101
|
Hachim MY, Al Heialy S, Hachim IY, Halwani R, Senok AC, Maghazachi AA, Hamid Q. Interferon-Induced Transmembrane Protein (IFITM3) Is Upregulated Explicitly in SARS-CoV-2 Infected Lung Epithelial Cells. Front Immunol 2020; 11:1372. [PMID: 32595654 PMCID: PMC7301886 DOI: 10.3389/fimmu.2020.01372] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022] Open
Abstract
Current guidelines for COVID-19 management recommend the utilization of various repurposed drugs. Despite ongoing research toward the development of a vaccine against SARS-CoV-2, such a vaccine will not be available in time to contribute to the containment of the ongoing pandemic. Therefore, there is an urgent need to develop a framework for the rapid identification of novel targets for diagnostic and therapeutic interventions. We analyzed publicly available transcriptomic datasets of SARS-CoV infected humans and mammals to identify consistent differentially expressed genes then validated in SARS-CoV-2 infected epithelial cells transcriptomic datasets. Comprehensive toxicogenomic analysis of the identified genes to identify possible interactions with clinically proven drugs was carried out. We identified IFITM3 as an early upregulated gene, and valproic acid was found to enhance its mRNA expression as well as induce its antiviral action. These findings indicate that analysis of publicly available transcriptomic and toxicogenomic data represents a rapid approach for the identification of novel targets and molecules that can modify the action of such targets during the early phases of emerging infections like COVID-19.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Abiola C. Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Azzam A. Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
102
|
Huang DL, Li Y, Liang J, Yu L, Xue M, Cao XX, Xiao B, Tian CL, Liu L, Zheng JS. The New Salicylaldehyde S,S-Propanedithioacetal Ester Enables N-to-C Sequential Native Chemical Ligation and Ser/Thr Ligation for Chemical Protein Synthesis. J Am Chem Soc 2020; 142:8790-8799. [DOI: 10.1021/jacs.0c01561] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong-Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Ying Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jun Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Min Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiu-Xiu Cao
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang-Lin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
103
|
Cohen M, Lamparello AJ, Schimunek L, El-Dehaibi F, Namas RA, Xu Y, Kaynar AM, Billiar TR, Vodovotz Y. Quality Control Measures and Validation in Gene Association Studies: Lessons for Acute Illness. Shock 2020; 53:256-268. [PMID: 31365490 PMCID: PMC6989353 DOI: 10.1097/shk.0000000000001409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute illness is a complex constellation of responses involving dysregulated inflammatory and immune responses, which are ultimately associated with multiple organ dysfunction. Gene association studies have associated single-nucleotide polymorphisms (SNPs) with clinical and pharmacological outcomes in a variety of disease states, including acute illness. With approximately 4 to 5 million SNPs in the human genome and recent studies suggesting that a large portion of SNP studies are not reproducible, we suggest that the ultimate clinical utility of SNPs in acute illness depends on validation and quality control measures. To investigate this issue, in December 2018 and January 2019 we searched the literature for peer-reviewed studies reporting data on associations between SNPs and clinical outcomes and between SNPs and pharmaceuticals (i.e., pharmacogenomics) published between January 2011 to February 2019. We review key methodologies and results from a variety of clinical and pharmacological gene association studies, including trauma and sepsis studies, as illustrative examples on current SNP association studies. In this review article, we have found three key points which strengthen the potential accuracy of SNP association studies in acute illness and other diseases: providing evidence of following a protocol quality control method such as the one in Nature Protocols or the OncoArray QC Guidelines; enrolling enough patients to have large cohort groups; and validating the SNPs using an independent technique such as a second study using the same SNPs with new patient cohorts. Our survey suggests the need to standardize validation methods and SNP quality control measures in medicine in general, and specifically in the context of complex disease states such as acute illness.
Collapse
Affiliation(s)
- Maria Cohen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | | | - Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yan Xu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | - A Murat Kaynar
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15261
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
104
|
Zerbib Y, Jenkins EK, Shojaei M, Meyers AFA, Ho J, Ball TB, Keynan Y, Pisipati A, Kumar A, Kumar A, Nalos M, Tang BM, Schughart K, McLean A. Pathway mapping of leukocyte transcriptome in influenza patients reveals distinct pathogenic mechanisms associated with progression to severe infection. BMC Med Genomics 2020; 13:28. [PMID: 32066441 PMCID: PMC7027223 DOI: 10.1186/s12920-020-0672-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Influenza infections produce a spectrum of disease severity, ranging from a mild respiratory illness to respiratory failure and death. The host-response pathways associated with the progression to severe influenza disease are not well understood. Methods To gain insight into the disease mechanisms associated with progression to severe infection, we analyzed the leukocyte transcriptome in severe and moderate influenza patients and healthy control subjects. Pathway analysis on differentially expressed genes was performed using a topology-based pathway analysis tool that takes into account the interaction between multiple cellular pathways. The pathway profiles between moderate and severe influenza were then compared to delineate the biological mechanisms underpinning the progression from moderate to severe influenza. Results 107 patients (44 severe and 63 moderate influenza patients) and 52 healthy control subjects were included in the study. Severe influenza was associated with upregulation in several neutrophil-related pathways, including pathways involved in neutrophil differentiation, migration, degranulation and neutrophil extracellular trap (NET) formation. The degree of upregulation in neutrophil-related pathways were significantly higher in severely infected patients compared to moderately infected patients. Severe influenza was also associated with downregulation in immune response pathways, including pathways involved in antigen presentation such as CD4+ T-cell co-stimulation, CD8+ T cell and Natural Killer (NK) cells effector functions. Apoptosis pathways were also downregulated in severe influenza patients compare to moderate and healthy controls. Conclusions These findings showed that there are changes in gene expression profile that may highlight distinct pathogenic mechanisms associated with progression from moderate to severe influenza infection.
Collapse
Affiliation(s)
- Yoann Zerbib
- Department of medical Intensive Care, Amiens University Hospital, Amiens, France. .,Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia. .,Centre for immunology and allergy research, the Westmead Institute for Medical Research, Sydney, Australia.
| | - Emily K Jenkins
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia.,Centre for immunology and allergy research, the Westmead Institute for Medical Research, Sydney, Australia
| | - Adrienne F A Meyers
- National HIV and Retrovirology Laboratories, JC Wilt infectious disease research centre, Public health agency of Canada, Winnipeg, Canada.,Department of medical microbiology and infectious diseases, University of Manitoba, Winnipeg, Canada
| | - John Ho
- National HIV and Retrovirology Laboratories, JC Wilt infectious disease research centre, Public health agency of Canada, Winnipeg, Canada.,Department of medical microbiology and infectious diseases, University of Manitoba, Winnipeg, Canada
| | - T Blake Ball
- National HIV and Retrovirology Laboratories, JC Wilt infectious disease research centre, Public health agency of Canada, Winnipeg, Canada.,Department of medical microbiology and infectious diseases, University of Manitoba, Winnipeg, Canada
| | - Yoav Keynan
- Department of internal medicine, medical microbiology and community health sciences, University of Manitoba, Winnipeg, Canada
| | - Amarnath Pisipati
- Department of medical microbiology and infectious diseases, University of Manitoba, Winnipeg, Canada.,Department of chemistry and chemical biology, Harvard University, Cambridge, USA
| | - Aseem Kumar
- Department of chemistry and biochemistry, Laurentian University, Sudbury, Canada
| | - Anand Kumar
- Section of critical care medicine and section of infectious diseases, department of medicine, medical microbiology and pharmacology, University of Manitoba, Winnipeg, Canada
| | - Marek Nalos
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Benjamin M Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia.,Centre for immunology and allergy research, the Westmead Institute for Medical Research, Sydney, Australia
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, Germany
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | | |
Collapse
|
105
|
Abstract
Influenza A virus (IAV) is an enveloped virus of the Orthomyxoviridae with a negative-sense single-stranded RNA genome. During virus cell entry, viral and cellular cues are delivered in a stepwise manner within two distinct cellular compartments-the endosomes and the cytosol. Endosome maturation primes the viral core for uncoating by cytosolic host proteins and host-mediated virus disaggregation is essential for genome import and replication in the nucleus. Recent evidence shows that two well-known cellular proteins-histone deacetylase 6 (HDAC6) and karyopherin-β2 (kapβ2)-uncoat influenza virus. HDAC6 is 1 of 11 HDACs and an X-linked, cytosolic lysine deacetylase. Under normal cellular conditions HDAC6 is the tubulin deacetylase. Under proteasomal stress HDAC6 binds unanchored ubiquitin, dynein and myosin II to sequester misfolded protein aggregates for autophagy. Kapβ2 is a member of the importin β family that transports RNA-binding proteins into the nucleus by binding to disordered nuclear localization signals (NLSs) known as PY-NLS. Kapβ2 is emerging as a universal uncoating factor for IAV and human immunodeficiency virus type 1 (HIV-1). Kapβ2 can also reverse liquid-liquid phase separation (LLPS) of RNA-binding proteins by promoting their disaggregation. Thus, it is becoming evident that key players in the management of cellular condensates and membraneless organelles are potent virus uncoating factors. This emerging concept reveals implications in viral pathogenesis, as well as, the promise for cell-targeted therapeutic strategies to block universal virus uncoating pathways hijacked by enveloped RNA viruses.
Collapse
Affiliation(s)
- Yohei Yamauchi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
106
|
Resveratrol trimer enhances gene delivery to hematopoietic stem cells by reducing antiviral restriction at endosomes. Blood 2020; 134:1298-1311. [PMID: 31416800 DOI: 10.1182/blood.2019000040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.
Collapse
|
107
|
Yánez DC, Ross S, Crompton T. The IFITM protein family in adaptive immunity. Immunology 2019; 159:365-372. [PMID: 31792954 PMCID: PMC7078001 DOI: 10.1111/imm.13163] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/06/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022] Open
Abstract
Interferon‐inducible transmembrane (IFITM) proteins are a family of small homologous proteins, localized in the plasma and endolysosomal membranes, which confer cellular resistance to many viruses. In addition, several distinct functions have been associated with different IFITM family members, including germ cell specification (IFITM1–IFITM3), osteoblast function and bone mineralization (IFITM5) and immune functions (IFITM1–3, IFITM6). IFITM1–3 are expressed by T cells and recent experiments have shown that the IFITM proteins are directly involved in adaptive immunity and that they regulate CD4+ T helper cell differentiation in a T‐cell‐intrinsic manner. Here we review the role of the IFITM proteins in T‐cell differentiation and function.
Collapse
Affiliation(s)
- Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, UK.,School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
108
|
Häfner SJ. Evergreen influenza - Tackling an old enemy with fresh munitions. Biomed J 2019; 42:1-4. [PMID: 30987700 PMCID: PMC6468092 DOI: 10.1016/j.bj.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022] Open
Abstract
This special edition of the Biomedical Journal puts the innate immune system into the limelight. We learn about the universal mechanisms underlying the immediate defense against influenza viruses mounted by innate immunity but also its detrimental secondary effects and how differential host genetics influence the network. Moreover, this issue addresses how oral hygiene is a concern for the entire organism, that younger age goes well with neoadjuvant chemotherapy for breast cancer and zinc with feeling less distressed by tinnitus caused by noise-induced hearing loss, and that IL-1Ra holds very promising potential to prevent intestinal ischemia reperfusion injury. Finally, we discover which type of post optimally protects devitalized teeth from breaking and how difficult it is to accurately diagnose the macrofollicular variant of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- Anders Lund Group, BRIC Biotech Research & Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
109
|
Haller O, Kochs G. Mx genes: host determinants controlling influenza virus infection and trans-species transmission. Hum Genet 2019; 139:695-705. [PMID: 31773252 PMCID: PMC7087808 DOI: 10.1007/s00439-019-02092-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
The human MxA protein, encoded by the interferon-inducible MX1 gene, is an intracellular influenza A virus (IAV) restriction factor. It can protect transgenic mice from severe IAV-induced disease, indicating a key role of human MxA for host survival and suggesting that natural variations in MX1 may account for inter-individual differences in disease severity among humans. MxA also provides a robust barrier against zoonotic transmissions of avian and swine IAV strains. Therefore, zoonotic IAV must acquire MxA escape mutations to achieve sustained human-to-human transmission. Here, we discuss recent progress in the field.
Collapse
Affiliation(s)
- Otto Haller
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Georg Kochs
- Institute of Virology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
110
|
Winkler M, Gärtner S, Markus L, Hoffmann M, Nehlmeier I, Krawczak M, Sauermann U, Pöhlmann S. Role of rhesus macaque IFITM3(2) in simian immunodeficiency virus infection of macaques. PLoS One 2019; 14:e0224082. [PMID: 31682595 PMCID: PMC6827983 DOI: 10.1371/journal.pone.0224082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
The experimental infection of rhesus macaques (rh) with simian immunodeficiency virus (SIV) is an important model for human immunodeficiency virus (HIV) infection of humans. The interferon-induced transmembrane protein 3 (IFITM3) inhibits HIV and SIV infection at the stage of host cell entry. However, it is still unclear to what extent the antiviral activity of IFITM3 observed in cell culture translates into inhibition of HIV/SIV spread in the infected host. We have shown previously that although rhIFITM3 inhibits SIV entry into cultured cells, polymorphisms in the rhIFITM3 gene are not strongly associated with viral load or disease progression in SIV infected macaques. Here, we examined whether rhIFITM3(2), which is closely related to rhIFITM3 at the sequence level, exerts antiviral activity and whether polymorphisms in the rhIFITM3(2) gene impact the course of SIV infection. We show that expression of rhIFITM3(2) is interferon-inducible and inhibits SIV entry into cells, although with reduced efficiency as compared to rhIFITM3. We further report the identification of 19 polymorphisms in the rhIFITM3(2) gene. However, analysis of a well characterized cohort of SIV infected macaques revealed that none of the polymorphisms had a significant impact upon the course of SIV infection. These results and our previous work suggest that polymorphisms in the rhIFITM3 and rhIFITM3(2) genes do not strongly modulate the course of SIV infection in macaques.
Collapse
Affiliation(s)
- Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail: (SP); (MW)
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lara Markus
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Ulrike Sauermann
- Infection Models Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
- * E-mail: (SP); (MW)
| |
Collapse
|
111
|
Kim YC, Jeong MJ, Jeong BH. Strong association of regulatory single nucleotide polymorphisms (SNPs) of the IFITM3 gene with influenza H1N1 2009 pandemic virus infection. Cell Mol Immunol 2019; 17:662-664. [PMID: 31685927 DOI: 10.1038/s41423-019-0322-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, 54531, Republic of Korea.,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, 54531, Republic of Korea.,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, Jeonbuk, 54531, Republic of Korea. .,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
112
|
Gounder AP, Boon ACM. Influenza Pathogenesis: The Effect of Host Factors on Severity of Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:341-350. [PMID: 30617115 DOI: 10.4049/jimmunol.1801010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses continue to be a major global health threat. Severity and clinical outcome of influenza disease is determined by both viral and host factors. Viral factors have long been the subject of intense research and many molecular determinants have been identified. However, research into the host factors that protect or predispose to severe and fatal influenza A virus infections is lagging. The goal of this review is to highlight the recent insights into host determinants of influenza pathogenesis.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; .,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
113
|
Host Single Nucleotide Polymorphisms Modulating Influenza A Virus Disease in Humans. Pathogens 2019; 8:pathogens8040168. [PMID: 31574965 PMCID: PMC6963926 DOI: 10.3390/pathogens8040168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022] Open
Abstract
A large number of human genes associated with viral infections contain single nucleotide polymorphisms (SNPs), which represent a genetic variation caused by the change of a single nucleotide in the DNA sequence. SNPs are located in coding or non-coding genomic regions and can affect gene expression or protein function by different mechanisms. Furthermore, they have been linked to multiple human diseases, highlighting their medical relevance. Therefore, the identification and analysis of this kind of polymorphisms in the human genome has gained high importance in the research community, and an increasing number of studies have been published during the last years. As a consequence of this exhaustive exploration, an association between the presence of some specific SNPs and the susceptibility or severity of many infectious diseases in some risk population groups has been found. In this review, we discuss the relevance of SNPs that are important to understand the pathology derived from influenza A virus (IAV) infections in humans and the susceptibility of some individuals to suffer more severe symptoms. We also discuss the importance of SNPs for IAV vaccine effectiveness.
Collapse
|
114
|
McMichael TM, Zhang Y, Kenney AD, Zhang L, Zani A, Lu M, Chemudupati M, Li J, Yount JS. IFITM3 Restricts Human Metapneumovirus Infection. J Infect Dis 2019; 218:1582-1591. [PMID: 29917090 DOI: 10.1093/infdis/jiy361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/12/2018] [Indexed: 11/12/2022] Open
Abstract
Human metapneumovirus (hMPV) utilizes a bifurcated cellular entry strategy, fusing either with the plasma membrane or, after endocytosis, with the endosome membrane. Whether cellular factors restrict or enhance either entry pathway is largely unknown. We found that the interferon-induced transmembrane protein 3 (IFITM3) inhibits hMPV infection to an extent similar to endocytosis-inhibiting drugs, and an IFITM3 variant that accumulates at the plasma membrane in addition to its endosome localization provided increased virus restriction. Mechanistically, IFITM3 blocks hMPV F protein-mediated membrane fusion, and inhibition of infection was reversed by the membrane destabilizing drug amphotericin B. Conversely, we found that infection by some hMPV strains is enhanced by the endosomal protein toll-like receptor 7 (TLR7), and that IFITM3 retains the ability to restrict hMPV infection even in cells expressing TLR7. Overall, our results identify IFITM3 as an endosomal restriction factor that limits hMPV infection of cells.
Collapse
Affiliation(s)
- Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| | - Yu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| | - Mahesh Chemudupati
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio
| |
Collapse
|
115
|
Kenney AD, McMichael TM, Imas A, Chesarino NM, Zhang L, Dorn LE, Wu Q, Alfaour O, Amari F, Chen M, Zani A, Chemudupati M, Accornero F, Coppola V, Rajaram MVS, Yount JS. IFITM3 protects the heart during influenza virus infection. Proc Natl Acad Sci U S A 2019; 116:18607-18612. [PMID: 31451661 PMCID: PMC6744864 DOI: 10.1073/pnas.1900784116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Influenza virus can disseminate from the lungs to the heart in severe infections and can induce cardiac pathology, but this has been difficult to study due to a lack of small animal models. In humans, polymorphisms in the gene encoding the antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) are associated with susceptibility to severe influenza, but whether IFITM3 deficiencies contribute to cardiac dysfunction during infection is unclear. We show that IFITM3 deficiency in a new knockout (KO) mouse model increases weight loss and mortality following influenza virus infections. We investigated this enhanced pathogenesis with the A/PR/8/34 (H1N1) (PR8) influenza virus strain, which is lethal in KO mice even at low doses, and observed increased replication of virus in the lungs, spleens, and hearts of KO mice compared with wild-type (WT) mice. Infected IFITM3 KO mice developed aberrant cardiac electrical activity, including decreased heart rate and irregular, arrhythmic RR (interbeat) intervals, whereas WT mice exhibited a mild decrease in heart rate without irregular RR intervals. Cardiac electrical dysfunction in PR8-infected KO mice was accompanied by increased activation of fibrotic pathways and fibrotic lesions in the heart. Infection with a sublethal dose of a less virulent influenza virus strain (A/WSN/33 [H1N1]) resulted in a milder cardiac electrical dysfunction in KO mice that subsided as the mice recovered. Our findings reveal an essential role for IFITM3 in limiting influenza virus replication and pathogenesis in heart tissue and establish IFITM3 KO mice as a powerful model for studying mild and severe influenza virus-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Alexander Imas
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Nicholas M Chesarino
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Omar Alfaour
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Mahesh Chemudupati
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Federica Accornero
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Vincenzo Coppola
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
- Genetically Engineered Mouse Modeling Core, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210;
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210;
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
116
|
Clohisey S, Baillie JK. Host susceptibility to severe influenza A virus infection. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:303. [PMID: 31488196 PMCID: PMC6729070 DOI: 10.1186/s13054-019-2566-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Abstract
Most people exposed to a new flu virus do not notice any symptoms. A small minority develops critical illness. Some of this extremely broad variation in susceptibility is explained by the size of the initial inoculum or the influenza exposure history of the individual; some is explained by generic host factors, such as frailty, that decrease resilience following any systemic insult. Some demographic factors (pregnancy, obesity, and advanced age) appear to confer a more specific susceptibility to severe illness following infection with influenza viruses. As with other infectious diseases, a substantial component of susceptibility is determined by host genetics. Several genetic susceptibility variants have now been reported with varying levels of evidence. Susceptible hosts may have impaired intracellular controls of viral replication (e.g. IFITM3, TMPRS22 variants), defective interferon responses (e.g. GLDC, IRF7/9 variants), or defects in cell-mediated immunity with increased baseline levels of systemic inflammation (obesity, pregnancy, advanced age). These mechanisms may explain the prolonged viral replication reported in critically ill patients with influenza: patients with life-threatening disease are, by definition, abnormal hosts. Understanding these molecular mechanisms of susceptibility may in the future enable the design of host-directed therapies to promote resilience.
Collapse
Affiliation(s)
- Sara Clohisey
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - John Kenneth Baillie
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK. .,Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK.
| |
Collapse
|
117
|
Sun Y, Zhang Y, Zhang X. Synonymous SNPs of viral genes facilitate virus to escape host antiviral RNAi immunity. RNA Biol 2019; 16:1697-1710. [PMID: 31416386 DOI: 10.1080/15476286.2019.1656026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Synonymous single nucleotide polymorphisms (SNPs) are involved in codon usage preference or mRNA splicing. Up to date, however, the role of synonymous SNPs in immunity remains unclear. To address this issue, the SNPs of white spot syndrome virus (WSSV) were characterized in shrimp in the present study. Our results indicated that there existed synonymous SNPs in the mRNAs of wsv151 and wsv226, two viral genes of WSSV. In the presence of SNP siRNA, wild-type siRNA, wild-type mRNA and SNP mRNA of wsv151 or wsv226, RNAi was significantly suppressed, showing that the synonymous SNPs of wsv151 and wsv226 played negative roles in host siRNA pathway due to mismatch of siRNA with its target. In insect cells, the mismatch, caused by synonymous SNPs of wsv151 or wsv226, between siRNA and its target inhibited the host RNAi. Furthermore, the data revealed that the co-injection of SNP siRNA and wild-type siRNA of wsv151 or wsv226 into WSSV-infected shrimp led to a significant increase of WSSV copies compared with that of SNP siRNA alone or wild-type siRNA alone, indicating that the synonymous SNPs of viral genes could be a strategy of virus escaping host siRNA pathway in shrimp in vivo. Therefore, our study provided novel insights into the underlying mechanism of virus escaping host antiviral RNAi immunity by synonymous SNPs of viral genes.
Collapse
Affiliation(s)
- Yuechao Sun
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yu Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
118
|
Wang Q, Su L. Vpr Enhances HIV-1 Env Processing and Virion Infectivity in Macrophages by Modulating TET2-Dependent IFITM3 Expression. mBio 2019; 10:e01344-19. [PMID: 31431548 PMCID: PMC6703422 DOI: 10.1128/mbio.01344-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022] Open
Abstract
HIV-1 Vpr enhances viral replication in human macrophages via multiple mechanisms that are not clearly defined. It does not affect HIV-1 virion production during the first round of infection. We have recently discovered that Vpr targets the DNA demethylase TET2 for degradation, which leads to sustained interleukin-6 (IL-6) expression and elevated HIV-1 replication. We report here that Vpr enhanced Env processing in infected macrophages, associated with increased Env incorporation into virions with higher infectivity. Interestingly, IFITM3 was constitutively expressed in macrophages in a TET2-dependent fashion. We showed that Vpr-enhanced Env processing depended genetically on TET2 and IFITM3. We further showed that Vpr reduced IFITM3 expression by reducing demethylation of the IFITM3 promoter in macrophages, associated with degradation of TET2 and reduced TET2 binding to the IFITIM3 promoter. Our findings indicate that the Vpr-TET2 axis enhances HIV-1 replication in macrophages via two independent mechanisms: reduced IFTIM3 expression to enhance Env processing and virion infectivity and sustained IL-6 expression to increase HIV-1 replication. The Vpr-TET2 axis may provide a novel target to develop therapeutics to inhibit HIV-1 infection and pathogenesis.IMPORTANCE How Vpr enhances HIV-1 replication in macrophages is still unclear. We report here that Vpr enhanced HIV-1 Env processing during the first round of HIV-1 replication, resulting in virions with higher Env incorporation and viral infectivity. These higher-quality viral particles contributed to elevated infection during the second round and spreading infection in macrophages and other HIV-1 target cells. We have recently discovered that TET2 is a novel host factor degraded by Vpr, which leads to sustained IL-6 expression in macrophages. Interestingly, Vpr-enhanced HIV-1 Env processing depended on both the IFITIM3 and TET2 genes. The constitutive expression of IFITIM3 expression in macrophages was maintained by TET2, which demethylated the IFITIM3 promoter. We conclude that the Vpr degrades TET2 to enhance HIV-1 replication in macrophages by reducing IFITIM3 expression to increase viral Env processing, virion incorporation, and infectivity and by sustaining IL-6 expression to increase HIV-1 gene expression. The Vpr-TET2 axis may serve as a novel target to develop anti-HIV drugs to inhibit HIV-1 infection and pathogenesis.
Collapse
Affiliation(s)
- Qi Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
119
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
120
|
Kellam P, Weiss RA. Protecting fetal development. SCIENCE (NEW YORK, N.Y.) 2019; 365:118-119. [PMID: 31296753 DOI: 10.1126/science.aay2054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Paul Kellam
- Department of Medicine, Division of Infectious Diseases, Imperial College London, London, UK.
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
121
|
Booms A, Coetzee GA, Pierce SE. MCF-7 as a Model for Functional Analysis of Breast Cancer Risk Variants. Cancer Epidemiol Biomarkers Prev 2019; 28:1735-1745. [PMID: 31292138 DOI: 10.1158/1055-9965.epi-19-0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/17/2019] [Accepted: 07/02/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Breast cancer genetic predisposition is governed by more than 142 loci as revealed by genome-wide association studies (GWAS). The functional contribution of these risk loci to breast cancer remains unclear, and additional post-GWAS analyses are required. METHODS We identified active regulatory elements (enhancers, promoters, and chromatin organizing elements) by histone H3K27 acetylation and CTCF occupancy and determined the enrichment of risk variants at these sites. We compared these results with previously published data and for other cell lines, including human mammary epithelial cells, and related these data to gene expression. RESULTS In terms of mapping accuracy and resolution, our data augment previous annotations of the MCF-7 epigenome. After intersection with GWAS risk variants, we found 39 enhancers and 15 CTCF occupancy sites that, between them, overlapped 96 breast cancer credible risk variants at 42 loci. These risk enhancers likely regulate the expression of dozens of genes, which are enriched for GO categories, including estrogen and prolactin signaling. CONCLUSIONS Ten (of 142) breast cancer risk loci likely function via enhancers that are active in MCF-7 and are well suited to targeted manipulation in this system. In contrast, risk loci cannot be mapped to specific CTCF-binding sites, and the genes linked to risk CTCF sites did not show functional enrichment. The identity of risk enhancers and their associated genes suggests that some risk may function during later processes in cancer progression. IMPACT Here, we report how the ER+ cell line MCF-7 can be used to dissect risk mechanisms for breast cancer.
Collapse
Affiliation(s)
- Alix Booms
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Gerhard A Coetzee
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan.
| | - Steven E Pierce
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
122
|
Fiege JK, Stone IA, Fay EJ, Markman MW, Wijeyesinghe S, Macchietto MG, Shen S, Masopust D, Langlois RA. The Impact of TCR Signal Strength on Resident Memory T Cell Formation during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:936-945. [PMID: 31235552 DOI: 10.4049/jimmunol.1900093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/08/2019] [Indexed: 02/01/2023]
Abstract
Resident memory T cells (TRM) in the lung are vital for heterologous protection against influenza A virus (IAV). Environmental factors are necessary to establish lung TRM; however, the role of T cell-intrinsic factors like TCR signal strength have not been elucidated. In this study, we investigated the impact of TCR signal strength on the generation and maintenance of lung TRM after IAV infection. We inserted high- and low-affinity OT-I epitopes into IAV and infected mice after transfer of OT-I T cells. We uncovered a bias in TRM formation in the lung elicited by lower affinity TCR stimulation. TCR affinity did not impact the overall phenotype or long-term maintenance of lung TRM Overall, these findings demonstrate that TRM formation is negatively correlated with increased TCR signal strength. Lower affinity cells may have an advantage in forming TRM to ensure diversity in the Ag-specific repertoire in tissues.
Collapse
Affiliation(s)
- Jessica K Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Ian A Stone
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Elizabeth J Fay
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455; and
| | - Matthew W Markman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Marissa G Macchietto
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; .,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
123
|
Abstract
Pneumonia is a highly prevalent disease with considerable morbidity and mortality. However, diagnosis and therapy still rely on antiquated methods, leading to the vast overuse of antimicrobials, which carries risks for both society and the individual. Furthermore, outcomes in severe pneumonia remain poor. Genomic techniques have the potential to transform the management of pneumonia through deep characterization of pathogens as well as the host response to infection. This characterization will enable the delivery of selective antimicrobials and immunomodulatory therapy that will help to offset the disorder associated with overexuberant immune responses.
Collapse
Affiliation(s)
- Samir Gautam
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA
| | - Lokesh Sharma
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA
| | - Charles S Dela Cruz
- Pulmonary Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale University, 300 Cedar Street, TACS441, New Haven, CT 06520-8057, USA.
| |
Collapse
|
124
|
IFITM3 Clusters on Virus Containing Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway Epithelial Cells. Viruses 2019; 11:v11060548. [PMID: 31212878 PMCID: PMC6631848 DOI: 10.3390/v11060548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) have been shown to strongly affect influenza A virus (IAV) infectivity in tissue culture. Moreover, polymorphisms in IFITM3 have been associated with the severity of the disease in humans. IFITM3 appears to act early in the infection, but its mechanism of action and potential interactions with incoming IAV structures are not yet defined. Here, we visualized endogenous IFITM3 interactions with IAV in the human lung epithelial cell line A549 and in primary human airway epithelial cells employing stimulated emission depletion super-resolution microscopy. By applying an iterative approach for the cluster definition and computational cluster analysis, we found that IFITM3 reorganizes into clusters as IAV infection progresses. IFITM3 cluster formation started at 2-3 h post infection and increased over time to finally coat IAV-containing endosomal vesicles. This IAV-induced phenotype was due to the endosomal recruitment of IFITM3 rather than to an overall increase in the IFITM3 abundance. While the IAV-induced IFITM3 clustering and localization to endosomal vesicles was comparable in primary human airway epithelial cells and the human lung epithelial cell line A549, the endogenous IFITM3 signal was higher in primary cells. Moreover, we observed IFITM3 signals adjacent to IAV-containing recycling endosomes.
Collapse
|
125
|
Lazniewski M, Dawson WK, Rusek AM, Plewczynski D. One protein to rule them all: The role of CCCTC-binding factor in shaping human genome in health and disease. Semin Cell Dev Biol 2019; 90:114-127. [PMID: 30096365 PMCID: PMC6642822 DOI: 10.1016/j.semcdb.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome, constituting several billion base pairs, must be contracted to fit within the volume of a nucleus where the diameter is on the scale of μm. The 3D structure and packing of such a long sequence cannot be left to pure chance, as DNA must be efficiently used for its primary roles as a matrix for transcription and replication. In recent years, methods like chromatin conformation capture (including 3C, 4C, Hi-C, ChIA-PET and Multi-ChIA) and optical microscopy have advanced substantially and have shed new light on how eukaryotic genomes are hierarchically organized; first into 10-nm fiber, next into DNA loops, topologically associated domains and finally into interphase or mitotic chromosomes. This knowledge has allowed us to revise our understanding regarding the mechanisms governing the process of DNA organization. Mounting experimental evidence suggests that the key element in the formation of loops is the binding of the CCCTC-binding factor (CTCF) to DNA; a protein that can be referred to as the chief organizer of the genome. However, CTCF does not work alone but in cooperation with other proteins, such as cohesin or Yin Yang 1 (YY1). In this short review, we briefly describe our current understanding of the structure of eukaryotic genomes, how they are established and how the formation of DNA loops can influence gene expression. We discuss the recent discoveries describing the 3D structure of the CTCF-DNA complex and the role of CTCF in establishing genome structure. Finally, we briefly explain how various genetic disorders might arise as a consequence of mutations in the CTCF target sequence or alteration of genomic imprinting.
Collapse
Affiliation(s)
- Michal Lazniewski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Wayne K Dawson
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 103-8657, Japan
| | - Anna Maria Rusek
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Clinical Molecular Biology Department, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Centre for Innovative Research, Medical University of Bialystok, Bialystok, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
126
|
Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proc Natl Acad Sci U S A 2019; 116:10905-10910. [PMID: 31085641 PMCID: PMC6561219 DOI: 10.1073/pnas.1902840116] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Influenza virus causes seasonal outbreaks in temperate regions, with an increase in disease and mortality in the winter months. Dry air combined with cold temperature is known to enable viral transmission. In this study, we asked whether humidity impacts the host response to influenza virus infections. Exposure of mice to low humidity conditions rendered them more susceptible to influenza disease. Mice housed in dry air had impaired mucociliary clearance, innate antiviral defense, and tissue repair function. Moreover, mice exposed to dry air were more susceptible to disease mediated by inflammasome caspases. Our study provides mechanistic insights for the seasonality of the influenza virus epidemics, whereby inhalation of dry air compromises the host’s ability to restrict influenza virus infection. In the temperate regions, seasonal influenza virus outbreaks correlate closely with decreases in humidity. While low ambient humidity is known to enhance viral transmission, its impact on host response to influenza virus infection and disease outcome remains unclear. Here, we showed that housing Mx1 congenic mice in low relative humidity makes mice more susceptible to severe disease following respiratory challenge with influenza A virus. We find that inhalation of dry air impairs mucociliary clearance, innate antiviral defense, and tissue repair. Moreover, disease exacerbated by low relative humidity was ameliorated in caspase-1/11–deficient Mx1 mice, independent of viral burden. Single-cell RNA sequencing revealed that induction of IFN-stimulated genes in response to viral infection was diminished in multiple cell types in the lung of mice housed in low humidity condition. These results indicate that exposure to dry air impairs host defense against influenza infection, reduces tissue repair, and inflicts caspase-dependent disease pathology.
Collapse
|
127
|
Levy ER, Yip WK, Super M, Ferdinands JM, Mistry AJ, Newhams MM, Zhang Y, Su HC, McLaughlin GE, Sapru A, Loftis LL, Weiss SL, Hall MW, Cvijanovich N, Schwarz A, Tarquinio KM, Mourani PM, Randolph AG. Evaluation of Mannose Binding Lectin Gene Variants in Pediatric Influenza Virus-Related Critical Illness. Front Immunol 2019; 10:1005. [PMID: 31139182 PMCID: PMC6518443 DOI: 10.3389/fimmu.2019.01005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/18/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Mannose-binding lectin (MBL) is an innate immune protein with strong biologic plausibility for protecting against influenza virus-related sepsis and bacterial co-infection. In an autopsy cohort of 105 influenza-infected young people, carriage of the deleterious MBL gene MBL2_Gly54Asp(“B”) mutation was identified in 5 of 8 individuals that died from influenza-methicillin-resistant Staphylococcus aureus (MRSA) co-infection. We evaluated MBL2 variants known to influence MBL levels with pediatric influenza-related critical illness susceptibility and/or severity including with bacterial co-infections. Methods: We enrolled children and adolescents with laboratory-confirmed influenza infection across 38 pediatric intensive care units from November 2008 to June 2016. We sequenced MBL2 “low-producer” variants rs11003125(“H/L”), rs7096206(“Y/X”), rs1800450Gly54Asp(“B”), rs1800451Gly57Glu(“C”), rs5030737Arg52Cys(“D”) in patients and biologic parents. We measured serum levels and compared complement activity in low-producing homozygotes (“B/B,” “C/C”) to HYA/HYA controls. We used a population control of 1,142 healthy children and also analyzed family trios (PBAT/HBAT) to evaluate disease susceptibility, and nested case-control analyses to evaluate severity. Results: We genotyped 420 patients with confirmed influenza-related sepsis: 159 (38%) had acute lung injury (ALI), 165 (39%) septic shock, and 30 (7%) died. Although bacterial co-infection was diagnosed in 133 patients (32%), only MRSA co-infection (n = 33, 8% overall) was associated with death (p < 0.0001), present in 11 of 30 children that died (37%). MBL2 variants predicted serum levels and complement activation as expected. We found no association between influenza-related critical illness susceptibility and MBL2 variants using family trios (633 biologic parents) or compared to population controls. MBL2 variants were not associated with admission illness severity, septic shock, ALI, or bacterial co-infection diagnosis. Carriage of low-MBL producing MBL2 variants was not a risk factor for mortality, but children that died did have higher carriage of one or more B alleles (OR 2.3; p = 0.007), including 7 of 11 with influenza MRSA-related death (vs. 2 of 22 survivors: OR 14.5, p = 0.0002). Conclusions:MBL2 variants that decrease MBL levels were not associated with susceptibility to pediatric influenza-related critical illness or with multiple measures of critical illness severity. We confirmed a prior report of higher B allele carriage in a relatively small number of young individuals with influenza-MRSA associated death.
Collapse
Affiliation(s)
- Emily R Levy
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, MA, United States.,Divisions of Pediatric Critical Care and Pediatric Infectious Diseases, Department of Pediatrics, Mayo Clinic, Rochester, MN, United States
| | - Wai-Ki Yip
- Foundation Medicine Inc., Cambridge, MA, United States
| | - Michael Super
- Wyss Institute at Harvard University, Boston, MA, United States
| | - Jill M Ferdinands
- Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Anushay J Mistry
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Margaret M Newhams
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gwenn E McLaughlin
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anil Sapru
- Critical Care Medicine Division, Department of Pediatrics, Children's Hospital of Los Angeles, University of California, Los Angeles, Los Angeles, CA, United States
| | - Laura L Loftis
- Section of Critical Care Medicine, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - Scott L Weiss
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mark W Hall
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Natalie Cvijanovich
- Department of Pediatrics, Benioff Children's Hospital Oakland, University California San Francisco, Oakland, CA, United States
| | - Adam Schwarz
- Department of Pediatrics, Children's Hospital of Orange County, Orange, CA, United States
| | - Keiko M Tarquinio
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Healthcare of Atlanta at Egleston, Emory University School of Medicine, Atlanta, GA, United States
| | - Peter M Mourani
- Section of Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
| | | | - Adrienne G Randolph
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
128
|
Koutsakos M, Illing PT, Nguyen THO, Mifsud NA, Crawford JC, Rizzetto S, Eltahla AA, Clemens EB, Sant S, Chua BY, Wong CY, Allen EK, Teng D, Dash P, Boyd DF, Grzelak L, Zeng W, Hurt AC, Barr I, Rockman S, Jackson DC, Kotsimbos TC, Cheng AC, Richards M, Westall GP, Loudovaris T, Mannering SI, Elliott M, Tangye SG, Wakim LM, Rossjohn J, Vijaykrishna D, Luciani F, Thomas PG, Gras S, Purcell AW, Kedzierska K. Human CD8 + T cell cross-reactivity across influenza A, B and C viruses. Nat Immunol 2019; 20:613-625. [PMID: 30778243 DOI: 10.1038/s41590-019-0320-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Patricia T Illing
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Simone Rizzetto
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Auda A Eltahla
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - E Kaitlynn Allen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Don Teng
- Infection and Immunity Program & Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Pradyot Dash
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Boyd
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ludivine Grzelak
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Weiguang Zeng
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Aeron C Hurt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian Barr
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- School of Applied Biomedical Sciences, Federation University, Churchill, Victoria, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Seqirus, Parkville, Victoria, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tom C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Central Clinical School, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Michael Richards
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Glen P Westall
- Lung Transplant Unit, Alfred Hospital, Melbourne, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Dhanasekaran Vijaykrishna
- Infection and Immunity Program & Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| |
Collapse
|
129
|
Eisfeld AJ, Kawaoka Y. Calculated risk: a new single-nucleotide polymorphism linked to severe influenza disease. Nat Med 2019; 23:911-912. [PMID: 28777788 DOI: 10.1038/nm.4383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan, and the International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
130
|
Bassano I, Ong SH, Sanz-Hernandez M, Vinkler M, Kebede A, Hanotte O, Onuigbo E, Fife M, Kellam P. Comparative analysis of the chicken IFITM locus by targeted genome sequencing reveals evolution of the locus and positive selection in IFITM1 and IFITM3. BMC Genomics 2019; 20:272. [PMID: 30952207 PMCID: PMC6451222 DOI: 10.1186/s12864-019-5621-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/18/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The interferon-induced transmembrane (IFITM) protein family comprises a class of restriction factors widely characterised in humans for their potent antiviral activity. Their biological activity is well documented in several animal species, but their genetic variation and biological mechanism is less well understood, particularly in avian species. RESULTS Here we report the complete sequence of the domestic chicken Gallus gallus IFITM locus from a wide variety of chicken breeds to examine the detailed pattern of genetic variation of the locus on chromosome 5, including the flanking genes ATHL1 and B4GALNT4. We have generated chIFITM sequences from commercial breeds (supermarket-derived chicken breasts), indigenous chickens from Nigeria (Nsukka) and Ethiopia, European breeds and inbred chicken lines from the Pirbright Institute, totalling of 206 chickens. Through mapping of genetic variants to the latest chIFITM consensus sequence our data reveal that the chIFITM locus does not show structural variation in the locus across the populations analysed, despite spanning diverse breeds from different geographic locations. However, single nucleotide variants (SNVs) in functionally important regions of the proteins within certain groups of chickens were detected, in particular the European breeds and indigenous birds from Ethiopia and Nigeria. In addition, we also found that two out of four SNVs located in the chIFITM1 (Ser36 and Arg77) and chIFITM3 (Val103) proteins were simultaneously under positive selection. CONCLUSIONS Together these data suggest that IFITM genetic variation may contribute to the capacities of different chicken populations to resist virus infection.
Collapse
Affiliation(s)
- Irene Bassano
- Department of Medicine, Division of Infectious Diseases, Wright Fleming Wing, St Mary’s Campus, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Swee Hoe Ong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Maximo Sanz-Hernandez
- Imperial College London, Department of Life Sciences, South Kensington, London, SW7 2AZ UK
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Adebabay Kebede
- Addis Ababa University (AAU), P.O. Box 32853, Addis Ababa, Ethiopia
- Amhara Regional Agricultural Research Institute (ARARI), P.O. Box 527, 100 Bahir Dar, Ethiopia
- International Livestock Research Institute (ILRI), P. O. Box 5689, Addis Ababa, Ethiopia
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG72RD UK
- Center for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Ebele Onuigbo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State 410001 Nigeria
| | - Mark Fife
- The Pirbright Institute, Ash Road, Woking, GU24 0NF UK
| | - Paul Kellam
- Department of Medicine, Division of Infectious Diseases, Wright Fleming Wing, St Mary’s Campus, Imperial College London, Norfolk Place, London, W2 1PG UK
- Kymab Ltd The Bennet Building (B930) Babraham Research Campus, Cambridge, CB22 3AT UK
| |
Collapse
|
131
|
Li J, Huang K, Hu G, Babarinde IA, Li Y, Dong X, Chen YS, Shang L, Guo W, Wang J, Chen Z, Hutchins AP, Yang YG, Yao H. An alternative CTCF isoform antagonizes canonical CTCF occupancy and changes chromatin architecture to promote apoptosis. Nat Commun 2019; 10:1535. [PMID: 30948729 PMCID: PMC6449404 DOI: 10.1038/s41467-019-08949-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
CTCF plays key roles in gene regulation, chromatin insulation, imprinting, X chromosome inactivation and organizing the higher-order chromatin architecture of mammalian genomes. Previous studies have mainly focused on the roles of the canonical CTCF isoform. Here, we explore the functions of an alternatively spliced human CTCF isoform in which exons 3 and 4 are skipped, producing a shorter isoform (CTCF-s). Functionally, we find that CTCF-s competes with the genome binding of canonical CTCF and binds a similar DNA sequence. CTCF-s binding disrupts CTCF/cohesin binding, alters CTCF-mediated chromatin looping and promotes the activation of IFI6 that leads to apoptosis. This effect is caused by an abnormal long-range interaction at the IFI6 enhancer and promoter. Taken together, this study reveals a non-canonical function for CTCF-s that antagonizes the genomic binding of canonical CTCF and cohesin, and that modulates chromatin looping and causes apoptosis by stimulating IFI6 expression. CTCF plays key roles in gene regulation, chromatin insulation and organizing the higher-order chromatin architecture of mammalian genomes. Here the authors investigate the function an alternatively spliced shorter CTCF isoform, finding that this isoform antagonizes canonical CTCF occupancy and changes chromatin architecture to promote apoptosis.
Collapse
Affiliation(s)
- Jiao Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kaimeng Huang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Gongcheng Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Isaac A Babarinde
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yaoyi Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaotao Dong
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Sheng Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Liping Shang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China
| | - Wenjing Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China
| | - Junwei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China
| | - Zhaoming Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yun-Gui Yang
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, 510530, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
132
|
Wellington D, Laurenson-Schafer H, Abdel-Haq A, Dong T. IFITM3: How genetics influence influenza infection demographically. Biomed J 2019; 42:19-26. [PMID: 30987701 PMCID: PMC6468115 DOI: 10.1016/j.bj.2019.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
The role of host genetics in influenza infection is unclear despite decades of interest. Confounding factors such as age, sex, ethnicity and environmental factors have made it difficult to assess the role of genetics without influence. In recent years a single nucleotide polymorphism, interferon-induced transmembrane protein 3 (IFITM3) rs12252, has been shown to alter the severity of influenza infection in Asian populations. In this review we investigate this polymorphism as well as several others suggested to alter the host's defence against influenza infection. In addition, we highlight the open questions surrounding the viral restriction protein IFITM3 with the hope that by answering some of these questions we can elucidate the mechanism of IFITM3 viral restriction and therefore how this restriction is altered due to the rs12252 polymorphism.
Collapse
Affiliation(s)
- Dannielle Wellington
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK.
| | - Henry Laurenson-Schafer
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK
| | - Adi Abdel-Haq
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; Martin-Luther-University, Halle-Wittenberg, Germany
| | - Tao Dong
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK.
| |
Collapse
|
133
|
Clement M, Humphreys IR. Cytokine-Mediated Induction and Regulation of Tissue Damage During Cytomegalovirus Infection. Front Immunol 2019; 10:78. [PMID: 30761144 PMCID: PMC6362858 DOI: 10.3389/fimmu.2019.00078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus with high sero-prevalence within the human population. Primary HCMV infection and life-long carriage are typically asymptomatic. However, HCMV is implicated in exacerbation of chronic conditions and associated damage in individuals with intact immune systems. Furthermore, HCMV is a significant cause of morbidity and mortality in the immunologically immature and immune-compromised where disease is associated with tissue damage. Infection-induced inflammation, including robust cytokine responses, is a key component of pathologies associated with many viruses. Despite encoding a large number of immune-evasion genes, HCMV also triggers the induction of inflammatory cytokine responses during infection. Thus, understanding how cytokines contribute to CMV-induced pathologies and the mechanisms through which they are regulated may inform clinical management of disease. Herein, we discuss our current understanding based on clinical observation and in vivo modeling of disease of the role that cytokines play in CMV pathogenesis. Specifically, in the context of the different tissues and organs in which CMV replicates, we give a broad overview of the beneficial and adverse effects that cytokines have during infection and describe how cytokine-mediated tissue damage is regulated. We discuss the implications of findings derived from mice and humans for therapeutic intervention strategies and our understanding of how host genetics may influence the outcome of CMV infections.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff, United Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff, United Kingdom
| |
Collapse
|
134
|
Bedford JG, O’Keeffe M, Reading PC, Wakim LM. Rapid interferon independent expression of IFITM3 following T cell activation protects cells from influenza virus infection. PLoS One 2019; 14:e0210132. [PMID: 30650117 PMCID: PMC6334895 DOI: 10.1371/journal.pone.0210132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a potent antiviral protein that enhances cellular resistance to a variety of pathogens, including influenza virus. Classically defined as an interferon-stimulated gene, expression of IFITM3 on cells is rapidly up-regulated in response to type I and II interferon. Here we found that IFITM3 is rapidly up-regulated by T cells following their activation and this occurred independently of type I and II interferon and the interferon regulatory factors 3 and 7. Up-regulation of IFITM3 on effector T cells protected these cells from virus infection and imparted a survival advantage at sites of virus infection. Our results show that IFITM3 expression on effector T cells is crucial for these cells to mediate their effector function and highlights an interferon independent pathway for the induction of IFITM3 which, if targeted, could be an effective approach to harness the activity of IFITM3 for infection prevention.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Cells, Cultured
- Disease Models, Animal
- Dogs
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza, Human/immunology
- Influenza, Human/virology
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-7/genetics
- Interferons/metabolism
- Lymphocyte Activation/immunology
- Madin Darby Canine Kidney Cells
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Primary Cell Culture
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- James G. Bedford
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Meredith O’Keeffe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Patrick C. Reading
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
135
|
Spence JS, He R, Hoffmann HH, Das T, Thinon E, Rice CM, Peng T, Chandran K, Hang HC. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol 2019; 15:259-268. [PMID: 30643282 PMCID: PMC6466627 DOI: 10.1038/s41589-018-0213-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) have emerged as important innate immune effectors that prevent diverse virus infections in vertebrates. However, the cellular mechanisms and live-cell imaging of these small membrane proteins have been challenging to evaluate during viral entry of mammalian cells. Using CRISPR–Cas9-mediated IFITM-mutant cell lines, we demonstrate that human IFITM1, IFITM2 and IFITM3 act cooperatively and function in a dose-dependent fashion in interferon-stimulated cells. Through site-specific fluorophore tagging and live-cell imaging studies, we show that IFITM3 is on endocytic vesicles that fuse with incoming virus particles and enhances the trafficking of this pathogenic cargo to lysosomes. IFITM3 trafficking is specific to restricted viruses, requires S-palmitoylation and is abrogated with loss-of-function mutants. The site-specific protein labeling and live-cell imaging approaches described here should facilitate the functional analysis of host factors involved in pathogen restriction as well as their mechanisms of regulation. Live-cell imaging and virus trafficking studies show that the host innate immune receptor IFITM3 localizes with endocytic vesicles that fuse with incoming viruses to ultimately enhance their traffic to lysosomes.![]()
Collapse
Affiliation(s)
- Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruina He
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Thinon
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Tao Peng
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA. .,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
136
|
Wang H, Lou D, Wang Z. Crosstalk of Genetic Variants, Allele-Specific DNA Methylation, and Environmental Factors for Complex Disease Risk. Front Genet 2019; 9:695. [PMID: 30687383 PMCID: PMC6334214 DOI: 10.3389/fgene.2018.00695] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
Over the past decades, genome-wide association studies (GWAS) have identified thousands of phenotype-associated DNA sequence variants for potential explanations of inter-individual phenotypic differences and disease susceptibility. However, it remains a challenge for translating the associations into causative mechanisms for complex diseases, partially due to the involved variants in the noncoding regions and the inconvenience of functional studies in human population samples. So far, accumulating evidence has suggested a complex crosstalk among genetic variants, allele-specific binding of transcription factors (ABTF), and allele-specific DNA methylation patterns (ASM), as well as environmental factors for disease risk. This review aims to summarize the current studies regarding the interactions of the aforementioned factors with a focus on epigenetic insights. We present two scenarios of single nucleotide polymorphisms (SNPs) in coding regions and non-coding regions for disease risk, via potentially impacting epigenetic patterns. While a SNP in a coding region may confer disease risk via altering protein functions, a SNP in non-coding region may cause diseases, via SNP-altering ABTF, ASM, and allele-specific gene expression (ASE). The allelic increases or decreases of gene expression are key for disease risk during development. Such ASE can be achieved via either a "SNP-introduced ABTF to ASM" or a "SNP-introduced ASM to ABTF." Together with our additional in-depth review on insulator CTCF, we are convinced to propose a working model that the small effect of a SNP acts through altered ABTF and/or ASM, for ASE and eventual disease outcome (named as a "SNP intensifier" model). In summary, the significance of complex crosstalk among genetic factors, epigenetic patterns, and environmental factors requires further investigations for disease susceptibility.
Collapse
Affiliation(s)
- Huishan Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dan Lou
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Zhibin Wang
- Laboratory of Human Environmental Epigenome, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
137
|
Zhao X, Li J, Winkler CA, An P, Guo JT. IFITM Genes, Variants, and Their Roles in the Control and Pathogenesis of Viral Infections. Front Microbiol 2019; 9:3228. [PMID: 30687247 PMCID: PMC6338058 DOI: 10.3389/fmicb.2018.03228] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of small proteins that localize in the plasma and endolysosomal membranes. IFITMs not only inhibit viral entry into host cells by interrupting the membrane fusion between viral envelope and cellular membranes, but also reduce the production of infectious virions or infectivity of progeny virions. Not surprisingly, some viruses can evade the restriction of IFITMs and even hijack the antiviral proteins to facilitate their infectious entry into host cells or promote the assembly of virions, presumably by modulating membrane fusion. Similar to many other host defense genes that evolve under the selective pressure of microorganism infection, IFITM genes evolved in an accelerated speed in vertebrates and many single-nucleotide polymorphisms (SNPs) have been identified in the human population, some of which have been associated with severity and prognosis of viral infection (e.g., influenza A virus). Here, we review the function and potential impact of genetic variation for IFITM restriction of viral infections. Continuing research efforts are required to decipher the molecular mechanism underlying the complicated interaction among IFITMs and viruses in an effort to determine their pathobiological roles in the context of viral infections in vivo.
Collapse
Affiliation(s)
- Xuesen Zhao
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Jiarui Li
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Cheryl A Winkler
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ping An
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States
| |
Collapse
|
138
|
Abstract
PURPOSE OF REVIEW Interferon-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that blocks fusion between virus and host membranes. Here, we provide an introduction to IFITM3 and the biochemical regulation underlying its antiviral activity. Further, we analyze and summarize the published literature examining phenotypes of IFITM3 knockout mice upon infections with viral pathogens and discuss the controversial association between single nucleotide polymorphisms (SNPs) in the human IFITM3 gene and severe virus infections. RECENT FINDINGS Recent publications show that IFITM3 knockout mice experience more severe pathologies than wild-type mice in diverse virus infections, including infections with influenza A virus, West Nile virus, Chikungunya virus, Venezuelan equine encephalitis virus, respiratory syncytial virus, and cytomegalovirus. Likewise, numerous studies of humans of Chinese ancestry have associated the IFITM3 SNP rs12252-C with severe influenza virus infections, though examinations of other populations, such as Europeans, in which this SNP is rare, have largely failed to identify an association with severe infections. A second SNP, rs34481144-A, found in the human IFITM3 promoter has also recently been reported to be a risk allele for severe influenza virus infections. SUMMARY There is significant evidence for a protective role of IFITM3 against virus infections in both mice and humans, though additional work is required to identify the range of pathogens restricted by IFITM3 and the mechanisms by which human SNPs affect IFITM3 levels or functionality.
Collapse
Affiliation(s)
- Ashley Zani
- Department of Microbial Infection and Immunity, Infectious, Diseases Institute, The Ohio State University, 460 W 12th Ave, Biomedical Research Tower 790, Columbus, OH 43210, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, Infectious, Diseases Institute, The Ohio State University, 460 W 12th Ave, Biomedical Research Tower 790, Columbus, OH 43210, USA
| |
Collapse
|
139
|
Liuyu T, Yu K, Ye L, Zhang Z, Zhang M, Ren Y, Cai Z, Zhu Q, Lin D, Zhong B. Induction of OTUD4 by viral infection promotes antiviral responses through deubiquitinating and stabilizing MAVS. Cell Res 2018; 29:67-79. [PMID: 30410068 DOI: 10.1038/s41422-018-0107-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022] Open
Abstract
The activity and stability of the adapter protein MAVS (also known as VISA, Cardif and IPS-1), which critically mediates cellular antiviral responses, are extensively regulated by ubiquitination. However, the process whereby MAVS is deubiquitinated is unclear. Here, we report that the ovarian tumor family deubiquitinase 4 (OTUD4) targets MAVS for deubiquitination. Viral infection leads to the IRF3/7-dependent upregulation of OTUD4 which interacts with MAVS to remove K48-linked polyubiquitin chains, thereby maintaining MAVS stability and promoting innate antiviral signaling. Knockout or knockdown of OTUD4 impairs RNA virus-triggered activation of IRF3 and NF-κB, expression of their downstream target genes, and potentiates VSV replication in vitro and in vivo. Consistently, Cre-ER Otud4fl/fl or Lyz2-Cre Otud4fl/fl mice produce decreased levels of type I interferons and proinflammatory cytokines and exhibit increased sensitivity to VSV infection compared to their control littermates. In addition, reconstitution of MAVS into OTUD4-deficient cells restores virus-induced expression of downstream genes and cellular antiviral responses. Together, our findings uncover an essential role of OTUD4 in virus-triggered signaling and contribute to the understanding of deubiquitination-mediated regulation of innate antiviral responses.
Collapse
Affiliation(s)
- Tianzi Liuyu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Keying Yu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Liya Ye
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhidong Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Man Zhang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yujie Ren
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zeng Cai
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhong
- College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
140
|
Abstract
Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits, and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic contributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge. Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mechanisms at GWAS loci-including multiple signals, multiple variants, and/or multiple genes-and the implications these complexities hold for experimental study design and interpretation of GWAS mechanisms.
Collapse
Affiliation(s)
- Maren E Cannon
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
141
|
Verhein KC, Vellers HL, Kleeberger SR. Inter-individual variation in health and disease associated with pulmonary infectious agents. Mamm Genome 2018; 29:38-47. [PMID: 29353387 PMCID: PMC5851710 DOI: 10.1007/s00335-018-9733-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Respiratory infectious diseases resulting from bacterial or viral pathogens such as Mycobacterium tuberculosis, Streptococcus pneumoniae, respiratory syncytial virus (RSV), or influenza, are major global public health concerns. Lower respiratory tract infections are leading causes of morbidity and mortality, only behind ischemic heart disease and stroke (GBD 2015 LRI Collaborators in Lancet Infect Dis 17(11):1133–1161, 2017). Developing countries are particularly impacted by these diseases. However, while many are infected with viruses such as RSV (> 90% of all individuals are infected by age 2), only sub-populations develop severe disease. Many factors may contribute to the inter-individual variation in response to respiratory infections, including gender, age, socioeconomic status, nutrition, and genetic background. Association studies with functional single nucleotide polymorphisms in biologically plausible gene candidates have been performed in human populations to provide insight to the molecular genetic contribution to pulmonary infections and disease severity. In vitro cell models and genome-wide association studies in animal models of genetic susceptibility to respiratory infections have also identified novel candidate susceptibility genes, some of which have also been found to contribute to disease susceptibility in human populations. Genetic background may also contribute to differential efficacy of vaccines against respiratory infections. Development of new genetic mouse models such as the collaborative cross and diversity outbred mice should provide additional insight to the mechanisms of genetic susceptibility to respiratory infections. Continued investigation of susceptibility factors should provide insight to novel strategies to prevent and treat disease that contributes to global morbidity and mortality attributed to respiratory infections.
Collapse
Affiliation(s)
- Kirsten C Verhein
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Building 101, Rm. D240, Research Triangle Park, NC, 27709, USA.
| | - Heather L Vellers
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Steven R Kleeberger
- Inflammation, Immunity, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
142
|
Abstract
Rapamycin and its derivatives are specific inhibitors of mammalian target of rapamycin (mTOR) kinase and, as a result, are well-established immunosuppressants and antitumorigenic agents. Additionally, this class of drug promotes gene delivery by facilitating lentiviral vector entry into cells, revealing its potential to improve gene therapy efforts. However, the precise mechanism was unknown. Here, we report that mTOR inhibitor treatment results in down-regulation of the IFN-induced transmembrane (IFITM) proteins. IFITM proteins, especially IFITM3, are potent inhibitors of virus-cell fusion and are broadly active against a range of pathogenic viruses. We found that the effect of rapamycin treatment on lentiviral transduction is diminished upon IFITM silencing or knockout in primary and transformed cells, and the extent of transduction enhancement depends on basal expression of IFITM proteins, with a major contribution from IFITM3. The effect of rapamycin treatment on IFITM3 manifests at the level of protein, but not mRNA, and is selective, as many other endosome-associated transmembrane proteins are unaffected. Rapamycin-mediated degradation of IFITM3 requires endosomal trafficking, ubiquitination, endosomal sorting complex required for transport (ESCRT) machinery, and lysosomal acidification. Since IFITM proteins exhibit broad antiviral activity, we show that mTOR inhibition also promotes infection by another IFITM-sensitive virus, Influenza A virus, but not infection by Sendai virus, which is IFITM-resistant. Our results identify the molecular basis by which mTOR inhibitors enhance virus entry into cells and reveal a previously unrecognized immunosuppressive feature of these clinically important drugs. In addition, this study uncovers a functional convergence between the mTOR pathway and IFITM proteins at endolysosomal membranes.
Collapse
|
143
|
Bhasin N, Alleyne D, Gray OA, Kupfer SS. Vitamin D Regulation of the Uridine Phosphorylase 1 Gene and Uridine-Induced DNA Damage in Colon in African Americans and European Americans. Gastroenterology 2018; 155:1192-1204.e9. [PMID: 29964038 PMCID: PMC6866230 DOI: 10.1053/j.gastro.2018.06.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS African Americans have the greatest colorectal cancer (CRC) burden in the United States; interethnic differences in protective effects of vitamin D might contribute to disparities. 1α,25(OH)2D3 vitamin D (the active form of vitamin D) induces transcription of the uridine phosphorylase gene (UPP1) in colon tissues of European Americans but to a lesser extent in colon tissues of African Americans. UPP1-knockout mice have increased intestinal concentrations of uridine and Deoxyuridine triphosphate (dUTP), have increased uridine-induced DNA damage, and develop colon tumors. We studied 1α,25(OH)2D3 regulation of UPP1 and uridine-induced DNA damage in the colon and differences in these processes between African and European Americans. METHODS We quantified expression and activity of UPP1 in response to 1α,25(OH)2D3 in young adult mouse colonic cells, human CRC cells (LS174T), and organoids (derived from rectosigmoid biopsy samples of healthy individuals undergoing colonoscopies) using quantitative polymerase chain reaction, immunoblot, and immunocytochemistry assays. Binding of the vitamin D receptor to UPP1 was tested by chromatin immunoprecipitation. Uridine-induced DNA damage was measured by fragment-length analysis in repair enzyme assays. Allele-specific 1α,25(OH)2D3 responses were tested using luciferase assays. RESULTS Vitamin D increased levels of UPP1 mRNA, protein, and enzymatic activity and increased vitamin D receptor binding to the UPP1 promoter in young adult mouse colonic cells, LS174T cells, and organoids. 1α,25(OH)2D3 significantly reduced levels of uridine and uridine-induced DNA damage in these cells, which required UPP1 expression. Organoids derived from colon tissues of African Americans expressed lower levels of UPP1 after exposure to 1α,25(OH)2D3 and had increased uridine-induced DNA damage compared with organoids derived from tissues of European Americans. Luciferase assays with the T allele of single nucleotide polymorphism rs28605337 near UPP1, which is found more frequently in African Americans than European Americans, expressed lower levels of UPP1 after exposure to 1α,25(OH)2D3 than assays without this variant. CONCLUSIONS We found vitamin D to increase expression of UPP1, leading to reduce uridine-induced DNA damage, in colon cells and organoids. A polymorphism in UPP1 found more frequently in African Americans than European Americans reduced UPP1 expression upon cell exposure to 1α,25(OH)2D3. Differences in expression of UPP1 in response to vitamin D could contribute to the increased risk of CRC in African Americans.
Collapse
Affiliation(s)
- Nobel Bhasin
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Dereck Alleyne
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Olivia A. Gray
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Sonia S. Kupfer
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
144
|
Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol 2018; 9:2147. [PMID: 30319615 PMCID: PMC6170629 DOI: 10.3389/fimmu.2018.02147] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can be caused by a broad range of pathogens; however, bacterial infections represent the majority of sepsis cases. Up to 42% of sepsis presentations are culture negative, suggesting a non-bacterial cause. Despite this, diagnosis of viral sepsis remains very rare. Almost any virus can cause sepsis in vulnerable patients (e.g., neonates, infants, and other immunosuppressed groups). The prevalence of viral sepsis is not known, nor is there enough information to make an accurate estimate. The initial standard of care for all cases of sepsis, even those that are subsequently proven to be culture negative, is the immediate use of broad-spectrum antibiotics. In the absence of definite diagnostic criteria for viral sepsis, or at least to exclude bacterial sepsis, this inevitably leads to unnecessary antimicrobial use, with associated consequences for antimicrobial resistance, effects on the host microbiome and excess healthcare costs. It is important to understand non-bacterial causes of sepsis so that inappropriate treatment can be minimised, and appropriate treatments can be developed to improve outcomes. In this review, we summarise what is known about viral sepsis, its most common causes, and how the immune responses to severe viral infections can contribute to sepsis. We also discuss strategies to improve our understanding of viral sepsis, and ways we can integrate this new information into effective treatment.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Joseph P McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Paediatrics, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
145
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
146
|
Jørgensen SE, Christiansen M, Ryø LB, Gad HH, Gjedsted J, Staeheli P, Mikkelsen JG, Storgaard M, Hartmann R, Mogensen TH. Defective RNA sensing by RIG-I in severe influenza virus infection. Clin Exp Immunol 2018; 192:366-376. [PMID: 29453856 PMCID: PMC5980616 DOI: 10.1111/cei.13120] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza virus infection causes worldwide seasonal epidemics. Although influenza is usually a mild disease, a minority of patients experience very severe fulminating disease courses. Previous studies have demonstrated a role for type I interferon (IFN) in anti-viral responses during influenza. So far, however, IFN regulatory factor (IRF)7 deficiency is the only genetic cause of severe influenza described in humans. In this study we present a patient with severe influenza A virus (IAV) H1N1 infection during the 2009 swine flu pandemic. By whole exome sequencing we identified two variants, p.R71H and p.P885S, located in the caspase activation and recruitment domain (CARD) and RNA binding domains, respectively, of DExD/H-box helicase 58 (DDX58) encoding the RNA sensor retinoic acid inducible gene 1 (RIG-I). These variants significantly impair the signalling activity of RIG-I. Similarly, patient cells demonstrate decreased antiviral responses to RIG-I ligands as well as increased proinflammatory responses to IAV, suggesting dysregulation of the innate immune response with increased immunopathology. We suggest that these RIG-I variants may have contributed to severe influenza in this patient and advocate that RIG-I variants should be sought in future studies of genetic factors influencing single-stranded RNA virus infections.
Collapse
Affiliation(s)
- S. E. Jørgensen
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - M. Christiansen
- Department of Clinical ImmunologyAarhus University HospitalAarhusDenmark
| | - L. B. Ryø
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - H. H. Gad
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - J. Gjedsted
- Department of Intensive CareAarhus University HospitalAarhusDenmark
| | - P. Staeheli
- Institute of VirologyMedical Center University of FreiburgBreisgauGermany
| | | | - M. Storgaard
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
| | - R. Hartmann
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - T. H. Mogensen
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
147
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, García-Sastre A. Influenza. Nat Rev Dis Primers 2018; 4:3. [PMID: 29955068 PMCID: PMC7097467 DOI: 10.1038/s41572-018-0002-y] [Citation(s) in RCA: 857] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
Collapse
Affiliation(s)
- Florian Krammer
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Gavin J. D. Smith
- 0000 0001 2180 6431grid.4280.eDuke–NUS Medical School, Singapore, Singapore ,0000 0004 1936 7961grid.26009.3dDuke Global Health Institute, Duke University, Durham, NC USA
| | - Ron A. M. Fouchier
- 000000040459992Xgrid.5645.2Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Malik Peiris
- 0000000121742757grid.194645.bWHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China ,0000000121742757grid.194645.bCenter of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Katherine Kedzierska
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Peter C. Doherty
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,0000 0001 0224 711Xgrid.240871.8Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Peter Palese
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDivision of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Megan L. Shaw
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Treanor
- 0000 0004 1936 9166grid.412750.5Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Robert G. Webster
- 0000 0001 0224 711Xgrid.240871.8Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
148
|
Wu X, Dao Thi VL, Huang Y, Billerbeck E, Saha D, Hoffmann HH, Wang Y, Silva LAV, Sarbanes S, Sun T, Andrus L, Yu Y, Quirk C, Li M, MacDonald MR, Schneider WM, An X, Rosenberg BR, Rice CM. Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell 2017; 172:423-438.e25. [PMID: 29249360 DOI: 10.1016/j.cell.2017.11.018] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/11/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022]
Abstract
Stem cells are highly resistant to viral infection compared to their differentiated progeny; however, the mechanism is mysterious. Here, we analyzed gene expression in mammalian stem cells and cells at various stages of differentiation. We find that, conserved across species, stem cells express a subset of genes previously classified as interferon (IFN) stimulated genes (ISGs) but that expression is intrinsic, as stem cells are refractory to interferon. This intrinsic ISG expression varies in a cell-type-specific manner, and many ISGs decrease upon differentiation, at which time cells become IFN responsive, allowing induction of a broad spectrum of ISGs by IFN signaling. Importantly, we show that intrinsically expressed ISGs protect stem cells against viral infection. We demonstrate the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection. These findings have intriguing implications for understanding stem cell biology and the evolution of pathogen resistance.
Collapse
Affiliation(s)
- Xianfang Wu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Viet Loan Dao Thi
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yumin Huang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; Department of Hematology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Eva Billerbeck
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Debjani Saha
- Program in Immunogenomics, The Rockefeller University, New York, NY 10065, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | | | - Stephanie Sarbanes
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Tony Sun
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Linda Andrus
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yingpu Yu
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Melody Li
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Brad R Rosenberg
- Program in Immunogenomics, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
149
|
Shi G, Schwartz O, Compton AA. More than meets the I: the diverse antiviral and cellular functions of interferon-induced transmembrane proteins. Retrovirology 2017; 14:53. [PMID: 29162141 PMCID: PMC5697417 DOI: 10.1186/s12977-017-0377-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/13/2017] [Indexed: 01/14/2023] Open
Abstract
The first responders of human antiviral immunity are components of the intrinsic immune response that reside within each and every one of our cells. This cell-autonomous arsenal consists of nucleic acid sensors and antiviral effectors strategically placed by evolution to detect and restrict invading viruses. While some factors are present at baseline to allow for constant surveillance of the cell interior, others are upregulated by cytokines (such as interferons) that signal a viral infection underway in neighboring cells. In this review, we highlight the multiple roles played by the interferon-induced transmembrane (IFITM) proteins during viral infection, with focuses on IFITM3 and HIV-1. Moreover, we discuss the cellular pathways in which IFITM proteins are intertwined and the various functions they have been ascribed outside the context of infection. While appreciated as broadly-acting, potent restriction factors that prevent virus infection and pathogenesis in cell culture and in vivo, questions remain regarding their precise mode of action and importance in certain viral contexts. Continued efforts to study IFITM protein function will further cement their status as critical host determinants of virus susceptibility and prioritize them in the development of new antiviral therapies.
Collapse
Affiliation(s)
- Guoli Shi
- Antiviral Immunity and Resistance Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Paris, France.,UMR CNRS 3569, Paris, France
| | - Alex A Compton
- Antiviral Immunity and Resistance Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
150
|
McMichael TM, Zhang L, Chemudupati M, Hach JC, Kenney AD, Hang HC, Yount JS. The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. J Biol Chem 2017; 292:21517-21526. [PMID: 29079573 DOI: 10.1074/jbc.m117.800482] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/23/2017] [Indexed: 01/21/2023] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a cellular endosome- and lysosome-localized protein that restricts numerous virus infections. IFITM3 is activated by palmitoylation, a lipid posttranslational modification. Palmitoylation of proteins is primarily mediated by zinc finger DHHC domain-containing palmitoyltransferases (ZDHHCs), but which members of this enzyme family can modify IFITM3 is not known. Here, we screened a library of human cell lines individually lacking ZDHHCs 1-24 and found that IFITM3 palmitoylation and its inhibition of influenza virus infection remained strong in the absence of any single ZDHHC, suggesting functional redundancy of these enzymes in the IFITM3-mediated antiviral response. In an overexpression screen with 23 mammalian ZDHHCs, we unexpectedly observed that more than half of the ZDHHCs were capable of increasing IFITM3 palmitoylation with ZDHHCs 3, 7, 15, and 20 having the greatest effect. Among these four enzymes, ZDHHC20 uniquely increased IFITM3 antiviral activity when both proteins were overexpressed. ZDHHC20 colocalized extensively with IFITM3 at lysosomes unlike ZDHHCs 3, 7, and 15, which showed a defined perinuclear localization pattern, suggesting that the location at which IFITM3 is palmitoylated may influence its activity. Unlike knock-out of individual ZDHHCs, siRNA-mediated knockdown of both ZDHHC3 and ZDHHC7 in ZDHHC20 knock-out cells decreased endogenous IFITM3 palmitoylation. Overall, our results demonstrate that multiple ZDHHCs can palmitoylate IFITM3 to ensure a robust antiviral response and that ZDHHC20 may serve as a particularly useful tool for understanding and enhancing IFITM3 activity.
Collapse
Affiliation(s)
- Temet M McMichael
- From the Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210 and
| | - Lizhi Zhang
- From the Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210 and
| | - Mahesh Chemudupati
- From the Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210 and
| | - Jocelyn C Hach
- From the Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210 and
| | - Adam D Kenney
- From the Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210 and
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065
| | - Jacob S Yount
- From the Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210 and
| |
Collapse
|