101
|
Kubota N, Kubota T, Kajiwara E, Iwamura T, Kumagai H, Watanabe T, Inoue M, Takamoto I, Sasako T, Kumagai K, Kohjima M, Nakamuta M, Moroi M, Sugi K, Noda T, Terauchi Y, Ueki K, Kadowaki T. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat Commun 2016; 7:12977. [PMID: 27708333 PMCID: PMC5059684 DOI: 10.1038/ncomms12977] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as 'selective insulin resistance'. Here, we show that 'selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop 'selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop 'total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that 'selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Department of Clinical Nutrition Therapy, The University of Tokyo, Tokyo 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 162-8636, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 162-8636, Japan.,Division of Cardiovascular Medicine, Toho University, Ohashi Hospital, Tokyo 153-8515, Japan
| | - Eiji Kajiwara
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomokatsu Iwamura
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroki Kumagai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Taku Watanabe
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Hokkaido 060-8648, Japan
| | - Mariko Inoue
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 162-8636, Japan
| | - Iseki Takamoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Clinical Nutrition Program, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 162-8636, Japan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | - Motoyuki Kohjima
- Department of Gastroenterology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Makoto Nakamuta
- Department of Gastroenterology, Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Masao Moroi
- Division of Cardiovascular Medicine, Toho University, Ohashi Hospital, Tokyo 153-8515, Japan
| | - Kaoru Sugi
- Division of Cardiovascular Medicine, Toho University, Ohashi Hospital, Tokyo 153-8515, Japan
| | - Tetsuo Noda
- Department of Cell Biology, Japanese Foundation for Cancer Research-Cancer Institute, Tokyo 135-8550, Japan
| | - Yasuo Terauchi
- Department of Diabetes and Endocrinology, Yokohama City University, School of Medicine, Kanagawa 236-0004, Japan
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
102
|
Ju L, Wu G, Lu B, Li X, Wu H, Liu A. Non-enzymatic Amperometric Glucose Sensor Based on Copper Nanowires Decorated Reduced Graphene Oxide. ELECTROANAL 2016. [DOI: 10.1002/elan.201600100] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lele Ju
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Guosong Wu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Biao Lu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xiaoyun Li
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Huaping Wu
- Key Laboratory of E&M (Zhejiang University of Technology); Ministry of Education & Zhejiang Province; Hangzhou 310014 China
| | - Aiping Liu
- Center for Optoelectronics Materials and Devices; Zhejiang Sci-Tech University; Hangzhou 310018 China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
103
|
In vitro evidence in rainbow trout supporting glucosensing mediated by sweet taste receptor, LXR, and mitochondrial activity in Brockmann bodies, and sweet taste receptor in liver. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:6-16. [DOI: 10.1016/j.cbpb.2016.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022]
|
104
|
Glucosensing in liver and Brockmann bodies of rainbow trout through glucokinase-independent mechanisms. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:29-42. [DOI: 10.1016/j.cbpb.2015.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 01/21/2023]
|
105
|
Li Y, Jing C, Tang X, Chen Y, Han X, Zhu Y. LXR activation causes G1/S arrest through inhibiting SKP2 expression in MIN6 pancreatic beta cells. Endocrine 2016; 53:689-700. [PMID: 27071658 DOI: 10.1007/s12020-016-0915-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
Abstract
Liver X receptors (LXRs) are nuclear hormone receptors with central roles in lipid homeostasis. We previously showed that LXR activation induced aberrant lipid metabolism and G1 cell cycle arrest in pancreatic beta cells. In this study, we aimed to identify the molecular target of LXR causing G1 arrest. LXR activation was induced by its agonist, T0901317. A series of luciferase reporters of truncated Skp2 promoter were analyzed in MIN6 cells. mRNA and protein levels of SKP2 and P27 were detected. Flow cytometry assay was used to determine the cell cycle distribution. MTT assay was used to evaluate cell viability. LXR activation increased cell distribution in G1 phase and lipid accumulation. Since dominant-negative Srebp1c could clear the deposited lipid rather than recover the G1 arrest, we identified S-phase kinase-associated protein 2 (Skp2) as a potential target gene of LXR. In deed, LXR activation significantly inhibited Skp2 gene expression and protein amount. We also observed that the luciferase activity of Skp2 promoter was suppressed by T0901317 and the potential LXR regulatory site was narrowed down to a region of nt -289 to -38. Silencing Lxrα and Lxrβ rescued SKP2 protein level and recovered the cellular growth repressed by LXR activation. Moreover, SKP2 overabundance reduced P27 protein level by promoting its degradation, consequently overcame the G1 arrest caused by T0901317. Our findings demonstrate that transrepressing Skp2 expression by LXR activation resulted in defective SKP2-mediated P27 degradation and inhibitory cell growth in beta cells.
Collapse
Affiliation(s)
- Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Changwen Jing
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Xinyi Tang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yuanyuan Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
106
|
Yeh YS, Goto T, Takahashi N, Egawa K, Takahashi H, Jheng HF, Kim YI, Kawada T. Geranylgeranyl pyrophosphate performs as an endogenous regulator of adipocyte function via suppressing the LXR pathway. Biochem Biophys Res Commun 2016; 478:1317-22. [PMID: 27569282 DOI: 10.1016/j.bbrc.2016.08.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/20/2016] [Indexed: 12/22/2022]
Abstract
Isoprenoids such as geranylgeranyl pyrophosphate (GGPP) influence various biological processes. Here we show that GGPP inhibits adipocyte differentiation via the liver X receptors (LXRs) pathway. Intracellular GGPP levels and GGPP synthase (Ggps) mRNA expression increases during adipocyte differentiation. Ggps expression also increases in white adipose tissue of obese mice. GGPP addition reduces the expression of adipogenic marker genes such as adipocyte fatty acid binding protein, peroxisome proliferator-activated receptor γ, and insulin-stimulated glucose uptake. Similarly, over-expressing Ggps inhibits adipocyte differentiation. In contrast, Ggps knockdown promotes adipocyte differentiation. Inhibition of adipocyte differentiation by GGPP was partially reduced by LXR agonist T0901317. Furthermore, Ggps knockdown up-regulates LXR target genes during adipocyte differentiation. These results suggest that GGPP may act as an endogenous regulator of adipocyte differentiation and maturation through a mechanism partially dependent on the LXR pathway.
Collapse
Affiliation(s)
- Yu-Sheng Yeh
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan; Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan.
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan; Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Kahori Egawa
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Huei-Fen Jheng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Young-Il Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan; Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
107
|
Savic D, Ramaker RC, Roberts BS, Dean EC, Burwell TC, Meadows SK, Cooper SJ, Garabedian MJ, Gertz J, Myers RM. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med 2016; 8:74. [PMID: 27401066 PMCID: PMC4940857 DOI: 10.1186/s13073-016-0328-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. Methods To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Results Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Conclusions Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets for the treatment of various cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0328-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Emma C Dean
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Todd C Burwell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Michael J Garabedian
- Departments of Microbiology and Urology, New York University, New York, NY, 10016, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| |
Collapse
|
108
|
Cornejo MP, Hentges ST, Maliqueo M, Coirini H, Becu-Villalobos D, Elias CF. Neuroendocrine Regulation of Metabolism. J Neuroendocrinol 2016; 28:10.1111/jne.12395. [PMID: 27114114 PMCID: PMC4956544 DOI: 10.1111/jne.12395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/31/2016] [Accepted: 04/21/2016] [Indexed: 12/29/2022]
Abstract
Given the current environment in most developed countries, it is a challenge to maintain a good balance between calories consumed and calories burned, although maintenance of metabolic balance is key to good health. Therefore, understanding how metabolic regulation is achieved and how the dysregulation of metabolism affects health is an area of intense research. Most studies focus on the hypothalamus, which is a brain area that acts as a key regulator of metabolism. Among the nuclei that comprise the hypothalamus, the arcuate nucleus is one of the major mediators in the regulation of food intake. The regulation of energy balance is also a key factor ensuring the maintenance of any species as a result of the dependence of reproduction on energy stores. Adequate levels of energy reserves are necessary for the proper functioning of the hypothalamic-pituitary-gonadal axis. This review discusses valuable data presented in the 2015 edition of the International Workshop of Neuroendocrinology concerning the fundamental nature of the hormonal regulation of the hypothalamus and the impact on energy balance and reproduction.
Collapse
Affiliation(s)
- Maria P. Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, dependent on the Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Shane T. Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine University of Chile, Santiago de Chile, Chile
| | - Hector Coirini
- Laboratory of Neurobiology, Institute of Biology and Experimental Medicine [(IBYME), dependent on CONICET] and Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Laboratory of Pituitary Regulation, Institute of Biology and Experimental Medicine [(IBYME), dependent on CONICET], Buenos Aires, Argentina
| | - Carol F. Elias
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
109
|
Wang Q, Su X, Jiang X, Dong X, Fan Y, Zhang J, Yu C, Gao W, Shi S, Jiang J, Jiang W, Wei T. iTRAQ technology-based identification of human peripheral serum proteins associated with depression. Neuroscience 2016; 330:291-325. [PMID: 27268281 DOI: 10.1016/j.neuroscience.2016.05.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/26/2022]
Abstract
Clinical depression is one of the most common and debilitating psychiatric disorders and contributes to increased risks of disability and suicide. Differentially expressed serum proteins may serve as biomarkers for diagnosing depression. In this study, samples from depressed patients are aggregated into a pool (22×100μL serum was used) and samples from healthy volunteers are aggregated into the other pool (20×100μL serum was used). Isobaric tag for relative and absolute quantitation (iTRAQ) technology and tandem mass spectrometry were employed to screen for differentially expressed serum protein in two separate pools. We identified 472 proteins in the serum samples, and 154 of these presented differences in abundance between the depression and control groups. Ingenuity pathway analysis (IPA) was employed to identify the highest scoring proteins in signaling pathway networks. Finally, four differentially expressed proteins were validated by enzyme-linked immuno sorbent assay (ELISA). Proteomic studies revealed that levels of c-reaction protein (CRP), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), serum amyloid A1 (SAA1) and angiopoietin-like 3 (ANGPTL3) were substantially increased in depressed patients compared with the healthy control group. Therefore, these differentially expressed proteins may represent potential markers for the clinical diagnosis of depression.
Collapse
Affiliation(s)
- Q Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - X Su
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - X Jiang
- Department of Neurology, The Third People's Hospital of Daqing, Daqing, Heilongjiang 163000, PR China
| | - X Dong
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Y Fan
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - J Zhang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - C Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - W Gao
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, PR China
| | - S Shi
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - J Jiang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - W Jiang
- Department of Neurology, The Third People's Hospital of Daqing, Daqing, Heilongjiang 163000, PR China
| | - T Wei
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China.
| |
Collapse
|
110
|
Marmugi A, Lukowicz C, Lasserre F, Montagner A, Polizzi A, Ducheix S, Goron A, Gamet-Payrastre L, Gerbal-Chaloin S, Pascussi JM, Moldes M, Pineau T, Guillou H, Mselli-Lakhal L. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way. Toxicol Appl Pharmacol 2016; 303:90-100. [PMID: 27180240 DOI: 10.1016/j.taap.2016.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases.
Collapse
Affiliation(s)
- Alice Marmugi
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Céline Lukowicz
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Frederic Lasserre
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Alexandra Montagner
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Arnaud Polizzi
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Simon Ducheix
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Adeline Goron
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Laurence Gamet-Payrastre
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Sabine Gerbal-Chaloin
- Institute of Regenerative Medicine and Biotherapy, INSERM, U1183 Montpellier, France
| | - Jean Marc Pascussi
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Marthe Moldes
- Centre de Recherche Saint-Antoine, INSERM, UMR 938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Thierry Pineau
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Hervé Guillou
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Laila Mselli-Lakhal
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France.
| |
Collapse
|
111
|
Xiao C, Dash S, Morgantini C, Lewis GF. Intravenous Glucose Acutely Stimulates Intestinal Lipoprotein Secretion in Healthy Humans. Arterioscler Thromb Vasc Biol 2016; 36:1457-63. [PMID: 27150393 DOI: 10.1161/atvbaha.115.307044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/20/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Increased production of intestinal triglyceride-rich lipoproteins (TRLs) contributes to dyslipidemia and increased risk of atherosclerotic cardiovascular disease in insulin resistance and type 2 diabetes. We have previously demonstrated that enteral glucose enhances lipid-stimulated intestinal lipoprotein particle secretion. Here, we assessed whether glucose delivered systemically by intravenous infusion also enhances intestinal lipoprotein particle secretion in humans. APPROACH AND RESULTS On 2 occasions, 4 to 6 weeks apart and in random order, 10 healthy men received a constant 15-hour intravenous infusion of either 20% glucose to induce hyperglycemia or normal saline as control. Production of TRL-apolipoprotein B48 (apoB48, primary outcomes) and apoB100 (secondary outcomes) was assessed during hourly liquid-mixed macronutrient formula ingestion with stable isotope enrichment and multicompartmental modeling, under pancreatic clamp conditions to limit perturbations in pancreatic hormones (insulin and glucagon) and growth hormone. Compared with saline infusion, glucose infusion induced both hyperglycemia and hyperinsulinemia, increased plasma triglyceride levels, and increased TRL-apoB48 concentration and production rate (P<0.05), without affecting TRL-apoB48 fractional catabolic rate. No significant effect of hyperglycemia on TRL-apoB100 concentration and kinetic parameters was observed. CONCLUSIONS Short-term intravenous infusion of glucose stimulates intestinal lipoprotein production. Hyperglycemia may contribute to intestinal lipoprotein overproduction in type 2 diabetes. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02607839.
Collapse
Affiliation(s)
- Changting Xiao
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Satya Dash
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Cecilia Morgantini
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Gary F Lewis
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
112
|
Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol 2016; 16:678-89. [PMID: 26490400 DOI: 10.1038/nrm4074] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Jose Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Sun-Joong Kim
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
113
|
Ebert B, Kisiela M, Maser E. Transcriptional regulation of human and murine short-chain dehydrogenase/reductases (SDRs) – an in silico approach. Drug Metab Rev 2016; 48:183-217. [DOI: 10.3109/03602532.2016.1167902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
114
|
Identification of HNF-4α as a key transcription factor to promote ChREBP expression in response to glucose. Sci Rep 2016; 6:23944. [PMID: 27029511 PMCID: PMC4814918 DOI: 10.1038/srep23944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
Transcription factor carbohydrate responsive element binding protein (ChREBP) promotes glycolysis and lipogenesis in metabolic tissues and cancer cells. ChREBP-α and ChREBP-β, two isoforms of ChREBP transcribed from different promoters, are both transcriptionally induced by glucose. However, the mechanism by which glucose increases ChREBP mRNA levels remains unclear. Here we report that hepatocyte nuclear factor 4 alpha (HNF-4α) is a key transcription factor for glucose-induced ChREBP-α and ChREBP-β expression. Ectopic HNF-4α expression increased ChREBP transcription while knockdown of HNF-4α greatly reduced ChREBP mRNA levels in liver cancer cells and mouse primary hepatocytes. HNF-4α not only directly bound to an E-box-containing region in intron 12 of the ChREBP gene, but also promoted ChREBP-β transcription by directly binding to two DR1 sites and one E-box-containing site of the ChREBP-β promoter. Moreover, HNF-4α interacted with ChREBP-α and synergistically promoted ChREBP-β transcription. Functionally, HNF-4α suppression reduced glucose-dependent ChREBP induction. Increased nuclear abundance of HNF-4α and its binding to cis-elements of ChREBP gene in response to glucose contributed to glucose-responsive ChREBP transcription. Taken together, our results not only revealed the novel mechanism by which HNF-4α promoted ChREBP transcription in response to glucose, but also demonstrated that ChREBP-α and HNF-4α synergistically increased ChREBP-β transcription.
Collapse
|
115
|
Otero-Rodiño C, Velasco C, Álvarez-Otero R, López-Patiño MA, Míguez JM, Soengas JL. In vitro evidence supports the presence of glucokinase-independent glucosensing mechanisms in hypothalamus and hindbrain of rainbow trout. ACTA ACUST UNITED AC 2016; 219:1750-9. [PMID: 27026717 DOI: 10.1242/jeb.137737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/03/2016] [Indexed: 11/20/2022]
Abstract
We previously obtained evidence in rainbow trout for the presence and response to changes in circulating levels of glucose (induced by intraperitoneal hypoglycaemic and hyperglycaemic treatments) of glucosensing mechanisms based on liver X receptor (LXR), mitochondrial production of reactive oxygen species (ROS) leading to increased expression of uncoupling protein 2 (UCP2), and sweet taste receptor in the hypothalamus, and on sodium/glucose co-transporter 1 (SGLT-1) in hindbrain. However, these effects of glucose might be indirect. Therefore, we evaluated the response of parameters related to these glucosensing mechanisms in a first experiment using pooled sections of hypothalamus and hindbrain incubated for 6 h at 15°C in modified Hanks' medium containing 2, 4 or 8 mmol l(-1) d-glucose. The responses observed in some cases were consistent with glucosensing capacity. In a second experiment, pooled sections of hypothalamus and hindbrain were incubated for 6 h at 15°C in modified Hanks' medium with 8 mmol l(-1) d-glucose alone (control) or containing 1 mmol l(-1) phloridzin (SGLT-1 antagonist), 20 µmol l(-1) genipin (UCP2 inhibitor), 1 µmol l(-1) trolox (ROS scavenger), 100 µmol l(-1) bezafibrate (T1R3 inhibitor) and 50 µmol l(-1) geranyl-geranyl pyrophosphate (LXR inhibitor). The response observed in the presence of these specific inhibitors/antagonists further supports the proposal that critical components of the different glucosensing mechanisms are functioning in rainbow trout hypothalamus and hindbrain.
Collapse
Affiliation(s)
- Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo E-36310, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo E-36310, Spain
| | - Rosa Álvarez-Otero
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo E-36310, Spain
| | - Marcos A López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo E-36310, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo E-36310, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo E-36310, Spain
| |
Collapse
|
116
|
Tanaka T, Takei Y, Yamanouchi D. Hyperglycemia Suppresses Calcium Phosphate-Induced Aneurysm Formation Through Inhibition of Macrophage Activation. J Am Heart Assoc 2016; 5:e003062. [PMID: 27021877 PMCID: PMC4943277 DOI: 10.1161/jaha.115.003062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background The aim of this study was to elucidate aspects of diabetes mellitus–induced suppression of aneurysm. We hypothesized that high glucose suppresses aneurysm by inhibiting macrophage activation via activation of Nr1h2 (also known as liver X receptor β), recently characterized as a glucose‐sensing nuclear receptor. Methods and Results Calcium phosphate (CaPO4)–induced aneurysm formation was significantly suppressed in the arterial wall in type 1 and 2 diabetic mice. A murine macrophage cell line, RAW264.7, was treated with tumor necrosis factor α (TNF‐α) plus CaPO4 and showed a significant increase in matrix metalloproteinase 9 (Mmp9) mRNA and secreted protein expression compared with TNF‐α alone. Elevated Mmp9 expression was significantly suppressed by hyperglycemic conditions (15.5 mmol/L glucose) compared with normoglycemic conditions (5.5 mmol/L glucose) or normoglycemic conditions with high osmotic pressure (5.5 mmol/L glucose +10.0 mmol/L mannitol). Nr1h2 mRNA and protein expression were suppressed by treatment with TNF‐α plus CaPO4 but were restored by hyperglycemic conditions. Activation of Nr1h2 by the antagonist GW3965 during stimulation with TNF‐α plus CaPO4 mimicked hyperglycemic conditions and inhibited Mmp9 upregulation, whereas the deactivation of Nr1h2 by small interfering RNA (siRNA) under hyperglycemic conditions canceled the suppressive effect and restored Mmp9 expression induced by TNF‐α plus CaPO4. Moreover, Nr1h2 activation with GW3965 significantly suppressed CaPO4‐induced aneurysm in mice compared with vehicle‐injected control mice. Conclusions Our results show that hyperglycemia suppresses macrophage activation and aneurysmal degeneration through the activation of Nr1h2. Although further validation of the underlying pathway is necessary, targeting Nr1h2 is a potential therapeutic approach to treating aneurysm.
Collapse
Affiliation(s)
- Teruyoshi Tanaka
- Division of Vascular Surgery, Department of Surgery, Wisconsin Institute for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yuichiro Takei
- Division of Vascular Surgery, Department of Surgery, Wisconsin Institute for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, Wisconsin Institute for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
117
|
Angrish MM, Kaiser JP, McQueen CA, Chorley BN. Tipping the Balance: Hepatotoxicity and the 4 Apical Key Events of Hepatic Steatosis. Toxicol Sci 2016; 150:261-8. [PMID: 26980302 DOI: 10.1093/toxsci/kfw018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatic steatosis is a condition were fat accumulates in the liver and it is associated with extra-hepatic diseases related to metabolic syndrome and systemic energy metabolism. If not reversed, steatosis can progress to steatohepatitis and irreversible stages of liver disease including fibrosis, cirrhosis, hepatocellular carcinoma, and death. From a public health standpoint, identifying chemical exposures that may be factors in steatosis etiology are important for preventing hepatotoxicity and liver disease progression. It is therefore important to identify the biological events that are key for steatosis pathology mediated by chemical exposure. In this review, we give a current overview of the complex biological cascades that can disrupt lipid homeostasis in hepatocytes in the context of 4 apical key events central to hepatic lipid retention: hepatic fatty acid (FA) uptake,de novoFA and lipid synthesis, FA oxidation, and lipid efflux. Our goal is to review these key cellular events and visually summarize them using a network for application in pathway-based toxicity testing. This effort provides a foundation to improve next-generation chemical screening efforts that may be used to prevent and ultimately reverse the growing incidence of fatty liver disease in our population.
Collapse
Affiliation(s)
- Michelle M Angrish
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709
| | - Jonathan Phillip Kaiser
- United States Environmental Protection Agency (US EPA), National Center for Environmental Assessment, Office of Research and Development (ORD), Cincinnati, Ohio 45268
| | - Charlene A McQueen
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709
| | - Brian N Chorley
- *National Health and Environmental Effects Research Laboratory, Office of Research and Development (ORD), United States Environmental Protection Agency (US EPA), Research Triangle Park, North Carolina 27709;
| |
Collapse
|
118
|
Han HS, Kang G, Kim JS, Choi BH, Koo SH. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med 2016; 48:e218. [PMID: 26964834 PMCID: PMC4892876 DOI: 10.1038/emm.2015.122] [Citation(s) in RCA: 429] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/23/2022] Open
Abstract
Glucose homeostasis is tightly regulated to meet the energy requirements of the vital organs and maintain an individual's health. The liver has a major role in the control of glucose homeostasis by controlling various pathways of glucose metabolism, including glycogenesis, glycogenolysis, glycolysis and gluconeogenesis. Both the acute and chronic regulation of the enzymes involved in the pathways are required for the proper functioning of these complex interwoven systems. Allosteric control by various metabolic intermediates, as well as post-translational modifications of these metabolic enzymes constitute the acute control of these pathways, and the controlled expression of the genes encoding these enzymes is critical in mediating the longer-term regulation of these metabolic pathways. Notably, several key transcription factors are shown to be involved in the control of glucose metabolism including glycolysis and gluconeogenesis in the liver. In this review, we would like to illustrate the current understanding of glucose metabolism, with an emphasis on the transcription factors and their regulators that are involved in the chronic control of glucose homeostasis.
Collapse
Affiliation(s)
- Hye-Sook Han
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Geon Kang
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Jun Seok Kim
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Byeong Hoon Choi
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Seoul, 136-713, Korea
| |
Collapse
|
119
|
Fontana R, Della Torre S. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility. Nutrients 2016; 8:87. [PMID: 26875986 PMCID: PMC4772050 DOI: 10.3390/nu8020087] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 01/01/2023] Open
Abstract
In female mammals, mechanisms have been developed, throughout evolution, to integrate environmental, nutritional and hormonal cues in order to guarantee reproduction in favorable energetic conditions and to inhibit it in case of food scarcity. This metabolic strategy could be an advantage in nutritionally poor environments, but nowadays is affecting women's health. The unlimited availability of nutrients, in association with reduced energy expenditure, leads to alterations in many metabolic pathways and to impairments in the finely tuned inter-relation between energy metabolism and reproduction, thereby affecting female fertility. Many energetic states could influence female reproductive health being under- and over-weight, obesity and strenuous physical activity are all conditions that alter the profiles of specific hormones, such as insulin and adipokines, thus impairing women fertility. Furthermore, specific classes of nutrients might affect female fertility by acting on particular signaling pathways. Dietary fatty acids, carbohydrates, proteins and food-associated components (such as endocrine disruptors) have per se physiological activities and their unbalanced intake, both in quantitative and qualitative terms, might impair metabolic homeostasis and fertility in premenopausal women. Even though we are far from identifying a "fertility diet", lifestyle and dietary interventions might represent a promising and invaluable strategy to manage infertility in premenopausal women.
Collapse
Affiliation(s)
- Roberta Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan 20133, Italy.
- Department of Drug Discovery and Development, Italian Institute of Technology, via Morego 30, Genova 16163, Italy.
| | - Sara Della Torre
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan 20133, Italy.
- Center of Excellence of Neurodegenerative Diseases, University of Milan, via Balzaretti 9, Milan 20133, Italy.
| |
Collapse
|
120
|
Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts 2016; 6:177-90. [PMID: 25945723 DOI: 10.1515/bmc-2015-0007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 11/15/2022] Open
Abstract
The liver X receptors (LXR) are crucial regulators of metabolism. After ligand binding, they regulate gene transcription and thereby mediate changes in metabolic pathways. Modulation of LXR and their downstream targets has appeared to be a promising treatment for metabolic diseases especially atherosclerosis and cholesterol metabolism. However, the complexity of LXR action in various metabolic tissues and the liver side effect of LXR activation have slowed down the interest for LXR drugs. In this review, we summarized the role of LXR in the main metabolically active tissues with a special focus on obesity and associated diseases in mammals. We will also discuss the dual interplay between the two LXR isoforms suggesting that they may collaborate to establish a fine and efficient system for the maintenance of metabolism homeostasis.
Collapse
|
121
|
TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors. Biochem J 2016; 473:899-910. [PMID: 26814197 DOI: 10.1042/bj20151077] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/26/2016] [Indexed: 12/27/2022]
Abstract
Members of the poly-ADP-ribose polymerase (PARP) family catalyse the ADP-ribosylation of target proteins and are known to play important roles in many cellular processes, including DNA repair, differentiation and transcription. The majority of PARPs exhibit mono-ADP-ribosyltransferase activity rather than PARP activity; however, little is known about their biological activity. In the present study, we report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP), mono-ADP-ribosylates and positively regulates liver X receptor α (LXRα) and LXRβ activity. Overexpression of TIPARP enhanced LXR-reporter gene activity. TIPARP knockdown or deletion reduced LXR regulated target gene expression levels in HepG2 cells and in Tiparp(-/-)mouse embryonic fibroblasts (MEFs) respectively. Deletion and mutagenesis studies showed that TIPARP's zinc-finger and catalytic domains were required to enhance LXR activity. Protein interaction studies using TIPARP and LXRα/β peptide arrays revealed that LXRs interacted with an N-terminal sequence (a.a. 209-236) of TIPARP, which also overlapped with a putative co-activator domain of TIPARP (a.a. 200-225). Immunofluorescence studies showed that TIPARP and LXRα or LXRβ co-localized in the nucleus.In vitroribosylation assays provided evidence that TIPARP mono-ADP-ribosylated both LXRα and LXRβ. Co-immunoprecipitation (co-IP) studies revealed that ADP-ribosylase macrodomain 1 (MACROD1), but not MACROD2, interacted with LXRs in a TIPARP-dependent manner. This was complemented by reporter gene studies showing that MACROD1, but not MACROD2, prevented the TIPARP-dependent increase in LXR activity. GW3965-dependent increases in hepatic Srebp1 mRNA and protein expression levels were reduced in Tiparp(-/-)mice compared with Tiparp(+/+)mice. Taken together, these data identify a new mechanism of LXR regulation that involves TIPARP, ADP-ribosylation and MACROD1.
Collapse
|
122
|
Kannan P, Maiyalagan T, Marsili E, Ghosh S, Niedziolka-Jönsson J, Jönsson-Niedziolka M. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing. NANOSCALE 2016; 8:843-55. [PMID: 26578259 DOI: 10.1039/c5nr06802a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for various applications because they produce more reaction-active sites than 1-D and 2-D nanostructured materials and exhibit attractive optical, electrical and catalytic properties. In this work, freestanding 3-D/Ni-Fe interconnected hierarchical nanosheets, hierarchical nanospheres, and porous nanospheres are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process. Among the nanostructures, 3-D/Ni-Fe interconnected hierarchical nanosheets show excellent electrochemical properties because of its high conductivity, large specific active surface area, and mesopores on its walls (vide infra). The 3-D/Ni-Fe hierarchical nanosheet array modified CFP substrate is further explored as a novel electrode for electrochemical non-enzymatic glucose sensor application. The 3-D/Ni-Fe hierarchical nanosheet arrays exhibit significant catalytic activity towards the electrochemical oxidation of glucose, as compared to the 3-D/Ni-Fe hierarchical nanospheres, and porous nanospheres. The 3-D/Ni-Fe hierarchical nanosheet arrays can access a large amount of glucose molecules on their surface (mesopore walls) for an efficient electrocatalytic oxidation process. Moreover, 3-D/Ni-Fe hierarchical nanosheet arrays showed higher sensitivity (7.90 μA μM(-1) cm(-2)) with wide linear glucose concentration ranging from 0.05 μM to 0.2 mM, and the low detection limit (LOD) of 0.031 μM (S/N = 3) is achieved by the amperometry method. Further, the 3-D/Ni-Fe hierarchical nanosheet array modified CFP electrode can be demonstrated to have excellent selectivity towards the detection of glucose in the presence of 500-fold excess of major important interferents. All these results indicate that 3-D/Ni-Fe hierarchical nanosheet arrays are promising candidates for non-enzymatic glucose sensing.
Collapse
Affiliation(s)
- Palanisamy Kannan
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland. and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore.
| | | | - Enrico Marsili
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore.
| | - Srabanti Ghosh
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata-700098, India
| | - Joanna Niedziolka-Jönsson
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| | - Martin Jönsson-Niedziolka
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| |
Collapse
|
123
|
Sandoval-Hernández AG, Buitrago L, Moreno H, Cardona-Gómez GP, Arboleda G. Role of Liver X Receptor in AD Pathophysiology. PLoS One 2015; 10:e0145467. [PMID: 26720273 PMCID: PMC4697813 DOI: 10.1371/journal.pone.0145467] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/03/2015] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia worldwide. The pharmacological activation of nuclear receptors (Liver X receptors: LXRs or Retinoid X receptors: RXR) has been shown to induce overexpression of the ATP-Binding Cassette A1 (ABCA1) and Apolipoprotein E (ApoE), changes that are associated with improvement in cognition and reduction of amyloid beta pathology in amyloidogenic AD mouse models (i.e. APP, PS1: 2tg-AD). Here we investigated whether treatment with a specific LXR agonist has a measurable impact on the cognitive impairment in an amyloid and Tau AD mouse model (3xTg-AD: 12-months-old; three months treatment). The data suggests that the LXR agonist GW3965 is associated with increased expression of ApoE and ABCA1 in the hippocampus and cerebral cortex without a detectable reduction of the amyloid load. We also report that most cells overexpressing ApoE (86±12%) are neurons localized in the granular cell layer of the hippocampus and entorhinal cortex. In the GW3965 treated 3xTg-AD mice we also observed reduction in astrogliosis and increased number of stem and proliferating cells in the subgranular zone of the dentate gyrus. Additionally, we show that GW3965 rescued hippocampus long term synaptic plasticity, which had been disrupted by oligomeric amyloid beta peptides. The effect of GW3965 on synaptic function was protein synthesis dependent. Our findings identify alternative functional/molecular mechanisms by which LXR agonists may exert their potential benefits as a therapeutic strategy against AD.
Collapse
Affiliation(s)
| | - Luna Buitrago
- Departments of Neurology and Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Herman Moreno
- Departments of Neurology and Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Gloria Patricia Cardona-Gómez
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Calle 70, No. 52–21, Medellín, Colombia
| | - Gonzalo Arboleda
- Grupo de Muerte Celular, Instituto de Genética Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
124
|
Lee D, Jeong DE, Son HG, Yamaoka Y, Kim H, Seo K, Khan AA, Roh TY, Moon DW, Lee Y, Lee SJV. SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 2015; 29:2490-503. [PMID: 26637528 PMCID: PMC4691952 DOI: 10.1101/gad.266304.115] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022]
Abstract
Glucose-rich diets shorten the life spans of various organisms. However, the metabolic processes involved in this phenomenon remain unknown. Here, we show that sterol regulatory element-binding protein (SREBP) and mediator-15 (MDT-15) prevent the life-shortening effects of a glucose-rich diet by regulating fat-converting processes in Caenorhabditis elegans. Up-regulation of the SREBP/MDT-15 transcription factor complex was necessary and sufficient for alleviating the life-shortening effect of a glucose-rich diet. Glucose feeding induced key enzymes that convert saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), which are regulated by SREBP and MDT-15. Furthermore, SREBP/MDT-15 reduced the levels of SFAs and moderated glucose toxicity on life span. Our study may help to develop strategies against elevated blood glucose and free fatty acids, which cause glucolipotoxicity in diabetic patients.
Collapse
Affiliation(s)
- Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Yasuyo Yamaoka
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Hyunmin Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Abdul Aziz Khan
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dae Won Moon
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
125
|
Paredes JF, López-Olmeda JF, Martínez FJ, Sánchez-Vázquez FJ. Daily rhythms of lipid metabolic gene expression in zebra fish liver: Response to light/dark and feeding cycles. Chronobiol Int 2015; 32:1438-48. [PMID: 26595085 DOI: 10.3109/07420528.2015.1104327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite numerous studies about fish nutrition and lipid metabolism, very little is known about the daily rhythm expression of lipogenesis and lipolysis genes. This research aimed to investigate the existence of daily rhythm expressions of the genes involved in lipid metabolism and their synchronization to different light/dark (LD) and feeding cycles in zebra fish liver. For this purpose, three groups of zebra fish were submitted to a 12:12 h LD cycle. A single daily meal was provided to each group at various times: in the middle of the light phase (ML); in the middle of the dark phase (MD); at random times. After 20 days of acclimation to these experimental conditions, liver samples were collected every 4 h in one 24-h cycle. The results revealed that most genes displayed a significant daily rhythm with an acrophase of expression in the dark phase. The acrophase of lipolytic genes (lipoprotein lipase - lpl, peroxisome proliferator-activated receptor - pparα and hydroxyacil CoA dehydrogenase - hadh) was displayed between ZT 02:17 h and ZT 18:31 h. That of lipogenic genes (leptin-a - lepa, peroxisome proliferator-activated receptor - pparγ, liver X receptor - lxr, insulin-like growth factor - igf1, sterol regulatory element-binding protein - srebp and fatty acid synthase - fas) was displayed between ZT 15:25 h and 20:06 h (dark phase). Feeding time barely influenced daily expression rhythms, except for lxr in the MD group, whose acrophase shifted by about 14 h compared with the ML group (ZT 04:31 h versus ZT 18:29 h, respectively). These results evidence a strong synchronization to the LD cycle, but not to feeding time, and most genes showed a nocturnal acrophase. These findings highlight the importance of considering light and feeding time to optimize lipid metabolism and feeding protocols in fish farming.
Collapse
Affiliation(s)
- J F Paredes
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - J F López-Olmeda
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - F J Martínez
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | - F J Sánchez-Vázquez
- a Department of Physiology , Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| |
Collapse
|
126
|
Sandoval-Hernández AG, Hernández HG, Restrepo A, Muñoz JI, Bayon GF, Fernández AF, Fraga MF, Cardona-Gómez GP, Arboleda H, Arboleda GH. Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer's Disease. J Mol Neurosci 2015; 58:243-53. [PMID: 26553261 DOI: 10.1007/s12031-015-0665-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022]
Abstract
The liver X receptor agonist, GW3965, improves cognition in Alzheimer's disease (AD) mouse models. Here, we determined if short-term GW3965 treatment induces changes in the DNA methylation state of the hippocampus, which are associated with cognitive improvement. Twenty-four-month-old triple-transgenic AD (3xTg-AD) mice were treated with GW3965 (50 mg/kg/day for 6 days). DNA methylation state was examined by modified bisulfite conversion and hybridization on Illumina Infinium Methylation BeadChip 450 k arrays. The Morris water maze was used for behavioral analysis. Our results show in addition to improvement in cognition methylation changes in 39 of 13,715 interrogated probes in treated 3xTg-AD mice compared with untreated 3xTg-AD mice. These changes in methylation probes include 29 gene loci. Importantly, changes in methylation status were mainly from synapse-related genes (SYP, SYN1, and DLG3) and neurogenesis-associated genes (HMGB3 and RBBP7). Thus, our results indicate that liver X receptors (LXR) agonist treatment induces rapid changes in DNA methylation, particularly in loci associated with genes involved in neurogenesis and synaptic function. Our results suggest a new potential mechanism to explain the beneficial effect of GW3965.
Collapse
Affiliation(s)
- A G Sandoval-Hernández
- Grupo de Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - H G Hernández
- Grupo de Neurociencias, Universidad Nacional, Bogotá, Colombia
| | - A Restrepo
- Grupo de Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - J I Muñoz
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - G F Bayon
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo, Spain
| | - A F Fernández
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo, Spain
| | - M F Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), Universidad de Oviedo, Oviedo, Spain
| | - G P Cardona-Gómez
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - H Arboleda
- Grupo de Neurociencias, Universidad Nacional, Bogotá, Colombia
| | - Gonzalo H Arboleda
- Grupo de Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia.
- Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
127
|
Cheng C, Ru P, Geng F, Liu J, Yoo JY, Wu X, Cheng X, Euthine V, Hu P, Guo JY, Lefai E, Kaur B, Nohturfft A, Ma J, Chakravarti A, Guo D. Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell 2015; 28:569-581. [PMID: 26555173 PMCID: PMC4643405 DOI: 10.1016/j.ccell.2015.09.021] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/04/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
Tumorigenesis is associated with increased glucose consumption and lipogenesis, but how these pathways are interlinked is unclear. Here, we delineate a pathway in which EGFR signaling, by increasing glucose uptake, promotes N-glycosylation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and consequent activation of SREBP-1, an ER-bound transcription factor with central roles in lipid metabolism. Glycosylation stabilizes SCAP and reduces its association with Insig-1, allowing movement of SCAP/SREBP to the Golgi and consequent proteolytic activation of SREBP. Xenograft studies reveal that blocking SCAP N-glycosylation ameliorates EGFRvIII-driven glioblastoma growth. Thus, SCAP acts as key glucose-responsive protein linking oncogenic signaling and fuel availability to SREBP-dependent lipogenesis. Targeting SCAP N-glycosylation may provide a promising means of treating malignancies and metabolic diseases.
Collapse
Affiliation(s)
- Chunming Cheng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Peng Ru
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Junfeng Liu
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ji Young Yoo
- Department of Neurosurgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaoning Wu
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiang Cheng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vanessa Euthine
- CarMeN Laboratory, INSERM U1060, INRA 1397, Faculté de Médecine Lyon Sud BP 12, Université de Lyon, 69921 Oullins Cedex, France
| | - Peng Hu
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jeffrey Yunhua Guo
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Etienne Lefai
- CarMeN Laboratory, INSERM U1060, INRA 1397, Faculté de Médecine Lyon Sud BP 12, Université de Lyon, 69921 Oullins Cedex, France
| | - Balveen Kaur
- Department of Neurosurgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Axel Nohturfft
- Vascular Biology Research Centre, St. George's University of London, London SW17 0RE, UK
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
128
|
Fan H, Dong W, Li Q, Zou X, Zhang Y, Wang J, Li S, Liu W, Dong Y, Sun H, Hou Z. Ajuba Preferentially Binds LXRα/RXRγ Heterodimer to Enhance LXR Target Gene Expression in Liver Cells. Mol Endocrinol 2015; 29:1608-18. [PMID: 26389695 DOI: 10.1210/me.2015-1046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The liver X receptors (LXRs) are important regulators of lipid, cholesterol, and glucose homeostasis by transcriptional regulation of many key genes in these processes, and the transcriptional activities of LXRs are finely controlled by cooperating with retinoid X receptors and many other coregulators. Here, we report that the LIM protein Ajuba binds to the hinge and the ligand binding domains of LXRα via its C-terminal tandem LIM motifs and enhances LXR target gene expression in liver cells. Depletion of Ajuba in HepG2 cells and in mouse primary hepatocytes decreases LXR target gene expression, whereas stable expression of Ajuba in HepG2 cells results in increased expression of these genes. Mechanistic investigations found that Ajuba selectively interacts with LXRα/retinoid X receptor-γ heterodimer to form a ternary complex, which displays a higher transactivation activity to LXR target genes. Moreover, Ajuba and LXR mutually affect their DNA binding activity at endogenous target chromatins and the cooperation between Ajuba and LXRα is dependent on the functional LXR response elements located in the target promoters. Together, our studies demonstrate that Ajuba is a novel coactivator for LXRs and may play important role in lipid and glucose metabolism.
Collapse
Affiliation(s)
- Hongyan Fan
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Weibing Dong
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Qi Li
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Xiuqun Zou
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Yihong Zhang
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Jiamin Wang
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Shengxian Li
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Wei Liu
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Ying Dong
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Haipeng Sun
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Zhaoyuan Hou
- Department of Endocrinology (H.F., S.L., W.L., Y.D.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025 China; Hongqiao Institute of Medicine (H.F., Q.L., X.Z., Y.Z., J.W., Z.H.), Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Department of Pathophysiology (W.D., H.S.), Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation (Z.H.), Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
129
|
Gustafsson JA. Control of gene expression by novel metabolic intermediates. J Steroid Biochem Mol Biol 2015; 153:102-4. [PMID: 25869558 DOI: 10.1016/j.jsbmb.2015.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
Abstract
In view of the recent discoveries of novel nuclear receptors (NRs) whose ligands remain to be determined, metabolic intermediates may be considered as ligands for these receptors and undiscovered or overlooked intermediates may play important roles in regulating gene expression by activating or repressing the action of these nuclear receptors. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
| |
Collapse
|
130
|
Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles. Br J Nutr 2015; 114:1143-56. [PMID: 26306559 DOI: 10.1017/s0007114515002731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.
Collapse
|
131
|
Nian S, Gan X, Tan X, Yu Z, Wang P, Chen X, Wang G. Discovery and Synthesis of a Novel Series of Liver X Receptor Antagonists. Chem Pharm Bull (Tokyo) 2015; 63:628-35. [PMID: 26062802 DOI: 10.1248/cpb.c15-00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fourteen novel compounds were prepared and their antagonistic activities against liver X receptors (LXR) α/β were tested in vitro. Compound 26 had an IC50 value of 6.4 µM against LXRα and an IC50 value of 5.6 µM against LXRβ. Docking studies and the results of structure-activity relationships support the further development of this chemical series as LXRα/β antagonists.
Collapse
Affiliation(s)
- Siyun Nian
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry
| | | | | | | | | | | | | |
Collapse
|
132
|
Kim YM, Kim IH, Choi JW, Lee MK, Nam TJ. The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway. Int J Mol Med 2015; 36:327-34. [PMID: 26046125 PMCID: PMC4501660 DOI: 10.3892/ijmm.2015.2231] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/28/2015] [Indexed: 01/25/2023] Open
Abstract
The differentiation of 3T3-L1 cells into adipocytes involves the activation of an organized system of obesity-related genes, of which those encoding CCAAT/enhancer-binding proteins (C/EBPs) and the Wnt-10b protein may play integral roles. In a previous study of ours, we found that a specific peptide found in tuna (sequence D-I-V-D-K-I-E-I; termed TP-D) inhibited 3T3-L1 cell differentiation. In the present study, we observed that the expression of expression of C/EBPs and Wnt-10b was associated with obesity. The initial step of 3T3-L1 cell differentiation involved the upregulation of C/EBP-α expression, which in turn activated various subfactors. An upstream effector of glycogen synthase kinase-3β (GSK-3β) inhibited Wnt-10b expression in 3T3-L1 adipocytes. In a previous study of ours, we sequenced the tuna peptide via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS) and confirmed the anti-obesity effects thereof in 3T3-L1 adipocytes. In the present study, we demonstrate that TP-D inhibits C/EBP and promotes Wnt-10b mRNA expression, thus activating the Wnt pathway. The inhibition of lipid accumulation was measured using a glucose and triglyceride (TG) assay. Our results confirmed that TP-D altered the expression levels of C/EBP-related genes in a dose-dependent manner and activated the Wnt signaling pathway. In addition, we confirmed that total adiponectin and high-molecular weight (HMW) adiponectin levels were reduced by treatment with TP-D. These data indicate that TP-D inhibits adipocyte differentiation through the inhibition of C/EBP genes and the subsequent activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| | - In-Hye Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Jeong-Wook Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| |
Collapse
|
133
|
Otero-Rodiño C, Librán-Pérez M, Velasco C, López-Patiño MA, Míguez JM, Soengas JL. Evidence for the Presence of Glucosensor Mechanisms Not Dependent on Glucokinase in Hypothalamus and Hindbrain of Rainbow Trout (Oncorhynchus mykiss). PLoS One 2015; 10:e0128603. [PMID: 25996158 PMCID: PMC4440750 DOI: 10.1371/journal.pone.0128603] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/28/2015] [Indexed: 11/18/2022] Open
Abstract
We hypothesize that glucosensor mechanisms other than that mediated by glucokinase (GK) operate in hypothalamus and hindbrain of the carnivorous fish species rainbow trout and stress affected them. Therefore, we evaluated in these areas changes in parameters which could be related to putative glucosensor mechanisms based on liver X receptor (LXR), mitochondrial activity, sweet taste receptor, and sodium/glucose co-transporter 1 (SGLT-1) 6h after intraperitoneal injection of 5 mL.Kg-1 of saline solution alone (normoglycaemic treatment) or containing insulin (hypoglycaemic treatment, 4 mg bovine insulin.Kg-1 body mass), or D-glucose (hyperglycaemic treatment, 500 mg.Kg-1 body mass). Half of tanks were kept at a 10 Kg fish mass.m-3 and denoted as fish under normal stocking density (NSD) whereas the remaining tanks were kept at a stressful high stocking density (70 kg fish mass.m-3) denoted as HSD. The results obtained in non-stressed rainbow trout provide evidence, for the first time in fish, that manipulation of glucose levels induce changes in parameters which could be related to putative glucosensor systems based on LXR, mitochondrial activity and sweet taste receptor in hypothalamus, and a system based on SGLT-1 in hindbrain. Stress altered the response of parameters related to these systems to changes in glycaemia.
Collapse
Affiliation(s)
- Cristina Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Marta Librán-Pérez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
134
|
Huang L, Chen J, Cao P, Pan H, Ding C, Xiao T, Zhang P, Guo J, Su Z. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Mar Drugs 2015; 13:2732-56. [PMID: 25942093 PMCID: PMC4446603 DOI: 10.3390/md13052732] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
Abstract
Objective: This study is to evaluate the anti-obese effects of glucosamine (GLC) and chitosan oligosaccharide (COS) on high-fat diet-induced obese rats. Methods: The rats were randomly divided into twelve groups: a normal diet group (NF), a high-fat diet group (HF), Orlistat group, GLC high-, middle-, and low-dose groups (GLC-H, GLC-M, GLC-L), COS1 (COS, number-average molecular weight ≤1000) high-, middle-, and low-dose groups (COS1-H, COS1-M, COS1-L), and COS2 (COS, number-average molecular weight ≤3000) high-, middle-, and low-dose groups (COS2-H, COS2-M, COS2-L). All groups received oral treatment by gavage once daily for a period of six weeks. Results: Rats fed with COS1 gained the least weight among all the groups (P < 0.01), and these rats lost more weight than those treated with Orlistat. In addition to the COS2-H and Orlistat groups, the serum total cholesterol (CHO) and low-density lipoprotein cholesterol (LDL-C) levels were significantly reduced in all treatment groups compared to the HF group (P < 0.01). The various doses of GLC, COS1 and COS2 reduced the expression levels of PPARγ and LXRα mRNA in the white adipose tissue. Conclusions: The results above demonstrated that GLC, COS1, and COS2 improved dyslipidemia and prevented body weight gains by inhibiting the adipocyte differentiation in obese rats induced by a high-fat diet. Thus, these agents may potentially be used to treat obesity.
Collapse
Affiliation(s)
- Lanlan Huang
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jian Chen
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Peiqiu Cao
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chen Ding
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Oxford University, South Parks Road, OX1 3QR Oxford, UK.
- Guangzhou Boxabio Technology Ltd., Guangzhou Hi-Tech Development Zone, Guangzhou 510663, China.
| | - Pengfei Zhang
- Guangzhou Boxabio Technology Ltd., Guangzhou Hi-Tech Development Zone, Guangzhou 510663, China.
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipidemia SATCM/Class III Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
135
|
Protein prenylation and human diseases: a balance of protein farnesylation and geranylgeranylation. SCIENCE CHINA-LIFE SCIENCES 2015; 58:328-35. [DOI: 10.1007/s11427-015-4836-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/23/2015] [Indexed: 01/30/2023]
|
136
|
Red bayberry extract prevents high-fat diet-induced metabolic disorders in C57BL/6 mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
137
|
Kang YK, Putluri N, Maity S, Tsimelzon A, Ilkayeva O, Mo Q, Lonard D, Michailidis G, Sreekumar A, Newgard CB, Wang M, Tsai SY, Tsai MJ, O'Malley BW. CAPER is vital for energy and redox homeostasis by integrating glucose-induced mitochondrial functions via ERR-α-Gabpa and stress-induced adaptive responses via NF-κB-cMYC. PLoS Genet 2015; 11:e1005116. [PMID: 25830341 PMCID: PMC4382186 DOI: 10.1371/journal.pgen.1005116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/03/2015] [Indexed: 01/01/2023] Open
Abstract
Ever since we developed mitochondria to generate ATP, eukaryotes required intimate mito-nuclear communication. In addition, since reactive oxygen species are a cost of mitochondrial oxidative phosphorylation, this demands safeguards as protection from these harmful byproducts. Here we identified a critical transcriptional integrator which eukaryotes share to orchestrate both nutrient-induced mitochondrial energy metabolism and stress-induced nuclear responses, thereby maintaining carbon-nitrogen balance, and preserving life span and reproductive capacity. Inhibition of nutrient-induced expression of CAPER arrests nutrient-dependent cell proliferation and ATP generation and induces autophagy-mediated vacuolization. Nutrient signaling to CAPER induces mitochondrial transcription and glucose-dependent mitochondrial respiration via coactivation of nuclear receptor ERR-α-mediated Gabpa transcription. CAPER is also a coactivator for NF-κB that directly regulates c-Myc to coordinate nuclear transcriptome responses to mitochondrial stress. Finally, CAPER is responsible for anaplerotic carbon flux into TCA cycles from glycolysis, amino acids and fatty acids in order to maintain cellular energy metabolism to counter mitochondrial stress. Collectively, our studies reveal CAPER as an evolutionarily conserved 'master' regulatory mechanism by which eukaryotic cells control vital homeostasis for both ATP and antioxidants via CAPER-dependent coordinated control of nuclear and mitochondrial transcriptomic programs and their metabolisms. These CAPER dependent bioenergetic programs are highly conserved, as we demonstrated that they are essential to preserving life span and reproductive capacity in human cells-and even in C. elegans.
Collapse
Affiliation(s)
- Yun Kyoung Kang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nagireddy Putluri
- Verna and Marrs McLean Department of Biochemistry and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Suman Maity
- Verna and Marrs McLean Department of Biochemistry and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anna Tsimelzon
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical School, Durham, North Carolina, United States of America
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - George Michailidis
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arun Sreekumar
- Verna and Marrs McLean Department of Biochemistry and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical School, Durham, North Carolina, United States of America
| | - Meng Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
138
|
Zhang GH, Lu JX, Chen Y, Guo PH, Qiao ZL, Feng RF, Chen SE, Bai JL, Huo SD, Ma ZR. ChREBP and LXRα mediate synergistically lipogenesis induced by glucose in porcine adipocytes. Gene 2015; 565:30-8. [PMID: 25827716 DOI: 10.1016/j.gene.2015.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/04/2023]
Abstract
Glucose is a substrate for fatty acid synthesis, and induces lipogenesis and expressions of lipogenic genes. It was proposed that transcriptional factor ChREBP, LXRα and SREBP-1c are key mediators in lipogenesis induced by glucose, however the underlying mechanism remains unclear in porcine adipocytes. In this study, glucose stimulated lipogenesis and expressions of ChREBP, LXRα, SREBP-1c and lipogenic genes FAS and ACC1 in primary porcine adipocytes. When ChREBP expression was knocked down by RNAi, lipogenesis and FAS and ACC1 expressions decreased significantly, and lipogenesis induced by glucose decreased by 75.6%, whereas neither the basal expressions under glucose-free nor glucose induced expressions of LXRα and SREBP-1c were evidently affected, suggesting that ChREBP was a main mediator of lipogenesis stimulated by glucose. Glucose promoted LXRα gene expression, and activation of LXRα by T0901317 increased SREBP-1c expression and enhanced the stimulation of glucose on lipogenesis, but this stimulatory effect of LXRα depended on glucose. Activated LXRα stimulated lipogenesis and ChREBP mRNA expression, which was much lower than that elevated by glucose, and was markedly lower in ChREBP-silencing than in unperturbed adipocytes. SREBP-1c activation blocked by fatostatin markedly decreased lipogenesis and expressions of FAS and ACC1 induced by glucose. Lipogenesis and lipogenic gene expression stimulated by LXRα activation were attenuated by fatostatin, however there was still a slightly increase in ChREBP-silencing adipocytes. These dates suggested that LXRα could directly or through SREBP-1c mediate the lipogenesis induced by glucose. Together, glucose induced lipogenesis and lipogenic gene expressions directly through ChREBP, and directly through LXRα or via SREBP-1c.
Collapse
Affiliation(s)
- Guo Hua Zhang
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Jian Xiong Lu
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, China.
| | - Yan Chen
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Peng Hui Guo
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Zi Lin Qiao
- Gansu Engineering Research Center for Animal Cell, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Ruo Fei Feng
- Gansu Engineering Research Center for Animal Cell, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Shi En Chen
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Jia Lin Bai
- Gansu Engineering Research Center for Animal Cell, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Sheng Dong Huo
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Zhong Ren Ma
- Gansu Engineering Research Center for Animal Cell, Northwest University for Nationalities, Lanzhou, Gansu 730030, China.
| |
Collapse
|
139
|
Gao M, Zhang C, Ma Y, Liu D. Cold Exposure Improves the Anti-diabetic Effect of T0901317 in Streptozotocin-Induced Diabetic Mice. AAPS JOURNAL 2015; 17:700-10. [PMID: 25739819 DOI: 10.1208/s12248-015-9746-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/22/2015] [Indexed: 01/11/2023]
Abstract
Activation of liver X receptors (LXRs) can improve glucose tolerance in insulin-independent diabetes, however, whether similar effects can be achieved in insulin-dependent diabetes remains unclear. Here, we evaluated the anti-diabetic activity of T0901317, a potent agonist of LXRs, in diabetic mice induced by streptozotocin, and our data demonstrate that T0901317 is most effective when combined with cold treatment of animals. Treatment with T0901317 improved glucose tolerance of diabetic mice, which was associated with repressed expression of key genes involved in hepatic gluconeogenesis such as Pepck and G6p. Combined treatment by T0901317 and cold exposure reduced transcription of gluconeogenic genes to similar levels. Intriguingly, combined treatment greatly increased expression of Ucp1, Cidea, Dio2, and Elvol3 predominantly in the inguinal white adipose tissue, consequently leading to browning of this fat pad, and resulting in further improvement of glucose tolerance which was associated with increased protein levels of UCP1 and GLUT4. Collectively, these results suggest that browning of white adipose tissue via cold exposure in combination with activation of liver X receptors is an alternative and effective strategy to manage insulin-dependent diabetes.
Collapse
Affiliation(s)
- Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 450 Pharmacy South, 250 West Green Street, Athens, Georgia, 30602, USA
| | | | | | | |
Collapse
|
140
|
Elucidating Metabolic and Epigenetic Mechanisms that Regulate Liver Regeneration. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
141
|
Park S, Lee YJ, Ko EH, Kim JW. Regulation of retinoid X receptor gamma expression by fed state in mouse liver. Biochem Biophys Res Commun 2015; 458:134-9. [PMID: 25637539 DOI: 10.1016/j.bbrc.2015.01.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/17/2015] [Indexed: 11/24/2022]
Abstract
Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting-feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting-feeding cycle.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Republic of Korea.
| | - Yoo Jeong Lee
- Division of Metabolic Disease, Center for Biomedical Sciences, National Institute of Health Korea, Osong 361-709, Republic of Korea
| | - Eun Hee Ko
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Republic of Korea
| |
Collapse
|
142
|
Bindesbøll C, Fan Q, Nørgaard RC, MacPherson L, Ruan HB, Wu J, Pedersen TÅ, Steffensen KR, Yang X, Matthews J, Mandrup S, Nebb HI, Grønning-Wang LM. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. J Lipid Res 2015; 56:771-85. [PMID: 25724563 DOI: 10.1194/jlr.m049130] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liver X receptor (LXR)α and LXRβ play key roles in hepatic de novo lipogenesis through their regulation of lipogenic genes, including sterol regulatory element-binding protein (SREBP)-1c and carbohydrate responsive element-binding protein (ChREBP). LXRs activate lipogenic gene transcription in response to feeding, which is believed to be mediated by insulin. We have previously shown that LXRs are targets for glucose-hexosamine-derived O-linked β-N-acetylglucosamine (O-GlcNAc) modification enhancing their ability to regulate SREBP-1c promoter activity in vitro. To elucidate insulin-independent effects of feeding on LXR-mediated lipogenic gene expression in vivo, we subjected control and streptozotocin-treated LXRα/β(+/+) and LXRα/β(-/-) mice to a fasting-refeeding regime. We show that under hyperglycemic and hypoinsulinemic conditions, LXRs maintain their ability to upregulate the expression of glycolytic and lipogenic enzymes, including glucokinase (GK), SREBP-1c, ChREBPα, and the newly identified shorter isoform ChREBPβ. Furthermore, glucose-dependent increases in LXR/retinoid X receptor-regulated luciferase activity driven by the ChREBPα promoter was mediated, at least in part, by O-GlcNAc transferase (OGT) signaling in Huh7 cells. Moreover, we show that LXR and OGT interact and colocalize in the nucleus and that loss of LXRs profoundly reduced nuclear O-GlcNAc signaling and ChREBPα promoter binding activity in vivo. In summary, our study provides evidence that LXRs act as nutrient and glucose metabolic sensors upstream of ChREBP by modulating GK expression, nuclear O-GlcNAc signaling, and ChREBP expression and activity.
Collapse
Affiliation(s)
- Christian Bindesbøll
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0316 Oslo, Norway
| | - Qiong Fan
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0316 Oslo, Norway
| | - Rikke C Nørgaard
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0316 Oslo, Norway
| | - Laura MacPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06519 Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06519 Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519
| | - Thomas Å Pedersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Knut R Steffensen
- Division of Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, C174, SE-141 86 Stockholm, Sweden
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06519 Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519 Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0316 Oslo, Norway Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Hilde I Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0316 Oslo, Norway
| | - Line M Grønning-Wang
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0316 Oslo, Norway
| |
Collapse
|
143
|
Tian T, Ai L, Liu X, Li L, Li J, Jiang J. Synthesis of Hierarchical FeWO4 Architectures with {100}-Faceted Nanosheet Assemblies as a Robust Biomimetic Catalyst. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504114v] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Tian Tian
- Chemical Synthesis
and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| | - Lunhong Ai
- Chemical Synthesis
and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| | - Xiaomin Liu
- Chemical Synthesis
and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| | - Lili Li
- Chemical Synthesis
and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| | - Jie Li
- Institute of Nanoscience
and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Jing Jiang
- Chemical Synthesis
and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| |
Collapse
|
144
|
Abstract
The question whether dietary habits and lifestyle have influence on the course of multiple sclerosis (MS) is still a matter of debate, and at present, MS therapy is not associated with any information on diet and lifestyle. Here we show that dietary factors and lifestyle may exacerbate or ameliorate MS symptoms by modulating the inflammatory status of the disease both in relapsing-remitting MS and in primary-progressive MS. This is achieved by controlling both the metabolic and inflammatory pathways in the human cell and the composition of commensal gut microbiota. What increases inflammation are hypercaloric Western-style diets, characterized by high salt, animal fat, red meat, sugar-sweetened drinks, fried food, low fiber, and lack of physical exercise. The persistence of this type of diet upregulates the metabolism of human cells toward biosynthetic pathways including those of proinflammatory molecules and also leads to a dysbiotic gut microbiota, alteration of intestinal immunity, and low-grade systemic inflammation. Conversely, exercise and low-calorie diets based on the assumption of vegetables, fruit, legumes, fish, prebiotics, and probiotics act on nuclear receptors and enzymes that upregulate oxidative metabolism, downregulate the synthesis of proinflammatory molecules, and restore or maintain a healthy symbiotic gut microbiota. Now that we know the molecular mechanisms by which dietary factors and exercise affect the inflammatory status in MS, we can expect that a nutritional intervention with anti-inflammatory food and dietary supplements can alleviate possible side effects of immune-modulatory drugs and the symptoms of chronic fatigue syndrome and thus favor patient wellness.
Collapse
Affiliation(s)
- Paolo Riccio
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
145
|
Kawata K, Morishita KI, Nakayama M, Yamada S, Kobayashi T, Furusawa Y, Arimoto-Kobayashi S, Oohashi T, Makishima M, Naitou H, Ishitsubo E, Tokiwa H, Tai A, Kakuta H. RXR partial agonist produced by side chain repositioning of alkoxy RXR full agonist retains antitype 2 diabetes activity without the adverse effects. J Med Chem 2014; 58:912-26. [PMID: 25486327 DOI: 10.1021/jm501863r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously reported RXR partial agonist CBt-PMN (1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)-1H-benzotriazole-5-carboxylic acid: 5, EC50 = 143 nM, Emax = 75%), which showed a potent glucose-lowering effect without causing serious adverse effects. However, it remains important to elucidate the structural requirements for RXR efficacy and the glucose-lowering effect because RXR-permissive heterodimers such as PPAR/RXR or LXR/RXR are reported to be activated differently depending upon the chemical structure of RXR agonists. In this work, we show that an RXR partial agonist, NEt-4IB (6-[ethyl-(4-isobutoxy-3-isopropylphenyl)amino]pyridine-3-carboxylic acid: 8b, EC50 = 169 nM, Emax = 55%), can be obtained simply by repositioning the side chains (interchanging the isobutoxy and isopropoxy groups) at the hydrophobic moiety of the RXR full agonist NEt-3IB (6-[ethyl-(3-isobutoxy-4-isopropylphenyl)amino]pyridine-3-carboxylic acid: 7b, EC50 = 19 nM). NEt-4IB (8b) showed antitype 2 diabetes activity without the above side effects upon repeated oral administration to mice at 10 mg/kg/day, similarly to 5.
Collapse
Affiliation(s)
- Kohei Kawata
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , 1-1-1, Tsushima-naka, Kita-ku Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Auguet T, Berlanga A, Guiu-Jurado E, Martinez S, Porras JA, Aragonès G, Sabench F, Hernandez M, Aguilar C, Sirvent JJ, Del Castillo D, Richart C. Altered fatty acid metabolism-related gene expression in liver from morbidly obese women with non-alcoholic fatty liver disease. Int J Mol Sci 2014; 15:22173-87. [PMID: 25474087 PMCID: PMC4284701 DOI: 10.3390/ijms151222173] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 01/07/2023] Open
Abstract
Lipid accumulation in the human liver seems to be a crucial mechanism in the pathogenesis and the progression of non-alcoholic fatty liver disease (NAFLD). We aimed to evaluate gene expression of different fatty acid (FA) metabolism-related genes in morbidly obese (MO) women with NAFLD. Liver expression of key genes related to de novo FA synthesis (LXRα, SREBP1c, ACC1, FAS), FA uptake and transport (PPARγ, CD36, FABP4), FA oxidation (PPARα), and inflammation (IL6, TNFα, CRP, PPARδ) were assessed by RT-qPCR in 127 MO women with normal liver histology (NL, n = 13), simple steatosis (SS, n = 47) and non-alcoholic steatohepatitis (NASH, n = 67). Liver FAS mRNA expression was significantly higher in MO NAFLD women with both SS and NASH compared to those with NL (p = 0.003, p = 0.010, respectively). Hepatic IL6 and TNFα mRNA expression was higher in NASH than in SS subjects (p = 0.033, p = 0.050, respectively). Interestingly, LXRα, ACC1 and FAS expression had an inverse relation with the grade of steatosis. These results were confirmed by western blot analysis. In conclusion, our results indicate that lipogenesis seems to be downregulated in advanced stages of SS, suggesting that, in this type of extreme obesity, the deregulation of the lipogenic pathway might be associated with the severity of steatosis.
Collapse
Affiliation(s)
- Teresa Auguet
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili IISPV (IISPV), Tarragona 43003, Spain; E-Mails: (T.A.); (A.B.); (E.G.-J.); (G.A.); caguilar.hj23.ics@gencat (C.A.)
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, Tarragona 43007, Spain; E-Mail:
| | - Alba Berlanga
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili IISPV (IISPV), Tarragona 43003, Spain; E-Mails: (T.A.); (A.B.); (E.G.-J.); (G.A.); caguilar.hj23.ics@gencat (C.A.)
| | - Esther Guiu-Jurado
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili IISPV (IISPV), Tarragona 43003, Spain; E-Mails: (T.A.); (A.B.); (E.G.-J.); (G.A.); caguilar.hj23.ics@gencat (C.A.)
| | - Salomé Martinez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, Tarragona 43007, Spain; E-Mails: (S.M.); (J.J.S.)
| | - José Antonio Porras
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, Tarragona 43007, Spain; E-Mail:
| | - Gemma Aragonès
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili IISPV (IISPV), Tarragona 43003, Spain; E-Mails: (T.A.); (A.B.); (E.G.-J.); (G.A.); caguilar.hj23.ics@gencat (C.A.)
| | - Fátima Sabench
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, Tarragona 43204, Spain; E-Mails: (F.S.); (M.H.); (D.D.C.)
| | - Mercé Hernandez
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, Tarragona 43204, Spain; E-Mails: (F.S.); (M.H.); (D.D.C.)
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili IISPV (IISPV), Tarragona 43003, Spain; E-Mails: (T.A.); (A.B.); (E.G.-J.); (G.A.); caguilar.hj23.ics@gencat (C.A.)
| | - Joan Josep Sirvent
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, Tarragona 43007, Spain; E-Mails: (S.M.); (J.J.S.)
| | - Daniel Del Castillo
- Servei de Cirurgia, Hospital Sant Joan de Reus, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), IISPV, Avinguda Doctor Josep Laporte, 2, Tarragona 43204, Spain; E-Mails: (F.S.); (M.H.); (D.D.C.)
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut d’Investigació Sanitària Pere Virgili IISPV (IISPV), Tarragona 43003, Spain; E-Mails: (T.A.); (A.B.); (E.G.-J.); (G.A.); caguilar.hj23.ics@gencat (C.A.)
- Servei Medicina Interna, Hospital Universitari Joan XXIII Tarragona, Mallafré Guasch, 4, Tarragona 43007, Spain; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +34-977-295-833
| |
Collapse
|
147
|
Abstract
Accumulation of triacylglycerols within the cytoplasm of hepatocytes to the degree that lipid droplets are visible microscopically is called liver steatosis. Most commonly, it occurs when there is an imbalance between the delivery or synthesis of fatty acids in the liver and their disposal through oxidative pathways or secretion into the blood as a component of triacylglycerols in very low density lipoprotein. This disorder is called nonalcoholic fatty liver disease (NAFLD) in the absence of alcoholic abuse and viral hepatitis, and it is often associated with insulin resistance, obesity and type 2 diabetes. Also, liver steatosis can be induced by many other causes including excessive alcohol consumption, infection with genotype 3 hepatitis C virus and certain medications. Whereas hepatic triacylglycerol accumulation was once considered the ultimate effector of hepatic lipotoxicity, triacylglycerols per se are quite inert and do not induce insulin resistance or cellular injury. Rather, lipotoxic injury in the liver appears to be mediated by the global ongoing fatty acid enrichment in the liver, paralleling the development of insulin resistance. A considerable number of fatty acid metabolites may be responsible for hepatic lipotoxicity and liver injury. Additional key contributors include hepatic cytosolic lipases and the "lipophagy" of lipid droplets, as sources of hepatic fatty acids. The specific origin of the lipids, mainly triacylglycerols, accumulating in liver has been unraveled by recent kinetic studies, and identifying the origin of the accumulated triacylglycerols in the liver of patients with NAFLD may direct the prevention and treatment of this condition.
Collapse
Affiliation(s)
- David Q-H Wang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | | |
Collapse
|
148
|
Rajaram MVS, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol 2014; 26:471-85. [PMID: 25453226 DOI: 10.1016/j.smim.2014.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022]
Abstract
Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Ni
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Claire E Dodd
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
149
|
Xu J, Yin L, Xu Y, Li Y, Zalzala M, Cheng G, Zhang Y. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS One 2014; 9:e109663. [PMID: 25285996 PMCID: PMC4186840 DOI: 10.1371/journal.pone.0109663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1) is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL), an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yuanyuan Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Munaf Zalzala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- * E-mail:
| |
Collapse
|
150
|
SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation. Nat Commun 2014; 5:5048. [PMID: 25284427 PMCID: PMC4205844 DOI: 10.1038/ncomms6048] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/20/2014] [Indexed: 02/01/2023] Open
Abstract
Mechanisms that coordinate different metabolic pathways, such as glucose and lipid, have been recognized. However, a potential interaction between amino acid and lipid metabolism remains largely elusive. Here we show that during starvation of Caenorhabditis elegans, proline catabolism is coupled with lipid metabolism by SKN-1. Mutation of alh-6, a conserved proline catabolic enzyme, accelerates fat mobilization, enhances the expression of genes involved in fatty acid oxidation and reduces survival in response to fasting. This metabolic coordination is mediated by the activation of the transcription factor SKN-1/Nrf2, possibly due to the accumulation of the alh-6 substrate P5C, and also requires the transcriptional co-regulator MDT-15. Constitutive activation of SKN-1 induces a similar transcriptional response, which protects animals from fat accumulation when fed a high carbohydrate diet. In human cells, an orthologous alh-6 enzyme, ALDH4A1, is also linked to the activity of Nrf2, the human orthologue of SKN-1, and regulates the expression of lipid metabolic genes. Our findings identify a link between proline catabolism and lipid metabolism, and uncover a physiological role for SKN-1 in metabolism. The coordinated metabolism of cellular nutrients is important to maintain energy homeostasis, particularly if nutrients are scarce. Here, the authors report that the sensor protein SKN-1/Nrf2 links catabolism of the amino acid proline with lipid metabolism in C. elegans and in cultured human cells.
Collapse
|