101
|
Wiens JJ, Zelinka J. How many species will Earth lose to climate change? GLOBAL CHANGE BIOLOGY 2024; 30:e17125. [PMID: 38273487 DOI: 10.1111/gcb.17125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 01/27/2024]
Abstract
Climate change may be an important threat to global biodiversity, potentially leading to the extinction of numerous species. But how many? There have been various attempts to answer this question, sometimes yielding strikingly different estimates. Here, we review these estimates, assess their disagreements and methodology, and explore how we might reach better estimates. Large-scale studies have estimated the extinction of ~1% of sampled species up to ~70%, even when using the same approach (species distribution models; SDMs). Nevertheless, worst-case estimates often converge near 20%-30% species loss, and many differences shrink when using similar assumptions. We perform a new review of recent SDM studies, which show ~17% loss of species to climate change under worst-case scenarios. However, this review shows that many SDM studies are biased by excluding the most vulnerable species (those known from few localities), which may lead to underestimating global species loss. Conversely, our analyses of recent climate change responses show that a fundamental assumption of SDM studies, that species' climatic niches do not change over time, may be frequently violated. For example, we find mean rates of positive thermal niche change across species of ~0.02°C/year. Yet, these rates may still be slower than projected climate change by ~3-4 fold. Finally, we explore how global extinction levels can be estimated by combining group-specific estimates of species loss with recent group-specific projections of global species richness (including cryptic insect species). These preliminary estimates tentatively forecast climate-related extinction of 14%-32% of macroscopic species in the next ~50 years, potentially including 3-6 million (or more) animal and plant species, even under intermediate climate change scenarios.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Joseph Zelinka
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
102
|
Alujević K, Bakewell L, Clifton IT, Cox CL, Frishkoff LO, Gangloff EJ, Garcia-Costoya G, Gifford ME, Glenwinkel M, Gulati SAK, Head A, Miles M, Pettit C, Watson CM, Wuthrich KL, Logan ML. 3D printed models are an accurate, cost-effective, and reproducible tool for quantifying terrestrial thermal environments. J Therm Biol 2024; 119:103762. [PMID: 38071898 DOI: 10.1016/j.jtherbio.2023.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 02/25/2024]
Abstract
Predicting ecological responses to rapid environmental change has become one of the greatest challenges of modern biology. One of the major hurdles in forecasting these responses is accurately quantifying the thermal environments that organisms experience. The distribution of temperatures available within an organism's habitat is typically measured using data loggers called operative temperature models (OTMs) that are designed to mimic certain properties of heat exchange in the focal organism. The gold standard for OTM construction in studies of terrestrial ectotherms has been the use of copper electroforming which creates anatomically accurate models that equilibrate quickly to ambient thermal conditions. However, electroformed models require the use of caustic chemicals, are often brittle, and their production is expensive and time intensive. This has resulted in many researchers resorting to the use of simplified OTMs that can yield substantial measurement errors. 3D printing offers the prospect of robust, easily replicated, morphologically accurate, and cost-effective OTMs that capture the benefits but alleviate the problems associated with electroforming. Here, we validate the use of OTMs that were 3D printed using several materials across eight lizard species of different body sizes and living in habitats ranging from deserts to tropical forests. We show that 3D printed OTMs have low thermal inertia and predict the live animal's equilibration temperature with high accuracy across a wide range of body sizes and microhabitats. Finally, we developed a free online repository and database of 3D scans (https://www.3dotm.org/) to increase the accessibility of this tool to researchers around the world and facilitate ease of production of 3D printed models. 3D printing of OTMs is generalizable to taxa beyond lizards. If widely adopted, this approach promises greater accuracy and reproducibility in studies of terrestrial thermal ecology and should lead to improved forecasts of the biological impacts of climate change.
Collapse
Affiliation(s)
- Karla Alujević
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Leah Bakewell
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Ian T Clifton
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA; Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Christian L Cox
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Luke O Frishkoff
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Guillermo Garcia-Costoya
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Matthew E Gifford
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Madison Glenwinkel
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Samir A K Gulati
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Alyssa Head
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Monica Miles
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Ciara Pettit
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Charles M Watson
- Department of Life Sciences, Texas A&M University San Antonio, San Antonio, TX, 78249, USA
| | - Kelly L Wuthrich
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Michael L Logan
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
103
|
de Carvalho DL, Silva SM, Sousa-Neves T, Gonçalves GSR, Silva DP, Santos MPD. Predicting the future of threatened birds from a Neotropical ecotone area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:61. [PMID: 38110623 DOI: 10.1007/s10661-023-12174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Climate change affects ecosystems in different ways. These effects are particularly worrying in the Neotropical region, where species are most vulnerable to these changes because they live closer to their thermal safety limits. Thus, establishing conservation priorities, particularly for the definition of protected areas (PAs), is a priority. However, some PA systems within the Neotropics are ineffective even under the present environmental conditions. Here, we test the effectiveness of a PA system, within an ecotone in northern Brazil, in protecting 24 endangered bird species under current and future (RCP8.5) climatic scenarios. We used species distribution modeling and dispersal corridor modeling to describe the priority areas for conservation of these species. Our results indicate that several threatened bird taxa are and will potentially be protected (i.e., occur within PAs). Nonetheless, the amount of protected area is insufficient to maintain the species in the ecotone. Moreover, most taxa will probably present drastic declines in their range sizes; some are even predicted to go globally extinct soon. Thus, we highlight the location of a potentially effective system of dispersal corridors that connects PAs in the ecotone. We reinforce the need to implement public policies and raise public awareness to maintain PAs and mitigate anthropogenic effects within them, corridors, and adjacent areas, aiming to conserve the richness and diversity of these already threatened species.
Collapse
Affiliation(s)
- Dorinny Lisboa de Carvalho
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Museu Paraense Emílio Goeldi, Av. Augusto Corrêa 01, Guamá, Belém, PA, CEP 66075-110, Brazil.
| | - Sofia Marques Silva
- Coordenação em Zoologia, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém, PA, CEP 66077 830, Brazil
| | - Tiago Sousa-Neves
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Museu Paraense Emílio Goeldi, Av. Augusto Corrêa 01, Guamá, Belém, PA, CEP 66075-110, Brazil
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Rua Padre Armando Quintas, 07, 4485-661, Vairão, Portugal
| | - Gabriela Silva Ribeiro Gonçalves
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Museu Paraense Emílio Goeldi, Av. Augusto Corrêa 01, Guamá, Belém, PA, CEP 66075-110, Brazil
| | - Daniel Paiva Silva
- COBIMA Lab, Departamento de Ciências Biológicas, Instituto Federal Goiano, IF Goiano, Rodovia Geraldo Silva Nascimento, KM 2,5 Zona Rural, Urutaí, GO, CEP 75790-000, Brazil
| | - Marcos Pérsio Dantas Santos
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Museu Paraense Emílio Goeldi, Av. Augusto Corrêa 01, Guamá, Belém, PA, CEP 66075-110, Brazil
- Instituto de Ciências Biológicas, Faculdade de Ciências Biológicas, Universidade Federal do Pará, Av. Augusto Corrêa 01, Guamá, Belém, PA, CEP 66075-110, Brazil
| |
Collapse
|
104
|
Song X, Jiang Y, Zhao L, Jin L, Yan C, Liao W. Predicting the Potential Distribution of the Szechwan Rat Snake ( Euprepiophis perlacea) and Its Response to Climate Change in the Yingjing Area of the Giant Panda National Park. Animals (Basel) 2023; 13:3828. [PMID: 38136865 PMCID: PMC10740900 DOI: 10.3390/ani13243828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Climate change is a significant driver of changes in the distribution patterns of species and poses a threat to biodiversity, potentially resulting in species extinctions. Investigating the potential distribution of rare and endangered species is crucial for understanding their responses to climate change and for the conservation of biodiversity and ecosystem management. The Szechwan rat snake (Euprepiophis perlacea) is an endemic and endangered species co-distributed with giant pandas, and studying its potential distribution contributes to a better understanding of the distribution pattern of endangered species. In this study, we confirmed seven presence points of this species in the Yingjing Area of the Giant Panda National Park, and selected eleven key factors to predict the potential distribution of E. perlacea under current and future scenarios using MaxEnt models. Our study consistently achieved AUC values exceeding 0.79, meeting the precision requirements of the models. The results indicated that the high potential distribution area of E. perlacea is mainly located near Yunwu mountain and the giant panda rewilding and reintroduction base, accounting for approximately 12% of the protected area. Moreover, we identified the primary environmental factors influencing the distribution of E. perlacea as the distance from streams and the slope degree, with their contribution rates exceeding 41% and 31%, respectively. In comparison to the current scenario, the potential habitat range for E. perlacea did not show an overall reduction in the context of future climate scenarios. To ensure the long-term preservation of E. perlacea, it is advisable to validate its actual distribution based on the models' results. Particular attention should be given to safeguarding its core distribution areas and raising awareness among residents within the potential distribution range about the conservation of E. perlacea.
Collapse
Affiliation(s)
- Xinqiang Song
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Daxiangling Provincial Nature Reserve, Ya’an 625200, China
| | - Ying Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Li Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
- College of Panda, China West Normal University, Nanchong 637009, China
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
- College of Panda, China West Normal University, Nanchong 637009, China
| | - Chengzhi Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
- College of Panda, China West Normal University, Nanchong 637009, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong 637009, China
- College of Panda, China West Normal University, Nanchong 637009, China
| |
Collapse
|
105
|
Yang J, Fu Z, Xiao K, Dong H, Zhou Y, Zhan Q. Climate Change Potentially Leads to Habitat Expansion and Increases the Invasion Risk of Hydrocharis (Hydrocharitaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:4124. [PMID: 38140451 PMCID: PMC10748102 DOI: 10.3390/plants12244124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Climate change is a crucial factor impacting the geographical distribution of plants and potentially increases the risk of invasion for certain species, especially for aquatic plants dispersed by water flow. Here, we combined six algorithms provided by the biomod2 platform to predict the changes in global climate-suitable areas for five species of Hydrocharis (Hydrocharitaceae) (H. chevalieri, H. dubia, H. laevigata, H. morsus-ranae, and H. spongia) under two current and future carbon emission scenarios. Our results show that H. dubia, H. morsus-ranae, and H. laevigata had a wide range of suitable areas and a high risk of invasion, while H. chevalieri and H. spongia had relatively narrow suitable areas. In the future climate scenario, the species of Hydrocharis may gain a wider habitat area, with Northern Hemisphere species showing a trend of migration to higher latitudes and the change in tropical species being more complex. The high-carbon-emission scenario led to greater changes in the habitat area of Hydrocharis. Therefore, we recommend strengthening the monitoring and reporting of high-risk species and taking effective measures to control the invasion of Hydrocharis species.
Collapse
Affiliation(s)
- Jiongming Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.F.)
| | - Zhihao Fu
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.F.)
| | - Keyan Xiao
- Hubei Xiuhu Botanical Garden, Xiaogan 432500, China;
| | - Hongjin Dong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China;
| | - Yadong Zhou
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.F.)
| | - Qinghua Zhan
- School of Life Sciences, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.F.)
| |
Collapse
|
106
|
Anuchitsakol S, Dilokekunakul W, Khongtor N, Chaemchuen S, Klomkliang N. Combined experimental and simulation study on H 2 storage in oxygen and nitrogen co-doped activated carbon derived from biomass waste: superior pore size and surface chemistry development. RSC Adv 2023; 13:36009-36022. [PMID: 38090088 PMCID: PMC10712222 DOI: 10.1039/d3ra06720c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 09/16/2024] Open
Abstract
In this study, heteroatom (O, N)-doped activated carbon (AC) is produced using urea and KOH activation from abundant and cost-effective biomass waste for H2 storage. The O and N co-doped AC exhibits the highest specific surface area and H2 storage capacity (2.62 wt%), increasing by 47% from unmodified AC at -196 °C and 1 bar. Surface modification helps develop superior pore sizes and volumes. However, the original AC is superior at lower pressures (<0.3 bar) because of its suitable pore width. This observation is then explained by molecular simulations. Optimal pore widths are 0.65 nm at <0.3 bar and 0.95-1.5 nm at pressures in moderate range (0.3-15 bar). Superior pore sizes are observed in the range of 0.8-1.3 nm at 1 bar, enhancing performance with co-doped AC to achieve uptake superior to that of other ACs described in the literature. However, above 15 bar, pore volume dominates capacity over pore width. Among the O and N groups, pyridinic-N oxide is the most substantial, playing a vital role at low and moderate pressures. These findings propose a strategy for superior H2 storage in porous carbons under various pressure conditions.
Collapse
Affiliation(s)
- Suphakorn Anuchitsakol
- School of Chemical Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Waralee Dilokekunakul
- Aachener Verfahrenstechnik - Chemical Process Engineering, RWTH Aachen University Aachen 52074 Germany
| | - Numphueng Khongtor
- Institute of Research and Development, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Nikom Klomkliang
- School of Chemical Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
- Research Unit of Adsorption, Catalysis & Energy Storage, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
107
|
Cai Z, La Sorte FA, Chen Y, Wu J. The surface urban heat island effect decreases bird diversity in Chinese cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166200. [PMID: 37567292 DOI: 10.1016/j.scitotenv.2023.166200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The audiovisual experience of observing birds in cities provides numerous benefits to residents, but their diversity is endangered by urbanization. Although the magnitude of the surface urban heat island effect (hereafter SUHI) has grown in recent years, its impact on bird diversity has not been adequately investigated. Here, we calculate the SUHI in 336 Chinese cities and we document the implications of the SUHI for avian species richness and functional diversity during the 2001, 2011, and 2019 breeding and non-breeding seasons. We predict that the SUHI will result in greater species richness and functional diversity in urban areas during the non-breeding season, especially for cities located within colder regions of China where the SUHI is more likely to relax thermoregulatory costs and reduce the propensity of some species to migrate. We predict that the SUHI will result in decreased species richness and functional diversity during the breeding season due to increased physiological stress, especially for cities located within warmer regions of China. Our findings showed that the SUHI was associated with lower species richness and lower functional diversity of birds in urban areas compared to suburban areas during both the breeding and non-breeding seasons. These results suggest that the SUHI induced birds to avoid urban areas or to move to cooler suburban areas during both the breeding and non-breeding seasons. This effect persisted irrespective of a city's size or geographical location. Our findings suggest that the SUHI is degrading bird diversity in Chinese cities.
Collapse
Affiliation(s)
- Zhizheng Cai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China; Center for Balanced Architecture, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Frank A La Sorte
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.
| | - Yu Chen
- The Architectural Design & Research Institute of Zhejiang University Co., Ltd., Zhejiang University, Hangzhou 310028, Zhejiang Province, PR China
| | - Jiayu Wu
- Institute of Landscape Architecture, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China.
| |
Collapse
|
108
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
109
|
Leite C, Russo T, Cuccaro A, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. Can temperature rise change the impacts induced by e-waste on adults and sperm of Mytilus galloprovincialis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166085. [PMID: 37549702 DOI: 10.1016/j.scitotenv.2023.166085] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Nowadays, it is of utmost importance to consider climate change factors, such as ocean warming, since the risk of negative impacts derived from increased surface water temperature is predicted to be high to the biodiversity. The need for renewable energy technologies, to reduce greenhouse gas emissions, has led to the increasing use of rare earth elements (REEs). Dysprosium (Dy) is widely used in magnets, motors, electrical vehicles, and nuclear reactors, being considered a critical REE to technology due to its economic importance and high supply risk. However, the increasing use of this element contributes to the enrichment of anthropogenic REEs in aquatic systems. Nevertheless, the information on the potential toxicity of Dy is limited. Moreover, the effects of pollutants can be amplified when combined with climate change factors. Thus, this study aimed to assess the effects of Dy (10 μg/L) in the species Mytilus galloprovincialis under actual (17 °C) and predicted warming conditions (21 °C). The Dy concentration in contaminated mussels was similar between temperatures, probably due to the detoxification capacity in individuals under these treatments. The combined stressors affected the redox balance, but higher impacts were caused by Dy and warming acting alone. In terms of cellular damage, although Dy acting alone was prejudicial to mussels, warming and both stressors acting together induced higher levels of LPO and PC. The histopathological effects of Dy in the digestive tubules were independent of the temperature tested. Regarding effects on sperm, only warming induced cellular damage, while both stressors, alone and together, impaired sperm movement. Overall, this study highlights that warming might influence the effects induced by Dy, but greater impacts were caused by the element. Eventually, the tested stressors may have consequences on mussels' reproduction capacity as well as their growth, abundance, and survival.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
110
|
Qiu J, Gu X, Li X, Bi J, Liu Y, Zheng K, Zhao Y. Identification of potentially suitable areas for nucleosides of Pinellia Ternata (Thunb.) Breit using ecological niche modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1479. [PMID: 37966553 DOI: 10.1007/s10661-023-12065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
Pinellia ternata, a traditional Chinese medicine, is well-renowned for its effectiveness in treating sickness such as coughs with excessive phlegm, vomiting, and nausea. The nucleoside components of P. ternata have been shown to have antitumor activity. Identifying potential growth areas of high-quality P. ternata based on the content of five nucleoside components and the identification of climatic features suitable for the growth of P. ternata will help to conserve P. ternata resources with targeted bioactive compounds. Using high-performance liquid chromatography (HPLC), we determined five nucleoside components, uridine, guanosine, adenosine, inosine, and thymidine, at 27 sampling points of P. ternata collected from 21 municipalities of 11 provinces in China. We used ecological niche modeling to identify the major environmental factors associated with the high metabolite content of P. ternata, including precipitation of the warmest quarter, annual mean temperature, annual precipitation, and isothermality. Areas with high suitability for the five nucleosides were found in Hebei, Shandong, Shanxi, Gansu, Sichuan, Guizhou, and Hubei Provinces. Under the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, the areas with a suitable distribution decreased and some areas with high suitability became areas with low suitability. Overall, our findings advance our knowledge of the ecological impacts of climate change and provide a valuable reference for conserving and sustainably developing high-quality P. ternata resources in the future.
Collapse
Affiliation(s)
- Jinmiao Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
| | - Xiaowei Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jingyi Bi
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yang Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Kaiyan Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| | - Yunsheng Zhao
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
111
|
Chessa C, Susca T. Development of an LCA characterization factor to account UHI local effect on terrestrial ecosystems damage category: Evaluation of European Bombus and Onthophagus genera heat-stress mortality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165183. [PMID: 37385499 DOI: 10.1016/j.scitotenv.2023.165183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Life Cycle Assessment as currently implemented fails in detecting and measuring the interactions between urban climate and built environment, specifically the urban heat island, providing potentially misleading results. The present study offers an advancement in Life Cycle Assessment methodology, and specifically in ReCiPe2016 method, by (a) suggesting the implementation of the Local Warming Potential midpoint impact category where the variation of urban temperature converges; (b) developing a new characterization factor through the definition of damage pathways to assess the effect of urban heat island on terrestrial ecosystems damage category, specifically on European Bombus and Onthophagus genera; (c) defining local endpoint damage categories where environmental local impacts can be addressed. The developed characterization factor has been applied to the case study of an urban area in Rome, Italy. The results show that the evaluation of the effects of urban overheating on local terrestrial ecosystems is meaningful and may support urban decision-makers who want to holistically assess urban plans.
Collapse
Affiliation(s)
| | - Tiziana Susca
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department Unit for Energy Efficiency, Italy.
| |
Collapse
|
112
|
Schmidt C, Hoban S, Jetz W. Conservation macrogenetics: harnessing genetic data to meet conservation commitments. Trends Genet 2023; 39:816-829. [PMID: 37648576 DOI: 10.1016/j.tig.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
113
|
Yue W, Zhou Q, Li M, van Vliet J. Relocating built-up land for biodiversity conservation in an uncertain future. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118706. [PMID: 37536125 DOI: 10.1016/j.jenvman.2023.118706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Land use changes associated with habitat loss, fragmentation, and degradation exert profoundly detrimental impacts on biodiversity conservation. Urban development is one of the prevailing anthropogenic disturbances to wildlife habitat, because these developments are often considered permanent and irreversible. As a result, the potential benefits of built-up land relocation for biodiversity conservation have remained largely unexplored in environmental management practices. Here, we analyze recent built-up land relocation in Shanghai and explore how such restoration programs can affect future land change trajectories with regards to biodiversity conservation. Results show that 187.78 km2 built-up land in Shanghai was restored to natural habitat between 2017 and 2020. Further simulation analysis highlights that relocating built-up land can substantially promote conserve biodiversity. In particular, there would be less habitat loss, better natural habitat quality and more species habitat-suitable range under the scenarios with built-up land relocation. Species extinction assessment suggest that amphibians, mammals, and reptiles will all have an increasingly high extinction risk without built-up land relocation. However, there will even be a marginal decrease in extinction risk over time for mammals and reptiles if the relocation of built-up land is permitted, but still a moderate increase in extinction risk for amphibians. This study highlights the importance of incorporating rigorous conservation planning prior to development activities, thereby underpinning a sustainable approach to environmental management.
Collapse
Affiliation(s)
- Wenze Yue
- Department of Land Management, Zhejiang University, Hangzhou, China
| | - Qiushi Zhou
- Department of Land Management, Zhejiang University, Hangzhou, China
| | - Mengmeng Li
- Department of Land Management, Zhejiang University, Hangzhou, China; Institute for Environmental Studies, VU University Amsterdam, Amsterdam, the Netherlands; Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland.
| | - Jasper van Vliet
- Institute for Environmental Studies, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
114
|
Holzmann KL, Walls RL, Wiens JJ. Accelerating local extinction associated with very recent climate change. Ecol Lett 2023; 26:1877-1886. [PMID: 37721806 DOI: 10.1111/ele.14303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Climate change has already caused local extinction in many plants and animals, based on surveys spanning many decades. As climate change accelerates, the pace of these extinctions may also accelerate, potentially leading to large-scale, species-level extinctions. We tested this hypothesis in a montane lizard. We resurveyed 18 mountain ranges in 2021-2022 after only ~7 years. We found rates of local extinction among the fastest ever recorded, which have tripled in the past ~7 years relative to the preceding ~42 years. Further, climate change generated local extinction in ~7 years similar to that seen in other organisms over ~70 years. Yet, contrary to expectations, populations at two of the hottest sites survived. We found that genomic data helped predict which populations survived and which went extinct. Overall, we show the increasing risk to biodiversity posed by accelerating climate change and the opportunity to study its effects over surprisingly brief timescales.
Collapse
Affiliation(s)
- Kim L Holzmann
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ramona L Walls
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
115
|
Chen Q, Madni GR, Shahzad AA. The usage of spatial econometric approach to explore the determinants of ecological footprint in BRI countries. PLoS One 2023; 18:e0288683. [PMID: 37906557 PMCID: PMC10617693 DOI: 10.1371/journal.pone.0288683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/01/2023] [Indexed: 11/02/2023] Open
Abstract
Protecting our environment is not a choice, but a responsibility we owe to future generations. Numerous studies examined the factors affecting the environmental deterioration but this research takes a step further by employing a spatial dependence model to evaluate spatial impact of ecological footprint and its contributing factors, particularly productive capacities which is hardly investigated in economic literature of BRI economies. For the purpose, the annual data of 54 BRI countries is analyzed for the time period from 2000 to 2018 by employing various econometric techniques. The outcomes of the Durbin model express that neighboring economies significantly affect the ecological footprint of an economy, highlighting the need for a regional policy framework to address environmental issues. It is also found that improving the productive capacities, green investment and democratic quality decrease the ecological footprint while per capita GDP, globalization, and development of financial sector increase the environmental deterioration. The significant interdependence of the countries within the region, a regional policy and vision must be implemented to safeguard the environment. The research findings can facilitate policy formulation aimed at promoting environmental sustainability, with particular focus on enhancing productive capacities and green investments.
Collapse
Affiliation(s)
- Qian Chen
- Law School of Shanghai University of Finance and Economics, Shanghai, 200433, China
| | - Ghulam Rasool Madni
- Department of Economics, Division of Management and Administrative Science, University of Education, Lahore, Pakistan
| | - Adnan Ali Shahzad
- Department of Economics, Division of Management and Administrative Science, University of Education, Lahore, Pakistan
| |
Collapse
|
116
|
Suicmez B, Avci M. Distribution patterns of Quercus ilex from the last interglacial period to the future by ecological niche modeling. Ecol Evol 2023; 13:e10606. [PMID: 37869430 PMCID: PMC10585444 DOI: 10.1002/ece3.10606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/19/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
The plants' geographic distribution is affected by natural or human-induced climate change. Numerous studies at both the global and regional levels currently focus on the potential changes in plant distribution areas. Ecological niche modeling can help predict the likely distribution of species according to environmental variables under different climate scenarios. In this study, we predicted the potential geographic distributions of Quercus ilex L. (holm oak), a keystone species of the Mediterranean ecosystem, for the Last Interglacial period (LIG: ~130 Ka), the Last Glacial Maximum (LGM: ~22 Ka), mid-Holocene (MH: ~6 Ka), and future climate scenarios (Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios) for 2050-2070 obtained from CCSM4 and MIROC-ESM global climate scenarios respectively. The models were produced with algorithms from the R-package "biomod2" and assessed by AUC of the receiver operating characteristic plot and true skill statistics. Aside from BIOCLIM (SRE), all model algorithms performed similarly and produced projections that are supported by good evaluation scores, although random forest (RF) slightly outperformed all the others. Additionally, distribution maps generated for the past period were validated through a comparison with pollen data acquired from the Neotoma Pollen Database. The results revealed that southern areas of the Mediterranean Basin, particularly coastal regions, served as long-term refugia for Q. ilex, which was supported by fossil pollen data. Furthermore, the models suggest long-term refugia role for Anatolia and we argue that Anatolia may have served as a founding population for the species. Future climate scenarios indicated that Q. ilex distribution varied by region, with some areas experiencing range contractions and others range expands. This study provides significant insights into the vulnerability of the Q. ilex to future climate change in the Mediterranean ecosystem and highlights the crucial role of Anatolia in the species' historical distribution.
Collapse
Affiliation(s)
- Burak Suicmez
- Istanbul University, Institute of Social SciencesIstanbulTürkiye
| | - Meral Avci
- Department of Geography, Faculty of LettersIstanbul UniversityIstanbulTürkiye
| |
Collapse
|
117
|
Copedo JS, Webb SC, Ragg NLC, Ericson JA, Venter L, Schmidt AJ, Delorme NJ, Alfaro AC. Histopathological changes in the greenshell mussel, Perna canaliculus, in response to chronic thermal stress. J Therm Biol 2023; 117:103699. [PMID: 37708787 DOI: 10.1016/j.jtherbio.2023.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Climate change associated temperature challenges pose a serious threat to the marine environment. Elevations in average sea surface temperatures are occurring and increasing frequency of marine heatwaves resulting in mortalities of organisms are being reported. In recent years, marine farmers have reported summer mass mortality events of the New Zealand Greenshell mussel, Perna canaliculus, during the summer months; however, the etiological agents have yet to be determined. To elucidate the role of thermal stress, adult P. canaliculus were exposed to three chronic temperature treatments: a benign control of 17 °C and stressful elevations of 21 °C and 24 °C. Eight mussels per treatment were collected each month throughout a 14-month challenge period to identify and investigate histopathological differences among P. canaliculus populations exposed to the three temperatures. Histopathology revealed several significant deleterious alterations to tissues associated with temperature and exposure time. Increasing temperature and progression of time resulted in 1) an increase in the number of focal lipofuscin-ceroid aggregations, 2) an increase in focal hemocytosis, 3) an increase in the thickness of the sub-epithelial layer of the intestinal tract and 4) a decreased energy reserve cell (glycogen) coverage in the mantle. Prolonged exposure, irrespective of temperature, impacted gametogenesis, which was effectively arrested. Furthermore, increased levels of the heat shock protein 70 kDa (HSP 70) were seen in gill and gonad from thermally challenged mussels. The occurrence of the parasite Perkinsus olseni at month 5 in the 24 °C treatment, and month 7 at 21 °C was unexpected and may have exacerbated the fore-mentioned tissue conditions. Prolonged exposure to stable thermal conditions therefore appears to impact P. canaliculus, tissues with implications for broodstock captivity. Mussels experiencing elevated, temperatures of 21 and 24 °C demonstrated more rapid pathological signs. This research provides further insight into the complex host-pathogen-environment interactions for P. canaliculus in response to prolonged elevated temperature.
Collapse
Affiliation(s)
- Joanna S Copedo
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Stephen C Webb
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| | | | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Alfonso J Schmidt
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | | | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
118
|
Morten JM, Buchanan PJ, Egevang C, Glissenaar IA, Maxwell SM, Parr N, Screen JA, Vigfúsdóttir F, Vogt‐Vincent NS, Williams DA, Williams NC, Witt MJ, Hawkes LA, Thurston W. Global warming and arctic terns: Estimating climate change impacts on the world's longest migration. GLOBAL CHANGE BIOLOGY 2023; 29:5596-5614. [PMID: 37492997 PMCID: PMC10946559 DOI: 10.1111/gcb.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/27/2023]
Abstract
Climate change is one of the top three global threats to seabirds, particularly species that visit polar regions. Arctic terns migrate between both polar regions annually and rely on productive marine areas to forage, on sea ice for rest and foraging, and prevailing winds during flight. Here, we report 21st-century trends in environmental variables affecting arctic terns at key locations along their Atlantic/Indian Ocean migratory flyway during the non-breeding seasons, identified through tracking data. End-of-century climate change projections were derived from Earth System Models and multi-model means calculated in two Shared Socioeconomic Pathways: 'middle-of-the-road' and 'fossil-fuelled development' scenarios. Declines in North Atlantic primary production emerge as a major impact to arctic terns likely to affect their foraging during the 21st century under a 'fossil-fuelled development' scenario. Minimal changes are, however, projected at three other key regions visited by arctic terns (Benguela Upwelling, Subantarctic Indian Ocean and the Southern Ocean). Southern Ocean sea ice extent is likely to decline, but the magnitude of change and potential impacts on tern survival are uncertain. Small changes (<1 m s-1 ) in winds are projected in both scenarios, but with minimal likely impacts on migration routes and duration. However, Southern Ocean westerlies are likely to strengthen and contract closer to the continent, which may require arctic terns to shift routes or flight strategies. Overall, we find minor effects of climate change on the migration of arctic terns, with the exception of poorer foraging in the North Atlantic. However, given that arctic terns travel over huge spatial scales and live for decades, they integrate minor changes in conditions along their migration routes such that the sum effect may be greater than the parts. Meeting carbon emission targets is vital to slow these end-of-century climatic changes and minimise extinction risk for a suite of polar species.
Collapse
Affiliation(s)
- Joanne M. Morten
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - Pearse J. Buchanan
- Department of Earth, Ocean and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - C. Egevang
- Greenland Institute of Natural ResourcesNuukGreenland
| | - Isolde A. Glissenaar
- Bristol Glaciology Centre, School of Geographical SciencesUniversity of BristolBristolUK
| | - Sara M. Maxwell
- School of Interdisciplinary Arts & SciencesUniversity of WashingtonBothellWashingtonUSA
| | - Nicole Parr
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - James A. Screen
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | | | | | - Daniel A. Williams
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | - Ned C. Williams
- Department of Mathematics and Statistics, Faculty of Environment, Science and EconomyUniversity of ExeterExeterUK
| | - Matthew J. Witt
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - Lucy A. Hawkes
- Department of Biosciences, Faculty of Health and Life SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | | |
Collapse
|
119
|
McDougall J. The role of a starch-based diet in solving existential challenges for the 21st century. Front Nutr 2023; 10:1260455. [PMID: 37829731 PMCID: PMC10566084 DOI: 10.3389/fnut.2023.1260455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Diet plays a fundamental role in our major chronic diseases, in climate change, and in our resistance to infectious diseases. The eating patterns that best support the health of people and our planet are based on traditional starchy staples. Historically, a wide variety of starches have provided the bulk of the food for most of the people who have walked our Earth. For example, rice has been food for Asians, corn for Central Americans, potatoes for people of the Andes, and for the Middle East, "the bread basket of the world," food has meant wheat and barley. Focusing on our ethnicities can expose altruistic natures, and before it is too late, allow us to make the change from destructive animal-food based-diets to plant-food based-diets; ones that are health-supporting for people and our planet.
Collapse
|
120
|
Manzoor S, Talib M, Novikov SM, Arsenin AV, Volkov VS, Mishra P. Physisorption-Mediated Charge Transfer in TiS 2 Nanodiscs: A Room Temperature Sensor for Highly Sensitive and Reversible Carbon Dioxide Detection. ACS Sens 2023; 8:3435-3447. [PMID: 37698838 DOI: 10.1021/acssensors.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Real-time and high-performance monitoring of trace carbon dioxide (CO2) has become a necessity due to its substantial impact on the global climate, human health, indoor occupancy, and crop productivity. Two-dimensional materials such as transition metal dichalcogenides (TMDs) have gained significant interest in gas sensing applications owing to their intrinsically high surface-to-volume ratio. However, the research has been limited to prominent TMDs such as WS2 and MoS2. Specifically, the chemiresistive sensing performance of titanium disulfide (TiS2) has rarely been investigated. We present an electric-field-assisted TiS2 nanodisc assembly for the fabrication of a low-cost, low-power CO2 gas sensor based on charge transfer between physisorbed CO2 analyte molecules and TiS2 nanodiscs operating at room temperature. The physiochemical properties of the synthesized TiS2 nanodiscs were investigated via scanning electron microscopy (SEM), electron diffraction spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The fabricated sensor demonstrated an ultra-high sensor response of 60%, a fast response time of 37 s toward 500 ppm CO2 gas, and the lowest detection limit of 5 ppm under ambient conditions. The low adsorption energies and vdW interaction between CO2 molecules and TiS2 resulted in easy desorption, allowing the sensor to self-recover without the need for external stimuli, which is hardly been witnessed in other 2D material analogues. Furthermore, the sensor has excellent reproducibility and stability for successive analyte exposures, as well as excellent selectivity for CO2 over other interfering gases. This reported sensor based on 2D TMDs is the first of its type to integrate such a broad range of sensor characteristics (such as high sensor response and sensitivity, rapid response and recovery times, a high signal-to-noise ratio, and excellent selectivity at room temperature) into a single, revolutionary device for CO2 detection.
Collapse
Affiliation(s)
- Samrah Manzoor
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Mohammad Talib
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| | - Sergey M Novikov
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia
| | - Aleksey V Arsenin
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| | - Valentyn S Volkov
- Moscow Center for Advanced Studies, Kulakova Street 20, Moscow 123592, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan 0025, Armenia
| | - Prabhash Mishra
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
- Quantum Materials and Devices Laboratory, Faculty of Engineering and Technology, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
121
|
Hua S, Hui Z, Liu L. Evolution of conditional cooperation in collective-risk social dilemma with repeated group interactions. Proc Biol Sci 2023; 290:20230949. [PMID: 37670581 PMCID: PMC10510442 DOI: 10.1098/rspb.2023.0949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The evolution and long-term sustenance of cooperation has consistently piqued scholarly interest across the disciplines of evolutionary biology and social sciences. Previous theoretical and experimental studies on collective risk social dilemma games have revealed that the risk of collective failure will affect the evolution of cooperation. In the real world, individuals usually adjust their decisions based on environmental factors such as risk intensity and cooperation level. However, it is still not well understood how such conditional behaviours affect the evolution of cooperation in repeated group interactions scenario from a theoretical perspective. Here, we construct an evolutionary game model with repeated interactions, in which defectors decide whether to cooperate in subsequent rounds of the game based on whether the risk exceeds their tolerance threshold and whether the number of cooperators exceeds the collective goal in the early rounds of the game. We find that the introduction of conditional cooperation strategy can effectively promote the emergence of cooperation, especially when the risk is low. In addition, the risk threshold significantly affects the evolutionary outcomes, with a high risk promoting the emergence of cooperation. Importantly, when the risk of failure to reach collective goals exceeds a certain threshold, the timely transition from a defective strategy to a cooperative strategy by conditional cooperators is beneficial for maintaining high-level cooperation.
Collapse
Affiliation(s)
- Shijia Hua
- College of Science, Northwest A & F University, Yangling 712100, People’s Republic of China
| | - Zitong Hui
- College of Science, Northwest A & F University, Yangling 712100, People’s Republic of China
| | - Linjie Liu
- College of Science, Northwest A & F University, Yangling 712100, People’s Republic of China
| |
Collapse
|
122
|
Peng S, Shrestha N, Luo Y, Li Y, Cai H, Qin H, Ma K, Wang Z. Incorporating global change reveals extinction risk beyond the current Red List. Curr Biol 2023; 33:3669-3678.e4. [PMID: 37591250 DOI: 10.1016/j.cub.2023.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
Global changes over the past few decades have caused species distribution shifts and triggered population declines and local extinctions of many species. The International Union for Conservation of Nature (IUCN) Red List of Threatened Species (Red List) is regarded as the most comprehensive tool for assessing species extinction risk and has been used at regional, national, and global scales. However, most Red Lists rely on the past and current status of species populations and distributions but do not adequately reflect the risks induced by future global changes. Using distribution maps of >4,000 endemic woody species in China, combined with ensembled species distribution models, we assessed the species threat levels under future climate and land-cover changes using the projected changes in species' suitable habitats and compared our updated Red List with China's existing Red List. We discover an increased number of threatened species in the updated Red List and increased threat levels of >50% of the existing threatened species compared with the existing one. Over 50% of the newly identified threatened species are not adequately covered by protected areas. The Yunnan-Guizhou Plateau, rather than the Hengduan Mountains, is the distribution center of threatened species on the updated Red Lists, as opposed to the threatened species on the existing Red List. Our findings suggest that using Red Lists without considering the impacts of future global changes will underestimate the extinction risks and lead to a biased estimate of conservation priorities, potentially limiting the ability to meet the Kunming-Montreal global conservation targets.
Collapse
Affiliation(s)
- Shijia Peng
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Nawal Shrestha
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Yuan Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaoqi Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Hongyu Cai
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haining Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
123
|
Verberk WCEP, Hoefnagel KN, Peralta-Maraver I, Floury M, Rezende EL. Long-term forecast of thermal mortality with climate warming in riverine amphipods. GLOBAL CHANGE BIOLOGY 2023; 29:5033-5043. [PMID: 37401451 DOI: 10.1111/gcb.16834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
Forecasting long-term consequences of global warming requires knowledge on thermal mortality and how heat stress interacts with other environmental stressors on different timescales. Here, we describe a flexible analytical framework to forecast mortality risks by combining laboratory measurements on tolerance and field temperature records. Our framework incorporates physiological acclimation effects, temporal scale differences and the ecological reality of fluctuations in temperature, and other factors such as oxygen. As a proof of concept, we investigated the heat tolerance of amphipods Dikerogammarus villosus and Echinogammarus trichiatus in the river Waal, the Netherlands. These organisms were acclimated to different temperatures and oxygen levels. By integrating experimental data with high-resolution field data, we derived the daily heat mortality probabilities for each species under different oxygen levels, considering current temperatures as well as 1 and 2°C warming scenarios. By expressing heat stress as a mortality probability rather than a upper critical temperature, these can be used to calculate cumulative annual mortality, allowing the scaling up from individuals to populations. Our findings indicate a substantial increase in annual mortality over the coming decades, driven by projected increases in summer temperatures. Thermal acclimation and adequate oxygenation improved heat tolerance and their effects were magnified on longer timescales. Consequently, acclimation effects appear to be more effective than previously recognized and crucial for persistence under current temperatures. However, even in the best-case scenario, mortality of D. villosus is expected to approach 100% by 2100, while E. trichiatus appears to be less vulnerable with mortality increasing to 60%. Similarly, mortality risks vary spatially: In southern, warmer rivers, riverine animals will need to shift from the main channel toward the cooler head waters to avoid thermal mortality. Overall, this framework generates high-resolution forecasts on how rising temperatures, in combination with other environmental stressors such as hypoxia, impact ecological communities.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - K Natan Hoefnagel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Ignacio Peralta-Maraver
- Departamento de Ecología e Instituto del Agua, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | - Mathieu Floury
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Enrico L Rezende
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
124
|
Makki T, Mostafavi H, Matkan AA, Valavi R, Hughes RM, Shadloo S, Aghighi H, Abdoli A, Teimori A, Eagderi S, Coad BW. Predicting climate heating impacts on riverine fish species diversity in a biodiversity hotspot region. Sci Rep 2023; 13:14347. [PMID: 37658153 PMCID: PMC10474041 DOI: 10.1038/s41598-023-41406-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/25/2023] [Indexed: 09/03/2023] Open
Abstract
Co-occurring biodiversity and global heating crises are systemic threats to life on Earth as we know it, especially in relatively rare freshwater ecosystems, such as in Iran. Future changes in the spatial distribution and richness of 131 riverine fish species were investigated at 1481 sites in Iran under optimistic and pessimistic climate heating scenarios for the 2050s and 2080s. We used maximum entropy modeling to predict species' potential distributions by hydrologic unit (HU) occupancy under current and future climate conditions through the use of nine environmental predictor variables. The most important variable determining fish occupancy was HU location, followed by elevation, climate variables, and slope. Thirty-seven species were predicted to decrease their potential habitat occupancy in all future scenarios. The southern Caspian HU faces the highest future species reductions followed by the western Zagros and northwestern Iran. These results can be used by managers to plan conservational strategies to ease the dispersal of species, especially those that are at the greatest risk of extinction or invasion and that are in rivers fragmented by dams.
Collapse
Affiliation(s)
- Toktam Makki
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hossein Mostafavi
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Ali Akbar Matkan
- The Center for Remote Sensing and Geographic Information System Research, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Robert M Hughes
- Amnis Opes Institute, Corvallis, OR, 97333, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Shabnam Shadloo
- Institute for Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Hossein Aghighi
- The Center for Remote Sensing and Geographic Information System Research, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran
| | - Asghar Abdoli
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Azad Teimori
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Soheil Eagderi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Brian W Coad
- Canadian Museum of Nature, Ottawa, ON, K1P 6P4, Canada
| |
Collapse
|
125
|
Doherty S, Saltré F, Llewelyn J, Strona G, Williams SE, Bradshaw CJA. Estimating co-extinction threats in terrestrial ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:5122-5138. [PMID: 37386726 DOI: 10.1111/gcb.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/27/2023] [Indexed: 07/01/2023]
Abstract
The biosphere is changing rapidly due to human endeavour. Because ecological communities underlie networks of interacting species, changes that directly affect some species can have indirect effects on others. Accurate tools to predict these direct and indirect effects are therefore required to guide conservation strategies. However, most extinction-risk studies only consider the direct effects of global change-such as predicting which species will breach their thermal limits under different warming scenarios-with predictions of trophic cascades and co-extinction risks remaining mostly speculative. To predict the potential indirect effects of primary extinctions, data describing community interactions and network modelling can estimate how extinctions cascade through communities. While theoretical studies have demonstrated the usefulness of models in predicting how communities react to threats like climate change, few have applied such methods to real-world communities. This gap partly reflects challenges in constructing trophic network models of real-world food webs, highlighting the need to develop approaches for quantifying co-extinction risk more accurately. We propose a framework for constructing ecological network models representing real-world food webs in terrestrial ecosystems and subjecting these models to co-extinction scenarios triggered by probable future environmental perturbations. Adopting our framework will improve estimates of how environmental perturbations affect whole ecological communities. Identifying species at risk of co-extinction (or those that might trigger co-extinctions) will also guide conservation interventions aiming to reduce the probability of co-extinction cascades and additional species losses.
Collapse
Affiliation(s)
- Seamus Doherty
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Frédérik Saltré
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - John Llewelyn
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Giovanni Strona
- European Commission, Joint Research Centre, Ispra, Italy
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Stephen E Williams
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| |
Collapse
|
126
|
Benoit JB, Finch G, Ankrum AL, Niemantsverdriet J, Paul B, Kelley M, Gantz JD, Matter SF, Lee RE, Denlinger DL. Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines. Cell Stress Chaperones 2023; 28:541-549. [PMID: 37392307 PMCID: PMC10468472 DOI: 10.1007/s12192-023-01359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023] Open
Abstract
Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Therefore, it is important to examine the impact of heat stress on the reproduction of polar terrestrial arthropods, specifically, how brief extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross-mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the negative impacts are transient as the effect on fertility declines with recovery time under less stressful conditions. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial reproductive effects on local populations of Antarctic arthropods.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrea L Ankrum
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | | | - Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
127
|
Weil SS, Gallien L, Nicolaï MPJ, Lavergne S, Börger L, Allen WL. Body size and life history shape the historical biogeography of tetrapods. Nat Ecol Evol 2023; 7:1467-1479. [PMID: 37604875 PMCID: PMC10482685 DOI: 10.1038/s41559-023-02150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/04/2023] [Indexed: 08/23/2023]
Abstract
Dispersal across biogeographic barriers is a key process determining global patterns of biodiversity as it allows lineages to colonize and diversify in new realms. Here we demonstrate that past biogeographic dispersal events often depended on species' traits, by analysing 7,009 tetrapod species in 56 clades. Biogeographic models incorporating body size or life history accrued more statistical support than trait-independent models in 91% of clades. In these clades, dispersal rates increased by 28-32% for lineages with traits favouring successful biogeographic dispersal. Differences between clades in the effect magnitude of life history on dispersal rates are linked to the strength and type of biogeographic barriers and intra-clade trait variability. In many cases, large body sizes and fast life histories facilitate dispersal success. However, species with small bodies and/or slow life histories, or those with average traits, have an advantage in a minority of clades. Body size-dispersal relationships were related to a clade's average body size and life history strategy. These results provide important new insight into how traits have shaped the historical biogeography of tetrapod lineages and may impact present-day and future biogeographic dispersal.
Collapse
Affiliation(s)
- Sarah-Sophie Weil
- CNRS, Laboratoire d'Ecologie Alpine, University Savoie Mont Blanc, University Grenoble Alpes, Grenoble, France.
- Department of Biosciences, Swansea University, Swansea, UK.
| | - Laure Gallien
- CNRS, Laboratoire d'Ecologie Alpine, University Savoie Mont Blanc, University Grenoble Alpes, Grenoble, France
| | - Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
| | - Sébastien Lavergne
- CNRS, Laboratoire d'Ecologie Alpine, University Savoie Mont Blanc, University Grenoble Alpes, Grenoble, France
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | | |
Collapse
|
128
|
Tan HZ, Jansen JJFJ, Allport GA, Garg KM, Chattopadhyay B, Irestedt M, Pang SEH, Chilton G, Gwee CY, Rheindt FE. Megafaunal extinctions, not climate change, may explain Holocene genetic diversity declines in Numenius shorebirds. eLife 2023; 12:e85422. [PMID: 37549057 PMCID: PMC10406428 DOI: 10.7554/elife.85422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
Understanding the relative contributions of historical and anthropogenic factors to declines in genetic diversity is important for informing conservation action. Using genome-wide DNA of fresh and historic specimens, including that of two species widely thought to be extinct, we investigated fluctuations in genetic diversity and present the first complete phylogenomic tree for all nine species of the threatened shorebird genus Numenius, known as whimbrels and curlews. Most species faced sharp declines in effective population size, a proxy for genetic diversity, soon after the Last Glacial Maximum (around 20,000 years ago). These declines occurred prior to the Anthropocene and in spite of an increase in the breeding area predicted by environmental niche modeling, suggesting that they were not caused by climatic or recent anthropogenic factors. Crucially, these genetic diversity declines coincide with mass extinctions of mammalian megafauna in the Northern Hemisphere. Among other factors, the demise of ecosystem-engineering megafauna which maintained open habitats may have been detrimental for grassland and tundra-breeding Numenius shorebirds. Our work suggests that the impact of historical factors such as megafaunal extinction may have had wider repercussions on present-day population dynamics of open habitat biota than previously appreciated.
Collapse
Affiliation(s)
- Hui Zhen Tan
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| | | | | | - Kritika M Garg
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Balaji Chattopadhyay
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural HistoryStockholmSweden
| | - Sean EH Pang
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Glen Chilton
- Department of Biology, St. Mary's UniversityCalgaryCanada
| | - Chyi Yin Gwee
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Frank E Rheindt
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| |
Collapse
|
129
|
Robertson RD, De Pinto A, Cenacchi N. Assessing the future global distribution of land ecosystems as determined by climate change and cropland incursion. CLIMATIC CHANGE 2023; 176:108. [PMID: 37520165 PMCID: PMC10382346 DOI: 10.1007/s10584-023-03584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The geographic distribution of natural ecosystems is affected by both climate and cropland. Discussions of future land use/land cover usually focus on how cropland expands and displaces natural vegetation especially as climate change impacts become stronger. Less commonly considered is the direct influence of climate change on natural ecosystems simultaneously with cropland incursion. We combine a natural vegetation model responsive to climate with a cropland allocation algorithm to assess the relative importance of climate change compared to cropland incursion. Globally, the model indicates that climate change drives larger gains and losses than cropland incursion. For example, in the Amazonian rainforests, more than one sixth of the forest area could be lost due to climate change with cropland playing virtually no role. Our findings suggest that policies to protect specific ecosystems may be undercut by climate change and that localized analyses that fully account for the impacts of a changing climate on natural vegetation and agriculture are necessary to formulate policies that preserve natural ecosystems over the long term. Supplementary Information The online version contains supplementary material available at 10.1007/s10584-023-03584-3.
Collapse
Affiliation(s)
| | | | - Nicola Cenacchi
- International Food Policy Research Institute, Washington, DC USA
| |
Collapse
|
130
|
Xia C, Zuo Y, Xue T, Kang M, Zhang H, Zhang X, Wang B, Zhang J, Deng H. The genetic structure and demographic history revealed by whole-genome resequencing provide insights into conservation of critically endangered Artocarpus nanchuanensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1224308. [PMID: 37575939 PMCID: PMC10415164 DOI: 10.3389/fpls.2023.1224308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Introduction Whole-genome resequencing technology covers almost all nucleotide variations in the genome, which makes it possible to carry out conservation genomics research on endangered species at the whole-genome level. Methods In this study, based on the whole-genome resequencing data of 101 critically endangered Artocarpus nanchuanensis individuals, we evaluated the genetic diversity and population structure, inferred the demographic history and genetic load, predicted the potential distributions in the past, present and future, and classified conservation units to propose targeted suggestions for the conservation of this critically endangered species. Results Whole-genome resequencing for A. nanchuanensis generated approximately 2 Tb of data. Based on abundant mutation sites (25,312,571 single nucleotide polymorphisms sites), we revealed that the average genetic diversity (nucleotide diversity, π) of different populations of A. nanchuanensis was relatively low compared with other trees that have been studied. And we also revealed that the NHZ and QJT populations harboured unique genetic backgrounds and were significantly separated from the other five populations. In addition, positive genetic selective signals, significantly enriched in biological processes related to terpene synthesis, were identified in the NHZ population. The analysis of demographic history of A. nanchuanensis revealed the existence of three genetic bottleneck events. Moreover, abundant genetic loads (48.56% protein-coding genes) were identified in Artocarpus nanchuanensis, especially in genes related to early development and immune function of plants. The predication analysis of suitable habitat areas indicated that the past suitable habitat areas shifted from the north to the south due to global temperature decline. However, in the future, the actual distribution area of A. nanchuanensis will still maintain high suitability. Discussion Based on total analyses, we divided the populations of A. nanchuanensis into four conservation units and proposed a number of practical management suggestions for each conservation unit. Overall, our study provides meaningful guidance for the protection of A. nanchuanensis and important insight into conservation genomics research.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Tiantian Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiabin Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Low Carbon and Ecological Environment Protection Research Center, Chongqing Academy of Science and Technology, Chongqing, China
| |
Collapse
|
131
|
Howard C, Marjakangas EL, Morán-Ordóñez A, Milanesi P, Abuladze A, Aghababyan K, Ajder V, Arkumarev V, Balmer DE, Bauer HG, Beale CM, Bino T, Boyla KA, Burfield IJ, Burke B, Caffrey B, Chodkiewicz T, Del Moral JC, Mazal VD, Fernández N, Fornasari L, Gerlach B, Godinho C, Herrando S, Ieronymidou C, Johnston A, Jovicevic M, Kalyakin M, Keller V, Knaus P, Kotrošan D, Kuzmenko T, Leitão D, Lindström Å, Maxhuni Q, Mihelič T, Mikuska T, Molina B, Nagy K, Noble D, Øien IJ, Paquet JY, Pladevall C, Portolou D, Radišić D, Rajkov S, Rajković DZ, Raudonikis L, Sattler T, Saveljić D, Shimmings P, Sjenicic J, Šťastný K, Stoychev S, Strus I, Sudfeldt C, Sultanov E, Szép T, Teufelbauer N, Uzunova D, van Turnhout CAM, Velevski M, Vikstrøm T, Vintchevski A, Voltzit O, Voříšek P, Wilk T, Zurell D, Brotons L, Lehikoinen A, Willis SG. Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability. Nat Commun 2023; 14:4304. [PMID: 37474503 PMCID: PMC10359363 DOI: 10.1038/s41467-023-39093-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/23/2023] [Indexed: 07/22/2023] Open
Abstract
Climate change has been associated with both latitudinal and elevational shifts in species' ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species' traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species' range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species' ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.
Collapse
Affiliation(s)
- Christine Howard
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Emma-Liina Marjakangas
- The Helsinki Lab of Ornithology, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Alejandra Morán-Ordóñez
- Ecological and Forestry Applications Research Centre (CREAF), 08193, Cerdanyola del Vallès, Spain
- Forest Science and Tecnology Centre (CTFC), Carretera vella de Sant Llorenç de Morunys km 2, 25280, Sant Llorenç de Morunys, Spain
| | - Pietro Milanesi
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via F. Selmi 3, 40126, Bologna, Italy
| | - Aleksandre Abuladze
- Institute of Zoology, Ilia State University, Kakutsa Cholokashvili Ave 3 / 5, Tbilisi, 0162, Georgia
| | - Karen Aghababyan
- BirdLinks Armenia (former TSE-Towards Sustainable Ecosystems) NGO, 87b Dimitrov, apt 14, Yerevan, Armenia
| | - Vitalie Ajder
- Society for Birds and Nature Protection, Leova, Republic of Moldova
- Moldova State University, A.Mateevici str. 60, Chişinău, Republic of Moldova
| | - Volen Arkumarev
- Bulgarian Society for the Protection of Birds/BirdLife Bulgaria, Sofia 1111, Yavorov complex, bl. 71, en. 1, ap. 1, Sofia, Bulgaria
| | - Dawn E Balmer
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
| | - Hans-Günther Bauer
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- Max-Planck Institute of Animal Behaviour, Am Obstberg 1, 78315, Radolfzell, Germany
| | - Colin M Beale
- York Environmental Sustainability Institute, University of York, York, YO10 5NG, UK
- Department of Biology, University of York, YO10 5DD, York, UK
| | - Taulant Bino
- Albanian Ornithological Society, Rr. "Vaso Pasha", Nd. 4, Apt. 3, 1004, Tirana, Albania
| | - Kerem Ali Boyla
- WWF Turkey, Büyük Postane Caddesi No: 19 Kat: 5, 34420, Bahçekapı-Fatih, İstanbul, Turkey
| | - Ian J Burfield
- BirdLife International, David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, UK
| | - Brian Burke
- BirdWatch Ireland, Unit 20, Block D, Bullford Business Campus, Kilcoole, Greystones, County Wicklow, Ireland
| | - Brian Caffrey
- BirdWatch Ireland, Unit 20, Block D, Bullford Business Campus, Kilcoole, Greystones, County Wicklow, Ireland
| | - Tomasz Chodkiewicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warszawa, Poland
- Polish Society for the Protection of Birds, Odrowąża 24, 05-270, Marki, Poland
| | - Juan Carlos Del Moral
- Sociedad Española de Ornitología (SEO/BirdLife), Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Vlatka Dumbovic Mazal
- Institute for Environment and Nature, Ministry of Economy and Sustainable Development, Radnicka cesta 80, 10 000, Zagreb, Croatia
| | - Néstor Fernández
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Inst. of Biology, Martin Luther Univ. Halle-Wittenberg, Halle, Germany
| | | | - Bettina Gerlach
- DDA-Federation of German Avifaunists, An den Speichern 2, D-48157, Münster, Germany
| | - Carlos Godinho
- MED-Mediterranean Institute for Agriculture, Environment and Development; LabOr-Laboratório de Ornitologia Universidade de Évora Pólo da Mitra, Apartado 94, 7002-774, Évora, Portugal
| | - Sergi Herrando
- Ecological and Forestry Applications Research Centre (CREAF), 08193, Cerdanyola del Vallès, Spain
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- Catalan Ornithological Institute, Natural History Museum of Barcelona, Plaça Leonardo da Vinci 4-5, 08019, Barcelona, Spain
| | | | - Alison Johnston
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | | | - Mikhail Kalyakin
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- Zoological Museum of Lomonosov Moscow State University, Bolshaya Nikitskaya Str., 2, Moscow, 125009, Russia
| | - Verena Keller
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
| | - Peter Knaus
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Dražen Kotrošan
- Ornithological society "Naše ptice", Semira Frašte 6, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Tatiana Kuzmenko
- Ukrainian Society for the Protection of Birds, P.O. Box 33, Kyiv, 01103, Ukraine
| | - Domingos Leitão
- Sociedade Portuguesa para o Estudo das Aves, Av. Almirante Gago Coutinho, 46A, 1700-031, Lisboa, Portugal
| | - Åke Lindström
- Department of Biology, Lund University, Lund, Sweden
| | - Qenan Maxhuni
- Kosovo Ornithological Society, Str. Hysni Gashi no. 28, Kalabri, 10 000, Prishtinë, Republic of Kosovo
| | - Tomaž Mihelič
- DOPPS-BirdLife Slovenia, Tržaška c. 2, SI, 1000, Ljubljana, Slovenia
| | - Tibor Mikuska
- Croatian Society for Birds and Nature Protection, Gundulićeva 19a, HR-31000, Osijek, Croatia
| | - Blas Molina
- Sociedad Española de Ornitología (SEO/BirdLife), Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Károly Nagy
- MME BirdLife Hungary, 1121 Költő u. 21, Budapest, Hungary
| | - David Noble
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
| | | | | | - Clara Pladevall
- Andorra Research + Innovation, Av. Rocafort 21-23, AD600, Sant Julià de Lòria, Andorra
| | - Danae Portolou
- Hellenic Ornithological Society / BirdLife Greece, Agiou Konstantinou 52, Athens, 10437, Greece
| | - Dimitrije Radišić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Saša Rajkov
- Center for Biodiversity Research, Maksima Gorkog 40/3, 21000, Novi Sad, Serbia
| | - Draženko Z Rajković
- Center for Biodiversity Research, Maksima Gorkog 40/3, 21000, Novi Sad, Serbia
| | - Liutauras Raudonikis
- Lithuanian Ornithological Society, Naugarduko st. 47-3, LT-03208, Vilnius, Lithuania
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Darko Saveljić
- Environmental Protection Agency of Montenegro, IV proleterske 19, 81000, Podgorica, Montenegro
| | - Paul Shimmings
- BirdLife Norway. Sandgata 30b, NO-7012, Trondheim, Norway
| | - Jovica Sjenicic
- Ornithological society "Naše ptice", Semira Frašte 6, 71 000, Sarajevo, Bosnia and Herzegovina
- Society for Research and Protection of Biodiversity, Mladena Stojanovica 2, 78 000, Banja Luka, Bosnia and Herzegovina
| | - Karel Šťastný
- Czech University of Life Sciences, Faculty of Environmental Sciences, Dept. of Ecology, Kamýcká 129, 165 21 Prague 6-Suchdol, Prague, Czech Republic
| | - Stoycho Stoychev
- Bulgarian Society for the Protection of Birds/BirdLife Bulgaria, Sofia 1111, Yavorov complex, bl. 71, en. 1, ap. 1, Sofia, Bulgaria
| | - Iurii Strus
- Nature reserve "Roztochya", Sichovyh Striltsiv 7, 81070, Ivano-Frankove, Ukraine
| | - Christoph Sudfeldt
- DDA-Federation of German Avifaunists, An den Speichern 2, D-48157, Münster, Germany
| | - Elchin Sultanov
- Azerbaijan Ornithological Society, M. Mushfiq 4B, ap.60, Baku, AZ1004, Azerbaijan Republic
| | - Tibor Szép
- MME BirdLife Hungary, 1121 Költő u. 21, Budapest, Hungary
- University of Nyíregyháza, 4400 Sóstói út 31/b, Nyíregyháza, Hungary
| | | | - Danka Uzunova
- Macedonian Ecological Society, Blvd. Boris Trajkovski Str. 7, 9a, Skopje, N, Macedonia
| | - Chris A M van Turnhout
- Sovon-Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Metodija Velevski
- Macedonian Ecological Society, Blvd. Boris Trajkovski Str. 7, 9a, Skopje, N, Macedonia
| | - Thomas Vikstrøm
- Dansk Ornitologisk Forening (DOF-BirdLife DK), Copenhagen, Denmark
| | | | - Olga Voltzit
- Zoological Museum of Lomonosov Moscow State University, Bolshaya Nikitskaya Str., 2, Moscow, 125009, Russia
| | - Petr Voříšek
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- Czech Society for Ornithology, Na Bělidle 34, 15000, Prague 5, Czechia
| | - Tomasz Wilk
- Polish Society for the Protection of Birds, Odrowąża 24, 05-270, Marki, Poland
| | - Damaris Zurell
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lluís Brotons
- Ecological and Forestry Applications Research Centre (CREAF), 08193, Cerdanyola del Vallès, Spain
- Forest Science and Tecnology Centre (CTFC), Carretera vella de Sant Llorenç de Morunys km 2, 25280, Sant Llorenç de Morunys, Spain
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
- CSIC, Cerdanyola del Vallès, 08193, Spain
| | - Aleksi Lehikoinen
- The Helsinki Lab of Ornithology, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Atlas Steering Committee, European Bird Census Council, Na Bělidle 34, CZ-150 00, Prague 5, Czech Republic
| | - Stephen G Willis
- Conservation Ecology Group, Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
132
|
Rauschkolb R, Durka W, Godefroid S, Dixon L, Bossdorf O, Ensslin A, Scheepens JF. Recent evolution of flowering time across multiple European plant species correlates with changes in aridity. Oecologia 2023:10.1007/s00442-023-05414-w. [PMID: 37462737 PMCID: PMC10386928 DOI: 10.1007/s00442-023-05414-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Ongoing global warming and increasing drought frequencies impact plant populations and potentially drive rapid evolutionary adaptations. Historical comparisons, where plants grown from seeds collected in the past are compared to plants grown from freshly collected seeds from populations of the same sites, are a powerful method to investigate recent evolutionary changes across many taxa. We used 21-38 years old seeds of 13 European plant species, stored in seed banks and originating from Mediterranean and temperate regions, together with recently collected seeds from the same sites for a greenhouse experiment to investigate shifts in flowering phenology as a potential result of adaptive evolution to changes in drought intensities over the last decades. We further used single nucleotide polymorphism (SNP) markers to quantify relatedness and levels of genetic variation. We found that, across species, current populations grew faster and advanced their flowering. These shifts were correlated with changes in aridity at the population origins, suggesting that increased drought induced evolution of earlier flowering, whereas decreased drought lead to weak or inverse shifts in flowering phenology. In five out of the 13 species, however, the SNP markers detected strong differences in genetic variation and relatedness between the past and current populations collected, indicating that other evolutionary processes may have contributed to changes in phenotypes. Our results suggest that changes in aridity may have influenced the evolutionary trajectories of many plant species in different regions of Europe, and that flowering phenology may be one of the key traits that is rapidly evolving.
Collapse
Affiliation(s)
- Robert Rauschkolb
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Philosophenweg 16, 07743, Jena, Germany.
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tubingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
| | - Walter Durka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Theodor Lieser Straße 4, 06120, Halle, Germany
| | | | - Lara Dixon
- Conservatoire Botanique National Méditerranéen de Porquerolles, 34 Avenue Gambetta, 83400, Hyères, France
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tubingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Andreas Ensslin
- Conservatory and Botanic Garden of the City of Geneva, Chemin de l'Impératrice 1, 1296, Chambésy, Geneva, Switzerland
| | - J F Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
133
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng'oma E, Middleton KM, Zars T, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547110. [PMID: 37461510 PMCID: PMC10350013 DOI: 10.1101/2023.07.06.547110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
|
134
|
Lundsgaard NU, Hird C, Doody KA, Franklin CE, Cramp RL. Carryover effects from environmental change in early life: An overlooked driver of the amphibian extinction crisis? GLOBAL CHANGE BIOLOGY 2023; 29:3857-3868. [PMID: 37310166 DOI: 10.1111/gcb.16726] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280-400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Coen Hird
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Kathleen A Doody
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
135
|
Simmons LW, Lovegrove M, Du X(B, Ren Y, Thomas ML. Humidity stress and its consequences for male pre- and post-copulatory fitness traits in an insect. Ecol Evol 2023; 13:e10244. [PMID: 37404700 PMCID: PMC10316369 DOI: 10.1002/ece3.10244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
Global declines in insect abundance are of significant concern. While there is evidence that climate change is contributing to insect declines, we know little of the direct mechanisms responsible for these declines. Male fertility is compromised by increasing temperatures, and the thermal limit to fertility has been implicated as an important factor in the response of insects to climate change. However, climate change is affecting both temperature and hydric conditions, and the effects of water availability on male fertility have rarely been considered. Here we exposed male crickets Teleogryllus oceanicus to either low or high-humidity environments while holding temperature constant. We measured water loss and the expression of both pre- and postmating reproductive traits. Males exposed to a low-humidity environment lost more water than males exposed to a high-humidity environment. A male's cuticular hydrocarbon profile (CHC) did not affect the amount of water lost, and males did not adjust the composition of their CHC profiles in response to hydric conditions. Males exposed to a low-humidity environment were less likely to produce courtship song or produced songs of low quality. Their spermatophores failed to evacuate and their ejaculates contained sperm of reduced viability. The detrimental effects of low-humidity on male reproductive traits will compromise male fertility and population persistence. We argue that limits to insect fertility based on temperature alone are likely to underestimate the true effects of climate change on insect persistence and that the explicit incorporation of water regulation into our modeling will yield more accurate predictions of the effects of climate change on insect declines.
Collapse
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Xin (Bob) Du
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yonglin Ren
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
| | - Melissa L. Thomas
- Harry Butler InstituteMurdoch UniversityPerthWestern AustraliaAustralia
- CSIRO Health and BiosecurityCSIRO Land and WaterFloreatWestern AustraliaAustralia
| |
Collapse
|
136
|
Mathewson PD, Darnell MZ, Lane ZM, Yeghissian TG, Levinton J, Porter WP. Incorporating species-specific morphology improves model predictions of thermal and hydric stress in the sand fiddler crab, Leptuca pugilator. J Therm Biol 2023; 115:103613. [PMID: 37437372 DOI: 10.1016/j.jtherbio.2023.103613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 07/14/2023]
Abstract
Understanding where and why organisms are experiencing thermal and hydric stress is critical for predicting species' responses to climate change. Biophysical models that explicitly link organismal functional traits like morphology, physiology, and behavior to environmental conditions can provide valuable insight into determinants of thermal and hydric stress. Here we use a combination of direct measurements, 3D modeling, and computational fluid dynamics to develop a detailed biophysical model of the sand fiddler crab, Leptuca pugilator. We compare the detailed model's performance to a model using a simpler ellipsoidal approximation of a crab. The detailed model predicted crab body temperatures within 1 °C of observed in both laboratory and field settings; the ellipsoidal approximation model predicted body temperatures within 2 °C of observed body temperatures. Model predictions are meaningfully improved through efforts to incorporate species-specific morphological properties rather than relying on simple geometric approximations. Experimental evaporative water loss (EWL) measurements indicate that L. pugilator can modify its permeability to EWL as a function of vapor density gradients, providing novel insight into physiological thermoregulation in the species. Body temperature and EWL predictions made over the course of a year at a single site demonstrate how such biophysical models can be used to explore mechanistic drivers and spatiotemporal patterns of thermal and hydric stress, providing insight into current and future distributions in the face of climate change.
Collapse
Affiliation(s)
- Paul D Mathewson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - M Zachary Darnell
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, USA
| | - Zachary M Lane
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, USA
| | - Talene G Yeghissian
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, USA
| | - Jeffrey Levinton
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Warren P Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
137
|
Chen X, Xue D, Wang Y, Qiu Q, Wu L, Wang M, Liu J, Chen H. Variations in the archaeal community and associated methanogenesis in peat profiles of three typical peatland types in China. ENVIRONMENTAL MICROBIOME 2023; 18:48. [PMID: 37280702 DOI: 10.1186/s40793-023-00503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Peatlands contain about 500 Pg of carbon worldwide and play a dual role as both a carbon sink and an important methane (CH4) source, thereby potentially influencing climate change. However, systematic studies on peat properties, microorganisms, methanogenesis, and their interrelations in peatlands remain limited, especially in China. Therefore, the present study aims to investigate the physicochemical properties, archaeal community, and predominant methanogenesis pathways in three typical peatlands in China, namely Hani (H), Taishanmiao (T), and Ruokeba (R) peatlands, and quantitively determine their CH4 production potentials. RESULTS These peatlands exhibited high water content (WC) and total carbon content (TC), as well as low pH values. In addition, R exhibited a lower dissolved organic carbon concentration (DOC), as well as higher total iron content (TFe) and pH values compared to those observed in T. There were also clear differences in the archaeal community between the three peatlands, especially in the deep peat layers. The average relative abundance of the total methanogens ranged from 10 to 12%, of which Methanosarcinales and Methanomicrobiales were the most abundant in peat samples (8%). In contrast, Methanobacteriales were mainly distributed in the upper peat layer (0-40 cm). Besides methanogens, Marine Benthic Group D/Deep-Sea Hydrothermal Vent Euryarchaeotic Group 1 (MBG-D/DHVEG-1), Nitrosotaleales, and several other orders of Bathyarchaeota also exhibited high relative abundances, especially in T. This finding might be due to the unique geological conditions, suggesting high archaeal diversity in peatlands. In addition, the highest and lowest CH4 production potentials were 2.38 and 0.22 μg g-1 d-1 in H and R, respectively. The distributions of the dominant methanogens were consistent with the respective methanogenesis pathways in the three peatlands. The pH, DOC, and WC were strongly correlated with CH4 production potentials. However, no relationship was found between CH4 production potential and methanogens, suggesting that CH4 production in peatlands may not be controlled by the relative abundance of methanogens. CONCLUSIONS The results of the present study provide further insights into CH4 production in peatlands in China, highlighting the importance of the archaeal community and peat physicochemical properties for studies on methanogenesis in distinct types of peatlands.
Collapse
Affiliation(s)
- Xuhui Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xue
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| | - Yue Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qiu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Wu
- School of Forestry and Horticulture, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Meng Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, 130024, China
| | - Jiawen Liu
- SQE Department, COFCO Coca-Cola Beverages (Sichuan) Company Limited, Chengdu, 610500, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
| |
Collapse
|
138
|
Sunde J, Franzén M, Betzholtz PE, Francioli Y, Pettersson LB, Pöyry J, Ryrholm N, Forsman A. Century-long butterfly range expansions in northern Europe depend on climate, land use and species traits. Commun Biol 2023; 6:601. [PMID: 37270651 DOI: 10.1038/s42003-023-04967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Climate change is an important driver of range shifts and community composition changes. Still, little is known about how the responses are influenced by the combination of land use, species interactions and species traits. We integrate climate and distributional data for 131 butterfly species in Sweden and Finland and show that cumulative species richness has increased with increasing temperature over the past 120 years. Average provincial species richness increased by 64% (range 15-229%), from 46 to 70. The rate and direction of range expansions have not matched the temperature changes, in part because colonisations have been modified by other climatic variables, land use and vary according to species characteristics representing ecological generalisation and species interactions. Results emphasise the role of a broad ecological filtering, whereby a mismatch between environmental conditions and species preferences limit the ability to disperse and establish populations in emerging climates and novel areas, with potentially widespread implications for ecosystem functioning.
Collapse
Affiliation(s)
- Johanna Sunde
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden.
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Per-Eric Betzholtz
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Yannick Francioli
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Lars B Pettersson
- Biodiversity Unit, Department of Biology, Lund University, SE-22362, Lund, Sweden
| | - Juha Pöyry
- Finnish Environment Institute (SYKE), Nature Solutions, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Nils Ryrholm
- Department of Electronics, Mathematics and Natural Sciences, Faculty of Engineering and Sustainable Development, University of Gävle, SE-80176, Gävle, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| |
Collapse
|
139
|
Dai Y, Huang H, Qing Y, Li J, Li D. Ecological response of an umbrella species to changing climate and land use: Habitat conservation for Asiatic black bear in the Sichuan-Chongqing Region, Southwestern China. Ecol Evol 2023; 13:e10222. [PMID: 37384242 PMCID: PMC10293704 DOI: 10.1002/ece3.10222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Climate and land use changes are increasingly recognized as major threats to global biodiversity, with significant impacts on wildlife populations and ecosystems worldwide. The study of how climate and land use changes impact wildlife is of paramount importance for advancing our understanding of ecological processes in the face of global environmental change, informing conservation planning and management, and identifying the mechanisms and thresholds that underlie species' responses to shifting climatic conditions. The Asiatic black bear (Ursus thibetanus) is a prominent umbrella species in a biodiversity hotspot in Southwestern China, and its conservation is vital for safeguarding sympatric species. However, the extent to which this species' habitat may respond to global climate and land use changes is poorly understood, underscoring the need for further investigation. Our goal was to anticipate the potential impacts of upcoming climate and land use changes on the distribution and dispersal patterns of the Asiatic black bear in the Sichuan-Chongqing Region. We used MaxEnt modeling to evaluate habitat vulnerability using three General Circulation Models (GCMs) and three scenarios of climate and land use changes. Subsequently, we used Circuit Theory to identify prospective dispersal paths. Our results revealed that the current area of suitable habitat for the Asiatic black bear was 225,609.59 km2 (comprising 39.69% of the total study area), but was expected to decrease by -53.1%, -49.48%, and -28.55% under RCP2.6, RCP4.5, and RCP8.5 projection scenarios, respectively. Across all three GCMs, the distribution areas and dispersal paths of the Asiatic black bear were projected to shift to higher altitudes and constrict by the 2070s. Furthermore, the results indicated that the density of dispersal paths would decrease, while the resistance to dispersal would increase across the study area. In order to protect the Asiatic black bear, it is essential to prioritize the protection of climate refugia and dispersal paths. Our findings provide a sound scientific foundation for the allocation of such protected areas in the Sichuan-Chongqing Region that are both effective and adaptive in the face of ongoing global climate and land use changes.
Collapse
Affiliation(s)
- Yunchuan Dai
- Institute for Ecology and Environmental Resources, Research Center for Ecological Security and Green DevelopmentChongqing Academy of Social SciencesChongqingChina
| | - Heqing Huang
- Chongqing Academy of Ecology and Environmental SciencesChongqingChina
| | - Yu Qing
- Chongqing Industry Polytechnic CollegeChongqingChina
| | - Jiatong Li
- School of TourismKaili UniversityKailiChina
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchongChina
| |
Collapse
|
140
|
Belgrano A, Lindmark M. Biodiversity transformations in the global ocean: A climate change and conservation management perspective. GLOBAL CHANGE BIOLOGY 2023; 29:3235-3236. [PMID: 36880894 DOI: 10.1111/gcb.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 05/16/2023]
Abstract
Understanding the biological diversity of different communities and evaluating the risks to biological sustainability in a time of rapid environmental change is a key challenge for providing an adapting management approach for biodiversity transformations in the ocean linked to human well-being. (Photo credit: Andrea Belgrano).
Collapse
Affiliation(s)
- Andrea Belgrano
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
- Swedish Institute for the Marine Environment (SIME), University of Gothenburg, Gothenburg, Sweden
| | - Max Lindmark
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| |
Collapse
|
141
|
Wu GL, Fang H, Cui Z, Zhao J. Warming-driven indirect effects on alpine grasslands: short-term gravel encroachment rapidly reshapes community structure and reduces community stability. Oecologia 2023:10.1007/s00442-023-05393-y. [PMID: 37258693 DOI: 10.1007/s00442-023-05393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The community stability is the main ability to resist and be resilient to climate changes. In a world of climate warming and melting glaciers, alpine gravel encroachment was occurring universally and threatening hillside grassland ecosystem. Gravel encroachment caused by climate warming and glacial melting may alter community structure and community stability in alpine meadow. Yet, the effects of climate warming-induced gravel encroachment on grassland communities are unknown. Here, a 1-year short-term field experiment was conducted to explore the early stage drive process of gravel encroachment on community structure and stability at four different gravel encroachment levels 0%, 30%, 60%, and 90% gravel coverage at an alpine meadow on the Qinghai Tibetan Plateau, by analyzing the changes of dominant species stability and species asynchrony to the simulated gravel encroachment processes. Gravel encroachment rapidly changed the species composition and species ranking of alpine meadow plant community in a short period of time. Specifically, community stability of alpine meadow decreased by 61.78-79.48%, which may be due to the reduced dominant species stability and species asynchrony. Species asynchrony and dominant species stability were reduced by 2.65-17.39% and 46.51-67.97%, respectively. The results of this study demonstrate that gravel encroachment presents a severe negative impact on community structure and stability of alpine meadow in the short term, the longer term and comprehensive study should be conducted to accurate prediction of global warming-induced indirect effects on alpine grassland ecosystems.
Collapse
Affiliation(s)
- Gao-Lin Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, No. 26, Xinong Road, Yangling, 712100, China.
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Yangling, 712100, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Hui Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, No. 26, Xinong Road, Yangling, 712100, China
| | - Zeng Cui
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Yangling, 712100, China
| | - Jingxue Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
142
|
Allsup CM, George I, Lankau RA. Shifting microbial communities can enhance tree tolerance to changing climates. Science 2023; 380:835-840. [PMID: 37228219 DOI: 10.1126/science.adf2027] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Climate change is pushing species outside of their evolved tolerances. Plant populations must acclimate, adapt, or migrate to avoid extinction. However, because plants associate with diverse microbial communities that shape their phenotypes, shifts in microbial associations may provide an alternative source of climate tolerance. Here, we show that tree seedlings inoculated with microbial communities sourced from drier, warmer, or colder sites displayed higher survival when faced with drought, heat, or cold stress, respectively. Microbially mediated drought tolerance was associated with increased diversity of arbuscular mycorrhizal fungi, whereas cold tolerance was associated with lower fungal richness, likely reflecting a reduced burden of nonadapted fungal taxa. Understanding microbially mediated climate tolerance may enhance our ability to predict and manage the adaptability of forest ecosystems to changing climates.
Collapse
Affiliation(s)
- Cassandra M Allsup
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabelle George
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
143
|
Liu T, Liu H, Wang Y, Yang Y. Climate Change Impacts on the Potential Distribution Pattern of Osphya (Coleoptera: Melandryidae), an Old but Small Beetle Group Distributed in the Northern Hemisphere. INSECTS 2023; 14:insects14050476. [PMID: 37233104 DOI: 10.3390/insects14050476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Exploring the development of species distribution patterns under climate change is the basis of biogeography and macroecology. However, under the background of global climate change, few studies focus on how the distribution pattern and the range of insects have or will change in response to long-term climate change. An old but small, Northern-Hemisphere-distributed beetle group Osphya is an ideal subject to conduct the study in this aspect. Here, based on a comprehensive geographic dataset, we analyzed the global distribution pattern of Osphya using ArcGIS techniques, which declared a discontinuous and uneven distribution pattern across the USA, Europe, and Asia. Furthermore, we predicted the suitable habitats of Osphya under different climate scenarios via the MaxEnt model. The results showed that the high suitability areas were always concentrated in the European Mediterranean and the western coast of USA, while a low suitability exhibited in Asia. Moreover, by integrating the analyses of biogeography and habitat suitability, we inferred that the Osphya species conservatively prefer a warm, stable, and rainy climate, and they tend to expand towards higher latitude in response to the climate warming from the past to future. These results are helpful in exploring the species diversity and protection of Osphya.
Collapse
Affiliation(s)
- Tong Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Haoyu Liu
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yongjie Wang
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuxia Yang
- The Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
144
|
Van de Vuurst P, Escobar LE. Climate change and infectious disease: a review of evidence and research trends. Infect Dis Poverty 2023; 12:51. [PMID: 37194092 DOI: 10.1186/s40249-023-01102-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Climate change presents an imminent threat to almost all biological systems across the globe. In recent years there have been a series of studies showing how changes in climate can impact infectious disease transmission. Many of these publications focus on simulations based on in silico data, shadowing empirical research based on field and laboratory data. A synthesis work of empirical climate change and infectious disease research is still lacking. METHODS We conducted a systemic review of research from 2015 to 2020 period on climate change and infectious diseases to identify major trends and current gaps of research. Literature was sourced from Web of Science and PubMed literary repositories using a key word search, and was reviewed using a delineated inclusion criteria by a team of reviewers. RESULTS Our review revealed that both taxonomic and geographic biases are present in climate and infectious disease research, specifically with regard to types of disease transmission and localities studied. Empirical investigations on vector-borne diseases associated with mosquitoes comprised the majority of research on the climate change and infectious disease literature. Furthermore, demographic trends in the institutions and individuals published revealed research bias towards research conducted across temperate, high-income countries. We also identified key trends in funding sources for most resent literature and a discrepancy in the gender identities of publishing authors which may reflect current systemic inequities in the scientific field. CONCLUSIONS Future research lines on climate change and infectious diseases should considered diseases of direct transmission (non-vector-borne) and more research effort in the tropics. Inclusion of local research in low- and middle-income countries was generally neglected. Research on climate change and infectious disease has failed to be socially inclusive, geographically balanced, and broad in terms of the disease systems studied, limiting our capacities to better understand the actual effects of climate change on health.
Collapse
Affiliation(s)
- Paige Van de Vuurst
- Virginia Tech Graduate School, Translational Biology, Medicine, and Health Program, Blacksburg, VA, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Global Change Center, Virginia Tech, Blacksburg, VA, USA.
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, Colombia.
| |
Collapse
|
145
|
González-Pérez A, Álvarez-Esteban R, Penas Á, del Río S. Bioclimatic Characterisation of Specific Native Californian Pinales and Their Future Suitability under Climate Change. PLANTS (BASEL, SWITZERLAND) 2023; 12:1966. [PMID: 37653883 PMCID: PMC10224251 DOI: 10.3390/plants12101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Rising temperatures and changes in precipitation patterns under climate change scenarios are accelerating the depletion of soil moisture and increasing the risk of drought, disrupting the conditions that many plant species need to survive. This study aims to establish the bioclimatic characterisation, both qualitative and quantitative, of ten native Californian Pinales for the period 1980-2019, and to determine their habitat suitability by 2050. To achieve this, an exhaustive search of the Gbif database for records of ten conifer taxa was carried out. To conduct the bioclimatic characterisation of the studied taxa, we worked with the monthly values of average temperature and precipitation for the period 1980-2019 from 177 meteorological stations. Linear regressions was performed in order to compile the future evolution of California's climate. Suitable areas and optimal areas were defined at the present time (1980-2019) and its future projection (2050). We applied Boolean logic and, in this investigation, the Conditional Logic Operator (CON) was used to determine the possible species presence (one) or absence (zero) for each of the 15 variables analysed. In general, most of the conifers studied here will experience a reduction in their habitat range in California by the year 2050 due to climate change, as well as the displacement of species towards optimal areas. Furthermore, the results have highlighted the applicability of bioclimatology to future conditions under climate change. This will aid conservation managers in implementing strategic measures to ameliorate the detrimental impacts of climate change, thereby ensuring the ecological integrity and sustainability of the affected conifer species.
Collapse
Affiliation(s)
- Alejandro González-Pérez
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Campus de Vegazana s/n, 24071 León, Spain
| | - Ramón Álvarez-Esteban
- Department of Economics and Statistics (Statistics and Operations Research Area), Faculty of Economics and Business, University of Leon, Campus de Vegazana s/n, 24071 León, Spain;
| | - Ángel Penas
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Mountain Livestock Institute CSIC-UNILEON, Campus de Vegazana s/n, 24071 León, Spain; (Á.P.); (S.d.R.)
| | - Sara del Río
- Department of Biodiversity and Environmental Management (Botany Area), Faculty of Biological and Environmental Sciences, University of Leon, Mountain Livestock Institute CSIC-UNILEON, Campus de Vegazana s/n, 24071 León, Spain; (Á.P.); (S.d.R.)
| |
Collapse
|
146
|
Zheng J, Wei H, Chen R, Liu J, Wang L, Gu W. Invasive Trends of Spartina alterniflora in the Southeastern Coast of China and Potential Distributional Impacts on Mangrove Forests. PLANTS (BASEL, SWITZERLAND) 2023; 12:1923. [PMID: 37653840 PMCID: PMC10222674 DOI: 10.3390/plants12101923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Mangrove forests are one of the most productive and seriously threatened ecosystems in the world. The widespread invasion of Spartina alterniflora has seriously imperiled the security of mangroves as well as coastal mudflat ecosystems. Based on a model evaluation index, we selected RF, GBM, and GLM as a predictive model for building a high-precision ensemble model. We used the species occurrence records combined with bioclimate, sea-land topography, and marine environmental factors to predict the potentially suitable habitats of mangrove forests and the potentially suitable invasive habitats of S. alterniflora in the southeastern coast of China. We then applied the invasion risk index (IRI) to assess the risk that S. alterniflora would invade mangrove forests. The results show that the suitable habitats for mangrove forests are mainly distributed along the coastal provinces of Guangdong, Hainan, and the eastern coast of Guangxi. The suitable invasive habitats for S. alterniflora are mainly distributed along the coast of Zhejiang, Fujian, and relatively less in the southern provinces. The high-risk areas for S. alterniflora invasion of mangrove forests are concentrated in Zhejiang and Fujian. Bioclimate variables are the most important variables affecting the survival and distribution of mangrove forests and S. alterniflora. Among them, temperature is the most important environmental variable determining the large-scale distribution of mangrove forests. Meanwhile, S. alterniflora is more sensitive to precipitation than temperature. Our results can provide scientific insights and references for mangrove forest conservation and control of S. alterniflora.
Collapse
Affiliation(s)
- Jiaying Zheng
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
| | - Haiyan Wei
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
| | - Ruidun Chen
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
| | - Jiamin Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
| | - Lukun Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China; (J.Z.); (R.C.); (J.L.); (L.W.)
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Gu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
147
|
Harvey JA, Dong Y. Climate Change, Extreme Temperatures and Sex-Related Responses in Spiders. BIOLOGY 2023; 12:biology12040615. [PMID: 37106814 PMCID: PMC10136024 DOI: 10.3390/biology12040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Climatic extremes, such as heat waves, are increasing in frequency, intensity and duration under anthropogenic climate change. These extreme events pose a great threat to many organisms, and especially ectotherms, which are susceptible to high temperatures. In nature, many ectotherms, such as insects, may seek cooler microclimates and 'ride out´ extreme temperatures, especially when these are transient and unpredictable. However, some ectotherms, such as web-building spiders, may be more prone to heat-related mortality than more motile organisms. Adult females in many spider families are sedentary and build webs in micro-habitats where they spend their entire lives. Under extreme heat, they may be limited in their ability to move vertically or horizontally to find cooler microhabitats. Males, on the other hand, are often nomadic, have broader spatial distributions, and thus might be better able to escape exposure to heat. However, life-history traits in spiders such as the relative body size of males and females and spatial ecology also vary across different taxonomic groups based on their phylogeny. This may make different species or families more or less susceptible to heat waves and exposure to very high temperatures. Selection to extreme temperatures may drive adaptive responses in female physiology, morphology or web site selection in species that build small or exposed webs. Male spiders may be better able to avoid heat-related stress than females by seeking refuge under objects such as bark or rocks with cooler microclimates. Here, we discuss these aspects in detail and propose research focusing on male and female spider behavior and reproduction across different taxa exposed to temperature extremes.
Collapse
Affiliation(s)
- Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Yuting Dong
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
148
|
Shi F, Liu S, An Y, Sun Y, Zhao S, Liu Y, Li M. Climatic factors and human disturbance influence ungulate species distribution on the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161681. [PMID: 36682551 DOI: 10.1016/j.scitotenv.2023.161681] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Due to human activities and climate change, the habitats of ungulate species on the Qinghai-Tibet Plateau have been greatly affected in recent decades. In this study, the distribution patterns of 19 ungulate species on the Qinghai-Tibet Plateau were identified based on MaxEnt model in the past (1960-1990) and current periods (2000-2015). Then the changes of their habitat distribution and the species richness in different periods were compared. Finally, the Zonation model was used to identify the key protected areas of ungulate species. The results show that the MaxEnt model can well predict the distribution of ungulate species. Most ungulate species are mainly distributed in the southeast of the Qinghai-Tibet Plateau. The distance to lakes and precipitation are the main factors affecting the distribution of most ungulate species. The habitats originally located in the southeast of the Qinghai-Tibet Plateau have mainly extended northeastwards, while the habitats originally located in the northwest has been largely lost. The changes in the habitats of ungulate species in the southeast and northwest are diametrically opposite. The key protected areas identified by Zonation model are mainly located in the southeast of the Qinghai-Tibet Plateau. The existing nature reserves can effectively protect the suitable habitats of the Tibetan antelope, Tibetan wild ass and wild yak. This research can provide scientific basis for coordinating the contradiction between development and protection and promoting the biodiversity conservation on the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Fangning Shi
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, China
| | - Shiliang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China.
| | - Yi An
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yongxiu Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shuang Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yixuan Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Mingqi Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
149
|
Ozgul A, Fichtel C, Paniw M, Kappeler PM. Destabilizing effect of climate change on the persistence of a short-lived primate. Proc Natl Acad Sci U S A 2023; 120:e2214244120. [PMID: 36972440 PMCID: PMC10083614 DOI: 10.1073/pnas.2214244120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Seasonal tropical environments are among those regions that are the most affected by shifts in temperature and rainfall regimes under climate change, with potentially severe consequences for wildlife population persistence. This persistence is ultimately determined by complex demographic responses to multiple climatic drivers, yet these complexities have been little explored in tropical mammals. We use long-term, individual-based demographic data (1994 to 2020) from a short-lived primate in western Madagascar, the gray mouse lemur (Microcebus murinus), to investigate the demographic drivers of population persistence under observed shifts in seasonal temperature and rainfall. While rainfall during the wet season has been declining over the years, dry season temperatures have been increasing, with these trends projected to continue. These environmental changes resulted in lower survival and higher recruitment rates over time for gray mouse lemurs. Although the contrasting changes have prevented the study population from collapsing, the resulting increase in life-history speed has destabilized an otherwise stable population. Population projections under more recent rainfall and temperature levels predict an increase in population fluctuations and a corresponding increase in the extinction risk over the next five decades. Our analyses show that a relatively short-lived mammal with high reproductive output, representing a life history that is expected to closely track changes in its environment, can nonetheless be threatened by climate change.
Collapse
Affiliation(s)
- Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich,8057Zurich, Switzerland
| | - Claudia Fichtel
- Behavioural Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research,37077Göttingen, Germany
| | - Maria Paniw
- Department of Evolutionary Biology and Environmental Studies, University of Zurich,8057Zurich, Switzerland
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), Seville41001, Spain
| | - Peter M. Kappeler
- Behavioural Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research,37077Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen,37077Göttingen, Germany
| |
Collapse
|
150
|
Hedrick BP, Estrada A, Sutherland C, Barbosa AM. Projected northward shifts in eastern red-backed salamanders due to changing climate. Ecol Evol 2023; 13:e9999. [PMID: 37122767 PMCID: PMC10133384 DOI: 10.1002/ece3.9999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Many species' distributions are being impacted by the acceleration of climate change. Amphibians in particular serve numerous ecosystem functions and are useful indicators of environmental change. Understanding how their distributions have been impacted by climate change and will continue to be impacted is thus important to overall ecosystem health. Plethodon cinereus (Eastern Red-Backed Salamander) is a widespread species of lungless salamander (Plethodontidae) that ranges across northeastern North America. To better understand future potential lungless salamander range shifts, we quantify environmental favorability, the likelihood of membership in a set of sites where environmental conditions are favorable for a species, for P. cinereus in multiple time periods, and examine shifts in the species' distribution. First, utilizing a large data set of georeferenced records, we assessed which bioclimatic variables were associated with environmental favorability in P. cinereus. We then used species distribution modeling for two time periods (1961-1980 and 2001-2020) to determine whether there was a regional shift in environmental favorability in the past 60 years. Models were then used to project future distributions under eight climate change scenarios to quantify potential range shifts. Shifts were assessed using fuzzy logic, avoiding thresholds that oversimplify model predictions into artificial binary outputs. We found that P. cinereus presence is strongly associated with environmental stability. There has been a substantial northward shift in environmental favorability for P. cinereus between 1961-1980 and 2001-2020. This shift is predicted to continue by 2070, with larger shifts under higher greenhouse gas emission scenarios. As climate change accelerates, it is differentially impacting species but has especially strong impacts on dispersal-limited species. Our results show substantial northward shifts in climatic favorability in the last 60 years for P. cinereus, which are likely to be exacerbated by ongoing climate change. Since P. cinereus is dispersal-limited, these models may imply local extirpations along the southern modern range with limited northward dispersal. Continued monitoring of amphibians in the field will reveal microclimatic effects associated with climate change and the accuracy of the model predictions presented here.
Collapse
Affiliation(s)
| | | | - Chris Sutherland
- Centre for Research into Ecological and Environmental ModellingUniversity of St AndrewsSt AndrewsUK
| | - A. Márcia Barbosa
- Centro de Investigação em Ciências Geo‐EspaciaisVila Nova de GaiaPortugal
| |
Collapse
|