteins controls the differentiation of most, if not all, cell lineages and many aspects of cell and tissue physiology in multicellular eukaryotes. Deregulation of TGF-β family signaling leads to developmental anomalies and disease, whereas enhanced TGF-β signaling contributes to cancer and fibrosis. Here, we review the fundamentals of the signaling mechanisms that are initiated upon TGF-β ligand binding to its cell surface receptors and the dependence of the signaling responses on input from and cooperation with other signaling pathways. We discuss how cells exquisitely control the functional presentation and activation of heteromeric receptor complexes of transmembrane, dual-specificity kinases and, thus, define their context-dependent responsiveness to ligands. We also introduce the mechanisms through which proteins called Smads act as intracellular effectors of ligand-induced gene expression responses and show that the specificity and impressive versatility of Smad signaling depend on cross-talk from other pathways. Last, we discuss how non-Smad signaling mechanisms, initiated by distinct ligand-activated receptor complexes, complement Smad signaling and thus contribute to cellular responses.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Erine H Budi
- Department of Cell and Tissue Biology and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
108
|
Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine 2019; 41:702-710. [PMID: 30808576 PMCID: PMC6442991 DOI: 10.1016/j.ebiom.2019.02.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
Abstract
The transforming growth factor β (TGF-β) superfamily participates in tumour proliferation, apoptosis, differentiation, migration, invasion, immune evasion and extracellular matrix remodelling. Genetic deficiency in distinct components of TGF-β and BMP-induced signalling pathways or their excessive activation has been reported to regulate the development and progression of some cancers. As more in-depth studies about this superfamily have been conducted, more evidence suggests that the TGF-β and BMP pathways play an opposing role. The cross-talk of these 2 pathways has been widely studied in kidney disease and bone formation, and the opposing effects have also been observed in some cancers. However, the antagonistic mechanisms are still insufficiently investigated in cancer. In this review, we aim to display more evidences and possible mechanisms accounting for the antagonism between these 2 pathways, which might provide some clues for further study in cancer. Describe the basics of TGF-β and BMP signalling Summarize the potential mechanisms accounting for the antagonism between TGF-β and BMP pathways Provide some evidence about the antagonistic effects between pathways observed in some cancers
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
109
|
Li H, Cui Y, Wei J, Liu C, Chen Y, Cui CP, Li L, Zhang X, Zhang L. VCP/p97 increases BMP signaling by accelerating ubiquitin ligase Smurf1 degradation. FASEB J 2019; 33:2928-2943. [PMID: 30335548 DOI: 10.1096/fj.201801173r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bone morphogenetic protein (BMP)-Smad signaling pathway plays a crucial role in the control of bone homeostasis by regulating osteoblast activity. It is known that the ubiquitin ligase Smad ubiquitination regulatory factor (Smurf)1 is a master negative regulator of BMP signaling, but how its stability and activity are regulated remains poorly understood. Our study showed that valosin-containing protein/p97, the mutations of which lead to rare forms of Paget's disease of bone (PDB)-like syndrome-such as inclusion body myopathy (IBM) associated with Paget's disease of bone and frontotemporal dementia (IBM-PFD)-together with its adaptor nuclear protein localization (NPL)4, specifically interact with Smurf1 and deliver the ubiquitinated Smurf1 for degradation. Depletion of either p97 or NPL4 resulted in the elevation of Smurf1 protein level and decreased BMP signaling accordingly. Mechanically, a typical proline, glutamic acid, serine, and threonine motif specifically existing in Smurf1 is necessary for its recognition and degradation by p97, and this process is dependent on p97 ATPase activity. More importantly, compared with p97 WT, PDB-associated mutation of p97 (mainly A232E) harboring the higher ATPase activity of p97 further promoted Smurf1 degradation, thus increasing BMP signaling activity. Our findings first establish a link between p97 and Smurf1, providing an in-depth understanding of how Smurf1 is regulated, as well as the mechanism of p97-related bone diseases.-Li, H., Cui, Y., Wei, J., Liu, C., Chen, Y., Cui, C.-P., Li, L., Zhang, X., Zhang, L. VCP/p97 increases BMP signaling by accelerating ubiquitin ligase Smurf1 degradation.
Collapse
Affiliation(s)
- Haiwen Li
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yu Cui
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Jun Wei
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Chao Liu
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Li
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
110
|
Bradford STJ, Ranghini EJ, Grimley E, Lee PH, Dressler GR. High-throughput screens for agonists of bone morphogenetic protein (BMP) signaling identify potent benzoxazole compounds. J Biol Chem 2019; 294:3125-3136. [PMID: 30602563 DOI: 10.1074/jbc.ra118.006817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is critical in renal development and disease. In animal models of chronic kidney disease (CKD), re-activation of BMP signaling is reported to be protective by promoting renal repair and regeneration. Clinical use of recombinant BMPs, however, requires harmful doses to achieve efficacy and is costly because of BMPs' complex synthesis. Therefore, alternative strategies are needed to harness the beneficial effects of BMP signaling in CKD. Key aspects of the BMP signaling pathway can be regulated by both extracellular and intracellular molecules. In particular, secreted proteins like noggin and chordin inhibit BMP activity, whereas kielin/chordin-like proteins (KCP) enhance it and attenuate kidney fibrosis or CKD. Clinical development of KCP, however, is precluded by its size and complexity. Therefore, we propose an alternative strategy to enhance BMP signaling by using small molecules, which are simpler to synthesize and more cost-effective. To address our objective, here we developed a small-molecule high-throughput screen (HTS) with human renal cells having an integrated luciferase construct highly responsive to BMPs. We demonstrate the activity of a potent benzoxazole compound, sb4, that rapidly stimulated BMP signaling in these cells. Activation of BMP signaling by sb4 increased the phosphorylation of key second messengers (SMAD-1/5/9) and also increased expression of direct target genes (inhibitors of DNA binding, Id1 and Id3) in canonical BMP signaling. Our results underscore the feasibility of utilizing HTS to identify compounds that mimic key downstream events of BMP signaling in renal cells and have yielded a lead BMP agonist.
Collapse
Affiliation(s)
- Shayna T J Bradford
- From the Department of Pathology and.,the Molecular and Cellular Pathology Graduate Program, School of Medicine, and
| | | | - Edward Grimley
- From the Department of Pathology and.,the Molecular and Cellular Pathology Graduate Program, School of Medicine, and
| | - Pil H Lee
- the Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
111
|
Tian M, Zeng T, Liu M, Han S, Lin H, Lin Q, Li L, Jiang T, Li G, Lin H, Zhang T, Kang Q, Deng X, Wang HR. A cell-based high-throughput screening method based on a ubiquitin-reference technique for identifying modulators of E3 ligases. J Biol Chem 2018; 294:2880-2891. [PMID: 30587574 DOI: 10.1074/jbc.ra118.003822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that a wide range of E3 ubiquitin ligases are involved in the development of many human diseases. Searching for small-molecule modulators of these E3 ubiquitin ligases is emerging as a promising drug discovery strategy. Here, we report the development of a cell-based high-throughput screening method to identify modulators of E3 ubiquitin ligases by integrating the ubiquitin-reference technique (URT), based on a fusion protein of ubiquitin located between a protein of interest and a reference protein moiety, with a Dual-Luciferase system. Using this method, we screened for small-molecule modulators of SMAD ubiquitin regulatory factor 1 (SMURF1), which belongs to the NEDD4 family of E3 ubiquitin ligases and is an attractive therapeutic target because of its roles in tumorigenesis. Using RAS homolog family member B (RHOB) as a SMURF1 substrate in this screen, we identified a potent SMURF1 inhibitor and confirmed that it also blocks SMURF1-dependent degradation of SMAD family member 1 (SMAD1) and RHOA. An in vitro auto-ubiquitination assay indicated that this compound inhibits both SMURF1 and SMURF2 activities, indicating that it may be an antagonist of the catalytic activity of the HECT domain in SMURF1/2. Moreover, cell functional assays revealed that this compound effectively inhibits protrusive activity in HEK293T cells and blocks transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) in MDCK cells, similar to the effects on these processes caused by SMURF1 loss. In summary, the screening approach presented here may have great practical potential for identifying modulators of E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Maoyuan Tian
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Taoling Zeng
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Mingdong Liu
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Shang Han
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Huayue Lin
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Qi Lin
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Li Li
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Tingting Jiang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Gao Li
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Hong Lin
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Ting Zhang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Qiaofeng Kang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Xianming Deng
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Hong-Rui Wang
- From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| |
Collapse
|
112
|
Werner CT, Viswanathan R, Martin JA, Gobira PH, Mitra S, Thomas SA, Wang ZJ, Liu JF, Stewart AF, Neve RL, Li JX, Gancarz AM, Dietz DM. E3 Ubiquitin-Protein Ligase SMURF1 in the Nucleus Accumbens Mediates Cocaine Seeking. Biol Psychiatry 2018; 84:881-892. [PMID: 30158054 PMCID: PMC6260585 DOI: 10.1016/j.biopsych.2018.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Substance use disorder is a neurobiological disease characterized by episodes of relapse despite periods of withdrawal. It is thought that neuroadaptations in discrete brain areas of the reward pathway, including the nucleus accumbens, underlie these aberrant behaviors. The ubiquitin-proteasome system degrades proteins and has been shown to be involved in cocaine-induced plasticity, but the role of E3 ubiquitin ligases, which conjugate ubiquitin to substrates, is unknown. Here, we examined E3 ubiquitin-protein ligase SMURF1 (SMURF1) in neuroadaptations and relapse behavior during withdrawal following cocaine self-administration. METHODS SMURF1 and downstream targets ras homolog gene family, member A (RhoA), SMAD1/5, and Runt-related transcript factor 2 were examined using Western blotting (n = 9-11/group), quantitative polymerase chain reaction (n = 6-9/group), co-immunoprecipitation (n = 9-11/group), tandem ubiquitin binding entities affinity purification (n = 5-6/group), and quantitative chromatin immunoprecipitation (n = 3-6/group) (2 rats/sample). Viral-mediated gene transfer (n = 7-12/group) and intra-accumbal microinjections (n = 9-10/group) were used to examine causal roles of SMURF1 and substrate RhoA, respectively, in cue-induced cocaine seeking. RESULTS SMURF1 protein expression was decreased, while SMURF1 substrates RhoA and SMAD1/5 were increased, in the nucleus accumbens on withdrawal day 7, but not on withdrawal day 1, following cocaine self-administration. Viral-mediated gene transfer of Smurf1 or constitutive activation of RhoA attenuated cue-induced cocaine seeking, while catalytically inactive Smurf1 enhanced cocaine seeking. Furthermore, SMURF1-regulated, SMAD1/5-associated transcription factor Runt-related transcript factor 2 displayed increased binding at promoter regions of genes previously associated with cocaine-induced plasticity. CONCLUSIONS SMURF1 is a key mediator of neuroadaptations in the nucleus accumbens following cocaine exposure and mediates cue-induced cocaine seeking during withdrawal.
Collapse
Affiliation(s)
- Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Rathipriya Viswanathan
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Zi-Jun Wang
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Jian-Feng Liu
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Andrew F Stewart
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York
| | - Amy M Gancarz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York; Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York; Department of Psychology, The State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
113
|
Zhu K, Tang Y, Xu X, Dang H, Tang LY, Wang X, Wang XW, Zhang YE. Non-proteolytic ubiquitin modification of PPARγ by Smurf1 protects the liver from steatosis. PLoS Biol 2018; 16:e3000091. [PMID: 30566427 PMCID: PMC6317813 DOI: 10.1371/journal.pbio.3000091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/03/2019] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by abnormal accumulation of triglycerides (TG) in the liver and other metabolic syndrome symptoms, but its molecular genetic causes are not completely understood. Here, we show that mice deficient for ubiquitin ligase (E3) Smad ubiquitin regulatory factor 1 (Smurf1) spontaneously develop hepatic steatosis as they age and exhibit the exacerbated phenotype under a high-fat diet (HFD). Our data indicate that loss of Smurf1 up-regulates the expression of peroxisome proliferator-activated receptor γ (PPARγ) and its target genes involved in lipid synthesis and fatty acid uptake. We further show that PPARγ is a direct substrate of Smurf1-mediated non-proteolytic lysine 63 (K63)-linked ubiquitin modification that suppresses its transcriptional activity, and treatment of Smurf1-deficient mice with a PPARγ antagonist, GW9662, completely reversed the lipid accumulation in the liver. Finally, we demonstrate an inverse correlation of low SMURF1 expression to high body mass index (BMI) values in human patients, thus revealing a new role of SMURF1 in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Kun Zhu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yi Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xuan Xu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Liu-Ya Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiang Wang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying E. Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
114
|
Murakami K, Etlinger JD. Role of SMURF1 ubiquitin ligase in BMP receptor trafficking and signaling. Cell Signal 2018; 54:139-149. [PMID: 30395943 DOI: 10.1016/j.cellsig.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
Heterozygous germline mutations in the bone morphogenetic protein type II receptor gene (BMPRII) are associated with hereditary pulmonary arterial hypertension (HPAH). Missense mutations, both in the extracellular ligand-binding and cytoplasmic kinase domains, mostly involve substitution of conserved Cys residues. Singular substitution at any of those Cys residues causes cytoplasmic, perinuclear localization of BMPR with reduced cell surface expression and BMP signaling. The present study examined the effect of Cys residue substitution on BMPR endocytic trafficking and lysosome degradation. We demonstrate that endocytosis/lysosomal degradation of BMPR occurs by two distinct pathways. SMURF1 ubiquitin ligase induces lysosomal degradation of BMPR, while ligase-inactive SMURF1 maintains BMPR protein level and cell surface expression. Substitution of BMPR Cys residues increases lysosomal degradation which is blocked by ligase-inactive SMURF1, elevating protein levels of Cys-substituted BMPRs. Expression of Cys-substituted BMPR suppresses basal BMP signaling activity which is also up-regulated by ligase-inactive SMURF1. Cys-residue substitution thus appears to cause BMPR endocytosis to lysosomes in a SMURF1 ubiquitin ligase-associated pathway. Kinase-activated BMPR undergoes endocytic/lysosomal degradation by a pathway with certain unique properties. Therefore, our results describe a novel mechanism whereby SMURF1 ubiquitin ligase regulates constitutive endocytosis of BMPR which may be mediated by its conserved Cys residues.
Collapse
Affiliation(s)
- Koko Murakami
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA.
| | - Joseph D Etlinger
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
| |
Collapse
|
115
|
Kim KM, Jeon WJ, Kim EJ, Jang WG. CRTC2 suppresses BMP2-induced osteoblastic differentiation via Smurf1 expression in MC3T3-E1 cells. Life Sci 2018; 214:70-76. [PMID: 30449452 DOI: 10.1016/j.lfs.2018.10.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
AIMS CREB (cAMP response element-binding protein)-regulated transcription coactivator (CRTC2) has been reported to act as a coactivator of CREB during gluconeogenesis. The role of CRTC2 in osteoblastic differentiation has not yet been elucidated. The aim of this study is to identify the mechanism of CRTC2 in osteoblast differentiation. MAIN METHODS The mRNA expression was determined by RT-PCR and qPCR. Protein levels were measured using Western blot assay. Alkaline phosphatase (ALP) staining was performed to evaluate ALP activity. Alizarin red S (ARS) staining was performed to measure extracellular mineralization. Transcriptional activity was detected using a luciferase assay. KEY FINDINGS In the present study, TNF-α was found to stimulate CRTC2 expression. However, TNF-α did not increase the gene expression of osteoblast differentiation markers and inhibited BMP2-induced osteoblastic differentiation. Overexpression of CRTC2 decreased the expression of osteogenic genes, ALP activity and extracellular matrix mineralization. Knockdown of CRTC2 restored BMP2-induced osteogenic gene expression and ALP activity. CRTC2 increased Smurf1 mRNA expression, Smurf 1 promoter activity, and protein level. Furthermore, Smurf 1 decreased Smad 1/5/9 protein levels. These results suggest that CRTC2 decreased BMP2-induced osteoblastic differentiation via Smurf 1 expression. SIGNIFICANCE Our results indicate that CRTC2 regulates the expression of Smurf1 in osteoblast differentiation.
Collapse
Affiliation(s)
- Kyeong-Min Kim
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Wan-Jin Jeon
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea
| | - Eun-Jung Kim
- Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea; Department of Immunology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea.
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
116
|
Chen D, Gehringer M, Lorenz S. Developing Small-Molecule Inhibitors of HECT-Type Ubiquitin Ligases for Therapeutic Applications: Challenges and Opportunities. Chembiochem 2018; 19:2123-2135. [PMID: 30088849 PMCID: PMC6471174 DOI: 10.1002/cbic.201800321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 12/11/2022]
Abstract
The ubiquitin system regulates countless physiological and disease-associated processes and has emerged as an attractive entryway for therapeutic efforts. With over 600 members in the human proteome, ubiquitin ligases are the most diverse class of ubiquitylation enzymes and pivotal in encoding specificity in ubiquitin signaling. Although considerable progress has been made in the identification of small molecules targeting RING ligases, relatively little is known about the "druggability" of HECT (homologous to E6AP C terminus) ligases, many of which are critically implicated in human pathologies. A major obstacle to optimizing the few available ligands is our incomplete understanding of their inhibitory mechanisms and the structural basis of catalysis in HECT ligases. Here, we survey recent approaches to manipulate the activities of HECT ligases with small molecules to showcase the particular challenges and opportunities these enzymes hold as therapeutic targets.
Collapse
Affiliation(s)
- Dan Chen
- Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgJosef-Schneider-Strasse 2, Haus D1597080WürzburgGermany
| | - Matthias Gehringer
- Institute of Pharmaceutical SciencesDepartment of Pharmaceutical/Medicinal ChemistryUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgJosef-Schneider-Strasse 2, Haus D1597080WürzburgGermany
| |
Collapse
|
117
|
Long Y, Chen W, Du Q, Zuo X, Zhu H. Ubiquitination in Scleroderma Fibrosis and Its Treatment. Front Immunol 2018; 9:2383. [PMID: 30386338 PMCID: PMC6199354 DOI: 10.3389/fimmu.2018.02383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
Scleroderma (systemic sclerosis, SSc) is a highly heterogeneous rheumatic disease, and uncontrolled fibrosis in visceral organs is the major cause of death in patients. The transforming growth factor-β (TGF-β) and WNT/β-catenin signaling pathways, along with signal transducer and activator of transcription 3 (STAT3), play crucial roles in this fibrotic process. Currently, no therapy is available that effectively arrests or reverses the progression of fibrosis in patients with SSc. Ubiquitination is an important post-translational modification that controls many critical cellular functions. Dysregulated ubiquitination events have been observed in patients with systemic lupus erythematosus, rheumatoid arthritis and fibrotic diseases. Inhibitors targeting the ubiquitination pathway have considerable potential for the treatment of rheumatic diseases. However, very few studies have examined the role and mechanism of ubiquitination in patients with SSc. In this review, we will summarize the molecular mechanisms of ubiquitination in patients with SSc and explore the potential targets for treatment.
Collapse
Affiliation(s)
- Ying Long
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Weilin Chen
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Du
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
118
|
Pei D, Sun J, Zhu C, Tian F, Jiao K, Anderson MR, Yiu C, Huang C, Jin C, Bergeron BE, Chen J, Tay FR, Niu L. Contribution of Mitophagy to Cell-Mediated Mineralization: Revisiting a 50-Year-Old Conundrum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800873. [PMID: 30356983 PMCID: PMC6193168 DOI: 10.1002/advs.201800873] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 05/24/2023]
Abstract
Biomineralization in vertebrates is initiated via amorphous calcium phosphate (ACP) precursors. These precursors infiltrate the extracellular collagen matrix where they undergo phase transformation into intrafibrillar carbonated apatite. Although it is well established that ACP precursors are released from intracellular vesicles through exocytosis, an unsolved enigma in this cell-mediated mineralization process is how ACP precursors, initially produced in the mitochondria, are translocated to the intracellular vesicles. The present study proposes that mitophagy provides the mechanism for transfer of ACP precursors from the dysfunctioned mitochondria to autophagosomes, which, upon fusion with lysosomes, become autolysosomes where the mitochondrial ACP precursors coalesce to form larger intravesicular granules, prior to their release into the extracellular matrix. Apart from endowing the mitochondria with the function of ACP delivery through mitophagy, the present results indicate that mitophagy, triggered upon intramitochondrial ACP accumulation in osteogenic lineage-committed mesenchymal stem cells, participates in the biomineralization process through the BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Dan‐dan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong UniversityXi'an710004P. R. China
| | - Jin‐long Sun
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Chun‐hui Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong UniversityXi'an710004P. R. China
| | - Fu‐cong Tian
- Department of EndodonticsThe Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Kai Jiao
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Matthew R. Anderson
- Paediatric Dentistry Unit of the Faculty of DentistryPrince Philip Dental HospitalUniversity of Hong KongHong KongSAR999077P. R. China
| | - Cynthia Yiu
- Department of EndodonticsThe Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Cui Huang
- Department of ProsthodonticsSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Chang‐xiong Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong UniversityXi'an710004P. R. China
| | - Brian E. Bergeron
- Department of EndodonticsThe Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Ji‐hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Li‐na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
119
|
Tan Y, Chen Y, Du M, Peng Z, Xie P. USF2 inhibits the transcriptional activity of Smurf1 and Smurf2 to promote breast cancer tumorigenesis. Cell Signal 2018; 53:49-58. [PMID: 30244169 DOI: 10.1016/j.cellsig.2018.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Smurf1 (Smad ubiquitylation regulatory factor 1) and Smurf2 are negative regulators of the TGF-β (transforming growth factor-β) pathway. The protein stability and ubiquitin E3 activity regulation of Smurfs have been well studied. However, the mechanism of Smurfs expression at the transcriptional level remains uncharacterized. Here, we reported that USF2 (upstream stimulatory factor 2), a basic helix-loop-helix-leucine-zip transcription factor, is necessary for the transcriptional activity of Smurf1 and Smurf2. The 5'-flanking sequences of the Smurfs gene have more than one E-box motifs, and USF2 bounds the Smurfs promoter in vitro and in vivo. Over-expression USF2 inhibited the transcriptional activity of the Smurfs, and Smurfs mRNA was markedly decreased. Therefore, the activity of TGF-β was distinctly enhanced. Furthermore, in human breast cancers, USF2 was abnormally high expressed and correlated with cancer progression. USF2 was specifically inversely correlated with Smurfs in Luminal A subtype breast cancer patients. These findings suggest the mechanism regulation of Smurfs transcriptional activity, and shed new light on the cancer-promoting role of USF2.
Collapse
Affiliation(s)
- Yawen Tan
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Guangdong 518035, China
| | - Yujiao Chen
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Mengge Du
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Ping Xie
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
120
|
Guo YC, Wang MY, Zhang SW, Wu YS, Zhou CC, Zheng RX, Shao B, Wang Y, Xie L, Liu WQ, Sun NY, Jing JJ, Ye L, Chen QM, Yuan Q. Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J 2018; 37:embj.201899398. [PMID: 30181118 DOI: 10.15252/embj.201899398] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023] Open
Abstract
The osteogenic differentiation of mesenchymal stem cells (MSCs) is governed by multiple mechanisms. Growing evidence indicates that ubiquitin-dependent protein degradation is critical for the differentiation of MSCs and bone formation; however, the function of ubiquitin-specific proteases, the largest subfamily of deubiquitylases, remains unclear. Here, we identify USP34 as a previously unknown regulator of osteogenesis. The expression of USP34 in human MSCs increases after osteogenic induction while depletion of USP34 inhibits osteogenic differentiation. Conditional knockout of Usp34 from MSCs or pre-osteoblasts leads to low bone mass in mice. Deletion of Usp34 also blunts BMP2-induced responses and impairs bone regeneration. Mechanically, we demonstrate that USP34 stabilizes both Smad1 and RUNX2 and that depletion of Smurf1 restores the osteogenic potential of Usp34-deficient MSCs in vitro Taken together, our data indicate that USP34 is required for osteogenic differentiation and bone formation.
Collapse
Affiliation(s)
- Yu-Chen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng-Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Wen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Shu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen-Chen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ri-Xin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Qing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning-Yuan Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun-Jun Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
121
|
Sluimer J, Distel B. Regulating the human HECT E3 ligases. Cell Mol Life Sci 2018; 75:3121-3141. [PMID: 29858610 PMCID: PMC6063350 DOI: 10.1007/s00018-018-2848-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 01/09/2023]
Abstract
Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein-protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.
Collapse
Affiliation(s)
- Jasper Sluimer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Neuroscience, Erasmus Medical Center, Wijtemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
122
|
Deng ZH, Li YS, Gao X, Lei GH, Huard J. Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage 2018; 26:1153-1161. [PMID: 29580979 DOI: 10.1016/j.joca.2018.03.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/18/2018] [Accepted: 03/19/2018] [Indexed: 02/02/2023]
Abstract
Degeneration of articular cartilage (AC) tissue is the most common cause of osteoarthritis (OA) and rheumatoid arthritis. Bone morphogenetic proteins (BMPs) play important roles in bone and cartilage formation. This article reviews the experimental and clinical applications of BMPs in cartilage regeneration. Experimental evidence indicates that BMPs play an important role in protection against cartilage damage caused by inflammation or trauma, by binding to different receptor combinations and, consequently, activating different intracellular signaling pathways. Loss of function of BMP-related receptors contributes to the decreased intrinsic repair capacity of damaged cartilage and, thus, the multifunctional effects of BMPs make them attractive tools for the treatment of cartilage damage in patients with degenerative diseases. However, the development of BMP therapy as a treatment modality for cartilage regeneration has been hampered by certain factors, such as the eligibility of participants in clinical trials, financial support, drug delivery carrier safety, availabilities of effective scaffolds, appropriate selection of optimal dose and timing of administration, and side effects. Further research is needed to overcome these issues for future routine clinical applications. Research and development leading to the successful application of BMPs can initiate a new era in the treatment of cartilage degenerative diseases like OA.
Collapse
Affiliation(s)
- Z H Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong Province, China
| | - Y S Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - X Gao
- Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; The Steadman Philippon Research Institute, Vail, CO, USA
| | - G H Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - J Huard
- Department of Orthopaedic Surgery, Center for Tissue Engineering and Aging Research, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; The Steadman Philippon Research Institute, Vail, CO, USA.
| |
Collapse
|
123
|
Consequences of BMPR2 Deficiency in the Pulmonary Vasculature and Beyond: Contributions to Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19092499. [PMID: 30149506 PMCID: PMC6165502 DOI: 10.3390/ijms19092499] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/18/2022] Open
Abstract
Since its association with familial pulmonary arterial hypertension (PAH) in 2000, Bone Morphogenetic Protein Receptor II (BMPR2) and its related signaling pathway have become recognized as a key regulator of pulmonary vascular homeostasis. Herein, we define BMPR2 deficiency as either an inactivation of the receptor, decreased receptor expression, or an impairment of the receptor’s downstream signaling pathway. Although traditionally the phenotypic consequences of BMPR2 deficiency in PAH have been thought to be limited to the pulmonary vasculature, there is evidence that abnormalities in BMPR2 signaling may have consequences in many other organ systems and cellular compartments. Revisiting how BMPR2 functions throughout health and disease in cells and organs beyond the lung vasculature may provide insight into the contribution of these organ systems to PAH pathogenesis as well as the potential systemic manifestation of PAH. Here we review our knowledge of the consequences of BMPR2 deficiency across multiple organ systems.
Collapse
|
124
|
Liang C, Peng S, Li J, Lu J, Guan D, Jiang F, Lu C, Li F, He X, Zhu H, Au DWT, Yang D, Zhang BT, Lu A, Zhang G. Inhibition of osteoblastic Smurf1 promotes bone formation in mouse models of distinctive age-related osteoporosis. Nat Commun 2018; 9:3428. [PMID: 30143635 PMCID: PMC6109183 DOI: 10.1038/s41467-018-05974-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is essential for osteogenesis. However, recombinant human BMPs (rhBMPs) exhibit large inter-individual variations in local bone formation during clinical spinal fusion. Smurf1 ubiquitinates BMP downstream molecules for degradation. Here, we classify age-related osteoporosis based on distinct intraosseous BMP-2 levels and Smurf1 activity. One major subgroup with a normal BMP-2 level and elevated Smurf1 activity (BMP-2n/Smurf1e) shows poor response to rhBMP-2 during spinal fusion, when compared to another major subgroup with a decreased BMP-2 level and normal Smurf1 activity (BMP-2d/Smurf1n). We screen a chalcone derivative, i.e., 2-(4-cinnamoylphenoxy)acetic acid, which effectively inhibits Smurf1 activity and increases BMP signaling. For BMP-2n/Smurf1e mice, the chalcone derivative enhances local bone formation during spinal fusion. After conjugating to an osteoblast-targeting and penetrating oligopeptide (DSS)6, the chalcone derivative promotes systemic bone formation in BMP-2n/Smurf1e mice. This study demonstrates a precision medicine-based bone anabolic strategy for age-related osteoporosis. BMP promotes bone formation but its efficacy is limited in some patients. Here, the authors show that osteoporosis patients with a poor response to BMP have increased expression of Smurf1, which targets BMP effectors for degradation, and demonstrate that its chemical inhibition enhances BMP-mediated bone formation in mice.
Collapse
Affiliation(s)
- Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Songlin Peng
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Department of Spine Surgery, Shenzhen People's Hospital, Ji Nan University Second College of Medicine, 518020, Shenzhen, China
| | - Jie Li
- School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, 999077, Hong Kong, SAR, China.,Clinical Medical Laboratory of Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Daogang Guan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Feng Jiang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Zhejiang Pharmaceutical College, 315100, Ningbo, China
| | - Cheng Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Xiaojuan He
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hailong Zhu
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China
| | - D W T Au
- Department of Biology and Chemistry, City University of Hong Kong, 999077, Hong Kong, SAR, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, Ji Nan University Second College of Medicine, 518020, Shenzhen, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, 999077, Hong Kong, SAR, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China. .,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, 200032, Shanghai, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.
| |
Collapse
|
125
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
126
|
Ma JY, You D, Li WY, Lu XL, Sun S, Li HW. Bone morphogenetic proteins and inner ear development. J Zhejiang Univ Sci B 2018; 20:131-145. [PMID: 30112880 DOI: 10.1631/jzus.b1800084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β superfamily, and they play important roles in the development of numerous organs, including the inner ear. The inner ear is a relatively small organ but has a highly complex structure and is involved in both hearing and balance. Here, we discuss BMPs and BMP signaling pathways and then focus on the role of BMP signal pathway regulation in the development of the inner ear and the implications this has for the treatment of human hearing loss and balance dysfunction.
Collapse
Affiliation(s)
- Jiao-Yao Ma
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Dan You
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Wen-Yan Li
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Xiao-Ling Lu
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Shan Sun
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Hua-Wei Li
- Ear, Nose & Throat Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, NHC Key Laboratory of Hearing Medicine, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China.,Institutes of Biomedical Sciences and the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
127
|
Koganti P, Levy-Cohen G, Blank M. Smurfs in Protein Homeostasis, Signaling, and Cancer. Front Oncol 2018; 8:295. [PMID: 30116722 PMCID: PMC6082930 DOI: 10.3389/fonc.2018.00295] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an evolutionary conserved highly-orchestrated enzymatic cascade essential for normal cellular functions and homeostasis maintenance. This pathway relies on a defined set of cellular enzymes, among them, substrate-specific E3 ubiquitin ligases (E3s). These ligases are the most critical players, as they define the spatiotemporal nature of ubiquitination and confer specificity to this cascade. Smurf1 and Smurf2 (Smurfs) are the C2-WW-HECT-domain E3 ubiquitin ligases, which recently emerged as important determinants of pivotal cellular processes. These processes include cell proliferation and differentiation, chromatin organization and dynamics, DNA damage response and genomic integrity maintenance, gene expression, cell stemness, migration, and invasion. All these processes are intimately connected and profoundly altered in cancer. Initially, Smurf proteins were identified as negative regulators of the bone morphogenetic protein (BMP) and the transforming growth factor beta (TGF-β) signaling pathways. However, recent studies have extended the scope of Smurfs' biological functions beyond the BMP/TGF-β signaling regulation. Here, we provide a critical literature overview and updates on the regulatory roles of Smurfs in molecular and cell biology, with an emphasis on cancer. We also highlight the studies demonstrating the impact of Smurf proteins on tumor cell sensitivity to anticancer therapies. Further in-depth analyses of Smurfs' biological functions and influences on molecular pathways could provide novel therapeutic targets and paradigms for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
128
|
Zhao W, Zhu Q, Tan P, Ajibade A, Long T, Long W, Li Q, Liu P, Ning B, Wang HY, Wang RF. Tgfbr2 inactivation facilitates cellular plasticity and development of Pten-null prostate cancer. J Mol Cell Biol 2018; 10:316-330. [PMID: 29228234 PMCID: PMC6161409 DOI: 10.1093/jmcb/mjx052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 10/31/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
Mutations in tumors can create a state of increased cellular plasticity that promotes resistance to treatment. Thus, there is an urgent need to develop novel strategies for identifying key factors that regulate cellular plasticity in order to combat resistance to chemotherapy and radiation treatment. Here we report that prostate epithelial cell reprogramming could be exploited to identify key factors required for promoting prostate cancer tumorigenesis and cellular plasticity. Deletion of phosphatase and tensin homolog (Pten) and transforming growth factor-beta receptor type 2 (Tgfbr2) may increase prostate epithelial cell reprogramming efficiency in vitro and cause rapid tumor development and early mortality in vivo. Tgfbr2 ablation abolished TGF-β signaling but increased the bone morphogenetic protein (BMP) signaling pathway through the negative regulator Tmeff1. Furthermore, increased BMP signaling promotes expression of the tumor marker genes ID1, Oct4, Nanog, and Sox2; ID1/STAT3/NANOG expression was inversely correlated with patient survival. Thus, our findings provide information about the molecular mechanisms by which BMP signaling pathways render stemness capacity to prostate tumor cells.
Collapse
Affiliation(s)
- Wei Zhao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingyuan Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Peng Tan
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, USA
| | - Adebusola Ajibade
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Teng Long
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenyong Long
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingtian Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Pinghua Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Bo Ning
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
129
|
Liu J, Chen Y, Huang Q, Liu W, Ji X, Hu F, Zhu Y, Zhang L, Dong G. IRAK2 counterbalances oncogenic Smurf1 in colon cancer cells by dictating ER stress. Cell Signal 2018; 48:69-80. [DOI: 10.1016/j.cellsig.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/13/2023]
|
130
|
Deubiquitinating Enzymes and Bone Remodeling. Stem Cells Int 2018; 2018:3712083. [PMID: 30123285 PMCID: PMC6079350 DOI: 10.1155/2018/3712083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling, which is essential for bone homeostasis, is controlled by multiple factors and mechanisms. In the past few years, studies have emphasized the role of the ubiquitin-dependent proteolysis system in regulating bone remodeling. Deubiquitinases, which are grouped into five families, remove ubiquitin from target proteins and are involved in several cell functions. Importantly, a number of deubiquitinases mediate bone remodeling through regulating differentiation and/or function of osteoblast and osteoclasts. In this review, we review the functions and mechanisms of deubiquitinases in mediating bone remodeling.
Collapse
|
131
|
Lu G, Tandang-Silvas MR, Dawson AC, Dawson TJ, Groppe JC. Hypoxia-selective allosteric destabilization of activin receptor-like kinases: A potential therapeutic avenue for prophylaxis of heterotopic ossification. Bone 2018; 112:71-89. [PMID: 29626545 PMCID: PMC9851731 DOI: 10.1016/j.bone.2018.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/21/2023]
Abstract
Heterotopic ossification (HO), the pathological extraskeletal formation of bone, can arise from blast injuries, severe burns, orthopedic procedures and gain-of-function mutations in a component of the bone morphogenetic protein (BMP) signaling pathway, the ACVR1/ALK2 receptor serine-threonine (protein) kinase, causative of Fibrodysplasia Ossificans Progressiva (FOP). All three ALKs (-2, -3, -6) that play roles in bone morphogenesis contribute to trauma-induced HO, hence are well-validated pharmacological targets. That said, development of inhibitors, typically competitors of ATP binding, is inherently difficult due to the conserved nature of the active site of the 500+ human protein kinases. Since these enzymes are regulated via inherent plasticity, pharmacological chaperone-like drugs binding to another (allosteric) site could hypothetically modulate kinase conformation and activity. To test for such a mechanism, a surface pocket of ALK2 kinase formed largely by a key allosteric substructure was targeted by supercomputer docking of drug-like compounds from a virtual library. Subsequently, the effects of docked hits were further screened in vitro with purified recombinant kinase protein. A family of compounds with terminal hydrogen-bonding acceptor groups was identified that significantly destabilized the protein, inhibiting activity. Destabilization was pH-dependent, putatively mediated by ionization of a histidine within the allosteric substructure with decreasing pH. In vivo, nonnative proteins are degraded by proteolysis in the proteasome complex, or cellular trashcan, allowing for the emergence of therapeutics that inhibit through degradation of over-active proteins implicated in the pathology of diseases and disorders. Because HO is triggered by soft-tissue trauma and ensuing hypoxia, dependency of ALK destabilization on hypoxic pH imparts selective efficacy on the allosteric inhibitors, providing potential for safe prophylactic use.
Collapse
Affiliation(s)
- Guorong Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Mary R Tandang-Silvas
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Alyssa C Dawson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Trenton J Dawson
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, United States.
| |
Collapse
|
132
|
Chen Y, Huang Q, Liu W, Zhu Q, Cui CP, Xu L, Guo X, Wang P, Liu J, Dong G, Wei W, Liu CH, Feng Z, He F, Zhang L. Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth. Nat Commun 2018; 9:2464. [PMID: 29942010 PMCID: PMC6018636 DOI: 10.1038/s41467-018-04815-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Most tumor cells take up more glucose than normal cells. Splicing dysregulation is one of the molecular hallmarks of cancer. However, the role of splicing factor in glucose metabolism and tumor development remains poorly defined. Here, we show that upon glucose intake, the splicing factor SRSF5 is specifically induced through Tip60-mediated acetylation on K125, which antagonizes Smurf1-mediated ubiquitylation. SRSF5 promotes the alternative splicing of CCAR1 to produce CCAR1S proteins, which promote tumor growth by enhancing glucose consumption and acetyl-CoA production. Conversely, upon glucose starvation, SRSF5 is deacetylated by HDAC1, and ubiquitylated by Smurf1 on the same lysine, resulting in proteasomal degradation of SRSF5. The CCAR1L proteins accumulate to promote apoptosis. Importantly, SRSF5 is hyperacetylated and upregulated in human lung cancers, which correlates with increased CCAR1S expression and tumor progression. Thus, SRSF5 responds to high glucose to promote cancer development, and SRSF5-CCAR1 axis may be valuable targets for cancer therapeutics.
Collapse
Affiliation(s)
- Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Affiliated BaYi Children's Hospital, PLA Army General Hospital, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Beijing, 100700, China
| | - Qingyang Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qiong Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liang Xu
- Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xing Guo
- Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ping Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200072, China
| | - Jingwen Liu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Guanglong Dong
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhichun Feng
- Affiliated BaYi Children's Hospital, PLA Army General Hospital, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Beijing, 100700, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China. .,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China. .,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China. .,School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
133
|
The E3 ubiquitin ligase SMURF1 regulates cell-fate specification and outflow tract septation during mammalian heart development. Sci Rep 2018; 8:9542. [PMID: 29934521 PMCID: PMC6015040 DOI: 10.1038/s41598-018-27854-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
Smad ubiquitin regulatory factor 1 (SMURF1) is a HECT-type E3 ubiquitin ligase that plays a critical role in vertebrate development by regulating planar cell polarity (PCP) signaling and convergent extension (CE). Here we show that SMURF1 is involved in mammalian heart development. We find that SMURF1 is highly expressed in outflow tract cushion mesenchyme and Smurf1−/− mouse embryos show delayed outflow tract septation. SMURF1 is expressed in smooth muscle cells of the coronary arteries and great vessels. Thickness of the aortic smooth muscle cell layer is reduced in Smurf1−/− mouse embryos. We show that SMURF1 is a negative regulator of cardiomyogenesis and a positive regulator of smooth muscle cell and cardiac fibroblast differentiation, indicating that SMURF1 is important for cell-type specification during heart development. Finally, we provide evidence that SMURF1 localizes at the primary cilium where it may regulate bone morphogenetic protein (BMP) signaling, which controls the initial phase of cardiomyocyte differentiation. In summary, our results demonstrate that SMURF1 is a critical regulator of outflow tract septation and cell-type specification during heart development, and that these effects may in part be mediated via control of cilium-associated BMP signaling.
Collapse
|
134
|
Piacentino ML, Bronner ME. Intracellular attenuation of BMP signaling via CKIP-1/Smurf1 is essential during neural crest induction. PLoS Biol 2018; 16:e2004425. [PMID: 29949573 PMCID: PMC6039030 DOI: 10.1371/journal.pbio.2004425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/10/2018] [Accepted: 06/13/2018] [Indexed: 01/22/2023] Open
Abstract
The neural crest is induced at the neural plate border during gastrulation by combined bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Wnt signaling. While intermediate BMP levels are critical for this induction, secreted BMP inhibitors are largely absent from the neural plate border. Here, we propose a morphogen model in which intracellular attenuation of BMP signaling sets the required intermediate levels to maintain neural crest induction. We show that the scaffold protein casein kinase interacting protein 1 (CKIP-1) and ubiquitin ligase Smad ubiquitin regulatory factor 1 (Smurf1) are coexpressed with BMP4 at the chick neural plate border. Knockdown of CKIP-1 during a critical period between gastrulation and neurulation causes neural crest loss. Consistent with specific BMP modulation, CKIP-1 loss suppresses phospho-Smads 1/5/8 (pSmad1/5/8) and BMP reporter output but has no effect on Wnt signaling; Smurf1 overexpression (OE) acts similarly. Epistasis experiments further show that CKIP-1 rescues Smurf1-mediated neural crest loss. The results support a model in which CKIP-1 suppresses Smurf1-mediated degradation of Smads, uncovering an intracellular mechanism for attenuation of BMP signaling to the intermediate levels required for maintenance of neural crest induction.
Collapse
Affiliation(s)
- Michael L. Piacentino
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
135
|
Tang Y, Tang LY, Xu X, Li C, Deng C, Zhang YE. Generation of Smurf2 Conditional Knockout Mice. Int J Biol Sci 2018; 14:542-548. [PMID: 29805305 PMCID: PMC5968846 DOI: 10.7150/ijbs.24303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/27/2018] [Indexed: 01/17/2023] Open
Abstract
Smad ubiquitin regulatory factor 2 (Smurf2) is a HECT domain-containing E3 ubiquitin ligase. Together with its closely related homolog Smurf1, Smurf2 was initially recognized as a negative regulator of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling, but subsequent studies have expanded its function to regulate many different signaling pathways and play important roles in genomic stability, cell polarity, tissue homeostasis and carcinogenesis. Mice with conventional knockout of Smurf1 or Smurf2 alleles are viable, but conventional Smurf1 and Smurf2 double knockout mice were early embryonic lethal. In order to study the physiological function of Smurfs during late stage of embryonic development or in adult animals, we generated Smurf2flox/flox mice carrying a targeted mutation for conditional Smurf2 gene inactivation. We demonstrated that Cre-mediated recombination using Alb-Cre, a Cre line expressed in hepatocyte, results in specific deletion of the gene in liver tissue. We also showed that Cre-mediated recombination in mouse embryonic fibroblasts (MEFs) with Smurf2flox/flox genotype resulted in generation of Smurf2 knockout MEFs, and Smurf2 deficiency affects multiple signaling pathways. Therefore, this animal model will be useful to study the distinct roles of Smurf2 in different tissues at different ages.
Collapse
Affiliation(s)
- Yi Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Liu-Ya Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xuan Xu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Cuiling Li
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chuxia Deng
- Genetics of Development and Disease Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.,Present address: Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
136
|
Takebayashi-Suzuki K, Konishi H, Miyamoto T, Nagata T, Uchida M, Suzuki A. Coordinated regulation of the dorsal-ventral and anterior-posterior patterning ofXenopusembryos by the BTB/POZ zinc finger protein Zbtb14. Dev Growth Differ 2018; 60:158-173. [DOI: 10.1111/dgd.12431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Kimiko Takebayashi-Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Hidenori Konishi
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tatsuo Miyamoto
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Tomoko Nagata
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Misa Uchida
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| | - Atsushi Suzuki
- Amphibian Research Center; Graduate School of Science; Hiroshima University; Higashi-Hiroshima Japan
| |
Collapse
|
137
|
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment. Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.
Collapse
Affiliation(s)
- X Peng
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| | - X Wu
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| | - J Zhang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - G Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China
| | - G Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - X Pan
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| |
Collapse
|
138
|
Teegala S, Chauhan R, Lei E, Weinstein DC. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Dev Dyn 2018; 247:903-913. [PMID: 29633424 DOI: 10.1002/dvdy.24633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/14/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND T-box family proteins are DNA-binding transcriptional regulators that play crucial roles during germ layer formation in the early vertebrate embryo. Well-characterized members of this family, including the transcriptional activators Brachyury and VegT, are essential for the proper formation of mesoderm and endoderm, respectively. To date, T-box proteins have not been shown to play a role in the promotion of the third primary germ layer, ectoderm. RESULTS Here, we report that the T-box factor Tbx2 is both sufficient and necessary for ectodermal differentiation in the frog Xenopus laevis. Tbx2 is expressed zygotically in the presumptive ectoderm, during blastula and gastrula stages. Ectopic expression of Tbx2 represses mesoderm and endoderm, while loss of Tbx2 leads to inappropriate expression of mesoderm- and endoderm-specific genes in the region fated to give rise to ectoderm. Misexpression of Tbx2 also promotes neural tissue in animal cap explants, suggesting that Tbx2 plays a role in both the establishment of ectodermal fate and its dorsoventral patterning. CONCLUSIONS Our studies demonstrate that Tbx2 functions as a transcriptional repressor during germ layer formation, and suggest that this activity is mediated in part through repression of target genes that are stimulated, in the mesendoderm, by transactivating T-box proteins. Taken together, our results point to a critical role for Tbx2 in limiting the potency of blastula-stage progenitor cells during vertebrate germ layer differentiation. Developmental Dynamics 247:903-913, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sushma Teegala
- Department of Biology, The Graduate Center, City University of New York, New York.,Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Riddhi Chauhan
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Emily Lei
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Daniel C Weinstein
- Department of Biology, Queens College, City University of New York, Flushing, New York
| |
Collapse
|
139
|
Kim MJ, Park SY, Chang HR, Jung EY, Munkhjargal A, Lim JS, Lee MS, Kim Y. Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2. BMB Rep 2018; 50:308-317. [PMID: 28391780 PMCID: PMC5498141 DOI: 10.5483/bmbrep.2017.50.6.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Indexed: 12/18/2022] Open
Abstract
Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth factor-β (TGF-β) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.
Collapse
Affiliation(s)
- Myung-Jin Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Seon Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Hae Ryung Chang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Eun Young Jung
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Anudari Munkhjargal
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Jong-Seok Lim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Myeong-Sok Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
140
|
Hu F, Zhu Q, Sun B, Cui C, Li C, Zhang L. Smad ubiquitylation regulatory factor 1 promotes LIM‐homeobox gene 9 degradation and represses testosterone production in Leydig cells. FASEB J 2018; 32:4627-4640. [DOI: 10.1096/fj.201701480r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fan Hu
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Qiong Zhu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Banruo Sun
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Chunping Cui
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Chunlin Li
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| |
Collapse
|
141
|
Guo J, Qiu X, Zhang L, Wei R. Smurf1 regulates macrophage proliferation, apoptosis and migration via JNK and p38 MAPK signaling pathways. Mol Immunol 2018; 97:20-26. [PMID: 29550577 DOI: 10.1016/j.molimm.2018.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/30/2022]
Abstract
Smad ubiquitylation regulatory factor 1 (Smurf1) has been identified to play a critical role in bone homeostasis, development, cell cycle regulation and tumorigenesis. However, the role of Smurf1 in macrophage proliferation, apoptosis and migration is still unclear. Here, we show that Smurf1 expression was elevated in LPS-induced RAW264.7 macrophage and mouse embryonic fibroblasts (MEFs). And we found that knockdown of Smurf1 suppresses macrophage proliferation but promotes apoptosis and migration. Furthermore, JNK and p38 MAPK signaling were upregulated in Smurf1-depleted cells. And inhibition of JNK and p38 MAPK signaling in Smurf1 knockdown cells rescue the phenotypes of macrophage proliferation, apoptosis and migration. Therefore, our study suggests that Smurf1 is a new positive regulator for macrophage proliferation and apoptosis, but a negative regulator for macrophage migration.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, 100021, China; Department of Inorganic Non-metallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiao Qiu
- Center for Drug Evaluation, China Food and Drug Administration, Beijing, 100038, China
| | - Luo Zhang
- Department of Biomedical Engineering, Chinese PLA 307 Hospital, Beijing, 100071, China; Biological Sample Bank, Chinese PLA 307 Hospital, Beijing, 100071, China
| | - Rongfei Wei
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
142
|
Regulation of CNKSR2 protein stability by the HECT E3 ubiquitin ligase Smurf2, and its role in breast cancer progression. BMC Cancer 2018. [PMID: 29534682 PMCID: PMC5850909 DOI: 10.1186/s12885-018-4188-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Smurf2 E3 ubiquitin ligase physically associates with and regulate the stability of distinct cellular protein substrates. The multi-functional scaffold protein Connector enhancer of kinase suppressor of ras 2 (CNKSR2) plays a key role in regulating cell proliferation, and differentiation through multiple receptor tyrosine kinase pathways. The aim of this study was to investigate whether the interaction between Smurf2 and CNKSR2 has any significant role in the post transcriptional regulation of CNKSR2 expression in breast cancer. METHODS Here we demonstrate a novel interaction of CNKSR2 with Smurf2 by co-immunoprecipitation, indirect immunofluorescence studies, and surface plasmon resonance (SPR) analysis, which can ubiquitinate, but stabilize CNKSR2 by protecting it from proteasome mediated degradation. RESULTS CNKSR2 protein levels were significantly increased upon forced overexpression of Smurf2, indicating the role of Smurf2 in regulating the stability of CNKSR2. Conversely, Smurf2 knockdown resulted in a marked decrease in the protein level expression of CNKSR2 by facilitating enhanced polyubiquitination and proteasomal degradation and reduced the proliferation and clonogenic survival of MDA-MB-231 breast cancer cell lines. Tissue microarray data from 84 patients with various stages of mammary carcinoma, including (in order of increasing malignant potential) normal, usual hyperplasia, fibrocystic changes, fibroadenoma, carcinoma-in-situ, and invasive ductal carcinoma showed a statistically significant association between Smurf2 and CNKSR2 expression, which is also well correlated with the ER, PR, and HER2 status of the tissue samples. A comparatively high expression of Smurf2 and CNKSR2 was observed when the expression of ER and PR was low, and HER2 was high. Consistently, both Smurf2 and CNKSR2 showed an integrated expression in MCF10 breast progression model cell lines. CONCLUSIONS Altogether, our findings reveal that Smurf2 is a novel positive regulator of CNKSR2 and suggest that Smurf2-CNKSR2 interaction may serve as a common strategy to control proliferation of human breast cancer cells by modulating CNKSR2 protein stability.
Collapse
|
143
|
Singh PNP, Shea CA, Sonker SK, Rolfe RA, Ray A, Kumar S, Gupta P, Murphy P, Bandyopadhyay A. Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement. Development 2018; 145:dev.153460. [PMID: 29467244 DOI: 10.1242/dev.153460] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
Abstract
Dynamic mechanical loading of synovial joints is necessary for normal joint development, as evidenced in certain clinical conditions, congenital disorders and animal models where dynamic muscle contractions are reduced or absent. Although the importance of mechanical forces on joint development is unequivocal, little is known about the molecular mechanisms involved. Here, using chick and mouse embryos, we observed that molecular changes in expression of multiple genes analyzed in the absence of mechanical stimulation are consistent across species. Our results suggest that abnormal joint development in immobilized embryos involves inappropriate regulation of Wnt and BMP signaling during definition of the emerging joint territories, i.e. reduced β-catenin activation and concomitant upregulation of pSMAD1/5/8 signaling. Moreover, dynamic mechanical loading of the developing knee joint activates Smurf1 expression; our data suggest that Smurf1 insulates the joint region from pSMAD1/5/8 signaling and is essential for maintenance of joint progenitor cell fate.
Collapse
Affiliation(s)
- Pratik Narendra Pratap Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Shashank Kumar Sonker
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ayan Ray
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sandeep Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Pankaj Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
144
|
Zylbersztejn F, Flores-Violante M, Voeltzel T, Nicolini FE, Lefort S, Maguer-Satta V. The BMP pathway: A unique tool to decode the origin and progression of leukemia. Exp Hematol 2018; 61:36-44. [PMID: 29477370 DOI: 10.1016/j.exphem.2018.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
The microenvironment (niche) governs the fate of stem cells (SCs) by balancing self-renewal and differentiation. Increasing evidence indicates that the tumor niche plays an active role in cancer, but its important properties for tumor initiation progression and resistance remain to be identified. Clinical data show that leukemic stem cell (LSC) survival is responsible for disease persistence and drug resistance, probably due to their sustained interactions with the tumor niche. Bone morphogenetic protein (BMP) signaling is a key pathway controlling stem cells and their niche. BMP2 and BMP4 are important in both the normal and the cancer context. Several studies have revealed profound alterations of the BMP signaling in cancer SCs, with major deregulations of the BMP receptors and their downstream signaling elements. This was illustrated in the hematopoietic system by pioneer studies in chronic myelogenous leukemia that may now be expanded to acute myeloid leukemia and lymphoid leukemia, as reviewed here. At diagnosis, cells from the leukemic microenvironment are the major providers of soluble BMPs. Conversely, LSCs display altered receptors and downstream BMP signaling elements accompanied by altered functional responses to BMPs. These studies reveal the role of BMPs in tumor initiation, in addition to their known effects in later stages of transformation and progression. They also reveal the importance of BMPs in fueling cell transformation and expansion by overamplifying a natural SC response. This mechanism may explain the survival of LSCs independently of the initial oncogenic event and therefore may be involved in resistance processes.
Collapse
Affiliation(s)
- Florence Zylbersztejn
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Mario Flores-Violante
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Thibault Voeltzel
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Franck-Emmanuel Nicolini
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France; Centre Léon Bérard, 69000 Lyon, France
| | - Sylvain Lefort
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France
| | - Véronique Maguer-Satta
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5286, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Inserm U1052, Centre de Recherche en Cancérologie de Lyon, 69000 Lyon, France; Université de Lyon, 69000, Lyon, France; Department of Signaling of Tumor Escape, Lyon, France.
| |
Collapse
|
145
|
Chang H, Zhang J, Miao Z, Ding Y, Xu X, Zhao X, Xu P, Wang Q, Lin Y. Suppression of the Smurf1 Expression Inhibits Tumor Progression in Gliomas. Cell Mol Neurobiol 2018; 38:421-430. [PMID: 28321604 PMCID: PMC11481853 DOI: 10.1007/s10571-017-0485-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma, one of the common malignant brain tumors, results in the highly death, but its underlying molecular mechanisms remain unclear. Smurf1, a member of Nedd4 family of HECT-type ligases, has been reported to contribute to tumorigenicity through several important biological pathways. Recently, it was also found to participate in modulate cellular processes, including morphogenesis, autophagy, growth, and cell migration. In this research, we reported the clinical guiding significance of the expression of Smurf1 in human glioma tissues and cell lines. Western blotting analysis discovered that the expression of Smurf1 was increased with WHO grade. Immunohistochemistry levels discovered that high expression of Smurf1 is closely consistent with poor prognosis of glioma. In addition, suppression of Smurf1 can reduce cell invasion and increase the E-cadherin expression, which is a marker of invasion. Our study firstly demonstrated that Smurf1 may promote glioma cell invasion and suppression of the Smurf1 may provide a novel treatment strategy for glioma.
Collapse
Affiliation(s)
- Hao Chang
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Jingning Zhang
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Zengli Miao
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yasuo Ding
- Department of Neurosurgery, Taizhou People's Hospital Affiliated to Nantong University, 399 Hailing Road, Taizhou, 225300, Jiangsu, China
| | - Xing Xu
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Xudong Zhao
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Peng Xu
- Department of Pathology, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Qing Wang
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
| | - Yuchang Lin
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China.
| |
Collapse
|
146
|
Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget 2018; 7:26057-69. [PMID: 27036023 PMCID: PMC5041964 DOI: 10.18632/oncotarget.8424] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/07/2016] [Indexed: 11/25/2022] Open
Abstract
Tumor cell proliferation, survival and migration are regulated by the deletion of ovarian carcinoma 2/disabled homolog 2 (DOC-2/DAB2) interacting protein (DAB2IP), a tumor suppressor that serves as a scaffold protein for H-Ras and TRAF2. Importantly, the oncogenic histone methyl-transferase EZH2 epigenetically down-regulates DAB2IP in a variety of tumors. Recently, we demonstrated that DAB2IP is negatively regulated by Akt-dependent phosphorylation and SCFFbw7-mediated degradation. Here, we further identify the oncoprotein Smurf1, an E3-ubiquitin ligase, as a novel negative regulator of DAB2IP. Smurf1-mediated cellular proliferation and migration are largely dependent on the presence of DAB2IP, suggesting that DAB2IP is a key effector molecule of Smurf1 oncogenic function. Additionally, we identify that similar to DAB2IP, Smurf1 is also a target of phosphorylation by both Akt1 and Akt2 kinases, which enhances Smurf1 abundance, leading to a reduction in DAB2IP. Given the role of DAB2IP in tumorigenesis and metastasis, our data identify Smurf1 as an upstream oncogenic factor that negatively regulates DAB2IP to govern aberrant cell growth and migration.
Collapse
|
147
|
Accardi F, Toscani D, Costa F, Aversa F, Giuliani N. The Proteasome and Myeloma-Associated Bone Disease. Calcif Tissue Int 2018; 102:210-226. [PMID: 29080972 DOI: 10.1007/s00223-017-0349-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Abstract
Bone disease is the hallmark of multiple myeloma (MM), a hematological malignancy characterized by osteolytic lesions due to a severe uncoupled and unbalanced bone remodeling with pronounced osteoblast suppression. Bone metastasis is also a frequent complication of solid tumors including advanced breast or prostate cancer. In the past years, the ubiquitin-proteasome pathway has been proved critical in regulating the balance between bone formation and bone resorption. Proteasome inhibitors (PIs) are a new class of drugs, currently used in the treatment of MM, that affect both tumor cells and bone microenvironment. Particularly, PIs stimulate osteoblast differentiation by human mesenchymal stromal cells and increase bone regeneration in mice. Interestingly, in vitro data indicate that PIs block MM-induced osteoblast and osteocyte cell death by targeting both apoptosis and autophagy. The preclinical data are supported by the following effects observed in MM patients treated with PIs: increase of bone alkaline phosphatase levels, normalization of the markers of bone turnover, and reduction of the skeletal-related events. Moreover, the histomorphometric data indicate that the treatment with bortezomib stimulates osteoblast formation and maintains osteocyte viability in MM patients. This review updates the evidence on the effects of PIs on bone remodeling and on cancer-induced bone disease while focusing on MM bone disease.
Collapse
Affiliation(s)
- Fabrizio Accardi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Federica Costa
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Franco Aversa
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Hematology and BMT Center, "Azienda Ospedaliero, Universitaria di Parma", Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
148
|
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6:2. [PMID: 29423331 PMCID: PMC5802812 DOI: 10.1038/s41413-017-0005-4] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023] Open
Abstract
TGF-β 1-3 are unique multi-functional growth factors that are only expressed in mammals, and mainly secreted and stored as a latent complex in the extracellular matrix (ECM). The biological functions of TGF-β in adults can only be delivered after ligand activation, mostly in response to environmental perturbations. Although involved in multiple biological and pathological processes of the human body, the exact roles of TGF-β in maintaining stem cells and tissue homeostasis have not been well-documented until recent advances, which delineate their functions in a given context. Our recent findings, along with data reported by others, have clearly shown that temporal and spatial activation of TGF-β is involved in the recruitment of stem/progenitor cell participation in tissue regeneration/remodeling process, whereas sustained abnormalities in TGF-β ligand activation, regardless of genetic or environmental origin, will inevitably disrupt the normal physiology and lead to pathobiology of major diseases. Modulation of TGF-β signaling with different approaches has proven effective pre-clinically in the treatment of multiple pathologies such as sclerosis/fibrosis, tumor metastasis, osteoarthritis, and immune disorders. Thus, further elucidation of the mechanisms by which TGF-β is activated in different tissues/organs and how targeted cells respond in a context-dependent way can likely be translated with clinical benefits in the management of a broad range of diseases with the involvement of TGF-β.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
149
|
Saxena M, Agnihotri N, Sen J. Perturbation of canonical and non-canonical BMP signaling affects migration, polarity and dendritogenesis of mouse cortical neurons. Development 2018; 145:dev.147157. [PMID: 29180570 DOI: 10.1242/dev.147157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/16/2017] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein (BMP) signaling has been implicated in the regulation of patterning of the forebrain and as a regulator of neurogenesis and gliogenesis in the mammalian cortex. However, its role in other aspects of cortical development in vivo remains unexplored. We hypothesized that BMP signaling might regulate additional processes during the development of cortical neurons after observing active BMP signaling in a spatiotemporally dynamic pattern in the mouse cortex. Our investigation revealed that BMP signaling specifically regulates the migration, polarity and the dendritic morphology of upper layer cortical neurons born at E15.5. On further dissection of the role of canonical and non-canonical BMP signaling in each of these processes, we found that migration of these neurons is regulated by both pathways. Their polarity, however, appears to be affected more strongly by canonical BMP signaling, whereas dendritic branch formation appears to be somewhat more strongly affected by LIMK-mediated non-canonical BMP signaling.
Collapse
Affiliation(s)
- Monika Saxena
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Nitin Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
150
|
Wei R, Li B, Guo J, Li M, Zhu R, Yang X, Gao R. Smurf1 targets Securin for ubiquitin-dependent degradation and regulates the metaphase-to-anaphase transition. Cell Signal 2017; 38:60-66. [DOI: 10.1016/j.cellsig.2017.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022]
|