101
|
Ahn J, Ahn JH, Yoon S, Son MY, Cho S, Oh JH. Quantification of non-alcoholic fatty liver disease progression in 3D liver microtissues using impedance spectroscopy. Biomaterials 2020; 268:120599. [PMID: 33341736 DOI: 10.1016/j.biomaterials.2020.120599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a global pandemic. However, a pharmacological cure has not been approved for NAFLD treatment. The greatest barriers to the development of new treatments are the ambiguous criteria among the NAFLD stages and the lack of quantitative methodologies for its disease assessment in a translatable preclinical model. In this study, we developed impedance assessment systems to quantify NAFLD progression in three-dimensional (3D) liver microtissue (hMT). The hMT model undergoing NAFLD represents clinical-like characteristics for a range of stages, such as lipid accumulation, cell ballooning, and stiffening. Each stage can be quantitatively assessed by an impedance system with microchannels under constant or dynamic pressure, depending on the relevant mechanical and morphological changes used in the clinical assessment of NAFLD. We determined a correlation between the impedance parameters and pathophysiological characteristics, such as gap widening and cytoplasmic deformation associated with NAFLD progression using bioimpedance simulation, showing hMTs struggling to return to normal states. In addition, we identified the relative stiffness to assess fibrogenesis from the correlation of resistance change and elongation length into the smaller channel of hMTs. We hope this methodology will have a significant impact on drug development by facilitating improved NAFLD assessment.
Collapse
Affiliation(s)
- Jaehwan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea
| | - Jun-Ho Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea; Bio Medical Research Center, Bio Medical & Health Division, Korea Testing Laboratory (KTL), Seoul, 08389, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
102
|
The nuclear and cytoplasmic roles of miR-320 in non-alcoholic fatty liver disease. Aging (Albany NY) 2020; 12:22019-22045. [PMID: 33186123 DOI: 10.18632/aging.104040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/30/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder worldwide. Multiple metabolic disorders, such as hyperlipidemia, hyperglycemia, insulin resistance and obesity, have been reportedly associated with NAFLD, but little is known about the detailed mechanisms. METHODS AND RESULTS Here, we explored the effects of multiple metabolic disorders, especially hyperglycemia on lipid accumulation in liver using several well-established animal models. We found that liver lipid deposition was increased in both type 1 diabetes and high-fat diet (HFD) induced hyperlipidemia models, suggesting that either hyperglycemia or hyperlipidemia alone or together was able to trigger NAFLD. Moreover, we tested whether miR-320, a miRNA promoting lipid accumulation in heart revealed by our previous study, also participated in NAFLD. Though miR-320 treatment further increased liver lipid deposition in type 1 diabetes and HFD-feeding mice, it showed no effect in leptin-receptor deficient db/db mice. Interestingly, miR-320 affected different target genes in cytosol and nucleus, respectively, which collectively led to liver lipid overload. CONCLUSIONS Our findings illustrated the complex roles of miRNAs in subcellular fractions including nucleus and cytoplasm, which may lead to new insights into the mechanisms and treatment strategies for NAFLD in the future.
Collapse
|
103
|
Ling B, Lee J, Maresca D, Lee-Gosselin A, Malounda D, Swift MB, Shapiro MG. Biomolecular Ultrasound Imaging of Phagolysosomal Function. ACS NANO 2020; 14:12210-12221. [PMID: 32902951 PMCID: PMC7685203 DOI: 10.1021/acsnano.0c05912] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phagocytic clearance and lysosomal processing of pathogens and debris are essential functions of the innate immune system. However, the assessment of these functions in vivo is challenging because most nanoscale contrast agents compatible with noninvasive imaging techniques are made from nonbiodegradable synthetic materials that do not undergo regular lysosomal degradation. To overcome this challenge, we describe the use of an all-protein contrast agent to directly visualize and quantify phagocytic and lysosomal activities in vivo by ultrasound imaging. This contrast agent is based on gas vesicles (GVs), a class of air-filled protein nanostructures naturally expressed by buoyant microbes. Using a combination of ultrasound imaging, pharmacology, immunohistology, and live-cell optical microscopy, we show that after intravenous injection, GVs are cleared from circulation by liver-resident macrophages. Once internalized, the GVs undergo lysosomal degradation, resulting in the elimination of their ultrasound contrast. By noninvasively monitoring the temporal dynamics of GV-generated ultrasound signal in circulation and in the liver and fitting them with a pharmacokinetic model, we can quantify the rates of phagocytosis and lysosomal degradation in living animals. We demonstrate the utility of this method by showing how these rates are perturbed in two models of liver dysfunction: phagocyte deficiency and nonalcoholic fatty liver disease. The combination of proteolytically degradable nanoscale contrast agents and quantitative ultrasound imaging thus enables noninvasive functional imaging of cellular degradative processes.
Collapse
Affiliation(s)
- Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Justin Lee
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Margaret B. Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| |
Collapse
|
104
|
Lin YL, Li Y. Study on the hepatocellular carcinoma model with metastasis. Genes Dis 2020; 7:336-350. [PMID: 32884988 PMCID: PMC7452459 DOI: 10.1016/j.gendis.2019.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death around the world due to advanced clinical stage at diagnosis, high incidence of recurrence and metastasis after surgical treatment. It is in urgent need to create appropriate animal models to explore the mechanism, patterns, risk factors, and therapeutic strategies of HCC metastasis and recurrence. However, most of the established models lack the phenotype of invasion and metastasis in patient, or have unstable phenotype. To establish HCC models with stable metastasis phenotype requires profound understanding in cancer metastasis biology and scientific methodology. Over the past 3 decades, HCC models with stable metastasis have been extensively studied. This paper reviewed the history and development of HCC animal models and cell models, focusing on the screening and maintaining of metastatic potential and phenotype. In-depth studies using these models vastly promote the understanding of cellular and molecular mechanisms and development of therapeutic strategies on HCC metastasis.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
105
|
A Translational Mouse Model for NASH with Advanced Fibrosis and Atherosclerosis Expressing Key Pathways of Human Pathology. Cells 2020; 9:cells9092014. [PMID: 32883049 PMCID: PMC7565967 DOI: 10.3390/cells9092014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a fast-growing liver disorder that is associated with an increased incidence of cardiovascular disease and type 2 diabetes. Animal models adequately mimicking this condition are scarce. We herein investigate whether Ldlr−/−. Leiden mice on different high-fat diets represent a suitable NASH model. Ldlr−/−. Leiden mice were fed a healthy chow diet or fed a high-fat diet (HFD) containing lard or a fast food diet (FFD) containing milk fat. Additionally, the response to treatment with obeticholic acid (OCA) was evaluated. Both high-fat diets induced obesity, hyperlipidemia, hyperinsulinemia, and increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Mice on both diets developed progressive macro- and microvesicular steatosis, hepatic inflammation, and fibrosis, along with atherosclerosis. HFD induced more severe hyperinsulinemia, while FFD induced more severe hepatic inflammation with advanced (F3) bridging fibrosis, as well as more severe atherosclerosis. OCA treatment significantly reduced hepatic inflammation and fibrosis, and it did not affect atherosclerosis. Hepatic transcriptome analysis was compared with human NASH and illustrated similarity. The present study defines a translational model of NASH with progressive liver fibrosis and simultaneous atherosclerosis development. By adaptation of the fat content of the diet, either insulin resistance (HFD) or hepatic inflammation and fibrosis (FFD) can be aggravated.
Collapse
|
106
|
Shinozaki F, Kamei A, Watanabe Y, Yasuoka A, Shimada K, Kondo K, Arai S, Kondo T, Abe K. Propagule Powder of Japanese Yam (Dioscorea Japonica) Reduces High-Fat Diet-Induced Metabolic Stress in Mice through the Regulation of Hepatic Gene Expression. Mol Nutr Food Res 2020; 64:e2000284. [PMID: 32730687 DOI: 10.1002/mnfr.202000284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/13/2020] [Indexed: 11/06/2022]
Abstract
SCOPE Japanese yam propagules are supposed to have high potential as a functional food. However, there are almost no studies examining their physiological function. This study aims to elucidate the physiological function of Japanese yam propagules that are heated, freeze-dried, and powdered. METHODS AND RESULTS A high-fat diet with Japanese yam propagules is administered to mice for 4 weeks. High-fat loading induces a decline in respiratory quotient, and a high-fat diet with propagules reduces it more. This result suggests that propagules increase fat oxidation, indicating fat utilization. The hepatic transcriptome is analyzed using a DNA microarray. Some of the genes affected by high-fat loading are reversed by simultaneous ingestion of propagules. Such genes are mainly involved in the immune system and fat metabolism. High-fat loading induces hepatic inflammation, which is repressed by simultaneous ingestion of propagules. For lipid metabolism, propagules repress an increase in cholesterol biosynthesis and catabolism by high-fat loading. Regarding carbohydrate metabolism, propagules decrease glycolysis and glycogen synthesis and increase gluconeogenesis. Moreover, amino acids are converted into pyruvate and then used for gluconeogenesis. CONCLUSION Propagules act to delay the occurrence of hepatic disease by suppressing carbohydrate and fat metabolism disorders in high-fat loaded mice.
Collapse
Affiliation(s)
- Fumika Shinozaki
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Asuka Kamei
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yuki Watanabe
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Akihito Yasuoka
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kousuke Shimada
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Kaori Kondo
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,RIKEN, Tsurumi-ku, 1-7-22 Suehiro-cho, Yokohama, Kanagawa, 230-0045, Japan
| | - Soichi Arai
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,NODAI Research Institute, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Takashi Kondo
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,RIKEN, Tsurumi-ku, 1-7-22 Suehiro-cho, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Abe
- Group for Food functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science & Environment Research Center (LiSE) 4F C-4, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
107
|
Katoch S, Patial V. Zebrafish: An emerging model system to study liver diseases and related drug discovery. J Appl Toxicol 2020; 41:33-51. [PMID: 32656821 DOI: 10.1002/jat.4031] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The zebrafish has emerged as a powerful vertebrate model for studying liver-associated disorders. Liver damage is a crucial problem in the process of drug development and zebrafish have proven to be an important tool for the high-throughput screening of drugs for hepatotoxicity. Although the structure of the zebrafish liver differs to that of mammals, the fundamental physiologic processes, genetic mutations and manifestations of pathogenic responses to environmental insults exhibit much similarity. The larval transparency of the zebrafish is a great advantage for real-time imaging in hepatic studies. The zebrafish has a broad spectrum of cytochrome P450 enzymes, which enable the biotransformation of drugs via similar pathways as mammals, including oxidation, reduction and hydrolysis reactions. In the present review, we appraise the various drugs, chemicals and toxins used to study liver toxicity in zebrafish and their similarities to the rodent models for liver-related studies. Interestingly, the zebrafish has also been effectively used to study the pathophysiology of nonalcoholic and alcoholic fatty liver disease. The genetic models of liver disorders and their easy manipulation provide great opportunity in the area of drug development. The zebrafish has proven to be an influential model for the hepatic system due to its invertebrate-like advantages coupled with its vertebrate biology. The present review highlights the pivotal role of zebrafish in bridging the gap between cell-based and mammalian models.
Collapse
Affiliation(s)
- Swati Katoch
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
108
|
Zhang Y, Li F, Jiang X, Jiang X, Wang Y, Zhang H, Zhang L, Fan S, Xin L, Yang B, Ji G, Huang C. Sophoricoside is a selective LXRβ antagonist with potent therapeutic effects on hepatic steatosis of mice. Phytother Res 2020; 34:3168-3179. [PMID: 32592532 DOI: 10.1002/ptr.6747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by the accumulation of triglycerides and associated with obesity, hyperlipidemia and insulin resistance. Currently, there is no therapy for NAFLD. Emerging evidences suggest that the inhibition of liver X receptor (LXR) activity may be a potential therapy for hepatic steatosis. Here, we identified that sophoricoside is a selective antagonist of LXRβ. Sophoricoside protected against obesity and glucose tolerance, and inhibited lipid accumulation in the liver of high-fat diet-induced obesity (DIO) mice and methionine and choline-deficient diet-induced nonalcoholic steatohepatitis mice. Furthermore, sophoricoside inhibited malondialdehyde, and increased superoxide dismutase and glutathione in the liver of the mice. In HepG2 cells, pretreatment with sophoricoside rescued GSH concentration decrease induced by H2 O2 treatment. Our data suggest that sophoricoside is a novel LXRβ selective antagonist and may improve glucose and lipid dysfunction, and attenuate lipid accumulation in the liver of DIO mice via anti-oxidant properties, which may be developed as a therapy for NAFLD.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fei Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiqian Jiang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yahui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianjun Xin
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baican Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
109
|
Thayer TE, Lino Cardenas CL, Martyn T, Nicholson CJ, Traeger L, Wunderer F, Slocum C, Sigurslid H, Shakartzi HR, O'Rourke C, Shelton G, Buswell MD, Barnes H, Neitzel LR, Ledsky CD, Li JP, Burke MF, Farber-Eger E, Perrien DS, Kumar R, Corey KE, Wells QS, Bloch KD, Hong CC, Bloch DB, Malhotra R. The Role of Bone Morphogenetic Protein Signaling in Non-Alcoholic Fatty Liver Disease. Sci Rep 2020; 10:9831. [PMID: 32561790 PMCID: PMC7305229 DOI: 10.1038/s41598-020-66770-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects over 30% of adults in the United States. Bone morphogenetic protein (BMP) signaling is known to contribute to hepatic fibrosis, but the role of BMP signaling in the development of NAFLD is unclear. In this study, treatment with either of two BMP inhibitors reduced hepatic triglyceride content in diabetic (db/db) mice. BMP inhibitor-induced decrease in hepatic triglyceride levels was associated with decreased mRNA encoding Dgat2, an enzyme integral to triglyceride synthesis. Treatment of hepatoma cells with BMP2 induced DGAT2 expression and activity via intracellular SMAD signaling. In humans we identified a rare missense single nucleotide polymorphism in the BMP type 1 receptor ALK6 (rs34970181;R371Q) associated with a 2.1-fold increase in the prevalence of NAFLD. In vitro analyses revealed R371Q:ALK6 is a previously unknown constitutively active receptor. These data show that BMP signaling is an important determinant of NAFLD in a murine model and is associated with NAFLD in humans.
Collapse
Affiliation(s)
- Timothy E Thayer
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian L Lino Cardenas
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Trejeeve Martyn
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher J Nicholson
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Florian Wunderer
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Charles Slocum
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Haakon Sigurslid
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hannah R Shakartzi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Caitlin O'Rourke
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Georgia Shelton
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mary D Buswell
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hanna Barnes
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Leif R Neitzel
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Clara D Ledsky
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jason Pingcheng Li
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan F Burke
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric Farber-Eger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Daniel S Perrien
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Kathleen E Corey
- GI Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Quinn S Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kenneth D Bloch
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
110
|
Wang Q, Li D, Zhu J, Zhang M, Zhang H, Cao G, Zhu L, Shi Q, Hao J, Wen Q, Liu Z, Yang H, Yin Z. Perforin Acts as an Immune Regulator to Prevent the Progression of NAFLD. Front Immunol 2020; 11:846. [PMID: 32528465 PMCID: PMC7256195 DOI: 10.3389/fimmu.2020.00846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of cirrhosis and major risk factors for hepatocellular carcinoma and liver-related death. Despite substantial clinical and basic research, the pathogenesis of obesity-related NAFLD remains poorly understood. In this study, we show that perforin can act as an immune regulator to prevent the progression of NAFLD. Aged perforin-deficient (Prf−/−) mice have increased lipid accumulation in the liver compared to WT mice. With high-fat diet (HFD) challenge, Prf−/− mice have increased liver weight, more severe liver damage, and increased liver inflammation when compared with WT controls. Mechanistic studies revealed that perforin specifically regulates intrinsic IFN-γ production in CD4 T cells, not CD8 T cells. We found that CD4 T cell depletion reduces liver injury and ameliorates the inflammation and metabolic morbidities in Prf−/− mice. Furthermore, improved liver characteristics in HFD Prf−/− and IFN-γR−/− double knockout mice confirmed that IFN-γ is a key factor for mediating perforin regulation of NAFLD progression. Overall, our findings reveal the important regulatory role perforin plays in the progression of obesity-related NAFLD and highlight novel strategies for treating NAFLD.
Collapse
Affiliation(s)
- Qian Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Dehai Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Jing Zhu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Mingyue Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Guangchao Cao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Leqing Zhu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Qiping Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jianlei Hao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Qiong Wen
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Zonghua Liu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Hengwen Yang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
111
|
Fuchs CD, Krivanec S, Steinacher D, Mlitz V, Wahlström A, Stahlman M, Claudel T, Scharnagl H, Stojakovic T, Marschall H, Trauner M. Absence of Bsep/Abcb11 attenuates MCD diet-induced hepatic steatosis but aggravates inflammation in mice. Liver Int 2020; 40:1366-1377. [PMID: 32141703 PMCID: PMC7317533 DOI: 10.1111/liv.14423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bile acids (BAs) regulate hepatic lipid metabolism and inflammation. Bile salt export pump (BSEP) KO mice are metabolically preconditioned with a hydrophilic BA composition protecting them from cholestasis. We hypothesize that changes in hepatic BA profile and subsequent changes in BA signalling may critically determine the susceptibility to steatohepatitis. METHODS Wild-type (WT) and BSEP KO mice were challenged with methionine choline-deficient (MCD) diet to induce steatohepatitis. Serum biochemistry, lipid profiling as well as intestinal lipid absorption were assessed. Markers of inflammation, fibrosis, lipid and BA metabolism were analysed. Hepatic and faecal BA profile as well as serum levels of the BA synthesis intermediate 7-hydroxy-4-cholesten-3-one (C4) were also investigated. RESULTS Bile salt export pump KO MCD-fed mice developed less steatosis but more inflammation than WT mice. Intestinal neutral lipid levels were reduced in BSEP KO mice at baseline and under MCD conditions. Faecal non-esterified fatty acid concentrations at baseline and under MCD diet were markedly elevated in BSEP KO compared to WT mice. Serum liver enzymes and hepatic expression of inflammatory markers were increased in MCD-fed BSEP KO animals. PPARα protein levels were reduced in BSEP KO mice. Accordingly, PPARα downstream targets Fabp1 and Fatp5 were repressed, while NFκB subunits were increased in MCD-fed BSEP KO mice. Farnesoid X receptor (FXR) protein levels were reduced in MCD-fed BSEP KO vs WT mice. Hepatic BA profile revealed elevated levels of TβMCA, exerting FXR antagonistic action, while concentrations of TCA (FXR agonistic function) were reduced. CONCLUSION Presence of hydroxylated BAs result in increased faecal FA excretion and reduced hepatic lipid accumulation. This aggravates development of MCD diet-induced hepatitis potentially by decreasing FXR and PPARα signalling.
Collapse
Affiliation(s)
- Claudia D. Fuchs
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Sebastian Krivanec
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Daniel Steinacher
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Veronika Mlitz
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Annika Wahlström
- Department of Molecular and Clinical MedicineWallenberg LaboratoryInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcus Stahlman
- Department of Molecular and Clinical MedicineWallenberg LaboratoryInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Hanns‐Ulrich Marschall
- Department of Molecular and Clinical MedicineWallenberg LaboratoryInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
112
|
Li G, Zhang J, Jiang Q, Liu B, Xu K. CREBH knockout accelerates hepatic fibrosis in mouse models of diet-induced nonalcoholic fatty liver disease. Life Sci 2020; 254:117795. [PMID: 32417373 DOI: 10.1016/j.lfs.2020.117795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
AIMS The primary focus of this study was to explore the effects of cyclic AMP response element-binding protein H (CREBH) on the development of nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS CREBH knockout (KO) and wildtype (WT) mice were averagely divided into a methionine and choline-deficient (MCD) or high fat (HF) diet group and respective chow diet (CD) groups. Mice were sacrificed after 4-week treatment for MCD model and 24-week treatment for HF model. KEY FINDINGS Characteristics of nonalcoholic steatohepatitis-related liver fibrosis in KO-MCD/HF group were verified by hepatic histological analyses. Compared with WT-MCD/HF group, levels of plasma ALT and hepatic hydroxyproline increased in KO-MCD/HF group. Significantly higher levels of MCP-1, αSMA, Desmin, COL-1, TIMP-1, TGF-β1, TGF-β2 were found while MMP-9 and FGF21 mRNA levels decreased in KO-MCD/HF group. There was also a distinct difference of mRNA levels of TNFα, CTGF and CCND1 in KO-HF group compared with controls. Protein levels of MCP-1, BAX, αSMA, COL-1, TGF-β1 and SMAD2/3 significantly increased in KO-MCD/HF group and CCND1 was also upregulated in KO-HF group compared to their counterparts. SIGNIFICANCE CREBH knockout may primarily regulate the TGF-β1 signaling pathway via TGF-β2 and FGF21 resulting in more severe inflammation and fibrosis in NAFLD.
Collapse
Affiliation(s)
- Guixin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junli Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Beibei Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
113
|
Lonardo A, Suzuki A. Sexual Dimorphism of NAFLD in Adults. Focus on Clinical Aspects and Implications for Practice and Translational Research. J Clin Med 2020; 9:jcm9051278. [PMID: 32354182 PMCID: PMC7288212 DOI: 10.3390/jcm9051278] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) embraces the clinico-pathological consequences of hepatic lipotoxicity and is a major public health problem globally. Sexual dimorphism is a definite feature of most human diseases but, under this aspect, NAFLD lags behind other medical fields. Here, we aim at summarizing and critically discussing the most prominent sex differences and gaps in NAFLD in humans, with emphasis on those aspects which are relevant for clinical practice and translational research. Sexual dimorphism of NAFLD is covered with references to the following areas: disease prevalence and risk factors, pathophysiology, comorbidities, natural course and complications. Finally, we also discuss selected gender differences and whether sex-specific lifestyle changes should be adopted to contrast NAFLD in men and women.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Operating Unit Metabolic Syndrome, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, 41126 Baggiovara MO, Italy
- Correspondence:
| | - Ayako Suzuki
- Division of Gastroenterology, Durham VA Medical Center and Duke University Medical Center, Durham, NC 27705, USA;
| |
Collapse
|
114
|
Régnier M, Polizzi A, Smati S, Lukowicz C, Fougerat A, Lippi Y, Fouché E, Lasserre F, Naylies C, Bétoulières C, Barquissau V, Mouisel E, Bertrand-Michel J, Batut A, Saati TA, Canlet C, Tremblay-Franco M, Ellero-Simatos S, Langin D, Postic C, Wahli W, Loiseau N, Guillou H, Montagner A. Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Sci Rep 2020; 10:6489. [PMID: 32300166 PMCID: PMC7162950 DOI: 10.1038/s41598-020-63579-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/30/2020] [Indexed: 01/13/2023] Open
Abstract
Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα- deficient mice (Pparα−/−) and in mice lacking Pparα only in hepatocytes (Pparαhep−/−). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Marion Régnier
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Arnaud Polizzi
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Sarra Smati
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Céline Lukowicz
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Anne Fougerat
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Yannick Lippi
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Edwin Fouché
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Frédéric Lasserre
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Claire Naylies
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Colette Bétoulières
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Valentin Barquissau
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Justine Bertrand-Michel
- Metatoul-Lipidomic Facility, MetaboHUB, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Aurélie Batut
- Metatoul-Lipidomic Facility, MetaboHUB, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Talal Al Saati
- Service d'Histopathologie Expérimentale Unité INSERM/UPS/ENVT-US006/CREFRE Inserm, CHU Purpan, 31024, Toulouse, cedex 3, France
| | - Cécile Canlet
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France.,Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France
| | - Catherine Postic
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France
| | - Walter Wahli
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France.,Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang, Singapore.,Center for Integrative Genomics, Université de Lausanne, Le Génopode, Lausanne, Switzerland
| | - Nicolas Loiseau
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France
| | - Hervé Guillou
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France.
| | - Alexandra Montagner
- Toxalim, INRAE UMR 1331, ENVT, INP-Purpan, University of Toulouse, Paul Sabatier University, F-31027, Toulouse, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1048, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, Paul Sabatier University, Toulouse, France.
| |
Collapse
|
115
|
Eudy BJ, McDermott CE, Fernandez G, Mathews CE, Lai J, da Silva RP. Disruption of hepatic one-carbon metabolism impairs mitochondrial function and enhances macrophage activity in methionine-choline-deficient mice. J Nutr Biochem 2020; 81:108381. [PMID: 32422424 DOI: 10.1016/j.jnutbio.2020.108381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/24/2020] [Accepted: 03/13/2020] [Indexed: 02/05/2023]
Abstract
One-carbon metabolism is a collection of metabolic cycles that supports methylation and provides one-carbon bound folates for the de novo synthesis of purine and thymidine nucleotides. The methylation of phosphatidylethanolamine to form choline has been extensively studied in the context of fatty liver disease. However, the role of one-carbon metabolism in supporting nucleotide synthesis during liver damage has not been addressed. The objective of this study is to determine how the disruption of one-carbon metabolism influences nucleotide metabolism in the liver after dietary methionine and choline restriction. Mice (n=8) were fed a methionine-choline-deficient or control diet for 3 weeks. We treated mice with the compound alloxazine (0.5 mg/kg), a known adenosine receptor antagonist, every second day during the final week of feeding to probe the function of adenosine signaling during liver damage. We found that concentrations of several hepatic nucleotides were significantly lower in methionine- and choline-deficient mice vs. controls (adenine: 13.9±0.7 vs. 10.1±0.6, guanine: 1.8±0.1 vs. 1.4±0.1, thymidine: 0.0122±0.0027 vs. 0.0059±0.0027 nmol/mg dry tissue). Treatment of alloxazine caused a specific decrease in thymidine nucleotides, decrease in mitochondrial content in the liver and exacerbation of steatohepatitis as shown by the increased hepatic lipid content and altered macrophage morphology. This study demonstrates a role for one-carbon metabolism in supporting de novo nucleotide synthesis and mitochondrial function during liver damage.
Collapse
Affiliation(s)
- Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| | - Caitlin E McDermott
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| | - Gabriel Fernandez
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL.
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL.
| | - Jinping Lai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL; Department of Pathology and Laboratory Medicine, Kaiser Permanente, Sacramento, CA.
| | - Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL.
| |
Collapse
|
116
|
Faheem SA, Saeed NM, El-Naga RN, Ayoub IM, Azab SS. Hepatoprotective Effect of Cranberry Nutraceutical Extract in Non-alcoholic Fatty Liver Model in Rats: Impact on Insulin Resistance and Nrf-2 Expression. Front Pharmacol 2020; 11:218. [PMID: 32256346 PMCID: PMC7093716 DOI: 10.3389/fphar.2020.00218] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a pathological accumulation of triglycerides (TGs) in the hepatocyte in the absence of alcohol intake. Untreated NAFLD is expected to progress into liver fibrosis. Cranberry is rich in polyphenols with antioxidant and anti-inflammatory activities. Hypothesis The present study was performed to evaluate our hypothesis of the possible anti-fibrotic effect of cranberry nutraceuticals in a high fat cholesterol diet induced (HFCD)-NAFLD in rats, focusing on improving insulin sensitivity and modulating the expression of nuclear factor erythroid-2-related factor-2 (Nrf2) (a transcription factor responsible for regulating cellular redox balance). Method Male albino wistar rats (12 weeks) received HFCD and/or cranberry (50 and 100 mg/kg/day, three times/week) orally for 8 consecutive weeks. Results In comparison to the HFCD group, cranberry treated groups (50 and 100 mg/kg) showed marked hepatoprotection, where it significantly decreased liver enzymes (alanine transaminases by 49 and 64% and aspartate transaminases by 45 and 64%; respectively), TGs, and ameliorated the histopathological alterations (such as inflammatory cells infiltration and ballooning degeneration) induced by HFCD. Cranberry also alleviated oxidative stress (malondialdehyde, glutathione, catalase and superoxide dismutase) and inflammation (tumor necrosis factor- alpha, interleukine-6 and nuclear factor kappa-b) and significantly reduced the HOMA-IR and TyG index. On the other hand, cranberry treated groups (50 and 100 mg/kg) showed a marked increase in the expression of adiponectin, by 8 and 13-fold, insulin receptor substrate-2 by 21 and 79%, and Nrf2 by 13 and 61%, respectively. Notably, cranberry significantly reduced the fibrotic markers, TGF–β and α-SMA expression and collagen deposition. Conclusion The present study showed that cranberry significantly attenuated NAFLD, in a dose dependent manner, which could be partially recognized by its antioxidant, anti-inflammatory activities, and its ability to improve insulin sensitivity. Notably, our study proves for the first time that the anti-fibrotic activity of cranberry is promising.
Collapse
Affiliation(s)
- Safaa A Faheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
117
|
L-carnitine supplementation attenuates NAFLD progression and cardiac dysfunction in a mouse model fed with methionine and choline-deficient diet. Dig Liver Dis 2020; 52:314-323. [PMID: 31607566 DOI: 10.1016/j.dld.2019.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disorder. NAFLD, associated lipotoxicity, fibrosis, oxidative stress, and altered mitochondrial metabolism, is responsible for systemic inflammation, which contributes to organ dysfunction in extrahepatic tissues, including the heart. We investigated the ability of L-carnitine (LC) to oppose the pathogenic mechanisms underlying NAFLD progression and associated heart dysfunction, in a mouse model of methionine-choline-deficient diet (MCDD). Mice were divided into three groups: namely, the control group (CONTR) fed with a regular diet and two groups fed with MCDD for 6 weeks. In the last 3 weeks, one of the MCDD groups received LC (200 mg/kg each day) through drinking water (MCDD + LC). The hepatic lipid accumulation and oxidative stress decreased after LC supplementation, which also reduced hepatic fibrosis via modulation of α-smooth muscle actin (αSMA), peroxisome-activated receptor gamma (PPARγ), and nuclear factor kappa B (NfƙB) expression. LC ameliorated systemic inflammation, mitigated cardiac reactive oxygen species (ROS) production, and prevented fibrosis progression by acting on signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated kinase 1-2 (ERK1-2), and αSMA. This study confirms the existence of a relationship between fatty liver disease and cardiac abnormalities and highlights the role of LC in controlling liver oxidative stress, steatosis, fibrosis, and NAFLD-associated cardiac dysfunction.
Collapse
|
118
|
Jung YJ, Kim HK, Cho Y, Choi JS, Woo CH, Lee KS, Sul JH, Lee CM, Han J, Park JH, Jo DG, Cho YW. Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. SCIENCE ADVANCES 2020; 6:eaay6721. [PMID: 32232152 PMCID: PMC7096171 DOI: 10.1126/sciadv.aay6721] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/03/2020] [Indexed: 05/18/2023]
Abstract
Stem cell-derived extracellular vesicles (EVs) offer alternative approaches to stem cell-based therapy for regenerative medicine. In this study, stem cell EVs derived during differentiation are developed to use as cell-free therapeutic systems by inducing tissue-specific differentiation. EVs are isolated from human adipose-derived stem cells (HASCs) during white and beige adipogenic differentiation (D-EV and BD-EV, respectively) via tangential flow filtration. D-EV and BD-EV can successfully differentiate HASCs into white and beige adipocytes, respectively. D-EV are transplanted with collagen/methylcellulose hydrogels on the backs of BALB/c mice, and they produce numerous lipid droplets in injected sites. Treatments of BD-EV attenuate diet-induced obesity through browning of adipose tissue in mice. Furthermore, high-fat diet-induced hepatic steatosis and glucose tolerance are improved by BD-EV treatment. miRNAs are responsible for the observed effects of BD-EV. These results reveal that secreted EVs during stem cell differentiation into white adipocytes or beige adipocytes can promote cell reprogramming.
Collapse
Affiliation(s)
- Youn Jae Jung
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
- ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Hark Kyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Suk Choi
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
- ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Chang Hee Woo
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
- ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Kyoung Soo Lee
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
| | - Jae Hoon Sul
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Mi Lee
- ExoStemTech Inc., Ansan 15588, Republic of Korea
| | - Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- ExoStemTech Inc., Ansan 15588, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Gyu Jo
- ExoStemTech Inc., Ansan 15588, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Corresponding author. (D.-G.J.); (Y.W.C.)
| | - Yong Woo Cho
- Department of Materials Science and Chemical Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
- ExoStemTech Inc., Ansan 15588, Republic of Korea
- Corresponding author. (D.-G.J.); (Y.W.C.)
| |
Collapse
|
119
|
Lequoy M, Gigante E, Couty JP, Desbois-Mouthon C. Hepatocellular carcinoma in the context of non-alcoholic steatohepatitis (NASH): recent advances in the pathogenic mechanisms. Horm Mol Biol Clin Investig 2020; 41:/j/hmbci.ahead-of-print/hmbci-2019-0044/hmbci-2019-0044.xml. [PMID: 32112699 DOI: 10.1515/hmbci-2019-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. HCC is particularly aggressive and is one of the leading causes of cancer mortality. In recent decades, the epidemiological landscape of HCC has undergone significant changes. While chronic viral hepatitis and excessive alcohol consumption have long been identified as the main risk factors for HCC, non-alcoholic steatohepatitis (NASH), paralleling the worldwide epidemic of obesity and type 2 diabetes, has become a growing cause of HCC in the US and Europe. Here, we review the recent advances in epidemiological, genetic, epigenetic and pathogenic mechanisms as well as experimental mouse models that have improved the understanding of NASH progression toward HCC. We also discuss the clinical management of patients with NASH-related HCC and possible therapeutic approaches.
Collapse
Affiliation(s)
- Marie Lequoy
- Service d'Hépato-Gastro-Entérologie, AP-HP, F-75012 Paris, France
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Elia Gigante
- Service d'Hépato-Gastro-Entérologie, AP-HP, F-75012 Paris, France
| | - Jean-Pierre Couty
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France
| | - Christèle Desbois-Mouthon
- Centre de Recherche des Cordeliers, INSERM UMR_S1138, 15 rue de l'école de médecine, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France
| |
Collapse
|
120
|
Shen SH, Zhong TY, Peng C, Fang J, Lv B. Structural modulation of gut microbiota during alleviation of non-alcoholic fatty liver disease with Gynostemma pentaphyllum in rats. BMC Complement Med Ther 2020; 20:34. [PMID: 32024509 PMCID: PMC7076883 DOI: 10.1186/s12906-020-2835-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background The current work aimed to assess whether Gynostemma pentaphyllum (GP), a Chinese herbal medicine, structurally modifies the gut microbiota in rats during non-alcoholic fatty liver disease (NAFLD) treatment. Methods High-fat diet (HFD)-induced NAFLD rats were orally administered water decoction of GP or equal amounts of distilled water per day for 4 weeks. Liver tissues were examined by histopathological observation, while intestinal tissues were examined by both histopathological and ultrastructural observations. The levels of fasting blood glucose (FBG), fasting serum insulin (FINS), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT) and aspartate transaminase (AST) were measured by enzymatic method. The levels of toll-like receptor 4 (TLR-4), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and interleukin-6 (IL-6) in both serum and hepatic tissues were measured by RT-qPCR. The protein expression level of TLR-4 in hepatic tissues was detected by western blot. The gut microbiota was assessed by 16S rRNA-based microbiota analysis. Results GP maintained intestinal integrity and reversed gut dysbiosis in high-fat diet (HFD)-induced NAFLD rats. This also reduced the ratio of Firmicutes to Bacteroidetes, enriching the abundance of beneficial bacteria (Lactococcus spp.) and inhibiting the abundance of pathogenic bacteria (Ruminococcus spp.) in the gut. The levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and the expression of TLR4 were downregulated (P < 0.05), while the insulin resistance index, HOMA-IR showed improvement by GP treatment (P < 0.05). Liver function indicators (ALT and AST) were remarkably decreased (P < 0.01). Besides, GP treatment reduced TG and LDL-C levels (P < 0.05), and increased HDL-C level (P < 0.05) compared with NAFLD group. Conclusion The structural alterations of gut microbiota induced by GP are associated with NAFLD alleviation.
Collapse
Affiliation(s)
- Shu-Hua Shen
- Department of Healthcare Management, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Ting-Yan Zhong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cui Peng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Fang
- Laboratory Animal Centre, Zhejiang Academy of Medical Science, Hangzhou, 310000, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Zhejiang, 310006, Hangzhou, China.
| |
Collapse
|
121
|
Zhang QS, Tian FW, Zhao JX, Zhang H, Zhai QX, Chen W. The influence of dietary patterns on gut microbiome and its consequences for nonalcoholic fatty liver disease. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
122
|
Zhou Z, Fang J, Cristea A, Lin YH, Tsai YW, Wan YL, Yeow KM, Ho MC, Tsui PH. Value of homodyned K distribution in ultrasound parametric imaging of hepatic steatosis: An animal study. ULTRASONICS 2020; 101:106001. [PMID: 31505328 DOI: 10.1016/j.ultras.2019.106001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound is the first-line tool for screening hepatic steatosis. Statistical distributions can be used to model the backscattered signals for liver characterization. The Nakagami distribution is the most frequently adopted model; however, the homodyned K (HK) distribution has received attention due to its link to physical meaning and improved parameter estimation through X- and U-statistics (termed "XU"). To assess hepatic steatosis, we proposed HK parametric imaging based on the α parameter (a measure of the number of scatterers per resolution cell) calculated using the XU estimator. Using a commercial system equipped with a 7-MHz linear array transducer, phantom experiments were performed to suggest an appropriate window size for α imaging using the sliding window technique, which was further applied to measuring the livers of rats (n = 66) with hepatic steatosis induced by feeding the rats a methionine- and choline-deficient diet. The relationships between the α parameter, the stage of hepatic steatosis, and histological features were verified by the correlation coefficient r, one-way analysis of variance, and regression analysis. The phantom results showed that the window side length corresponding to five times the pulse length supported a reliable α imaging. The α parameter showed a promising performance for grading hepatic steatosis (p < 0.05; r2 = 0.68). Compared with conventional Nakagami imaging, α parametric imaging provided significant information associated with fat droplet size (p < 0.05; r2 = 0.53), enabling further analysis and evaluation of severe hepatic steatosis.
Collapse
Affiliation(s)
- Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jui Fang
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Anca Cristea
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ying-Hsiu Lin
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Wei Tsai
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Liang Wan
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kee-Min Yeow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
123
|
Gore E, Bigaeva E, Oldenburger A, Jansen YJM, Schuppan D, Boersema M, Rippmann JF, Broermann A, Olinga P. Investigating fibrosis and inflammation in an ex vivo NASH murine model. Am J Physiol Gastrointest Liver Physiol 2020; 318:G336-G351. [PMID: 31905025 DOI: 10.1152/ajpgi.00209.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease, characterized by excess fat accumulation (steatosis). Nonalcoholic steatohepatitis (NASH) develops in 15-20% of NAFLD patients and frequently progresses to liver fibrosis and cirrhosis. We aimed to develop an ex vivo model of inflammation and fibrosis in steatotic murine precision-cut liver slices (PCLS). NASH was induced in C57Bl/6 mice on an amylin and choline-deficient l-amino acid-defined (CDAA) diet. PCLS were prepared from steatohepatitic (sPCLS) and control (cPCLS) livers and cultured for 48 h with LPS, TGFβ1, or elafibranor. Additionally, C57Bl/6 mice were placed on CDAA diet for 12 wk to receive elafibranor or vehicle from weeks 7 to 12. Effects were assessed by transcriptome analysis and procollagen Iα1 protein production. The diets induced features of human NASH. Upon culture, all PCLS showed an increased gene expression of fibrosis- and inflammation-related markers but decreased lipid metabolism markers. LPS and TGFβ1 affected sPCLS more pronouncedly than cPCLS. TGFβ1 increased procollagen Iα1 solely in cPCLS. Elafibranor ameliorated fibrosis and inflammation in vivo but not ex vivo, where it only increased the expression of genes modulated by PPARα. sPCLS culture induced inflammation-, fibrosis-, and lipid metabolism-related transcripts, explained by spontaneous activation. sPCLS remained responsive to proinflammatory and profibrotic stimuli on gene expression. We consider that PCLS represent a useful tool to reproducibly study NASH progression. sPCLS can be used to evaluate potential treatments for NASH, as demonstrated in our elafibranor study, and serves as a model to bridge results from rodent studies to the human system.NEW & NOTEWORTHY This study showed that nonalcoholic steatohepatitis can be studied ex vivo in precision-cut liver slices obtained from murine diet-induced fatty livers. Liver slices develop a spontaneous inflammatory and fibrogenic response during culture that can be augmented with specific modulators. Additionally, the model can be used to test the efficacy of pharmaceutical compounds (as shown in this investigation with elafibranor) and could be a tool for preclinical assessment of potential therapies.
Collapse
Affiliation(s)
- Emilia Gore
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Emilia Bigaeva
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Anouk Oldenburger
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Yvette J M Jansen
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Miriam Boersema
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Jörg F Rippmann
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Andre Broermann
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany
| | - Peter Olinga
- Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
124
|
Nguyen P, Valanejad L, Cast A, Wright M, Garcia JM, El-Serag HB, Karns R, Timchenko NA. Elimination of Age-Associated Hepatic Steatosis and Correction of Aging Phenotype by Inhibition of cdk4-C/EBPα-p300 Axis. Cell Rep 2020; 24:1597-1609. [PMID: 30089269 PMCID: PMC8209958 DOI: 10.1016/j.celrep.2018.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/13/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The aging liver is affected by several disorders, including steatosis, that can lead to a decline of liver functions. Here, we present evidence that the cdk4-C/EBPα-p300 axis is a critical regulator of age-associated disorders, including steatosis. We found that patients with non-alcoholic fatty liver disease (NAFLD) have increased levels of cdk4 and that cdk4-resistant C/EBPα-S193A mice do not develop hepatic steatosis with advancing age. Underlying mechanisms include a block in C/EBPα activation and subsequent failure in activation of enzymes involved in the development of NAFLD. Inhibition of cdk4 in aged wild-type (WT) mice by a specific cdk4 inhibitor, PD-0332991, reduces C/EBPα-p300 complexes and eliminates hepatic steatosis. Moreover, the inhibition of cdk4 in aged mice reverses many age-related disorders. Mechanisms of correction include elimination of cellular senescence and alterations in the chromatin structure of hepatocytes. Thus, the inhibition of cdk4 might be considered as a therapeutic approach to correct age-associated liver disorders. Nguyen et al. show that nuclear elevation of cdk4 leads to age-associated disorders, such as hepatic steatosis, and to age-dependent decline of liver functions and morphology. Elevation of cdk4 changes multiple molecular aspects of liver biology. Inhibition of cdk4 in old mice eliminates hepatic steatosis and corrects age-associated liver disorders.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Leila Valanejad
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ashley Cast
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Mary Wright
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jose M Garcia
- GRECC, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98108, USA
| | - Hashem B El-Serag
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA; Section of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nikolai A Timchenko
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
125
|
Yan T, Yan N, Wang P, Xia Y, Hao H, Wang G, Gonzalez FJ. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm Sin B 2020; 10:3-18. [PMID: 31993304 PMCID: PMC6977016 DOI: 10.1016/j.apsb.2019.11.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Few medications are available for meeting the increasing disease burden of nonalcoholic fatty liver disease (NAFLD) and its progressive stage, nonalcoholic steatohepatitis (NASH). Traditional herbal medicines (THM) have been used for centuries to treat indigenous people with various symptoms but without clarified modern-defined disease types and mechanisms. In modern times, NAFLD was defined as a common chronic disease leading to more studies to understand NAFLD/NASH pathology and progression. THM have garnered increased attention for providing therapeutic candidates for treating NAFLD. In this review, a new model called “multiple organs-multiple hits” is proposed to explain mechanisms of NASH progression. Against this proposed model, the effects and mechanisms of the frequently-studied THM-yielded single anti-NAFLD drug candidates and multiple herb medicines are reviewed, among which silymarin and berberine are already under U.S. FDA-sanctioned phase 4 clinical studies. Furthermore, experimental designs for anti-NAFLD drug discovery from THM in treating NAFLD are discussed. The opportunities and challenges of reverse pharmacology and reverse pharmacokinetic concepts-guided strategies for THM modernization and its global recognition to treat NAFLD are highlighted. Increasing mechanistic evidence is being generated to support the beneficial role of THM in treating NAFLD and anti-NAFLD drug discovery.
Collapse
Affiliation(s)
- Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| | - Nana Yan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| |
Collapse
|
126
|
Toyoda Y, Takada T, Yamanashi Y, Suzuki H. Pathophysiological importance of bile cholesterol reabsorption: hepatic NPC1L1-exacerbated steatosis and decreasing VLDL-TG secretion in mice fed a high-fat diet. Lipids Health Dis 2019; 18:234. [PMID: 31883528 PMCID: PMC6935138 DOI: 10.1186/s12944-019-1179-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide, although its pathogenesis remains to be elucidated. A recent study revealed that hepatic Niemann-Pick C1-Like 1 (NPC1L1), a cholesterol re-absorber from bile to the liver expressed on the bile canalicular membrane, is an exacerbation factor of NAFLD. Indeed, transgenic mice with hepatic expression of human NPC1L1 under a liver-specific promoter (L1-Tg mice) developed steatosis with a high-fat diet (HFD) containing cholesterol within a few weeks. However, the mechanism underlying diet-induced hepatic NPC1L1-mediated lipid accumulation is poorly defined. METHODS To achieve a deeper understanding of steatosis development in L1-Tg mice, the biochemical features of hepatic NPC1L1-mediated steatosis were investigated. Hemizygous L1-Tg mice and wild-type littermate controls fed a HFD or control-fat diet were used. At the indicated time points, the livers were evaluated for cholesterol and triglyceride (TG) contents as well as mRNA levels of hepatic genes involved in the maintenance of lipid homeostasis. The hepatic ability to secrete very low-density lipoprotein (VLDL)-TG was also investigated. RESULTS Unlike the livers of wild-type mice that have little expression of hepatic Npc1l1, the livers of L1-Tg mice displayed time-dependent changes that indicated steatosis formation. In steatosis, there were three different stages of development: mild accumulation of hepatic cholesterol and TG (early stage), acceleration of hepatic TG accumulation (middle stage), and further accumulation of hepatic cholesterol (late stage). In the early stage, between WT and L1-Tg mice fed a HFD for 2 weeks, there were no significant differences in the hepatic expression of Pparα, Acox1, Fat/Cd36, Srebf1, and Srebf2; however, the hepatic ability to secrete VLDL-TG decreased in L1-Tg mice (P < 0.05). Furthermore, this decrease was completely prevented by administration of ezetimibe, an NPC1L1-selective inhibitor. CONCLUSION Hepatic NPC1L1 exacerbates diet-induced steatosis, which was accompanied by decreased hepatic ability of VLDL-TG secretion. The obtained results provide a deeper understanding of L1-Tg mice as a promising NAFLD animal model that is able to re-absorb biliary-secreted cholesterol similar to humans. Furthermore, this work supports further studies of the pathophysiological impact of re-absorbed biliary cholesterol on the regulation of hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
127
|
Heinemann F, Birk G, Stierstorfer B. Deep learning enables pathologist-like scoring of NASH models. Sci Rep 2019; 9:18454. [PMID: 31804575 PMCID: PMC6895116 DOI: 10.1038/s41598-019-54904-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and the progressive form of non-alcoholic steatohepatitis (NASH) are diseases of major importance with a high unmet medical need. Efficacy studies on novel compounds to treat NAFLD/NASH using disease models are frequently evaluated using established histological feature scores on ballooning, inflammation, steatosis and fibrosis. These features are assessed by a trained pathologist using microscopy and assigned discrete scores. We demonstrate how to automate these scores with convolutional neural networks (CNNs). Whole slide images of stained liver sections are analyzed using two different scales with four CNNs, each specialized for one of four histopathological features. A continuous value is obtained to quantify the extent of each feature, which can be used directly to provide a high resolution readout. In addition, the continuous values can be mapped to obtain the established discrete pathologist-like scores. The automated deep learning-based scores show good agreement with the trainer - a human pathologist.
Collapse
Affiliation(s)
- Fabian Heinemann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riß, Germany.
| | - Gerald Birk
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riß, Germany
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riß, Germany
| |
Collapse
|
128
|
Han L, Bittner S, Dong D, Cortez Y, Dulay H, Arshad S, Shen WJ, Kraemer FB, Azhar S. Creosote bush-derived NDGA attenuates molecular and pathological changes in a novel mouse model of non-alcoholic steatohepatitis (NASH). Mol Cell Endocrinol 2019; 498:110538. [PMID: 31415794 PMCID: PMC7273809 DOI: 10.1016/j.mce.2019.110538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
Abstract
Creosote bush (Larrea tridentata)-derived nordihydroguaiaretic acid (NDGA) was shown to have profound effects on the core components of metabolic syndrome. This study investigated the in vivo potential of NDGA for prevention or attenuation of the pathophysiologic abnormalities of NASH. A novel dietary NASH model with feeding C57BL/6J mice with a high trans-fat, high cholesterol and high fructose (HTF) diet, was used. The HTF diet fed mice exhibited obesity, insulin resistance, hepatic steatosis, fibrosis, inflammation, ER stress, oxidative stress, and liver injury. NDGA attenuated these metabolic abnormalities as well as hepatic steatosis and fibrosis together with attenuated expression of genes encoding fibrosis, progenitor and macrophage markers with no effect on the levels of mRNAs for lipogenic enzymes. NDGA increased expression of fatty acid oxidation genes. In conclusion, NDGA exerts anti-NASH/anti-fibrotic actions and raises the therapeutic potential of NDGA for treatment of NASH patients with fibrosis and other associated complications.
Collapse
Affiliation(s)
- Lu Han
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Stefanie Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Dachuan Dong
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Yuan Cortez
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Hunter Dulay
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Sara Arshad
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA.
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, USA.
| |
Collapse
|
129
|
Suurmond CE, Lasli S, Dolder FW, Ung A, Kim H, Bandaru P, Lee K, Cho H, Ahadian S, Ashammakhi N, Dokmeci MR, Lee J, Khademhosseini A. In Vitro Human Liver Model of Nonalcoholic Steatohepatitis by Coculturing Hepatocytes, Endothelial Cells, and Kupffer Cells. Adv Healthc Mater 2019; 8:e1901379. [PMID: 31746151 DOI: 10.1002/adhm.201901379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/04/2019] [Indexed: 12/18/2022]
Abstract
The liver has a complex and unique microenvironment with multiple cell-cell interactions and internal vascular networks. Although nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with multiple phases, no proper model could fully recapitulate the in vivo microenvironment to understand NAFLD progression. Here, an in vitro human liver model of NAFLD by coculturing human hepatocytes, umbilical vein endothelial cells (HUVECs), and Kupffer cells (KCs) into spheroids is presented. Analysis of indirect cross-talk using conditioned media between steatotic spheroids-composed of hepatocellular carcinoma-derived cells (HepG2) and HUVECs-and mouse KCs reveals that the latter can be activated showing increased cell area, elevated production of reactive oxygen species (ROS), and proinflammatory cytokines. Spheroids incorporating human KCs (HKCs) can also be induced into steatotic stage by supplementing fat. Steatotic spheroids with/without HKCs show different levels of steatotic stages through lipid accumulation and ROS production. Steatotic spheroids made from an immortalized hepatic progenitor cell line (HepaRG) compared to those made from HepG2 cells display similar trends of functionality, but elevated levels of proinflammatory cytokines, and improved reversibility of steatosis. The in vitro human liver system proposed makes strides in developing a model to mimic and monitor the progression of NAFLD.
Collapse
Affiliation(s)
- Ceri‐Anne E. Suurmond
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
- Department of Developmental BioEngineeringUniversity of Twente 7522 NB Enschede The Netherlands
| | - Soufian Lasli
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
- Institute of BioengineeringSchool of Life Sciences and School of EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Floor W. Dolder
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
- Division Heart and LungsDepartment of Cardiothoracic SurgeryUniversity Medical Center Utrecht 3508 GA Utrecht The Netherlands
- Regenerative Medicine Center UtrechtUniversity Medical Center Utrecht 3584 CT Utrecht The Netherlands
| | - Aly Ung
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
| | - Han‐Jun Kim
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
| | - Praveen Bandaru
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
| | - KangJu Lee
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
| | - Hyun‐Jong Cho
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
- College of PharmacyKangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Samad Ahadian
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of California‐Los Angeles Los Angeles CA 90095 USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of California‐Los Angeles Los Angeles CA 90095 USA
| | - Junmin Lee
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
| | - Ali Khademhosseini
- Department of BioengineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los Angeles Los Angeles CA 90095 USA
- Department of Radiological SciencesDavid Geffen School of MedicineUniversity of California‐Los Angeles Los Angeles CA 90095 USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California‐Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
130
|
Wan J, Shan Y, Song X, Chen S, Lu X, Jin J, Su Q, Liu B, Sun W, Li B. Adipocyte-derived Periostin mediates glucocorticoid-induced hepatosteatosis in mice. Mol Metab 2019; 31:24-35. [PMID: 31918919 PMCID: PMC6880106 DOI: 10.1016/j.molmet.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Long-term glucocorticoids (GCs) therapy usually causes many metabolic side effects, including fatty liver. However, the molecular mechanisms remain poorly understood. Herein, we explored the molecular basis of GCs in the development of fatty liver. Methods C57BL/6 male mice were injected with Dexamethasone (DEX) while mouse primary hepatocytes (MPHs), HepG2 and Hep1-6 cells were cultured in the presence of DEX. Genes expression in liver tissues and hepatocytes were assessed by quantitative real-time PCR and western blotting, respectively. To explore whether Periostin is involved in the development of GCs-induced fatty liver, wild-type and Periostin knockout mice were treated with DEX or vehicle control. Luciferase reporter and chromatin immunoprecipitation assays were used to determine the regulatory roles of GCs on Periostin expression. Results We show that treatment of dexamethasone (DEX), a synthetic analog of GCs, led to the accumulation of triglycerides in the livers of mice, but not in cultured hepatocytes, suggesting that GCs may promote liver steatosis through integrative organ crosstalk mediated by systemic factors. We further found that DEX upregulated the expression levels of Periostin in white adipose tissues, which in turn promoted liver steatosis. Administration of a Periostin-neutralizing antibody or genetic ablation of Periostin largely attenuated DEX-induced hepatic steatosis in mice. Conclusions Our findings provided a novel insight that GCs could promote liver steatosis through integrative organ crosstalk mediated by white fat-secreted Periostin. These results establish Periostin as an endocrine factor with therapeutic potential for the treatment of GCs-associated fatty liver. Dexamethasone (DEX) treatment led to triglycerides accumulation in the liver of mice, but not in cultured hepatocytes. DEX treatment upregulates Periostin in white adipose tissues, which in turn induces liver steatosis in mice. Genetic ablation or pharmacological inhibition of Periostin partially attenuated DEX -induced hepatic steatosis in mice.
Collapse
Affiliation(s)
- Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201299, China
| | - Yi Shan
- Department of Emergency and ICU, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xi Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201299, China
| | - Song Chen
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201299, China
| | - Xinyuan Lu
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201299, China
| | - Jie Jin
- Department of Endocrinology, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qing Su
- Department of Endocrinology, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bin Liu
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, Hubei 435003, China
| | - Wanju Sun
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201299, China.
| | - Bo Li
- Department of Endocrinology, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
131
|
Fan M, Choi YJ, Tang Y, Bae SM, Yang HP, Kim EK. Efficacy and Mechanism of Polymerized Anthocyanin from Grape-Skin Extract on High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease. Nutrients 2019; 11:nu11112586. [PMID: 31717842 PMCID: PMC6893447 DOI: 10.3390/nu11112586] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
We investigated the therapeutic potential of polymerized anthocyanin (PA) on a nonalcoholic fatty liver disease (NAFLD) model in mice. C57BL/6 mice were fed a high-fat diet (HFD) for 8 weeks to establish the NAFLD mouse model and randomly divided into four groups: control diet (con), NAFLD mice treated with saline (NAFLD), NAFLD mice treated with PA (PA), and NAFLD mice treated with orlistat (Orlistat) for four weeks. Mice were euthanized at the end of the four weeks. Total cholesterol (TC) and triglyceride (TG) levels were estimated, and pathological changes in the liver, white adipose tissue, and signaling pathways related to lipid metabolism were evaluated. Results revealed that the body, liver, and white fat weight of the NAFLD group was significantly increased compared to that of the con group, while that of the PA group showed significant reduction. NAFLD led to an increase in blood lipids in mice (except for HDL). Conversely, PA effectively reduced TC and LDL-C. Compared to the control group, the degree of steatosis in the mice of PA group was decreased. Moreover, PA also regulated the NAFLD signaling pathway. In agreement with improved lipid deposition, PA supplementation inhibited the activation of inflammatory pathways, depressing oxidative stress through increased antioxidant levels, and increasing β-oxidation to inhibit mitochondrial dysfunction. Taken together, our results demonstrate that PA can improve the liver function of NAFLD mice, regulating blood lipids, reducing liver-fat accumulation, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
| | - Young-Jin Choi
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
| | - Yujiao Tang
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
- Changchun University of Science and Technology, Changchun 130-600, China
| | - Sung Mun Bae
- Gyeongnam Agricultural Research and Extension Services, Jinju 52733, Korea;
| | - Hyun Pil Yang
- Technical R and D Center, Kitto Life Co., Ltd., Pyeongtacek 17749, Korea;
| | - Eun-Kyung Kim
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea; (M.F.); (Y.-J.C.); ; (Y.T.)
- Correspondence:
| |
Collapse
|
132
|
Liu B, Deng X, Jiang Q, Li G, Zhang J, Zhang N, Xin S, Xu K. Scoparone alleviates inflammation, apoptosis and fibrosis of non-alcoholic steatohepatitis by suppressing the TLR4/NF-κB signaling pathway in mice. Int Immunopharmacol 2019; 75:105797. [DOI: 10.1016/j.intimp.2019.105797] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022]
|
133
|
Patel DP, Yan T, Kim D, Dias HB, Krausz KW, Kimura S, Gonzalez FJ. Withaferin A Improves Nonalcoholic Steatohepatitis in Mice. J Pharmacol Exp Ther 2019; 371:360-374. [PMID: 31420528 DOI: 10.1124/jpet.119.256792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive stage of nonalcoholic fatty liver disease that highly increases the risk of cirrhosis and liver cancer, and there are few therapeutic options available in the clinic. Withaferin A (WA), extracted from the ayurvedic medicine Withania somnifera, has a wide range of pharmacological activities; however, little is known about its effects on NASH. To explore the role of WA in treating NASH, two well defined NASH models were used, the methionine-choline-deficient diet and the 40 kcal% high-fat diet (HFD). In both NASH models, WA treatment or control vehicle was administered to evaluate its hepatoprotective effects. As assessed by biochemical and histologic analyses, WA prevented and therapeutically improved liver injury in both models, as revealed by lower serum aminotransaminases, hepatic steatosis, liver inflammation, and fibrosis. In the HFD-induced NASH model, both elevated serum ceramides and increased hepatic oxidative stress were decreased in the WA-treated group compared with the control vehicle-treated group. To further explore whether WA has an anti-NASH effect independent of its known action in leptin signaling associated with obesity, leptin signaling-deficient ob/ob mice maintained on an HFD were used to induce NASH. WA therapeutically reduced NASH in HFD-treated leptin-deficient ob/ob mice, thus demonstrating a leptin-independent hepatoprotective effect. This study revealed that WA treatment could be an option for NASH treatment.
Collapse
Affiliation(s)
- Daxesh P Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (D.P.P., T.Y., D.K., H.B.D., K.W.K., S.K., F.J.G.) and Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Brazil (H.B.D.)
| | - Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (D.P.P., T.Y., D.K., H.B.D., K.W.K., S.K., F.J.G.) and Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Brazil (H.B.D.)
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (D.P.P., T.Y., D.K., H.B.D., K.W.K., S.K., F.J.G.) and Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Brazil (H.B.D.)
| | - Henrique B Dias
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (D.P.P., T.Y., D.K., H.B.D., K.W.K., S.K., F.J.G.) and Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Brazil (H.B.D.)
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (D.P.P., T.Y., D.K., H.B.D., K.W.K., S.K., F.J.G.) and Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Brazil (H.B.D.)
| | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (D.P.P., T.Y., D.K., H.B.D., K.W.K., S.K., F.J.G.) and Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Brazil (H.B.D.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (D.P.P., T.Y., D.K., H.B.D., K.W.K., S.K., F.J.G.) and Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul, Rio Grande do Sul, Brazil (H.B.D.)
| |
Collapse
|
134
|
Prill S, Caddeo A, Baselli G, Jamialahmadi O, Dongiovanni P, Rametta R, Kanebratt KP, Pujia A, Pingitore P, Mancina RM, Lindén D, Whatling C, Janefeldt A, Kozyra M, Ingelman-Sundberg M, Valenti L, Andersson TB, Romeo S. The TM6SF2 E167K genetic variant induces lipid biosynthesis and reduces apolipoprotein B secretion in human hepatic 3D spheroids. Sci Rep 2019; 9:11585. [PMID: 31406127 PMCID: PMC6690969 DOI: 10.1038/s41598-019-47737-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023] Open
Abstract
There is a high unmet need for developing treatments for nonalcoholic fatty liver disease (NAFLD), for which there are no approved drugs today. Here, we used a human in vitro disease model to understand mechanisms linked to genetic risk variants associated with NAFLD. The model is based on 3D spheroids from primary human hepatocytes from five different donors. Across these donors, we observed highly reproducible differences in the extent of steatosis induction, demonstrating that inter-donor variability is reflected in the in vitro model. Importantly, our data indicates that the genetic variant TM6SF2 E167K, previously associated with increased risk for NAFLD, induces increased hepatocyte fat content by reducing APOB particle secretion. Finally, differences in gene expression pathways involved in cholesterol, fatty acid and glucose metabolism between wild type and TM6SF2 E167K mutation carriers (N = 125) were confirmed in the in vitro model. Our data suggest that the 3D in vitro spheroids can be used to investigate the mechanisms underlying the association of human genetic variants associated with NAFLD. This model may also be suitable to discover new treatments against NAFLD.
Collapse
Affiliation(s)
- Sebastian Prill
- DMPK, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Andrea Caddeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Guido Baselli
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Raffaela Rametta
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Kajsa P Kanebratt
- DMPK, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Piero Pingitore
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Daniel Lindén
- Bioscience Diabetes, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl Whatling
- Translational Sciences, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Annika Janefeldt
- DMPK, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mikael Kozyra
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Tommy B Andersson
- DMPK, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
135
|
Collin de l'Hortet A, Takeishi K, Guzman-Lepe J, Morita K, Achreja A, Popovic B, Wang Y, Handa K, Mittal A, Meurs N, Zhu Z, Weinberg F, Salomon M, Fox IJ, Deng CX, Nagrath D, Soto-Gutierrez A. Generation of Human Fatty Livers Using Custom-Engineered Induced Pluripotent Stem Cells with Modifiable SIRT1 Metabolism. Cell Metab 2019; 30:385-401.e9. [PMID: 31390551 PMCID: PMC6691905 DOI: 10.1016/j.cmet.2019.06.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/11/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
The mechanisms by which steatosis of the liver progresses to non-alcoholic steatohepatitis and end-stage liver disease remain elusive. Metabolic derangements in hepatocytes controlled by SIRT1 play a role in the development of fatty liver in inbred animals. The ability to perform similar studies using human tissue has been limited by the genetic variability in man. We generated human induced pluripotent stem cells (iPSCs) with controllable expression of SIRT1. By differentiating edited iPSCs into hepatocytes and knocking down SIRT1, we found increased fatty acid biosynthesis that exacerbates fat accumulation. To model human fatty livers, we repopulated decellularized rat livers with human mesenchymal cells, fibroblasts, macrophages, and human SIRT1 knockdown iPSC-derived hepatocytes and found that the human iPSC-derived liver tissue developed macrosteatosis, acquired proinflammatory phenotype, and shared a similar lipid and metabolic profiling to human fatty livers. Biofabrication of genetically edited human liver tissue may become an important tool for investigating human liver biology and disease.
Collapse
Affiliation(s)
| | - Kazuki Takeishi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kazutoyo Morita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Branimir Popovic
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anjali Mittal
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Noah Meurs
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ziwen Zhu
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Frank Weinberg
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan Biomedical Engineering, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
136
|
Lasli S, Kim HJ, Lee K, Suurmond CAE, Goudie M, Bandaru P, Sun W, Zhang S, Zhang N, Ahadian S, Dokmeci MR, Lee J, Khademhosseini A. A Human Liver-on-a-Chip Platform for Modeling Nonalcoholic Fatty Liver Disease. ADVANCED BIOSYSTEMS 2019; 3:e1900104. [PMID: 32648699 PMCID: PMC7473489 DOI: 10.1002/adbi.201900104] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/29/2019] [Indexed: 12/16/2022]
Abstract
The liver possesses a unique microenvironment with a complex internal vascular system and cell-cell interactions. Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease, and although much effort has been dedicated to building models to target NAFLD, most in vitro systems rely on simple models failing to recapitulate complex liver functions. Here, an in vitro system is presented to study NAFLD (steatosis) by coculturing human hepatocellular carcinoma (HepG2) cells and umbilical vein endothelial cells (HUVECs) into spheroids. Analysis of colocalization of HepG2-HUVECs along with the level of steatosis reveals that the NAFLD pathogenesis could be better modeled when 20% of HUVECs are presented in HepG2 spheroids. Spheroids with fat supplements progressed to the steatosis stage on day 2, which could be maintained for more than a week without being harmful for cells. Transferring spheroids onto a chip system with an array of interconnected hexagonal microwells proves helpful for monitoring functionality through increased albumin secretions with HepG2-HUVEC interactions and elevated production of reactive oxygen species for steatotic spheroids. The reversibility of steatosis is demonstrated by simply stopping fat-based diet or by antisteatotic drug administration, the latter showing a faster return of intracellular lipid levels to the basal level.
Collapse
Affiliation(s)
- Soufian Lasli
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Han-Jun Kim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - KangJu Lee
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ceri-Anne E Suurmond
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Bioengineering Technologies, University of Twente, 7522, NB, Enschede, The Netherlands
| | - Marcus Goudie
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Praveen Bandaru
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Niyuan Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Samad Ahadian
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
137
|
β-ionone inhibits nonalcoholic fatty liver disease and its association with hepatocarcinogenesis in male Wistar rats. Chem Biol Interact 2019; 308:377-384. [PMID: 31150631 DOI: 10.1016/j.cbi.2019.05.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Among the primary neoplasias that affect the liver, hepatocellular carcinoma (HCC) is the most frequent and the third leading cause of death related to cancer. Several risk factors predispose individuals to HCC such as nonalcoholic fatty liver disease (NAFLD), whose incidence has significantly increased worldwide. β-ionone (βI) isoprenoid is a known chemopreventive of hepatocarcinogenesis. However, the effects of this compound on NAFLD isolated or in association with hepatocarcinogenesis have not yet been evaluated. A high-fat emulsion administered for 6 weeks resulted in NAFLD in male rats, and oral treatment with βI during this period significantly attenuated its development. Moreover, the presence of NAFLD potentiated hepatocarcinogenesis induced by the resistant hepatocyte (RH) model in these animals by increasing the number and percentage of the liver section area occupied by placental glutathione S-transferase (GST-P)-positive persistent preneoplastic lesions (pPNLs), that are thought to evolve into HCC. This indicates that this NAFLD/RH protocol is suitable for studies of the influence of NAFLD on the HCC development. Therefore, here we also investigated the chemopreventive effect of βI under these two associated conditions. In this context, βI reduced the number and percentage of the liver section area occupied by pPNLs, as well as cell proliferation and the number of oval cells, which are considered potential targets for the development of HCC. Thus, βI presents not only a promising inhibitory effect on NAFLD isolated but also chemopreventive activity when it is associated with hepatocarcinogenesis.
Collapse
|
138
|
Gu X, Luo X, Wang Y, He Z, Li X, Wu K, Zhang Y, Yang Y, Ji J, Luo X. Ascorbic acid attenuates cell stress by activating the fibroblast growth factor 21/fibroblast growth factor receptor 2/adiponectin pathway in HepG2 cells. Mol Med Rep 2019; 20:2450-2458. [PMID: 31322211 DOI: 10.3892/mmr.2019.10457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 11/05/2022] Open
Abstract
Increasing prevalence of obesity‑induced non‑alcoholic fatty liver disease (NAFLD) and non‑alcoholic steatohepatitis (NASH) has been reported. Ascorbic acid (AA), also known as vitamin C, an excellent antioxidant, has been shown to exert beneficial effects on NAFLD; however, the underlying mechanisms are yet to be fully elucidated. In the present study, the role of AA on cell stress in tumor necrosis factor α (TNFα)‑treated HepG2 cells was investigated. Our findings revealed that exposure to AA effectively ameliorated TNFα‑induced cell stresses, including hypoxia, inflammation and endoplasmic reticulum (ER) stress by reducing the expression of Hif1α and its target genes (glucose transporter 1), pro‑inflammatory genes (monocyte chemoattractant 1) and ER stress‑related genes (glucose‑regulated protein, 78 kDa). AA also decreased the protein level of HIF1α. Additionally, AA significantly increased the secretion of total adiponectin and high molecular weight (HMW) adiponectin. Mechanistically, AA was determined to increase the expression of fibroblast growth factor 21 (FGF21) and its receptor, fibroblast growth factor receptor 2 (FGFR2). Knockdown of FGFR2 not only decreased the levels of total adiponectin and HMW adiponectin, but almost abolished the beneficial effects of AA in ameliorating cell stress. Collectively, the findings of our study demonstrated that AA may attenuate hepatocyte stress induced by TNFα via activation of the FGF21/FGFR2/adiponectin pathway. This could a novel mechanism of action of AA, and its potential for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Xinqian Gu
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanxin Wang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhangya He
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaomin Li
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kunjin Wu
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yifan Zhang
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yafeng Yang
- Department of Clinical Nutrition, Xian Yang Central Hospital, Xianyang, Shaanxi 712000, P.R. China
| | - Jing Ji
- Department of Obstetrics, Northwest Women and Children Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoqin Luo
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
139
|
Arman T, Lynch KD, Montonye ML, Goedken M, Clarke JD. Sub-Chronic Microcystin-LR Liver Toxicity in Preexisting Diet-Induced Nonalcoholic Steatohepatitis in Rats. Toxins (Basel) 2019; 11:E398. [PMID: 31323923 PMCID: PMC6669744 DOI: 10.3390/toxins11070398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Microcystin-LR (MCLR) is a hepatotoxic cyanotoxin reported to cause a phenotype similar to nonalcoholic steatohepatitis (NASH). NASH is a common progressive liver disease that advances in severity due to exogenous stressors such as poor diet and toxicant exposure. Our objective was to determine how sub-chronic MCLR toxicity affects preexisting diet-induced NASH. Sprague-Dawley rats were fed one of three diets for 10 weeks: control, methionine and choline deficient (MCD), or high fat/high cholesterol (HFHC). After six weeks of diet, animals received vehicle, 10 µg/kg, or 30 µg/kg MCLR via intraperitoneal injection every other day for the final 4 weeks. Incidence and severity scoring of histopathology endpoints suggested that MCLR toxicity drove NASH to a less fatty and more fibrotic state. In general, expression of genes involved in de novo lipogenesis and fatty acid esterification were altered in favor of decreased steatosis. The higher MCLR dose increased expression of genes involved in fibrosis and inflammation in the control and HFHC groups. These data suggest MCLR toxicity in the context of preexisting NASH may drive the liver to a more severe phenotype that resembles burnt-out NASH.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Michelle L Montonye
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Michael Goedken
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08901, USA
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
| |
Collapse
|
140
|
Zhong L, Huang L, Xue Q, Liu C, Xu K, Shen W, Deng L. Cell-specific elevation of Runx2 promotes hepatic infiltration of macrophages by upregulating MCP-1 in high-fat diet-induced mice NAFLD. J Cell Biochem 2019; 120:11761-11774. [PMID: 30746746 DOI: 10.1002/jcb.28456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE We have demonstrated runt-related transcription factor 2 (Runx2) plays important role in atherosclerosis. It has been indicated that atherosclerosis shares the similar histopathology with nonalcoholic steatohepatitis (NASH), a progressive stage of nonalcoholic fatty liver disease (NAFLD), on macrophages infiltration. However, the function of Runx2 in NAFLD is completely unknown. Here, we investigated the underlying mechanism of Runx2 triggering macrophages infiltration in the development of NAFLD. METHODS Mice were fed with high-fat diet (HFD) for a long time. Histopathologic features, macrophages infiltration, expression of monocyte chemotactic protein 1 (MCP-1), and Runx2 were, respectively, analyzed in vivo. Lentivirus or short interfering RNA were transfected in murine hepatic stellate cells (HSCs) and the transwell assay was performed to verify the contribution of Runx2 for macrophages migration in vitro. RESULTS Long-term treatment with HFD induced the progression of NAFLD, and NASH was initiated from 8 months on diet. HFD increased the expression of F4/80 upon HFD feeding, indicated HFD promotes hepatic infiltration of macrophages in NAFLD. In addition, HFD upregulated the expression of MCP-1 and Runx2 during NAFLD development. Unexpectedly, Runx2 upregulation is cell-type depended in NAFLD, and only abundantly elevated in activated HSCs. Furthermore, we found that Runx2 could increase or decrease the expression of MCP-1 in HSCs, and regulate macrophages migration by influencing MCP-1 production in vitro. CONCLUSIONS Our results give evidence that the upregulation of Runx2 specific in activated HSCs promotes hepatic infiltration of macrophages by increasing MCP-1 expression in NAFLD, which reveals a novel mechanism and provides a cell-specific therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Li Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xue
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Keshu Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
141
|
Wang X, Li L, Wang H, Xiao F, Ning Q. Epoxyeicosatrienoic acids alleviate methionine‐choline‐deficient diet–induced non‐alcoholic steatohepatitis in mice. Scand J Immunol 2019; 90:e12791. [PMID: 31132306 DOI: 10.1111/sji.12791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojing Wang
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Lan Li
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Hongwu Wang
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Fang Xiao
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Qin Ning
- Department and Institute of Infectious Disease Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
142
|
Eslam M, George J. Genetic Insights for Drug Development in NAFLD. Trends Pharmacol Sci 2019; 40:506-516. [PMID: 31160124 DOI: 10.1016/j.tips.2019.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
Drug development is a costly, time-consuming, and challenging endeavour, with only a few agents reaching the threshold of approval for clinical use. Therefore, approaches to more efficiently identify targets that are likely to translate to clinical benefit are required. Interrogation of the human genome in large patient cohorts has rapidly advanced our knowledge of the genetic architecture and underlying mechanisms of many diseases, including nonalcoholic fatty liver disease (NAFLD). There are no approved pharmacotherapies for NAFLD currently. Genetic insights provide a powerful and new approach to infer and prioritise candidate drugs, with such selection avoiding myriad pitfalls, while defining likely benefits. In this review, we discuss the prospects and challenges for the optimal utilisation of genetic findings for improving and accelerating the NAFLD drug discovery pipeline.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
143
|
Green CH, Syn WK. Non-nutritive sweeteners and their association with the metabolic syndrome and non-alcoholic fatty liver disease: a review of the literature. Eur J Nutr 2019; 58:1785-1800. [PMID: 31119399 DOI: 10.1007/s00394-019-01996-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is increasing in incidence worldwide, paralleling epidemics in obesity and metabolic syndrome. Widely considered the hepatic manifestation of the metabolic syndrome, NAFLD is associated with significant morbidity, mortality, and increased healthcare costs. There is an abundance of data linking sugar-sweetened beverages, and fructose, in particular, to the metabolic syndrome and NAFLD. As a result, non-nutritive sweeteners (NNSs) are frequently substituted for sugar in drinks and a variety of foods. However, despite the widespread consumption of NNSs, there is growing concern about their impact on metabolic health. METHODS This review examines the experimental and clinical evidence on non-nutritive sweetener (NNS) consumption and features of the metabolic syndrome, including NAFLD. RESULTS Experimental animal studies show that NNS consumption can induce glucose intolerance, increased food consumption, and weight gain, with proposed mechanisms including altered gut microbiome, inhibition of protective intestinal enzymes, and increased appetite. The evidence from clinical studies is more controversial. Observational studies overwhelmingly show an association between NNS consumption and features of the metabolic syndrome, and this includes NAFLD when analyses are not adjusted for obesity. The evidence from randomized-controlled trials in humans is sparse and conflicting, and primarily evaluates weight-related outcomes. CONCLUSION Further research is urgently needed to evaluate NNS consumption and its relationship with NAFLD and the gut microbiome in humans.
Collapse
Affiliation(s)
- Caitlin H Green
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, 30 Courtenay Drive-STB Suit 249, MSC 702, Charleston, SC, 29425, USA.
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, 30 Courtenay Drive-STB Suit 249, MSC 702, Charleston, SC, 29425, USA.,Section of Gastroenterology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, USA.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque County, UPV/EHU, Leioa, Spain
| |
Collapse
|
144
|
Raselli T, Hearn T, Wyss A, Atrott K, Peter A, Frey-Wagner I, Spalinger MR, Maggio EM, Sailer AW, Schmitt J, Schreiner P, Moncsek A, Mertens J, Scharl M, Griffiths WJ, Bueter M, Geier A, Rogler G, Wang Y, Misselwitz B. Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis. J Lipid Res 2019; 60:1270-1283. [PMID: 31113816 PMCID: PMC6602130 DOI: 10.1194/jlr.m093229] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein-Barr virus-induced G protein-coupled receptor 2 (EBI2) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in the livers of NASH patients by LC-MS and tested the role of the EBI2-7α,25-diHC system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared with controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype-related differences were observed in Ebi2−/− mice and mice with defects in the 7α,25-diHC synthesizing enzymes CH25H and CYP7B1 compared with wild-type littermate controls, arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by the enhanced level of 7α-hydroxycholest-4-en-3-one and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH.
Collapse
Affiliation(s)
- Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tom Hearn
- Swansea University Medical School Singleton Park, Swansea, United Kingdom
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Alain Peter
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ewerton M Maggio
- Institute for Surgical Pathology University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas W Sailer
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Schmitt
- Division of Hepatology Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Joachim Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Marco Bueter
- Department of Visceral Surgery University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Geier
- Division of Hepatology Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Yuqin Wang
- Swansea University Medical School Singleton Park, Swansea, United Kingdom
| | - Benjamin Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland .,Department of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| |
Collapse
|
145
|
Kimura K, Inaba Y, Watanabe H, Matsukawa T, Matsumoto M, Inoue H. Nicotinic alpha-7 acetylcholine receptor deficiency exacerbates hepatic inflammation and fibrosis in a mouse model of non-alcoholic steatohepatitis. J Diabetes Investig 2019; 10:659-666. [PMID: 30369082 PMCID: PMC6497582 DOI: 10.1111/jdi.12964] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/04/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022] Open
Abstract
AIMS/INTRODUCTION Non-alcoholic steatohepatitis (NASH), which occurs in association with insulin resistance and hepatic fat accumulation, is characterized by chronic liver injury and fibrosis. NASH onset and progression is closely related to hepatic inflammation, which is partly regulated by the vagus nerve through the α7 nicotinic acetylcholine receptor (α7nAchR). Hepatic α7nAchR action is impeded in obesity and insulin resistance. In the present study, using α7nAchR knockout (α7KO) mice, we elucidated the effect of α7nAchR deficiency on NASH-related inflammation and fibrosis. MATERIALS AND METHODS α7KO mice were fed an atherogenic high-fat diet (AD) for 32 weeks or methionine/choline-deficient diet (MCD) for 6 weeks, both of which induce NASH. Mice were then examined for the degree of NASH-related inflammation and fibrosis by hepatic gene expression analysis and Sirius red histological staining. RESULTS Hepatic triglyceride accumulation and elevated plasma transaminase levels were observed in both AD and MCD mice, but the plasma transaminase level increase was higher in α7KO mice than in control mice. α7KO mice fed an AD showed significant upregulation of the Col1a1 gene encoding alpha-1 type I collagen, which is involved in liver fibrosis, and the Ccl2 gene encoding C-C motif chemokine ligand 2, a pro-inflammatory chemokine; α7KO mice fed an MCD had significant upregulation of the Col1a1 gene and the Tnf gene, an inflammatory cytokine. Histological analysis showed that AD and MCD exacerbated liver fibrosis in α7KO mice. CONCLUSIONS The results of this study suggest that α7nAchR deficiency exacerbates hepatic inflammation and fibrosis in a diet-induced mouse model of NASH.
Collapse
Affiliation(s)
- Kumi Kimura
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Yuka Inaba
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Hitoshi Watanabe
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| | - Toshiya Matsukawa
- Department of Molecular Metabolic RegulationDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic RegulationDiabetes Research CenterResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research UnitInstitute for Frontier Science InitiativeKanazawa UniversityKanazawaJapan
| |
Collapse
|
146
|
Toyoda Y, Takada T, Umezawa M, Tomura F, Yamanashi Y, Takeda K, Suzuki H. Identification of hepatic NPC1L1 as an NAFLD risk factor evidenced by ezetimibe-mediated steatosis prevention and recovery. FASEB Bioadv 2019; 1:283-295. [PMID: 32123832 PMCID: PMC6996404 DOI: 10.1096/fba.2018-00044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious global public health concern. Nevertheless, there are no specific medications for treating the associated abnormal accumulation of hepatic lipids such as cholesterol and triglycerides. While seminal findings suggest a link between hepatic cholesterol accumulation and NAFLD progression, the molecular bases of these associations are not well understood. Here, we experimentally demonstrate that hepatic Niemann-Pick C1-Like 1 (NPC1L1), a cholesterol re-absorber from bile to the liver, can cause steatosis, an early stage of NAFLD using genetically engineered L1-Tg mice characterized by hepatic expression of NPC1L1 under the control of ApoE promoter. Contrary to wild-type mice that have little expression of hepatic Npc1l1, the livers of L1-Tg mice fed a high-fat diet became steatotic within only a few weeks. Moreover, hepatic NPC1L1-mediated steatosis was not only prevented, but completely rescued, by orally administered ezetimibe, a well-used lipid-lowering drug on the global market, even under high-fat diet feedings. These results indicate that hepatic NPC1L1 is an NAFLD-exacerbating factor amendable to therapeutic intervention and would extend our understanding of the vital role of cholesterol uptake from bile in the development of NAFLD. Furthermore, administration of a TLR4 inhibitor also prevented the hepatic NPC1L1-mediated steatosis formation, suggesting a latent link between physiological roles of hepatic NPC1L1 and regulation of innate immune system. Our results revealed that hepatic NPC1L1 is a novel NAFLD risk factor contributing to steatosis formation that is rescued by ezetimibe; additionally, our findings uncover feasible opportunities for repositioning drugs to treat NAFLD in the near future.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of PharmacyThe University of Tokyo HospitalTokyoJapan
| | - Tappei Takada
- Department of PharmacyThe University of Tokyo HospitalTokyoJapan
| | - Masakazu Umezawa
- Research Institute for Science and TechnologyOrganization for Research Advancement, Tokyo University of ScienceChibaJapan
| | - Fumiya Tomura
- Department of PharmacyThe University of Tokyo HospitalTokyoJapan
| | | | - Ken Takeda
- Research Institute for Science and TechnologyOrganization for Research Advancement, Tokyo University of ScienceChibaJapan
- Present address:
Faculty of Pharmaceutical SciencesSanyo‐Onoda City UniversityYamaguchiJapan
| | - Hiroshi Suzuki
- Department of PharmacyThe University of Tokyo HospitalTokyoJapan
| |
Collapse
|
147
|
Mahzari A, Li S, Zhou X, Li D, Fouda S, Alhomrani M, Alzahrani W, Robinson SR, Ye JM. Matrine Protects Against MCD-Induced Development of NASH via Upregulating HSP72 and Downregulating mTOR in a Manner Distinctive From Metformin. Front Pharmacol 2019; 10:405. [PMID: 31068812 PMCID: PMC6491841 DOI: 10.3389/fphar.2019.00405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the effects of matrine on non-alcoholic steatohepatitis (NASH) in mice induced by a methionine choline-deficient (MCD) diet and the mechanism involved. The study was performed in C57B/6J mice fed a MCD diet for 6 weeks to induce NASH with or without the treatment of matrine (100 mg/kg/day in diet). Metformin was used (250 mg/kg/day in diet) as a comparator for mechanistic investigation. Administration of matrine significantly reduced MCD-induced elevations in plasma ALT and AST but without changing body or liver fat content. Along with alleviating liver injury, matrine suppressed MCD-induced hepatic inflammation (indicated by TNFα, CD68, MCP-1, and NLRP3) and fibrosis (indicated by collagen 1, TGFβ, Smad3, and sirius-red staining). In comparison, metformin treatment did not show any clear sign of effects on these parameters indicative of NASH. Further examination of the liver showed that matrine treatment rescued the suppressed HSP72 (a chaperon protein against cytotoxicity) and blocked the induction of mTOR (a key protein in a stress pathway). In keeping with the lack of the improvement of the NASH features, metformin did not show any significant effect against MCD-induced changes in HSP72 and mTOR. Matrine protects against MCD-induced development of NASH which is refractory to metformin treatment. Its anti-NASH effects involve enhancing HSP72 and downregulating mTOR but do not rely on amelioration of hepatosteatosis.
Collapse
Affiliation(s)
- Ali Mahzari
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Songpei Li
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiu Zhou
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Sherouk Fouda
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Majid Alhomrani
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Wala Alzahrani
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stephen R Robinson
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ji-Ming Ye
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
148
|
Telmisartan and/or chlorogenic acid attenuates fructose-induced non-alcoholic fatty liver disease in rats: Implications of cross-talk between angiotensin, the sphingosine kinase/sphingoine-1-phosphate pathway, and TLR4 receptors. Biochem Pharmacol 2019; 164:252-262. [PMID: 31004566 DOI: 10.1016/j.bcp.2019.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Renin-angiotensin-aldosterone system (RAS) has been implicated in non-alcoholic fatty liver disease (NAFLD); the most common cause of chronic liver diseases. There is accumulating evidence that altered TLR4 and Sphingosine kinase 1(SphK1)/sphingosine1phosphate (S1P) signaling pathways are key players in the pathogenesis of NAFLD. Cross talk of the sphingosine signaling pathway, toll-4 (TLR4) receptors, and angiotensin II was reported in various tissues. Therefore, the aim of this study was to define the contribution of these two pathways to the hepatoprotective effects of telmisartan and/or chlorogenic acid (CGA) in NAFLD. CGA is a strong antioxidant that was previously reported to inhibit angiotensin converting enzyme. Male Wistar rats were treated with either high-fructose, with or without telmisartan, CGA, telmisartan + CGA for 8 weeks. Untreated NAFL rats showed characteristics of NAFLD, as evidenced by significant increase in the body weight, insulin resistance, and serum hepatotoxicity markers (Alanine and Aspartate transaminases) and lipids as compared to the negative control group, in addition to characteristic histopathological alterations. Treatment with either telmisartan and/or CGA improved aforementioned parameters, in addition to upregulation of antioxidant enzymes (Superoxide dismutase and Glutathione peroxidase). Effect of inhibiting RAS on both sphingosine pathway and TLR4 was evident by the suppressing effect of telmisartan and/or CGA on high fructose-induced upregulation of hepatic SPK1 and S1P, in addition to concomitant up-regulation of Sphingosine-1-Phosphate receptor (S1PR)3 protein level and increased expression of S1PR1 and TLR4. As TLR4 and SPK/S1P signaling pathways play important roles in the progression of liver inflammation, the effect on sphingosine pathway and TLR4 was associated with decreased concentrations of inflammatory markers, enzyme kB kinase (IKK), nuclear factor-kB and tumor necrosis factor-α as compared to untreated NAFL group. In conclusion, the present data strongly suggests the cross-talk between angiotensin, the Sphingosine SPK/S1P Axis and TLR4 Receptors, and their role in the pathogenesis of fructose-induced NAFLD, and the protection afforded by drugs inhibiting RAS.
Collapse
|
149
|
Jiang M, Wu N, Chen X, Wang W, Chu Y, Liu H, Li W, Chen D, Li X, Xu B. Pathogenesis of and major animal models used for nonalcoholic fatty liver disease. J Int Med Res 2019; 47:1453-1466. [PMID: 30871397 PMCID: PMC6460620 DOI: 10.1177/0300060519833527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its pathologically more severe form, nonalcoholic steatohepatitis (NASH), have become prevalent worldwide and carry an increased risk of developing hepatocellular carcinoma and other metabolic diseases. Diverse animal models have been proposed to replicate particular characteristics of NAFLD and NASH and have provided significant clues to the critical molecular targets of NASH treatment. In this review, we summarize the histopathology, pathogenesis, and molecular basis of NAFLD progression and discuss the benchmark animal models of NAFLD/NASH.
Collapse
Affiliation(s)
- Mingzuo Jiang
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Nan Wu
- 2 Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Xi Chen
- 3 Department of Surgical Anesthesiology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Weijie Wang
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Yi Chu
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Hao Liu
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Wenjiao Li
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Di Chen
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China.,5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowei Li
- 4 Department of Gastroenterology, PLA Navy General Hospital, Beijing, China.,5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Xu
- 5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
150
|
Walker S, Wankell M, Ho V, White R, Deo N, Devine C, Dewdney B, Bhathal P, Govaere O, Roskams T, Qiao L, George J, Hebbard L. Targeting mTOR and Src restricts hepatocellular carcinoma growth in a novel murine liver cancer model. PLoS One 2019; 14:e0212860. [PMID: 30794695 PMCID: PMC6386388 DOI: 10.1371/journal.pone.0212860] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Liver cancer is a poor prognosis cancer with limited treatment options. To develop a new therapeutic approach, we derived HCC cells from a known model of murine hepatocellular carcinoma (HCC). We treated adiponectin (APN) knock-out mice with the carcinogen diethylnitrosamine, and the resulting tumors were 7-fold larger than wild-type controls. Tumors were disassociated from both genotypes and their growth characteristics evaluated. A52 cells from APN KO mice had the most robust growth in vitro and in vivo, and presented with pathology similar to the parental tumor. All primary tumors and cell lines exhibited activity of the mammalian target of Rapamycin (mTOR) and Src pathways. Subsequent combinatorial treatment, with the mTOR inhibitor Rapamycin and the Src inhibitor Dasatinib reduced A52 HCC growth 29-fold in vivo. Through protein and histological analyzes we observed activation of these pathways in human HCC, suggesting that targeting both mTOR and Src may be a novel approach for the treatment of HCC.
Collapse
Affiliation(s)
- Sarah Walker
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
| | - Vikki Ho
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Rose White
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Nikita Deo
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Carol Devine
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Brittany Dewdney
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
| | | | - Olivier Govaere
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KULeuven and University Hospitals Leuven, Leuven, Belgium
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Tania Roskams
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KULeuven and University Hospitals Leuven, Leuven, Belgium
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
| | - Lionel Hebbard
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Australia
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Australia
- * E-mail:
| |
Collapse
|