101
|
Girault JB, Munsell BC, Puechmaille D, Goldman BD, Prieto JC, Styner M, Gilmore JH. White matter connectomes at birth accurately predict cognitive abilities at age 2. Neuroimage 2019; 192:145-155. [PMID: 30825656 DOI: 10.1016/j.neuroimage.2019.02.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Cognitive ability is an important predictor of mental health outcomes that is influenced by neurodevelopment. Evidence suggests that the foundational wiring of the human brain is in place by birth, and that the white matter (WM) connectome supports developing brain function. It is unknown, however, how the WM connectome at birth supports emergent cognition. In this study, a deep learning model was trained using cross-validation to classify full-term infants (n = 75) as scoring above or below the median at age 2 using WM connectomes generated from diffusion weighted magnetic resonance images at birth. Results from this model were used to predict individual cognitive scores. We additionally identified WM connections important for classification. The model was also evaluated in a separate set of preterm infants (n = 37) scanned at term-age equivalent. Findings revealed that WM connectomes at birth predicted 2-year cognitive score group with high accuracy in both full-term (89.5%) and preterm (83.8%) infants. Scores predicted by the model were strongly correlated with actual scores (r = 0.98 for full-term and r = 0.96 for preterm). Connections within the frontal lobe, and between the frontal lobe and other brain areas were found to be important for classification. This work suggests that WM connectomes at birth can accurately predict a child's 2-year cognitive group and individual score in full-term and preterm infants. The WM connectome at birth appears to be a useful neuroimaging biomarker of subsequent cognitive development that deserves further study.
Collapse
Affiliation(s)
- Jessica B Girault
- Department of Psychiatry, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brent C Munsell
- Department of Computer Science, College of Charleston, Charleston, SC, 29424, USA
| | | | - Barbara D Goldman
- Department of Psychology & Neuroscience, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan C Prieto
- Department of Psychiatry, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Martin Styner
- Department of Psychiatry, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John H Gilmore
- Department of Psychiatry, UNC Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
102
|
Knezović V, Kasprian G, Štajduhar A, Schwartz E, Weber M, Gruber GM, Brugger PC, Prayer D, Vukšić M. Underdevelopment of the Human Hippocampus in Callosal Agenesis: An In Vivo Fetal MRI Study. AJNR Am J Neuroradiol 2019; 40:576-581. [PMID: 30792247 DOI: 10.3174/ajnr.a5986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/14/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE In subjects with agenesis of the corpus callosum, a variety of structural brain alterations is already present during prenatal life. Quantification of these alterations in fetuses with associated brain or body malformations (corpus callosum agenesis and other related anomalies) and so-called isolated cases may help to optimize the challenging prognostic prenatal assessment of fetuses with corpus callosum agenesis. This fetal MR imaging study aimed to identify differences in the size of the prenatal hippocampus between subjects with isolated corpus callosum agenesis, corpus callosum agenesis and other related anomalies, and healthy controls. MATERIALS AND METHODS Eighty-five in utero fetal brain MR imaging scans, (20-35 gestational weeks) were postprocessed using a high-resolution algorithm. On the basis of multiplanar T2-TSE sequences, 3D isovoxel datasets were generated, and both hippocampi and the intracranial volume were segmented. RESULTS Hippocampal volumes increased linearly with gestational weeks in all 3 groups. One-way ANOVA demonstrated differences in hippocampal volumes between control and pathologic groups (isolated corpus callosum agenesis: left, P = .02; right, P = .04; corpus callosum agenesis and other related anomalies: P < .001). Differences among the pathologic groups were also present for both sides. Intracranial volume and right and left hippocampal volume ratios were different between corpus callosum agenesis cases and controls (P < .001). When we corrected for intracranial volume, no differences were found between corpus callosum agenesis and other associated anomalies and isolated corpus callosum agenesis (left, P = .77; right, P = .84). Hippocampal size differences were more pronounced at a later gestational age. CONCLUSIONS Callosal agenesis apparently interferes with the normal process of hippocampal formation and growth, resulting in underdevelopment, which could account for certain learning and memory deficits in individuals with agenesis of the corpus callosum in later life.
Collapse
Affiliation(s)
- V Knezović
- From the Croatian Institute for Brain Research (V.K., A.Š., M.V.), School of Medicine, University of Zagreb, Zagreb, Croatia
| | - G Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy (G.K., E.S., M.W., D.P.)
| | - A Štajduhar
- From the Croatian Institute for Brain Research (V.K., A.Š., M.V.), School of Medicine, University of Zagreb, Zagreb, Croatia
| | - E Schwartz
- Department of Biomedical Imaging and Image-Guided Therapy (G.K., E.S., M.W., D.P.)
| | - M Weber
- Department of Biomedical Imaging and Image-Guided Therapy (G.K., E.S., M.W., D.P.)
| | - G M Gruber
- Division of Anatomy (G.M.G., P.C.B.), Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - P C Brugger
- Division of Anatomy (G.M.G., P.C.B.), Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - D Prayer
- Department of Biomedical Imaging and Image-Guided Therapy (G.K., E.S., M.W., D.P.)
| | - M Vukšić
- From the Croatian Institute for Brain Research (V.K., A.Š., M.V.), School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
103
|
Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging. Proc Natl Acad Sci U S A 2019; 116:4681-4688. [PMID: 30782802 PMCID: PMC6410816 DOI: 10.1073/pnas.1812156116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Delineating cortical microstructure differentiation is important for understanding complicated yet precisely organized patterns in early developing brain. Knowledge of cortical differentiation predominantly from histological studies is limited in localized and discrete cortical regions. We quantified the preterm brain cerebral cortical profile with microstructural complexity [indexed by mean kurtosis (MK)] and microstructural organization [indexed by fractional anisotropy (FA)] from advanced diffusion MRI. Cortical MK and FA maps revealed a heterogeneous maturation signature. Spatiotemporally distinctive disruption of radial glia and decrease of neuronal density among cortical regions were inferred by FA and MK decreases, respectively. These findings suggest that diffusion kurtosis metrics are significant imaging markers for microstructural differentiation of the developmental brain in health and disease. During the third trimester, the human brain undergoes rapid cellular and molecular processes that reshape the structural architecture of the cerebral cortex. Knowledge of cortical differentiation obtained predominantly from histological studies is limited in localized and small cortical regions. How cortical microstructure is differentiated across cortical regions in this critical period is unknown. In this study, the cortical microstructural architecture across the entire cortex was delineated with non-Gaussian diffusion kurtosis imaging as well as conventional diffusion tensor imaging of 89 preterm neonates aged 31–42 postmenstrual weeks. The temporal changes of cortical mean kurtosis (MK) or fractional anisotropy (FA) were heterogeneous across the cortical regions. Cortical MK decreases were observed throughout the studied age period, while cortical FA decrease reached its plateau around 37 weeks. More rapid decreases in MK were found in the primary visual region, while faster FA declines were observed in the prefrontal cortex. We found that distinctive cortical microstructural changes were coupled with microstructural maturation of associated white matter tracts. Both cortical MK and FA measurements predicted the postmenstrual age of preterm infants accurately. This study revealed a differential 4D spatiotemporal cytoarchitectural signature inferred by non-Gaussian diffusion barriers inside the cortical plate during the third trimester. The cytoarchitectural processes, including dendritic arborization and neuronal density decreases, were inferred by regional cortical FA and MK measurements. The presented findings suggest that cortical MK and FA measurements could be used as effective imaging markers for cortical microstructural changes in typical and potentially atypical brain development.
Collapse
|
104
|
Vasung L, Abaci Turk E, Ferradal SL, Sutin J, Stout JN, Ahtam B, Lin PY, Grant PE. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage 2019; 187:226-254. [PMID: 30041061 PMCID: PMC6537870 DOI: 10.1016/j.neuroimage.2018.07.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Early brain development, from the embryonic period to infancy, is characterized by rapid structural and functional changes. These changes can be studied using structural and physiological neuroimaging methods. In order to optimally acquire and accurately interpret this data, concepts from adult neuroimaging cannot be directly transferred. Instead, one must have a basic understanding of fetal and neonatal structural and physiological brain development, and the important modulators of this process. Here, we first review the major developmental milestones of transient cerebral structures and structural connectivity (axonal connectivity) followed by a summary of the contributions from ex vivo and in vivo MRI. Next, we discuss the basic biology of neuronal circuitry development (synaptic connectivity, i.e. ensemble of direct chemical and electrical connections between neurons), physiology of neurovascular coupling, baseline metabolic needs of the fetus and the infant, and functional connectivity (defined as statistical dependence of low-frequency spontaneous fluctuations seen with functional magnetic resonance imaging (fMRI)). The complementary roles of magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS) are discussed. We include a section on modulators of brain development where we focus on the placenta and emerging placental MRI approaches. In each section we discuss key technical limitations of the imaging modalities and some of the limitations arising due to the biology of the system. Although neuroimaging approaches have contributed significantly to our understanding of early brain development, there is much yet to be done and a dire need for technical innovations and scientific discoveries to realize the future potential of early fetal and infant interventions to avert long term disease.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Silvina L Ferradal
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jeffrey N Stout
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
105
|
Papadelis C, Ahtam B, Feldman HA, AlHilani M, Tamilia E, Nimec D, Snyder B, Ellen Grant P, Im K. Altered White Matter Connectivity Associated with Intergyral Brain Disorganization in Hemiplegic Cerebral Palsy. Neuroscience 2019; 399:146-160. [PMID: 30593919 PMCID: PMC10716912 DOI: 10.1016/j.neuroscience.2018.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 01/05/2023]
Abstract
Despite extensive literature showing damages in the sensorimotor projection fibers of children with hemiplegic cerebral palsy (HCP), little is known about how these damages affect the global brain network. In this study, we assess the relationship between the structural integrity of sensorimotor projection fibers and the integrity of intergyral association white matter connections in children with HCP. Diffusion tensor imaging was performed in 10 children with HCP and 16 typically developing children. We estimated the regional and global white-matter connectivity using a region-of-interest (ROI)-based approach and a whole-brain gyrus-based parcellation method. Using the ROI-based approach, we tracked the spinothalamic (STh), thalamocortical (ThC), corticospinal (CST), and sensorimotor U- (SMU) fibers. Using the whole-brain parcellation method, we tracked the short-, middle-, and long-range association fibers. We observed for the more affected hemisphere of children with HCP: (i) an increase in axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) for the STh and ThC fibers; (ii) a decrease in fractional anisotropy (FA) and an increase in MD and RD for the CST and SMU fibers; in (iii) a decrease in FA and an increase in AD, MD, and RD for the middle- and long-range association fibers; and (iv) an association between the integrity of sensorimotor projection and intergyral association fibers. Our findings indicate that altered structural integrity of the sensorimotor projection fibers disorganizes the intergyral association white matter connections among local and distant regions in children with HCP.
Collapse
Affiliation(s)
- Christos Papadelis
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Banu Ahtam
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry A Feldman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - Michel AlHilani
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna Nimec
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Brian Snyder
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - P Ellen Grant
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Kiho Im
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
106
|
Licari MK, Finlay-Jones A, Reynolds JE, Alvares GA, Spittle AJ, Downs J, Whitehouse AJO, Leonard H, Evans KL, Varcin K. The Brain Basis of Comorbidity in Neurodevelopmental Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2019. [DOI: 10.1007/s40474-019-0156-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
107
|
Scher MS. Fetal neurology: Principles and practice with a life-course perspective. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:1-29. [PMID: 31324306 DOI: 10.1016/b978-0-444-64029-1.00001-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical service, educational, and research components of a fetal/neonatal neurology program are anchored by the disciplines of developmental origins of health and disease and life-course science as programmatic principles. Prenatal participation provides perspectives on maternal, fetal, and placental contributions to health or disease for fetal and subsequent neonatal neurology consultations. This program also provides an early-life diagnostic perspective for neurologic specialties concerned with brain health and disease throughout childhood and adulthood. Animal models and birth cohort studies have demonstrated how the science of epigenetics helps to understand gene-environment interactions to better predict brain health or disease. Fetal neurology consultations provide important diagnostic contributions during critical or sensitive periods of brain development when future neurotherapeutic interventions will maximize adaptive neuroplasticity. Age-specific normative neuroinformatics databases that employ computer-based strategies to integrate clinical/demographic, neuroimaging, neurophysiologic, and genetic datasets will more accurately identify either symptomatic patients or those at risk for brain disorders who would benefit from preventive, rescue, or reparative treatment choices throughout the life span.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
108
|
Graph theoretical modeling of baby brain networks. Neuroimage 2019; 185:711-727. [DOI: 10.1016/j.neuroimage.2018.06.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
|
109
|
Innocenti GM, Dyrby TB, Girard G, St-Onge E, Thiran JP, Daducci A, Descoteaux M. Topological principles and developmental algorithms might refine diffusion tractography. Brain Struct Funct 2019; 224:1-8. [PMID: 30264235 PMCID: PMC6373358 DOI: 10.1007/s00429-018-1759-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/20/2018] [Indexed: 01/09/2023]
Abstract
The identification and reconstruction of axonal pathways in the living brain or "ex-vivo" is promising a revolution in connectivity studies bridging the gap from animal to human neuroanatomy with extensions to brain structural-functional correlates. Unfortunately, the methods suffer from juvenile drawbacks. In this perspective paper we mention several computational and developmental principles, which might stimulate a new generation of algorithms and a discussion bridging the neuroimaging and neuroanatomy communities.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Brain and Mind Institute, Ecole Polytechnique Féderale de Lausanne EPFL, Lausanne, Switzerland.
- Signal Processing Laboratory (LT55) Ecole Polytechnique Féderale de Lausanne (EPFL-STI-IEL-LT55), Station 11, 1015, Lausanne, Switzerland.
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Gabriel Girard
- Signal Processing Laboratory (LT55) Ecole Polytechnique Féderale de Lausanne (EPFL-STI-IEL-LT55), Station 11, 1015, Lausanne, Switzerland
| | - Etienne St-Onge
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Computer Science Department, Faculty of Science, Université de Sherbrooke, Quebec, Canada
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LT55) Ecole Polytechnique Féderale de Lausanne (EPFL-STI-IEL-LT55), Station 11, 1015, Lausanne, Switzerland
- Department of Radiology, University Hospital Center (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Computer Science Department, Faculty of Science, Université de Sherbrooke, Quebec, Canada
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Center, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrook, Canada
| |
Collapse
|
110
|
Abstract
Disorders of the developing nervous system may be of genetic origin, comprising congenital malformations of spine and brain as well as metabolic or vascular disorders that affect normal brain development. Acquired causes include congenital infections, hypoxic-ischemic or traumatic brain injury, and a number of rare neoplasms. This chapter focuses on the clinical presentation and workup of neurogenetic disorders presenting in the fetal or neonatal period. After a summary of the most frequent clinical presentations, clues from history taking and clinical examination are illustrated with short case reports. This is followed by a discussion of the different tools available for the workup of neurogenetic disorders, including the various genetic techniques with their advantages and disadvantages. The implications of a molecular genetic diagnosis for the patient and family are addressed in the section on counseling. The chapter concludes with a proposed workflow that may help the clinician when confronted with a potential neurogenetic disorder in the fetal or neonatal period.
Collapse
|
111
|
Abstract
The human brain is organized into specialized functional brain networks. Some networks are dedicated to early sensory processing, and others to generating motor outputs. Yet, the bulk of the human brain's functional networks is actually dedicated to control processes. The two control networks most important for the impressive repertoire of control-related behaviors that humans are able to instantiate and maintain are the frontoparietal and cinguloopercular networks. We provide evidence that these two control networks largely contribute to nonoverlapping domains of control. These networks largely have been studied using fMRI, which is sensitive only to infraslow activity. Complementary electrophysiological techniques have provided evidence that these networks manifest at substantially faster frequencies (delta-alpha band), supporting their role in coordination of whole-brain functional network activity. Both the frontoparietal and cinguloopercular networks demonstrate protracted development, supporting increases in control-related performance. Recent studies from our lab indicate these control networks exhibit measurable individual specificity, highlighting the importance of individualized paradigms in neuroimaging studies to advance our understanding of typical and atypical control network function throughout the life span.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States; Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
112
|
Kostović I, Sedmak G, Judaš M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage 2018; 188:743-773. [PMID: 30594683 DOI: 10.1016/j.neuroimage.2018.12.043] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023] Open
Abstract
The human brain develops slowly and over a long period of time which lasts for almost three decades. This enables good spatio-temporal resolution of histogenetic and neurogenetic events as well as an appropriate and clinically relevant timing of these events. In order to successfully apply in vivo neuroimaging data, in analyzing both the normal brain development and the neurodevelopmental origin of major neurological and mental disorders, it is important to correlate these neuroimaging data with the existing data on morphogenetic, histogenetic and neurogenetic events. Furthermore, when performing such correlation, the genetic, genomic, and molecular biology data on phenotypic specification of developing brain regions, areas and neurons should also be included. In this review, we focus on early developmental periods (form 8 postconceptional weeks to the second postnatal year) and describe the microstructural organization and neural circuitry elements of the fetal and early postnatal human cerebrum.
Collapse
Affiliation(s)
- I Kostović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - G Sedmak
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - M Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
113
|
Collin G, Keshavan MS. Connectome development and a novel extension to the neurodevelopmental model of schizophrenia. DIALOGUES IN CLINICAL NEUROSCIENCE 2018. [PMID: 30250387 PMCID: PMC6136123 DOI: 10.31887/dcns.2018.20.2/gcollin] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The brain is the ultimate adaptive system, a complex network organized across multiple levels of spatial and temporal resolution that is sculpted over several decades via its interactions with the environment. This review sets out to examine how fundamental biological processes in early and late neurodevelopment, in interaction with environmental inputs, guide the formation of the brain's network and its ongoing reorganization throughout the course of development. Moreover, we explore how disruptions in these processes could lead to abnormal brain network architecture and organization and thereby give rise to schizophrenia. Arguing that the neurodevelopmental trajectory leading up to the manifestation of psychosis may best be understood from the sequential trajectory of connectome formation and maturation, we propose a novel extension to the neurodevelopmental model of the illness that posits that schizophrenia is a disorder of connectome development.
Collapse
Affiliation(s)
- Guusje Collin
- Harvard Medical School at Beth Israel Deaconess Medical Center, Department of Psychiatry, Boston, Massachusetts, USA; Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Cambridge, Massachusetts, USA
| | - Matcheri S Keshavan
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Cambridge, Massachusetts, USA
| |
Collapse
|
114
|
Murabe N, Mori T, Fukuda S, Isoo N, Ohno T, Mizukami H, Ozawa K, Yoshimura Y, Sakurai M. Higher primate-like direct corticomotoneuronal connections are transiently formed in a juvenile subprimate mammal. Sci Rep 2018; 8:16536. [PMID: 30410053 PMCID: PMC6224497 DOI: 10.1038/s41598-018-34961-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
The corticospinal (CS) tract emerged and evolved in mammals, and is essentially involved in voluntary movement. Over its phylogenesis, CS innervation gradually invaded to the ventral spinal cord, eventually making direct connections with spinal motoneurons (MNs) in higher primates. Despite its importance, our knowledge of the origin of the direct CS-MN connections is limited; in fact, there is controversy as to whether these connections occur in subprimate mammals, such as rodents. Here we studied the retrograde transsynaptic connection between cortical neurons and MNs in mice by labeling the cells with recombinant rabies virus. On postnatal day 14 (P14), we found that CS neurons make direct connections with cervical MNs innervating the forearm muscles. Direct connections were also detected electrophysiologically in whole cell recordings from identified MNs retrogradely-labeled from their target muscles and optogenetic CS stimulation. In contrast, few, if any, lumbar MNs innervating hindlimbs showed direct connections on P18. Moreover, the direct CS-MN connections observed on P14 were later eliminated. The transient CS-MN cells were distributed predominantly in the M1 and S1 areas. These findings provide insight into the ontogeny and phylogeny of the CS projection and appear to settle the controversy about direct CS-MN connections in subprimate mammals.
Collapse
Affiliation(s)
- Naoyuki Murabe
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Takuma Mori
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, 444-8585, Japan.,Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Satoshi Fukuda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Noriko Isoo
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Takae Ohno
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan.,Research Hospital, Institute of Medical Science, Tokyo University, Tokyo, 108-8639, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
| | - Masaki Sakurai
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan.
| |
Collapse
|
115
|
Beul SF, Goulas A, Hilgetag CC. Comprehensive computational modelling of the development of mammalian cortical connectivity underlying an architectonic type principle. PLoS Comput Biol 2018; 14:e1006550. [PMID: 30475798 PMCID: PMC6261046 DOI: 10.1371/journal.pcbi.1006550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/06/2018] [Indexed: 12/31/2022] Open
Abstract
The architectonic type principle relates patterns of cortico-cortical connectivity to the relative architectonic differentiation of cortical regions. One mechanism through which the observed close relation between cortical architecture and connectivity may be established is the joint development of cortical areas and their connections in developmental time windows. Here, we describe a theoretical exploration of the possible mechanistic underpinnings of the architectonic type principle, by performing systematic computational simulations of cortical development. The main component of our in silico model was a developing two-dimensional cortical sheet, which was gradually populated by neurons that formed cortico-cortical connections. To assess different explanatory mechanisms, we varied the spatiotemporal trajectory of the simulated neurogenesis. By keeping the rules governing axon outgrowth and connection formation constant across all variants of simulated development, we were able to create model variants which differed exclusively by the specifics of when and where neurons were generated. Thus, all differences in the resulting connectivity were due to the variations in spatiotemporal growth trajectories. Our results demonstrated that a prescribed targeting of interareal connection sites was not necessary for obtaining a realistic replication of the experimentally observed relation between connection patterns and architectonic differentiation. Instead, we found that spatiotemporal interactions within the forming cortical sheet were sufficient if a small number of empirically well-grounded assumptions were met, namely planar, expansive growth of the cortical sheet around two points of origin as neurogenesis progressed, stronger architectonic differentiation of cortical areas for later neurogenetic time windows, and stochastic connection formation. Thus, our study highlights a potential mechanism of how relative architectonic differentiation and cortical connectivity become linked during development. We successfully predicted connectivity in two species, cat and macaque, from simulated cortico-cortical connection networks, which further underscored the general applicability of mechanisms through which the architectonic type principle can explain cortical connectivity in terms of the relative architectonic differentiation of cortical regions.
Collapse
Affiliation(s)
- Sarah F. Beul
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
116
|
Sachana M, Rolaki A, Bal-Price A. Development of the Adverse Outcome Pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol Appl Pharmacol 2018; 354:153-175. [PMID: 29524501 PMCID: PMC6095943 DOI: 10.1016/j.taap.2018.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/06/2023]
Abstract
The Adverse Outcome Pathways (AOPs) are designed to provide mechanistic understanding of complex biological systems and pathways of toxicity that result in adverse outcomes (AOs) relevant to regulatory endpoints. AOP concept captures in a structured way the causal relationships resulting from initial chemical interaction with biological target(s) (molecular initiating event) to an AO manifested in individual organisms and/or populations through a sequential series of key events (KEs), which are cellular, anatomical and/or functional changes in biological processes. An AOP provides the mechanistic detail required to support chemical safety assessment, the development of alternative methods and the implementation of an integrated testing strategy. An example of the AOP relevant to developmental neurotoxicity (DNT) is described here following the requirements of information defined by the OECD Users' Handbook Supplement to the Guidance Document for developing and assessing AOPs. In this AOP, the binding of an antagonist to glutamate receptor N-methyl-d-aspartate (NMDAR) receptor is defined as MIE. This MIE triggers a cascade of cellular KEs including reduction of intracellular calcium levels, reduction of brain derived neurotrophic factor release, neuronal cell death, decreased glutamate presynaptic release and aberrant dendritic morphology. At organ level, the above mentioned KEs lead to decreased synaptogenesis and decreased neuronal network formation and function causing learning and memory deficit at organism level, which is defined as the AO. There are in vitro, in vivo and epidemiological data that support the described KEs and their causative relationships rendering this AOP relevant to DNT evaluation in the context of regulatory purposes.
Collapse
Affiliation(s)
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
117
|
Van Essen DC, Glasser MF. Parcellating Cerebral Cortex: How Invasive Animal Studies Inform Noninvasive Mapmaking in Humans. Neuron 2018; 99:640-663. [PMID: 30138588 PMCID: PMC6149530 DOI: 10.1016/j.neuron.2018.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
The cerebral cortex in mammals contains a mosaic of cortical areas that differ in function, architecture, connectivity, and/or topographic organization. A combination of local connectivity (within-area microcircuitry) and long-distance (between-area) connectivity enables each area to perform a unique set of computations. Some areas also have characteristic within-area mesoscale organization, reflecting specialized representations of distinct types of information. Cortical areas interact with one another to form functional networks that mediate behavior, and each area may be a part of multiple, partially overlapping networks. Given their importance to the understanding of brain organization, mapping cortical areas across species is a major objective of systems neuroscience and has been a century-long challenge. Here, we review recent progress in multi-modal mapping of mouse and nonhuman primate cortex, mainly using invasive experimental methods. These studies also provide a neuroanatomical foundation for mapping human cerebral cortex using noninvasive neuroimaging, including a new map of human cortical areas that we generated using a semiautomated analysis of high-quality, multimodal neuroimaging data. We contrast our semiautomated approach to human multimodal cortical mapping with various extant fully automated human brain parcellations that are based on only a single imaging modality and offer suggestions on how to best advance the noninvasive brain parcellation field. We discuss the limitations as well as the strengths of current noninvasive methods of mapping brain function, architecture, connectivity, and topography and of current approaches to mapping the brain's functional networks.
Collapse
Affiliation(s)
- David C Van Essen
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Matthew F Glasser
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; St. Luke's Hospital, St. Louis, MO 63107, USA.
| |
Collapse
|
118
|
Abstract
Contrary to the notion that neurology but not psychiatry is the domain of disorders evincing structural brain alterations, it is now clear that there are subtle but consistent neuropathological changes in schizophrenia. These range from increases in ventricular size to dystrophic changes in dendritic spines. A decrease in dendritic spine density in the prefrontal cortex (PFC) is among the most replicated of postmortem structural findings in schizophrenia. Examination of the mechanisms that account for the loss of dendritic spines has in large part focused on genes and molecules that regulate neuronal structure. But the simple question of what is the effector of spine loss, ie, where do the lost spines go, is unanswered. Recent data on glial cells suggest that microglia (MG), and perhaps astrocytes, play an important physiological role in synaptic remodeling of neurons during development. Synapses are added to the dendrites of pyramidal cells during the maturation of these neurons; excess synapses are subsequently phagocytosed by MG. In the PFC, this occurs during adolescence, when certain symptoms of schizophrenia emerge. This brief review discusses recent advances in our understanding of MG function and how these non-neuronal cells lead to structural changes in neurons in schizophrenia.
Collapse
Affiliation(s)
| | - Ariel Y Deutch
- Neuroscience Program, Vanderbilt University, Nashville, TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
119
|
Benetti S, Novello L, Maffei C, Rabini G, Jovicich J, Collignon O. White matter connectivity between occipital and temporal regions involved in face and voice processing in hearing and early deaf individuals. Neuroimage 2018; 179:263-274. [PMID: 29908936 DOI: 10.1016/j.neuroimage.2018.06.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Neuroplasticity following sensory deprivation has long inspired neuroscience research in the quest of understanding how sensory experience and genetics interact in developing the brain functional and structural architecture. Many studies have shown that sensory deprivation can lead to cross-modal functional recruitment of sensory deprived cortices. Little is known however about how structural reorganization may support these functional changes. In this study, we examined early deaf, hearing signer and hearing non-signer individuals using diffusion MRI to evaluate the potential structural connectivity linked to the functional recruitment of the temporal voice area by face stimuli in deaf individuals. More specifically, we characterized the structural connectivity between occipital, fusiform and temporal regions typically supporting voice- and face-selective processing. Despite the extensive functional reorganization for face processing in the temporal cortex of the deaf, macroscopic properties of these connections did not differ across groups. However, both occipito- and fusiform-temporal connections showed significant microstructural changes between groups (fractional anisotropy reduction, radial diffusivity increase). We propose that the reorganization of temporal regions after early auditory deprivation builds on intrinsic and mainly preserved anatomical connectivity between functionally specific temporal and occipital regions.
Collapse
Affiliation(s)
- Stefania Benetti
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy.
| | - Lisa Novello
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy
| | - Chiara Maffei
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, 01129, USA
| | - Giuseppe Rabini
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy
| | - Olivier Collignon
- Center for Mind/Brain Studies, University of Trento, 38123, Trento, Italy; Institute of Research in Psychology (IPSY) and in Neuroscience (IoNS), University of Louvain, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
120
|
Hadders-Algra M. Early human brain development: Starring the subplate. Neurosci Biobehav Rev 2018; 92:276-290. [PMID: 29935204 DOI: 10.1016/j.neubiorev.2018.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
This review summarizes early human brain development on the basis of neuroanatomical data and functional connectomics. It indicates that the most significant changes in the brain occur during the second half of gestation and the first three months post-term, in particular in the cortical subplate and cerebellum. As the transient subplate pairs a high rate of intricate developmental changes and interactions with clear functional activity, two phases of development are distinguished: a) the transient cortical subplate phase, ending at 3 months post-term when the permanent circuitries in the primary motor, somatosensory and visual cortices have replaced the subplate; and subsequently, b) the phase in which the permanent circuitries dominate. In the association areas the subplate dissolves in the remainder of the first postnatal year. During both phases developmental changes are paralleled by continuous reconfigurations in network activity. The reviewed literature also suggests that disruption of subplate development may play a pivotal role in developmental disorders, such as cerebral palsy, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
121
|
Dyrby TB, Innocenti GM, Bech M, Lundell H. Validation strategies for the interpretation of microstructure imaging using diffusion MRI. Neuroimage 2018; 182:62-79. [PMID: 29920374 DOI: 10.1016/j.neuroimage.2018.06.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Extracting microanatomical information beyond the image resolution of MRI would provide valuable tools for diagnostics and neuroscientific research. A number of mathematical models already suggest microstructural interpretations of diffusion MRI (dMRI) data. Examples of such microstructural features could be cell bodies and neurites, e.g. the axon's diameter or their orientational distribution for global connectivity analysis using tractography, and have previously only been possible to access through conventional histology of post mortem tissue or invasive biopsies. The prospect of gaining the same knowledge non-invasively from the whole living human brain could push the frontiers for the diagnosis of neurological and psychiatric diseases. It could also provide a general understanding of the development and natural variability in the healthy brain across a population. However, due to a limited image resolution, most of the dMRI measures are indirect estimations and may depend on the whole chain from experimental parameter settings to model assumptions and implementation. Here, we review current literature in this field and highlight the integrative work across anatomical length scales that is needed to validate and trust a new dMRI method. We encourage interdisciplinary collaborations and data sharing in regards to applying and developing new validation techniques to improve the specificity of future dMRI methods.
Collapse
Affiliation(s)
- Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Giorgio M Innocenti
- Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden; Brain and Mind Institute, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Martin Bech
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
122
|
Zhao T, Mishra V, Jeon T, Ouyang M, Peng Q, Chalak L, Wisnowski JL, Heyne R, Rollins N, Shu N, Huang H. Structural network maturation of the preterm human brain. Neuroimage 2018; 185:699-710. [PMID: 29913282 DOI: 10.1016/j.neuroimage.2018.06.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/16/2022] Open
Abstract
During the 3rd trimester, large-scale neural circuits are formed in the human brain, resulting in a highly efficient and segregated connectome at birth. Despite recent findings identifying important preterm human brain network properties such as rich-club organization, how the structural network develops differentially across brain regions and among different types of connections in this period is not yet known. Here, using high resolution diffusion MRI of 77 preterm-born and full-term neonates scanned at 31.9-41.7 postmenstrual weeks (PMW), we constructed structural connectivity matrices and performed graph-theory-based analyses. Faster increases of nodal efficiency were mainly located at the brain hubs distributed in primary sensorimotor regions, superior-middle frontal, and precuneus regions during 31.9-41.7PMW. Higher rates of edge strength increases were found in the rich-club and within-module connections, compared to other connections. The edge strength of short-range connections increased faster than that of long-range connections. Nodal efficiencies of the hubs predicted individual postmenstrual ages more accurately than those of non-hubs. Collectively, these findings revealed more rapid efficiency increases of the hub and rich-club connections as well as higher developmental rates of edge strength in short-range and within-module connections. These jointly underlie network segregation and differentiated emergence of brain functions.
Collapse
Affiliation(s)
- Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Virendra Mishra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Tina Jeon
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Qinmu Peng
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States
| | - Lina Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jessica Lee Wisnowski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States; Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, Chile
| | - Roy Heyne
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Nancy Rollins
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, 19104, United States
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
| | - Hao Huang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States; Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, 19104, United States.
| |
Collapse
|
123
|
Konkle T, Caramazza A. The Large-Scale Organization of Object-Responsive Cortex Is Reflected in Resting-State Network Architecture. Cereb Cortex 2018; 27:4933-4945. [PMID: 27664960 DOI: 10.1093/cercor/bhw287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023] Open
Abstract
Neural responses to visually presented objects have a large-scale spatial organization across the cortex, related to the dimensions of animacy and object size. Most proposals about the origins of this organization point to the influence of differential connectivity with other cortical regions as the key organizing force that drives distinctions in object-responsive cortex. To explore this possibility, we used resting-state functional connectivity to examine the relationship between stimulus-evoked organization of objects, and distinctions in functional network architecture. Using a data-driven analysis, we found evidence for three distinct whole-brain resting-state networks that route through object-responsive cortex, and these naturally manifest the tripartite structure of the stimulus-evoked organization. However, object-responsive regions were also highly correlated with each other at rest. Together, these results point to a nested network architecture, with a local interconnected network across object-responsive cortex and distinctive subnetworks that specifically route these key object distinctions to distinct long-range regions. Broadly, these results point to the viability that long-range connections are a driving force of the large-scale organization of object-responsive cortex.
Collapse
Affiliation(s)
- Talia Konkle
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA.,Center for Mind/Brain Science (CIMeC), University of Trento, 38122 Trento, Italy
| |
Collapse
|
124
|
Fang WQ, Yuste R. Overproduction of Neurons Is Correlated with Enhanced Cortical Ensembles and Increased Perceptual Discrimination. Cell Rep 2018; 21:381-392. [PMID: 29020625 DOI: 10.1016/j.celrep.2017.09.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/02/2017] [Accepted: 09/11/2017] [Indexed: 01/25/2023] Open
Abstract
Brains vary greatly in neuronal number and density, even across individuals within the same species, yet it remains unclear whether such variation leads to differences in brain function or behavior. By imaging cortical activity of a mouse model in which neuronal production is moderately enhanced in utero, we find that animals with more cortical neurons also develop enhanced functional correlations and more distinct neuronal ensembles in primary visual cortex. These mice also have sharper orientation discrimination in their visual behavior. These results unveil a correlation between neuronal ensembles and behavior and suggest that neuronal number is linked to functional modularity and perceptual discrimination of visual cortex. By experimentally linking differences in neuronal number and behavior, our findings could help explain how evolutionary and developmental variability of individual and species brain size may lead to perceptual and cognitive differences.
Collapse
Affiliation(s)
- Wei-Qun Fang
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
125
|
Gould JF, Colombo J, Collins CT, Makrides M, Hewawasam E, Smithers LG. Assessing whether early attention of very preterm infants can be improved by an omega-3 long-chain polyunsaturated fatty acid intervention: a follow-up of a randomised controlled trial. BMJ Open 2018; 8:e020043. [PMID: 29804059 PMCID: PMC5988071 DOI: 10.1136/bmjopen-2017-020043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Docosahexaenoic acid (DHA) accumulates in the frontal lobes (responsible for higher-order cognitive skills) of the fetal brain during the last trimester of pregnancy. Infants born preterm miss some of this in utero provision of DHA, and have an increased risk of suboptimal neurodevelopment. It is thought that supplementing infants born preterm with DHA may improve developmental outcomes. The aim of this follow-up is to determine whether DHA supplementation in infants born preterm can improve areas of the brain associated with frontal lobe function, namely attention and distractibility. METHODS AND ANALYSIS We will assess a subset of children from the N-3 (omega-3) Fatty Acids for Improvement in Respiratory Outcomes (N3RO) multicentre double-blind randomised controlled trial of DHA supplementation. Infants born <29 weeks' completed gestation were randomised to receive an enteral emulsion containing 60 mg/kg/day of DHA or a control emulsion from within the first 3 days of enteral feeding until 36 weeks' postmenstrual age.Children will undergo multiple measures of attention at 18 months' corrected age. The primary outcome is the average time to be distracted when attention is focused on a toy. Secondary outcomes are other aspects of attention, and (where possible) an assessment of cognition, language and motor development with the Bayley Scales of Infant and Toddler Development, Third Edition.A minimum of 72 children will be assessed to ensure 85% power to detect an effect on the primary outcome. Families, and research personnel are blinded to group assignment. All analyses will be conducted according to the intention-to-treat principal. ETHICS AND DISSEMINATION All procedures were approved by the relevant institutional ethics committees prior to commencement of the study. Results will be disseminated in peer-reviewed journal publications and academic presentations. TRIAL REGISTRATION NUMBER ACTRN12612000503820; Pre-results.
Collapse
Affiliation(s)
- Jacqueline F Gould
- Department of Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Psychology, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - John Colombo
- Schiefelbusch Institute for Life Span Studies and Department of Psychology, University of Kansas, Kansas, USA
- Dole Human Development Center, Lawrence, Kansas, USA
| | - Carmel T Collins
- Department of Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Maria Makrides
- Department of Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Discipline of Paediatrics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Erandi Hewawasam
- School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa G Smithers
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
126
|
Cortical developmental death: selected to survive or fated to die. Curr Opin Neurobiol 2018; 53:35-42. [PMID: 29738999 DOI: 10.1016/j.conb.2018.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022]
Abstract
The mature cerebral cortex only contains a fraction of the cells that are generated during embryonic development. Indeed some neuronal populations are produced in excess and later subjected to partial elimination whereas others are almost completely removed during the first two postnatal weeks in mice. Although the identity of cells that disappear, the time course and mechanisms of their death are becoming reasonably well established, the meaning of producing supernumerary cells still remains elusive. In this review, we focus on recent data that shed a new light on the mechanisms involved in adjusting cell numbers and discuss the significance of refinement versus complete elimination of cell populations in the developing cortex.
Collapse
|
127
|
Ouyang M, Dubois J, Yu Q, Mukherjee P, Huang H. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage 2018; 185:836-850. [PMID: 29655938 DOI: 10.1016/j.neuroimage.2018.04.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/01/2018] [Accepted: 04/08/2018] [Indexed: 02/08/2023] Open
Abstract
Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Jessica Dubois
- INSERM, UMR992, CEA, NeuroSpin Center, University Paris Saclay, Gif-sur-Yvette, France
| | - Qinlin Yu
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Pratik Mukherjee
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States.
| |
Collapse
|
128
|
Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants. Pediatr Res 2018; 83:834-842. [PMID: 29244803 DOI: 10.1038/pr.2017.314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/27/2017] [Indexed: 01/18/2023]
Abstract
Background and ObjectiveTo investigate the relation of early brain activity with structural (growth of the cortex and cerebellum) and white matter microstructural brain development.MethodsA total of 33 preterm neonates (gestational age 26±1 weeks) without major brain abnormalities were continuously monitored with electroencephalography during the first 48 h of life. Rate of spontaneous activity transients per minute (SAT rate) and inter-SAT interval (ISI) in seconds per minute were calculated. Infants underwent brain magnetic resonance imaging ∼30 (mean 30.5; min: 29.3-max: 32.0) and 40 (41.1; 40.0-41.8) weeks of postmenstrual age. Increase in cerebellar volume, cortical gray matter volume, gyrification index, fractional anisotropy (FA) of posterior limb of the internal capsule, and corpus callosum (CC) were measured.ResultsSAT rate was positively associated with cerebellar growth (P=0.01), volumetric growth of the cortex (P=0.027), increase in gyrification (P=0.043), and increase in FA of the CC (P=0.037). ISI was negatively associated with cerebellar growth (P=0.002).ConclusionsIncreased early brain activity is associated with cerebellar and cortical growth structures with rapid development during preterm life. Higher brain activity is related to FA microstructural changes in the CC, a region responsible for interhemispheric connections. This study underlines the importance of brain activity for microstructural brain development.
Collapse
|
129
|
Rohr CS, Arora A, Cho IYK, Katlariwala P, Dimond D, Dewey D, Bray S. Functional network integration and attention skills in young children. Dev Cogn Neurosci 2018; 30:200-211. [PMID: 29587178 PMCID: PMC6969078 DOI: 10.1016/j.dcn.2018.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Children acquire attention skills rapidly during early childhood as their brains undergo vast neural development. Attention is well studied in the adult brain, yet due to the challenges associated with scanning young children, investigations in early childhood are sparse. Here, we examined the relationship between age, attention and functional connectivity (FC) during passive viewing in multiple intrinsic connectivity networks (ICNs) in 60 typically developing girls between 4 and 7 years whose sustained, selective and executive attention skills were assessed. Visual, auditory, sensorimotor, default mode (DMN), dorsal attention (DAN), ventral attention (VAN), salience, and frontoparietal ICNs were identified via Independent Component Analysis and subjected to a dual regression. Individual spatial maps were regressed against age and attention skills, controlling for age. All ICNs except the VAN showed regions of increasing FC with age. Attention skills were associated with FC in distinct networks after controlling for age: selective attention positively related to FC in the DAN; sustained attention positively related to FC in visual and auditory ICNs; and executive attention positively related to FC in the DMN and visual ICN. These findings suggest distributed network integration across this age range and highlight how multiple ICNs contribute to attention skills in early childhood.
Collapse
Affiliation(s)
- Christiane S Rohr
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Anish Arora
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ivy Y K Cho
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Prayash Katlariwala
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dennis Dimond
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Signe Bray
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
130
|
Batalle D, Edwards AD, O'Muircheartaigh J. Annual Research Review: Not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 2018; 59:350-371. [PMID: 29105061 PMCID: PMC5900873 DOI: 10.1111/jcpp.12838] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND There has been a recent proliferation in neuroimaging research focusing on brain development in the prenatal, neonatal and very early childhood brain. Early brain injury and preterm birth are associated with increased risk of neurodevelopmental disorders, indicating the importance of this early period for later outcome. SCOPE AND METHODOLOGY Although using a wide range of different methodologies and investigating diverse samples, the common aim of many of these studies has been to both track normative development and investigate deviations in this development to predict behavioural, cognitive and neurological function in childhood. Here we review structural and functional neuroimaging studies investigating the developing brain. We focus on practical and technical complexities of studying this early age range and discuss how neuroimaging techniques have been successfully applied to investigate later neurodevelopmental outcome. CONCLUSIONS Neuroimaging markers of later outcome still have surprisingly low predictive power and their specificity to individual neurodevelopmental disorders is still under question. However, the field is still young, and substantial challenges to both acquiring and modeling neonatal data are being met.
Collapse
Affiliation(s)
- Dafnis Batalle
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - A. David Edwards
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainSchool of Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Department of NeuroimagingInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
131
|
Henschke JU, Oelschlegel AM, Angenstein F, Ohl FW, Goldschmidt J, Kanold PO, Budinger E. Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices. Brain Struct Funct 2018; 223:1165-1190. [PMID: 29094306 PMCID: PMC5871574 DOI: 10.1007/s00429-017-1549-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
The nervous system integrates information from multiple senses. This multisensory integration already occurs in primary sensory cortices via direct thalamocortical and corticocortical connections across modalities. In humans, sensory loss from birth results in functional recruitment of the deprived cortical territory by the spared senses but the underlying circuit changes are not well known. Using tracer injections into primary auditory, somatosensory, and visual cortex within the first postnatal month of life in a rodent model (Mongolian gerbil) we show that multisensory thalamocortical connections emerge before corticocortical connections but mostly disappear during development. Early auditory, somatosensory, or visual deprivation increases multisensory connections via axonal reorganization processes mediated by non-lemniscal thalamic nuclei and the primary areas themselves. Functional single-photon emission computed tomography of regional cerebral blood flow reveals altered stimulus-induced activity and higher functional connectivity specifically between primary areas in deprived animals. Together, we show that intracortical multisensory connections are formed as a consequence of sensory-driven multisensory thalamocortical activity and that spared senses functionally recruit deprived cortical areas by an altered development of sensory thalamocortical and corticocortical connections. The functional-anatomical changes after early sensory deprivation have translational implications for the therapy of developmental hearing loss, blindness, and sensory paralysis and might also underlie developmental synesthesia.
Collapse
Affiliation(s)
- Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases Within the Helmholtz Association, Leipziger Str. 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuropharmacology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, German Center for Neurodegenerative Diseases Within the Helmholtz Association, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany.
| |
Collapse
|
132
|
Toro R, Bakker R, Delzescaux T, Evans A, Tiesinga P. FIIND: Ferret Interactive Integrated Neurodevelopment Atlas. RESEARCH IDEAS AND OUTCOMES 2018. [DOI: 10.3897/rio.4.e25312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The first days after birth in ferrets provide a privileged view of the development of a complex mammalian brain. Unlike mice, ferrets develop a rich pattern of deep neocortical folds and cortico- cortical connections. Unlike humans and other primates, whose brains are well differentiated and folded at birth, ferrets are born with a very immature and completely smooth neocortex: folds, neocortical regionalisation and cortico-cortical connectivity develop in ferrets during the first postnatal days. After a period of fast neocortical expansion, during which brain volume increases by up to a factor of 4 in 2 weeks, the ferret brain reaches its adult volume at about 6 weeks of age. Ferrets could thus become a major animal model to investigate the neurobiological correlates of the phenomena observed in human neuroimaging. Many of these phenomena, such as the relationship between brain folding, cortico-cortical connectivity and neocortical regionalisation cannot be investigated in mice, but could be investigated in ferrets.
Our aim is to provide the research community with a detailed description of the development of a complex brain, necessary to better understand the nature of human neuroimaging data, create models of brain development, or analyse the relationship between multiple spatial scales. We have already started a project to constitute an open, collaborative atlas of ferret brain development, integrating multi-modal and multi-scale data. We have acquired data for 28 ferrets (4 animals per time point from P0 to adults), using high-resolution MRI and diffusion tensor imaging (DTI). We have developed an open-source pipeline to segment and produce – online – 3D reconstructions of brain MRI data.
We propose to process the brains of 16 of our specimens (from P0 to P16) using high-throughput 3D histology, staining for cytoarchitectonic landmarks, neuronal progenitors and neurogenesis. This would allow us to relate the MRI data that we have already acquired with multi-dimensional cell-scale information. Brains will be sectioned at 25 μm, stained, scanned at 0.25 μm of resolution, and processed for real-time multi-scale visualisation. We will extend our current web-platform to integrate an interactive multi-scale visualisation of the data. Using our combined expertise in computational neuroanatomy, multi-modal neuroimaging, neuroinformatics, and the development of inter-species atlases, we propose to build an open-source web platform to allow the collaborative, online, creation of atlases of the development of the ferret brain. The web platform will allow researchers to access and visualise interactively the MRI and histology data. It will also allow researchers to create collaborative, human curated, 3D segmentations of brain structures, as well as vectorial atlases. Our work will provide a first integrated atlas of ferret brain development, and the basis for an open platform for the creation of collaborative multi-modal, multi-scale, multi-species atlases.
Collapse
|
133
|
Innocenti GM, Dyrby TB, Andersen KW, Rouiller EM, Caminiti R. The Crossed Projection to the Striatum in Two Species of Monkey and in Humans: Behavioral and Evolutionary Significance. Cereb Cortex 2018; 27:3217-3230. [PMID: 27282154 DOI: 10.1093/cercor/bhw161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The corpus callosum establishes the anatomical continuity between the 2 hemispheres and coordinates their activity. Using histological tracing, single axon reconstructions, and diffusion tractography, we describe a callosal projection to n caudatus and putamen in monkeys and humans. In both species, the origin of this projection is more restricted than that of the ipsilateral projection. In monkeys, it consists of thin axons (0.4-0.6 µm), appropriate for spatial and temporal dispersion of subliminal inputs. For prefrontal cortex, contralateral minus ipsilateral delays to striatum calculated from axon diameters and conduction distance are <2 ms in the monkey and, by extrapolation, <4 ms in humans. This delay corresponds to the performance in Poffenberger's paradigm, a classical attempt to estimate central conduction delays, with a neuropsychological task. In both species, callosal cortico-striatal projections originate from prefrontal, premotor, and motor areas. In humans, we discovered a new projection originating from superior parietal lobule, supramarginal, and superior temporal gyrus, regions engaged in language processing. This projection crosses in the isthmus the lesion of which was reported to dissociate syntax and prosody. The projection might originate from an overproduction of callosal projections in development, differentially pruned depending on species.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Brain and Mind Institute, EPFL, Lausanne, Switzerland
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Eric M Rouiller
- Department of Medicine, Faculty of Sciences, Fribourg Cognition Center, University of Fribourg, Fribourg, Switzerland
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, Rome, Italy.,Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome SAPIENZA, Rome, Italy
| |
Collapse
|
134
|
Cignetti F, Fontan A, Menant J, Nazarian B, Anton JL, Vaugoyeau M, Assaiante C. Protracted Development of the Proprioceptive Brain Network During and Beyond Adolescence. Cereb Cortex 2018; 27:1285-1296. [PMID: 26733535 DOI: 10.1093/cercor/bhv323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proprioceptive processing is important for appropriate motor control, providing error-feedback and internal representation of movement for adjusting the motor command. Although proprioceptive functioning improves during childhood and adolescence, we still have few clues about how the proprioceptive brain network develops. Here, we investigated developmental changes in the functional organization of this network in early adolescents (n = 18, 12 ± 1 years), late adolescents (n = 18, 15 ± 1), and young adults (n = 18, 32 ± 4), by examining task-evoked univariate activity and patterns of functional connectivity (FC) associated with seeds placed in cortical (supramarginal gyrus) and subcortical (dorsal rostral putamen) regions. We found that although the network is already well established in early adolescence both in terms of topology and functioning principles (e.g., long-distance communication and economy in wiring cost), it is still undergoing refinement during adolescence, including a shift from diffuse to focal FC and a decreased FC strength. This developmental effect was particularly pronounced for fronto-striatal connections. Furthermore, changes in FC features continued beyond adolescence, although to a much lower extent. Altogether, these findings point to a protracted developmental time course for the proprioceptive network, which breaks with the relatively early functional maturation often associated with sensorimotor networks.
Collapse
Affiliation(s)
| | | | - Jasmine Menant
- Neuroscience Research Australia and University of New South Wales, Sydney, New South Wales, Australia
| | - Bruno Nazarian
- INT UMR 7289, Centre IRM Fonctionnelle Cérébrale, Aix-Marseille Université, CNRS, Marseille, France
| | - Jean-Luc Anton
- INT UMR 7289, Centre IRM Fonctionnelle Cérébrale, Aix-Marseille Université, CNRS, Marseille, France
| | | | | |
Collapse
|
135
|
|
136
|
Jaimes C, Cheng HH, Soul J, Ferradal S, Rathi Y, Gagoski B, Newburger JW, Grant PE, Zöllei L. Probabilistic tractography-based thalamic parcellation in healthy newborns and newborns with congenital heart disease. J Magn Reson Imaging 2017; 47:1626-1637. [PMID: 29080379 DOI: 10.1002/jmri.25875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/03/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Given the central role of the thalamus in motor, sensory, and cognitive development, methods to study emerging thalamocortical connectivity in early infancy are of great interest. PURPOSE To determine the feasibility of performing probabilistic tractography-based thalamic parcellation (PTbTP) in typically developing (TD) neonates and to compare the results with a pilot sample of neonates with congenital heart disease (CHD). STUDY TYPE Institutional Review Board (IRB)-approved cross-sectional study. MODEL We prospectively recruited 20 TD neonates and five CHD neonates (imaged preoperatively). FIELD STRENGTH/SEQUENCE MRI was performed at 3.0T including diffusion-weighted imaging (DWI) and 3D magnetization prepared rapid gradient-echo (MPRAGE). ASSESSMENT A radiologist and trained research assistants segmented the thalamus and seven cortical targets for each hemisphere. Using the thalami as seeds and the cortical labels as targets, FSL library tools were used to generate probabilistic tracts. A Hierarchical Dirichlet Process algorithm was then used for clustering analysis. A radiologist qualitatively assessed the results of clustering. Quantitative analyses were also performed. STATISTICAL TESTS We summarized the demographic data and results of clustering with descriptive statistics. Linear regressions covarying for gestational age were used to compare groups. RESULTS In 17 of 20 TD neonates, we identified five connectivity-determined clusters, which correlate with known thalamic nuclei and subnuclei. In four neonates with CHD we observed a spectrum of abnormalities including fewer and disorganized clusters or small supernumerary clusters (up to seven per thalamus). After covarying for differences in corrected gestational age (cGA), the fractional anisotropy (FA), volume, and normalized thalamic volume were significantly lower in CHD neonates (P < 0.01). DATA CONCLUSIONS Using PTbTP clusters, correlating well with the location and connectivity of known thalamic nuclei, were identified in TD neonates. Differences in thalamic clustering outputs were identified in four neonates with CHD, raising concern for disordered thalamic connectivity. PTbTP is feasible in TD and CHD neonates. Preliminary findings suggest the prenatal origins of altered connectivity in CHD. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:1626-1637.
Collapse
Affiliation(s)
- Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Henry H Cheng
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Janet Soul
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Silvina Ferradal
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston, Massachusetts, USA.,Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Laboratory of Mathematics in Imaging, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston, Massachusetts, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston, Massachusetts, USA.,Department of Radiology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA; all: Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
137
|
Grayson DS, Fair DA. Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature. Neuroimage 2017; 160:15-31. [PMID: 28161313 PMCID: PMC5538933 DOI: 10.1016/j.neuroimage.2017.01.079] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023] Open
Abstract
The development of human cognition results from the emergence of coordinated activity between distant brain areas. Network science, combined with non-invasive functional imaging, has generated unprecedented insights regarding the adult brain's functional organization, and promises to help elucidate the development of functional architectures supporting complex behavior. Here we review what is known about functional network development from birth until adulthood, particularly as understood through the use of resting-state functional connectivity MRI (rs-fcMRI). We attempt to synthesize rs-fcMRI findings with other functional imaging techniques, with macro-scale structural connectivity, and with knowledge regarding the development of micro-scale structure. We highlight a number of outstanding conceptual and technical barriers that need to be addressed, as well as previous developmental findings that may need to be revisited. Finally, we discuss key areas ripe for future research in order to (1) better characterize normative developmental trajectories, (2) link these trajectories to biologic mechanistic events, as well as component behaviors and (3) better understand the clinical implications and pathophysiological basis of aberrant network development.
Collapse
Affiliation(s)
- David S Grayson
- The MIND Institute, University of California Davis, Sacramento, CA 95817, USA; Center for Neuroscience, University of California Davis, Davis, CA 95616, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Damien A Fair
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, USA; Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
138
|
Song L, Mishra V, Ouyang M, Peng Q, Slinger M, Liu S, Huang H. Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth. Front Neurosci 2017; 11:561. [PMID: 29081731 PMCID: PMC5645529 DOI: 10.3389/fnins.2017.00561] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20–40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20–35 PMW than during 35–40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural network configuration at 20 PMW and small-world network organization could exist as early as 20 PMW. These findings offer a preliminary record of the fetal brain structural connectome maturation from the middle fetal stage to birth and reveal the critical role of non-WM neural fibers in structural network configuration in the middle fetal stage.
Collapse
Affiliation(s)
- Limei Song
- Shandong Provincial Key Laboratory of Mental Disorders, Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, China.,Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Virendra Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | - Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Qinmu Peng
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michelle Slinger
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Shuwei Liu
- Shandong Provincial Key Laboratory of Mental Disorders, Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, China
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
139
|
Ouyang M, Kang H, Detre JA, Roberts TPL, Huang H. Short-range connections in the developmental connectome during typical and atypical brain maturation. Neurosci Biobehav Rev 2017; 83:109-122. [PMID: 29024679 DOI: 10.1016/j.neubiorev.2017.10.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/09/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
The human brain is remarkably complex with connectivity constituting its basic organizing principle. Although long-range connectivity has been focused on in most research, short-range connectivity is characterized by unique and spatiotemporally heterogeneous dynamics from infancy to adulthood. Alterations in the maturational dynamics of short-range connectivity has been associated with neuropsychiatric disorders, such as autism and schizophrenia. Recent advances in neuroimaging techniques, especially diffusion magnetic resonance imaging (dMRI), resting-state functional MRI (rs-fMRI), electroencephalography (EEG) and magnetoencephalography (MEG), have made quantification of short-range connectivity possible in pediatric populations. This review summarizes findings on the development of short-range functional and structural connections at the macroscale. These findings suggest an inverted U-shaped pattern of maturation from primary to higher-order brain regions, and possible "hyper-" and "hypo-" short-range connections in autism and schizophrenia, respectively. The precisely balanced short- and long-range connections contribute to the integration and segregation of the connectome during development. The mechanistic relationship among short-range connectivity maturation, the developmental connectome and emerging brain functions needs further investigation, including the refinement of methodological approaches.
Collapse
Affiliation(s)
- Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States
| | - Huiying Kang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - John A Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Timothy P L Roberts
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, PA, United States.
| |
Collapse
|
140
|
Keunen K, Counsell SJ, Benders MJ. The emergence of functional architecture during early brain development. Neuroimage 2017; 160:2-14. [DOI: 10.1016/j.neuroimage.2017.01.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 01/12/2023] Open
|
141
|
Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat Rev Neurosci 2017; 18:658-670. [PMID: 28931944 DOI: 10.1038/nrn.2017.110] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The final stage of brain development is associated with the generation and maturation of neuronal synapses. However, the same period is also associated with a peak in synapse elimination - a process known as synaptic pruning - that has been proposed to be crucial for the maturation of remaining synaptic connections. Recent studies have pointed to a key role for glial cells in synaptic pruning in various parts of the nervous system and have identified a set of critical signalling pathways between glia and neurons. At the same time, brain imaging and post-mortem anatomical studies suggest that insufficient or excessive synaptic pruning may underlie several neurodevelopmental disorders, including autism, schizophrenia and epilepsy. Here, we review current data on the cellular, physiological and molecular mechanisms of glial-cell-dependent synaptic pruning and outline their potential contribution to neurodevelopmental disorders.
Collapse
|
142
|
Takahashi T, Yamanishi T, Nobukawa S, Kasakawa S, Yoshimura Y, Hiraishi H, Hasegawa C, Ikeda T, Hirosawa T, Munesue T, Higashida H, Minabe Y, Kikuchi M. Band-specific atypical functional connectivity pattern in childhood autism spectrum disorder. Clin Neurophysiol 2017. [DOI: 10.1016/j.clinph.2017.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
143
|
Vasung L, Raguz M, Kostovic I, Takahashi E. Spatiotemporal Relationship of Brain Pathways during Human Fetal Development Using High-Angular Resolution Diffusion MR Imaging and Histology. Front Neurosci 2017; 11:348. [PMID: 28744187 PMCID: PMC5504538 DOI: 10.3389/fnins.2017.00348] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/06/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, we aimed to identify major fiber pathways and their spatiotemporal relationships within transient fetal zones in the human fetal brain by comparing postmortem high-angular resolution diffusion MR imaging (HARDI) in combination with deterministic streamline tractography and histology. Diffusion weighted imaging was performed on postmortem human fetal brains [N = 9, age = 18–34 post-conceptual weeks (PCW)] that were grossly normal with no pathologic abnormalities. After HARDI was performed, the fibers were reconstructed using Q-ball algorithm and deterministic streamline tractography. The position of major fiber pathways within transient fetal zones was identified both on diffusion weighted images and on histological sections. Our major findings include: (1) the development of massive projection fibers by 18 PCW, as compared to most association fibers (with the exception of limbic fibers) which have only begun to emerge, (2) the characteristic laminar distribution and sagittal plane geometry of reconstructed fibers throughout development, (3) the protracted prenatal development shown of the corpus collosum and its' associated fibers, as well as the association fibers, and (4) the predomination of radial coherence in the telencephalon (i.e., majority of streamlines in the telencephalic wall were radially oriented) during early prenatal period (24 PCW). In conclusion, correlation between histology and HARDI (in combination with Q-ball reconstruction and deterministic streamline tractography) allowed us to detect sequential development of fiber systems (projection, callosal, and association), their spatial relations with transient fetal zones, and their geometric properties.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, United States
| | - Marina Raguz
- School of Medicine, Croatian Institute for Brain Research, University of ZagrebZagreb, Croatia
| | - Ivica Kostovic
- School of Medicine, Croatian Institute for Brain Research, University of ZagrebZagreb, Croatia
| | - Emi Takahashi
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
144
|
Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity. J Neurosci 2017; 36:6403-19. [PMID: 27307230 DOI: 10.1523/jneurosci.4067-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have found that the transcriptional coregulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the embryonic day 15.5 subventricular zone, during the peak of superficial layer CPN birth, with a progressive postmitotic refinement in expression, becoming restricted to CPN of the somatosensory cortex postnatally. We generated progenitor-stage and postmitotic forebrain-specific Cited2 conditional knock-out mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary postmitotically, to regulate both (1) broad generation of layer II/III CPN and (2) acquisition of precise area-specific molecular identity and axonal/dendritic connectivity of somatosensory CPN. This novel CPN subtype-specific and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multistage developmental regulation of neocortical development. SIGNIFICANCE STATEMENT This study identifies Cited2 as a novel subtype-specific and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We found that Cited2 functions within subventricular zone progenitors to both broadly regulate generation of superficial layer CPN throughout the neocortex, and to refine precise area-specific development and connectivity of somatosensory CPN. Gaining insight into molecular development and heterogeneity of CPN will advance understanding of both diverse functions of CPN and of the remarkable range of neurodevelopmental deficits correlated with CPN/CC development.
Collapse
|
145
|
Cross-Modal Plasticity in Higher-Order Auditory Cortex of Congenitally Deaf Cats Does Not Limit Auditory Responsiveness to Cochlear Implants. J Neurosci 2017; 36:6175-85. [PMID: 27277796 DOI: 10.1523/jneurosci.0046-16.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reorganization may either compete with or complement the "original" inputs to the deprived area after sensory restoration and can thus be either adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behavior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs). However, both the auditory responsiveness of "deaf" higher-order fields and interactions between the reorganized and the original sensory input remain unknown. Here, we studied a higher-order auditory field responsible for the supranormal visual function in CDCs, the auditory dorsal zone (DZ). Hearing cats and visual cortical areas served as a control. Using mapping with microelectrode arrays, we demonstrate spatially scattered visual (cross-modal) responsiveness in the DZ, but show that this did not interfere substantially with robust auditory responsiveness elicited through cochlear implants. Visually responsive and auditory-responsive neurons in the deaf auditory cortex formed two distinct populations that did not show bimodal interactions. Therefore, cross-modal plasticity in the deaf higher-order auditory cortex had limited effects on auditory inputs. The moderate number of scattered cross-modally responsive neurons could be the consequence of exuberant connections formed during development that were not pruned postnatally in deaf cats. Although juvenile brain circuits are modified extensively by experience, the main driving input to the cross-modally (visually) reorganized higher-order auditory cortex remained auditory in congenital deafness. SIGNIFICANCE STATEMENT In a common view, the "unused" auditory cortex of deaf individuals is reorganized to a compensatory sensory function during development. According to this view, cross-modal plasticity takes over the unused cortex and reassigns it to the remaining senses. Therefore, cross-modal plasticity might conflict with restoration of auditory function with cochlear implants. It is unclear whether the cross-modally reorganized auditory areas lose auditory responsiveness. We show that the presence of cross-modal plasticity in a higher-order auditory area does not reduce auditory responsiveness of that area. Visual reorganization was moderate, spatially scattered and there were no interactions between cross-modally reorganized visual and auditory inputs. These results indicate that cross-modal reorganization is less detrimental for neurosensory restoration than previously thought.
Collapse
|
146
|
Kaiser M. Mechanisms of Connectome Development. Trends Cogn Sci 2017; 21:703-717. [PMID: 28610804 DOI: 10.1016/j.tics.2017.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
At the centenary of D'Arcy Thompson's seminal work 'On Growth and Form', pioneering the description of principles of morphological changes during development and evolution, recent experimental advances allow us to study change in anatomical brain networks. Here, we outline potential principles for connectome development. We will describe recent results on how spatial and temporal factors shape connectome development in health and disease. Understanding the developmental origins of brain diseases in individuals will be crucial for deciding on personalized treatment options. We argue that longitudinal studies, experimentally derived parameters for connection formation, and biologically realistic computational models are needed to better understand the link between brain network development, network structure, and network function.
Collapse
Affiliation(s)
- Marcus Kaiser
- ICOS Research Group, School of Computing Science, Newcastle University, Newcastle upon Tyne, UK; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
147
|
Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci U S A 2017; 114:E4501-E4510. [PMID: 28507127 DOI: 10.1073/pnas.1612862114] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience.
Collapse
|
148
|
Aguirre GK, Butt OH, Datta R, Roman AJ, Sumaroka A, Schwartz SB, Cideciyan AV, Jacobson SG. Postretinal Structure and Function in Severe Congenital Photoreceptor Blindness Caused by Mutations in the GUCY2D Gene. Invest Ophthalmol Vis Sci 2017; 58:959-973. [PMID: 28403437 PMCID: PMC5308769 DOI: 10.1167/iovs.16-20413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To examine how severe congenital blindness resulting from mutations of the GUCY2D gene alters brain structure and function, and to relate these findings to the notable preservation of retinal architecture in this form of Leber congenital amaurosis (LCA). Methods Six GUCY2D-LCA patients (ages 20–46) were studied with optical coherence tomography of the retina and multimodal magnetic resonance imaging (MRI) of the brain. Measurements from this group were compared to those obtained from populations of normally sighted controls and people with congenital blindness of a variety of causes. Results Patients with GUCY2D-LCA had preservation of the photoreceptors, ganglion cells, and nerve fiber layer. Despite this, visual function in these patients ranged from 20/160 acuity to no light perception, and functional MRI responses to light stimulation were attenuated and restricted. This severe visual impairment was reflected in substantial thickening of the gray matter layer of area V1, accompanied by an alteration of resting-state correlations within the occipital lobe, similar to a comparison group of congenitally blind people with structural damage to the retina. In contrast to the comparison blind population, however, the GUCY2D-LCA group had preservation of the size of the optic chiasm, and the fractional anisotropy of the optic radiations as measured with diffusion tensor imaging was also normal. Conclusions These results identify dissociable effects of blindness upon the visual pathway. Further, the relatively intact postgeniculate white matter pathway in GUCY2D-LCA is encouraging for the prospect of recovery of visual function with gene augmentation therapy.
Collapse
Affiliation(s)
- Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Omar H Butt
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ritobrato Datta
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alejandro J Roman
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sharon B Schwartz
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Samuel G Jacobson
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
149
|
Chung WW, Hudziak JJ. The Transitional Age Brain: "The Best of Times and the Worst of Times". Child Adolesc Psychiatr Clin N Am 2017; 26:157-175. [PMID: 28314448 DOI: 10.1016/j.chc.2016.12.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past two decades, there have been substantial developments in the understanding of brain development and the importance of environmental inputs and context. This paper focuses on the neurodevelopmental mismatch that occurs during the epoch we term the 'transitional age brain' (ages 13-25) and the collateral behavioral correlates. We summarize research findings supporting the argument that, because of this neurodevelopmental mismatch, transitional age youth are at high risk for engaging in behaviors that lead to negative outcomes, morbidity, and mortality. We highlight the need to develop new, neuroscience-inspired health promotion and illness prevention approaches for transitional age youth.
Collapse
Affiliation(s)
- Winston W Chung
- Vermont Center for Children, Youth, and Family, University of Vermont Medical Center, 1 South Prospect Street, Arnold 3, Burlington, Vermont 05401, USA
| | - James J Hudziak
- University of Vermont College of Medicine and Medical Center, 1 South Prospect Street, Arnold 3, Burlington, Vermont 05401, USA.
| |
Collapse
|
150
|
Fontan A, Cignetti F, Nazarian B, Anton JL, Vaugoyeau M, Assaiante C. How does the body representation system develop in the human brain? Dev Cogn Neurosci 2017; 24:118-128. [PMID: 28314184 PMCID: PMC6987789 DOI: 10.1016/j.dcn.2017.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/27/2016] [Accepted: 02/25/2017] [Indexed: 12/11/2022] Open
Abstract
Exploration of the body representation system (BRS) from kinaesthetic illusions in fMRI has revealed a complex network composed of sensorimotor and frontoparietal components. Here, we evaluated the degree of maturity of this network in children aged 7-11 years, and the extent to which structural factors account for network differences with adults. Brain activation following tendon vibration at 100Hz ('illusion') and 30Hz ('no illusion') were analysed using the two-stage random effects model, with or without white and grey matter covariates. The BRS was already well established in children as revealed by the contrast 'illusion' vs 'no illusion', although still immature in some aspects. This included a lower level of activation in primary somatosensory and posterior parietal regions, and the exclusive activation of the frontopolar cortex (FPC) in children compared to adults. The former differences were related to structure, while the latter difference reflected a functional strategy where the FPC may serve as the 'top' in top-down modulation of the activity of the other BRS regions to facilitate the establishment of body representations. Hence, the development of the BRS not only relies on structural maturation, but also involves the disengagement of an executive region not classically involved in body processing.
Collapse
Affiliation(s)
- Aurelie Fontan
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Fabien Cignetti
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Bruno Nazarian
- Aix-Marseille Université, CNRS, INT UMR 7289, Centre IRM, France
| | - Jean-Luc Anton
- Aix-Marseille Université, CNRS, INT UMR 7289, Centre IRM, France
| | - Marianne Vaugoyeau
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - Christine Assaiante
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France; Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France.
| |
Collapse
|