101
|
Desai TA, Hedman ÅK, Dimitriou M, Koprulu M, Figiel S, Yin W, Johansson M, Watts EL, Atkins JR, Sokolov AV, Schiöth HB, Gunter MJ, Tsilidis KK, Martin RM, Pietzner M, Langenberg C, Mills IG, Lamb AD, Mälarstig A, Key TJ, Travis RC, Smith-Byrne K. Identifying proteomic risk factors for overall, aggressive and early onset prostate cancer using Mendelian randomization and tumor spatial transcriptomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295864. [PMID: 37790472 PMCID: PMC10543057 DOI: 10.1101/2023.09.21.23295864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. Methods We investigated the association of 2,002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomization (MR) and colocalization. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalization were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumor tissue to assess their role in tumor aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. Results We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which a majority were novel and replicated. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirm an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also find an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk mapped to existing therapeutic interventions. Conclusion Our findings emphasize the importance of proteomics for improving our understanding of prostate cancer etiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumors. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Trishna A Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Åsa K Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
| | - Sandy Figiel
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Wencheng Yin
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Eleanor L Watts
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Joshua R Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124 Uppsala, Sweden
| | - Marc J Gunter
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
- Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
- Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ian G Mills
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Alastair D Lamb
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Tim J Key
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
102
|
Im C, Sharafeldin N, Yuan Y, Wang Z, Sapkota Y, Lu Z, Spector LG, Howell RM, Arnold MA, Hudson MM, Ness KK, Robison LL, Bhatia S, Armstrong GT, Neglia JP, Yasui Y, Turcotte LM. Polygenic Risk and Chemotherapy-Related Subsequent Malignancies in Childhood Cancer Survivors: A Childhood Cancer Survivor Study and St Jude Lifetime Cohort Study Report. J Clin Oncol 2023; 41:4381-4393. [PMID: 37459583 PMCID: PMC10522108 DOI: 10.1200/jco.23.00428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 08/07/2023] Open
Abstract
PURPOSE Chemotherapeutic exposures are associated with subsequent malignant neoplasm (SMN) risk. The role of genetic susceptibility in chemotherapy-related SMNs should be defined as use of radiation therapy (RT) decreases. PATIENTS AND METHODS SMNs among long-term childhood cancer survivors of European (EUR; N = 9,895) and African (AFR; N = 718) genetic ancestry from the Childhood Cancer Survivor Study and St Jude Lifetime Cohort Study were evaluated. An externally validated 179-variant polygenic risk score (PRS) associated with pleiotropic adult cancer risk from the UK Biobank Study (N > 400,000) was computed for each survivor. SMN cumulative incidence comparing top and bottom PRS quintiles was estimated, along with hazard ratios (HRs) from proportional hazards models. RESULTS A total of 1,594 survivors developed SMNs, with basal cell carcinomas (n = 822), breast cancers (n = 235), and thyroid cancers (n = 221) being the most frequent. Although SMN risk associations with the PRS were extremely modest in RT-exposed EUR survivors (HR, 1.22; P = .048; n = 4,630), the increase in 30-year SMN cumulative incidence and HRs comparing top and bottom PRS quintiles was statistically significant among nonirradiated EUR survivors (n = 4,322) treated with alkylating agents (17% v 6%; HR, 2.46; P < .01), anthracyclines (20% v 8%; HR, 2.86; P < .001), epipodophyllotoxins (23% v 1%; HR, 12.20; P < .001), or platinums (46% v 7%; HR, 8.58; P < .01). This PRS also significantly modified epipodophyllotoxin-related SMN risk among nonirradiated AFR survivors (n = 414; P < .01). Improvements in prediction attributable to the PRS were greatest for epipodophyllotoxin-exposed (AUC, 0.71 v 0.63) and platinum-exposed (AUC,0.68 v 0.58) survivors. CONCLUSION A pleiotropic cancer PRS has strong potential for improving SMN clinical risk stratification among nonirradiated survivors treated with specific chemotherapies. A polygenic risk screening approach may be a valuable complement to an early screening strategy on the basis of treatments and rare cancer-susceptibility mutations.
Collapse
Affiliation(s)
- Cindy Im
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Noha Sharafeldin
- Hematology Oncology Division, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Yan Yuan
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
| | - Zhanni Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Rebecca M. Howell
- Department of Radiation Physics, University of Texas at MD Anderson Cancer Center, Houston, TX
| | - Michael A. Arnold
- Department of Pathology and Laboratory Medicine, University of Colorado and Children's Hospital Colorado, Anschutz Medical Campus, Aurora, CO
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Joseph P. Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Yutaka Yasui
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
103
|
Abstract
Since the publication of the first genome-wide association study for cancer in 2007, thousands of common alleles that are associated with the risk of cancer have been identified. The relative risk associated with individual variants is small and of limited clinical significance. However, the combined effect of multiple risk variants as captured by polygenic scores (PGSs) may be much greater and therefore provide risk discrimination that is clinically useful. We review the considerable research efforts over the past 15 years for developing statistical methods for PGSs and their application in large-scale genome-wide association studies to develop PGSs for various cancers. We review the predictive performance of these PGSs and the multiple challenges currently limiting the clinical application of PGSs. Despite this, PGSs are beginning to be incorporated into clinical multifactorial risk prediction models to stratify risk in both clinical trials and clinical implementation studies.
Collapse
Affiliation(s)
- Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
104
|
Subramanian A, Su S, Moding EJ, Binkley MS. Investigating the tissue specificity and prognostic impact of cis-regulatory cancer risk variants. Hum Genet 2023; 142:1395-1405. [PMID: 37474751 DOI: 10.1007/s00439-023-02586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
The tissue-specific incidence of cancers and their genetic basis are poorly understood. Although prior studies have shown global correlation across tissues for cancer risk single-nucleotide polymorphisms (SNPs) identified through genome-wide association studies (GWAS), any shared functional regulation of gene expression on a per SNP basis has not been well characterized. We set to quantify cis-mediated gene regulation and tissue sharing for SNPs associated with eight common cancers. We identify significant tissue sharing for individual SNPs and global enrichment for breast, colorectal, and Hodgkin lymphoma cancer risk SNPs in multiple tissues. In addition, we observe increasing tissue sharing for cancer risk SNPs overlapping with super-enhancers for breast cancer and Hodgkin lymphoma providing further evidence of tissue specificity. Finally, for genes under cis-regulation by breast cancer SNPs, we identify a phenotype characterized by low expression of tumor suppressors and negative regulators of the WNT pathway associated with worse freedom from progression and overall survival in patients who eventually develop breast cancer. Our results introduce a paradigm for functionally annotating individual cancer risk SNPs and will inform the design of future translational studies aimed to personalize assessment of inherited cancer risk across tissues.
Collapse
Affiliation(s)
- Ajay Subramanian
- Department of Radiation Oncology, Stanford Cancer Institute and Stanford University School of Medicine, Stanford, CA, USA
| | - Shengqin Su
- Department of Radiation Oncology, Stanford Cancer Institute and Stanford University School of Medicine, Stanford, CA, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford Cancer Institute and Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Sargent Binkley
- Department of Radiation Oncology, Stanford Cancer Institute and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
105
|
Gregga I, Pharoah PDP, Gayther SA, Manichaikul A, Im HK, Kar SP, Schildkraut JM, Wheeler HE. Predicted Proteome Association Studies of Breast, Prostate, Ovarian, and Endometrial Cancers Implicate Plasma Protein Regulation in Cancer Susceptibility. Cancer Epidemiol Biomarkers Prev 2023; 32:1198-1207. [PMID: 37409955 PMCID: PMC10528410 DOI: 10.1158/1055-9965.epi-23-0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Predicting protein levels from genotypes for proteome-wide association studies (PWAS) may provide insight into the mechanisms underlying cancer susceptibility. METHODS We performed PWAS of breast, endometrial, ovarian, and prostate cancers and their subtypes in several large European-ancestry discovery consortia (effective sample size: 237,483 cases/317,006 controls) and tested the results for replication in an independent European-ancestry GWAS (31,969 cases/410,350 controls). We performed PWAS using the cancer GWAS summary statistics and two sets of plasma protein prediction models, followed by colocalization analysis. RESULTS Using Atherosclerosis Risk in Communities (ARIC) models, we identified 93 protein-cancer associations [false discovery rate (FDR) < 0.05]. We then performed a meta-analysis of the discovery and replication PWAS, resulting in 61 significant protein-cancer associations (FDR < 0.05). Ten of 15 protein-cancer pairs that could be tested using Trans-Omics for Precision Medicine (TOPMed) protein prediction models replicated with the same directions of effect in both cancer GWAS (P < 0.05). To further support our results, we applied Bayesian colocalization analysis and found colocalized SNPs for SERPINA3 protein levels and prostate cancer (posterior probability, PP = 0.65) and SNUPN protein levels and breast cancer (PP = 0.62). CONCLUSIONS We used PWAS to identify potential biomarkers of hormone-related cancer risk. SNPs in SERPINA3 and SNUPN did not reach genome-wide significance for cancer in the original GWAS, highlighting the power of PWAS for novel locus discovery, with the added advantage of providing directions of protein effect. IMPACT PWAS and colocalization are promising methods to identify potential molecular mechanisms underlying complex traits.
Collapse
Affiliation(s)
- Isabelle Gregga
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, USA
| | - Paul D. P. Pharoah
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Siddhartha P. Kar
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Heather E. Wheeler
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
106
|
Ito S, Liu X, Ishikawa Y, Conti DD, Otomo N, Kote-Jarai Z, Suetsugu H, Eeles RA, Koike Y, Hikino K, Yoshino S, Tomizuka K, Horikoshi M, Ito K, Uchio Y, Momozawa Y, Kubo M, Kamatani Y, Matsuda K, Haiman CA, Ikegawa S, Nakagawa H, Terao C. Androgen receptor binding sites enabling genetic prediction of mortality due to prostate cancer in cancer-free subjects. Nat Commun 2023; 14:4863. [PMID: 37612283 PMCID: PMC10447511 DOI: 10.1038/s41467-023-39858-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Prostate cancer (PrCa) is the second most common cancer worldwide in males. While strongly warranted, the prediction of mortality risk due to PrCa, especially before its development, is challenging. Here, we address this issue by maximizing the statistical power of genetic data with multi-ancestry meta-analysis and focusing on binding sites of the androgen receptor (AR), which has a critical role in PrCa. Taking advantage of large Japanese samples ever, a multi-ancestry meta-analysis comprising more than 300,000 subjects in total identifies 9 unreported loci including ZFHX3, a tumor suppressor gene, and successfully narrows down the statistically finemapped variants compared to European-only studies, and these variants strongly enrich in AR binding sites. A polygenic risk scores (PRS) analysis restricting to statistically finemapped variants in AR binding sites shows among cancer-free subjects, individuals with a PRS in the top 10% have a strongly higher risk of the future death of PrCa (HR: 5.57, P = 4.2 × 10-10). Our findings demonstrate the potential utility of leveraging large-scale genetic data and advanced analytical methods in predicting the mortality of PrCa.
Collapse
Affiliation(s)
- Shuji Ito
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Bone and Joint Diseases, Yokohama, Japan
- Department of Orthopedic Surgery, Shimane University, Izumo, Japan
| | - Xiaoxi Liu
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Yuki Ishikawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - David D Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nao Otomo
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | | | - Hiroyuki Suetsugu
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Yoshinao Koike
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiko Hikino
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Pharmacogenomics, Yokohama, Japan
| | - Soichiro Yoshino
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Tomizuka
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan
| | - Momoko Horikoshi
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Genomics of Diabetes and Metabolism, Yokohama, Japan
| | - Kaoru Ito
- RIKEN Center for Integrative Medical Sciences, The Cardiovascular Genomics and Informatics, Yokohama, Japan
| | - Yuji Uchio
- Department of Orthopedic Surgery, Shimane University, Izumo, Japan
| | - Yukihide Momozawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Genotyping Development, Yokohama, Japan
| | | | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichi Matsuda
- Institute of Medical Science, The University of Tokyo, Laboratory of Genome Technology, Human Genome Center, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Tokyo, Japan
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shiro Ikegawa
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Bone and Joint Diseases, Yokohama, Japan
| | - Hidewaki Nakagawa
- RIKEN Center for Integrative Medical Sciences, Laboratory for Cancer Genomics, Yokohama, Japan
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, The Laboratory for Statistical and Translational Genetics, Yokohama, Japan.
- Shizuoka General Hospital, The Clinical Research Center, Shizuoka, Japan.
- School of Pharmaceutical Sciences, University of Shizuoka, The Department of Applied Genetics, Shizuoka, Japan.
| |
Collapse
|
107
|
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int J Mol Sci 2023; 24:12797. [PMID: 37628978 PMCID: PMC10454494 DOI: 10.3390/ijms241612797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Epidemiological data highlight prostate cancer as a significant global health issue, with high incidence and substantial impact on patients' quality of life. The prevalence of this disease is associated with various factors, including age, heredity, and race. Recent research in prostate cancer genetics has identified several genetic variants that may be associated with an increased risk of developing the disease. However, despite the significance of these findings, genetic markers for prostate cancer are not currently utilized in clinical practice as reliable indicators of the disease. In addition to genetics, epigenetic alterations also play a crucial role in prostate cancer development. Aberrant DNA methylation, changes in chromatin structure, and microRNA (miRNA) expression are major epigenetic events that influence oncogenesis. Existing markers for prostate cancer, such as prostate-specific antigen (PSA), have limitations in terms of sensitivity and specificity. The cost of testing, follow-up procedures, and treatment for false-positive results and overdiagnosis contributes to the overall healthcare expenditure. Improving the effectiveness of prostate cancer diagnosis and prognosis requires either narrowing the risk group by identifying new genetic factors or enhancing the sensitivity and specificity of existing markers. Immunological biomarkers (both circulating and intra-tumoral), including markers of immune response and immune dysfunction, represent a potentially useful area of research for enhancing the diagnosis and prognosis of prostate cancer. Our review emphasizes the need for developing novel immunological biomarkers to improve the diagnosis, prognosis, and management of prostate cancer. We highlight the most recent achievements in the identification of biomarkers provided by circulating monocytes and tumor-associated macrophages (TAMs). We highlight that monocyte-derived and TAM-derived biomarkers can enable to establish the missing links between genetic predisposition, hormonal metabolism and immune responses in prostate cancer.
Collapse
Affiliation(s)
- Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
| |
Collapse
|
108
|
Gao Y, Sharma T, Cui Y. Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective. Annu Rev Biomed Data Sci 2023; 6:153-171. [PMID: 37104653 PMCID: PMC10529864 DOI: 10.1146/annurev-biodatasci-020722-020704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Artificial intelligence (AI) and other data-driven technologies hold great promise to transform healthcare and confer the predictive power essential to precision medicine. However, the existing biomedical data, which are a vital resource and foundation for developing medical AI models, do not reflect the diversity of the human population. The low representation in biomedical data has become a significant health risk for non-European populations, and the growing application of AI opens a new pathway for this health risk to manifest and amplify. Here we review the current status of biomedical data inequality and present a conceptual framework for understanding its impacts on machine learning. We also discuss the recent advances in algorithmic interventions for mitigating health disparities arising from biomedical data inequality. Finally, we briefly discuss the newly identified disparity in data quality among ethnic groups and its potential impacts on machine learning.
Collapse
Affiliation(s)
- Yan Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Teena Sharma
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| |
Collapse
|
109
|
Cruz LA, Cooke Bailey JN, Crawford DC. Importance of Diversity in Precision Medicine: Generalizability of Genetic Associations Across Ancestry Groups Toward Better Identification of Disease Susceptibility Variants. Annu Rev Biomed Data Sci 2023; 6:339-356. [PMID: 37196357 PMCID: PMC10720270 DOI: 10.1146/annurev-biodatasci-122220-113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Genome-wide association studies (GWAS) revolutionized our understanding of common genetic variation and its impact on common human disease and traits. Developed and adopted in the mid-2000s, GWAS led to searchable genotype-phenotype catalogs and genome-wide datasets available for further data mining and analysis for the eventual development of translational applications. The GWAS revolution was swift and specific, including almost exclusively populations of European descent, to the neglect of the majority of the world's genetic diversity. In this narrative review, we recount the GWAS landscape of the early years that established a genotype-phenotype catalog that is now universally understood to be inadequate for a complete understanding of complex human genetics. We then describe approaches taken to augment the genotype-phenotype catalog, including the study populations, collaborative consortia, and study design approaches aimed to generalize and then ultimately discover genome-wide associations in non-European descent populations. The collaborations and data resources established in the efforts to diversify genomic findings undoubtedly provide the foundations of the next chapters of genetic association studies with the advent of budget-friendly whole-genome sequencing.
Collapse
Affiliation(s)
- Lauren A Cruz
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA;
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA;
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dana C Crawford
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA;
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
110
|
Yang X, Zhang Q, Li S, Devarajan R, Luo B, Tan Z, Wang Z, Giannareas N, Wenta T, Ma W, Li Y, Yang Y, Manninen A, Wu S, Wei GH. GATA2 co-opts TGFβ1/SMAD4 oncogenic signaling and inherited variants at 6q22 to modulate prostate cancer progression. J Exp Clin Cancer Res 2023; 42:198. [PMID: 37550764 PMCID: PMC10408074 DOI: 10.1186/s13046-023-02745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/30/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Aberrant somatic genomic alteration including copy number amplification is a hallmark of cancer genomes. We previously profiled genomic landscapes of prostate cancer (PCa), yet the underlying causal genes with prognostic potential has not been defined. It remains unclear how a somatic genomic event cooperates with inherited germline variants contribute to cancer predisposition and progression. METHODS We applied integrated genomic and clinical data, experimental models and bioinformatic analysis to identify GATA2 as a highly prevalent metastasis-associated genomic amplification in PCa. Biological roles of GATA2 in PCa metastasis was determined in vitro and in vivo. Global chromatin co-occupancy and co-regulation of GATA2 and SMAD4 was investigated by coimmunoprecipitation, ChIP-seq and RNA-seq assays. Tumor cellular assays, qRT-PCR, western blot, ChIP, luciferase assays and CRISPR-Cas9 editing methods were performed to mechanistically understand the cooperation of GATA2 with SMAD4 in promoting TGFβ1 and AR signaling and mediating inherited PCa risk and progression. RESULTS In this study, by integrated genomics and experimental analysis, we identified GATA2 as a prevalent metastasis-associated genomic amplification to transcriptionally augment its own expression in PCa. Functional experiments demonstrated that GATA2 physically interacted and cooperated with SMAD4 for genome-wide chromatin co-occupancy and co-regulation of PCa genes and metastasis pathways like TGFβ signaling. Mechanistically, GATA2 was cooperative with SMAD4 to enhance TGFβ and AR signaling pathways, and activated the expression of TGFβ1 via directly binding to a distal enhancer of TGFβ1. Strinkingly, GATA2 and SMAD4 globally mediated inherited PCa risk and formed a transcriptional complex with HOXB13 at the PCa risk-associated rs339331/6q22 enhancer, leading to increased expression of the PCa susceptibility gene RFX6. CONCLUSIONS Our study prioritizes causal genomic amplification genes with prognostic values in PCa and reveals the pivotal roles of GATA2 in transcriptionally activating the expression of its own and TGFβ1, thereby co-opting to TGFβ1/SMAD4 signaling and RFX6 at 6q22 to modulate PCa predisposition and progression.
Collapse
Affiliation(s)
- Xiayun Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shuxuan Li
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Raman Devarajan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Binjie Luo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zenglai Tan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zixian Wang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Nikolaos Giannareas
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Wenlong Ma
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Yuqing Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Yuehong Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China.
- Institute of Urology, South China Hospital of Shenzhen University, Shenzhen, China.
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
111
|
Salmon C, Quesnel-Vallée A, Barnett TA, Benedetti A, Cloutier MS, Datta GD, Kestens Y, Nicolau B, Parent MÉ. Neighbourhood social deprivation and risk of prostate cancer. Br J Cancer 2023; 129:335-345. [PMID: 37188877 PMCID: PMC10338528 DOI: 10.1038/s41416-023-02299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Striking geographic variations in prostate cancer incidence suggest an aetiological role for spatially-distributed factors. We assessed whether neighbourhood social deprivation, which can reflect limited social contacts, unfavourable lifestyle and environmental exposures, is associated with prostate cancer risk. METHODS In 2005-2012, we recruited 1931 incident prostate cancer cases and 1994 controls in a case-control study in Montreal, Canada. Lifetime residential addresses were linked to an area-based social deprivation index around recruitment (2006) and about 10 years earlier (1996). Logistic regression estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Men residing in areas characterised by greater social deprivation had elevated prostate cancer risks (ORs of 1.54 and 1.60 for recent and past exposures, respectively; highest vs lowest quintiles), independently from area- and individual-level confounders and screening patterns. The increase in risk with recent high social deprivation was particularly elevated for high-grade prostate cancer at diagnosis (OR 1.87, 95% CI 1.32-2.64). Associations were more pronounced for neighbourhoods with higher proportions of separated/divorced or widowed individuals in the past, and with higher percentages of residents living alone recently. CONCLUSIONS These novel findings, suggesting that neighbourhood-level social deprivation increases the risk of prostate cancer, point out to potential targeted public health interventions.
Collapse
Affiliation(s)
- Charlotte Salmon
- Unité d'épidémiologie et de biostatistique, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Amélie Quesnel-Vallée
- Department of Sociology, McGill University, 3460 McTavish Street, Montreal, QC, H3A 0E6, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Avenue, Montreal, QC, H3A 1G1, Canada
| | - Tracie A Barnett
- Department of Family Medicine, McGill University, 5858 Chemin de la Côte-des-Neiges, Montreal, QC, H3S 1Z1, Canada
| | - Andrea Benedetti
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Avenue, Montreal, QC, H3A 1G1, Canada
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, 5252 Maisonneuve Boulevard, Montreal, QC, H4A 3S5, Canada
| | - Marie-Soleil Cloutier
- Centre Urbanisation Culture Société, Institut national de la recherche scientifique, Université du Québec, 385 Sherbrooke Street East, Montreal, QC, H2X 1E3, Canada
| | - Geetanjali D Datta
- Department of Medicine and Cancer Research Center for Health Equity, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Département de médecine sociale et préventive, École de santé publique, Université de Montréal, 7101 Avenue du Parc, Montreal, QC, H3N 1X9, Canada
- Centre de recherche en santé publique, 7101 Avenue du Parc, Montreal, QC, H3N 1X9, Canada
| | - Yan Kestens
- Département de médecine sociale et préventive, École de santé publique, Université de Montréal, 7101 Avenue du Parc, Montreal, QC, H3N 1X9, Canada
- Centre de recherche en santé publique, 7101 Avenue du Parc, Montreal, QC, H3N 1X9, Canada
| | - Belinda Nicolau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, 2001 McGill College Avenue, Montreal, QC, H3A 1G1, Canada
| | - Marie-Élise Parent
- Unité d'épidémiologie et de biostatistique, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
- Département de médecine sociale et préventive, École de santé publique, Université de Montréal, 7101 Avenue du Parc, Montreal, QC, H3N 1X9, Canada.
- Research Centre of the Centre Hospitalier de l'Université de Montréal, 850 rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
112
|
Blinka S, Mishra R, Hsieh AC. ELAC2 is a functional prostate cancer risk allele. Trends Mol Med 2023; 29:586-588. [PMID: 37353407 PMCID: PMC10527048 DOI: 10.1016/j.molmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Stentenbach and colleagues have unveiled a functional role of a human germline mutation found in the ribonuclease (RNase) Z enzyme, ELAC2, in prostate cancer. Here, we discuss the importance of these findings in enhancing our understanding of how risk variants enable prostate cancer progression and the post-transcriptional mechanisms underlying oncogenesis.
Collapse
Affiliation(s)
- Steven Blinka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Mishra
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
113
|
Patki S, Aquilina J, Thorne R, Aristidou I, Rodrigues FB, Warren H, Bex A, Kasivisvanathan V, Moore C, Gurusamy K, Emberton M, Best LM, Tran MG. A Systematic Review of Patient Race, Ethnicity, Socioeconomic Status, and Educational Attainment in Prostate Cancer Treatment Randomised Trials-Is the Evidence Base Applicable to the General Patient Population? EUR UROL SUPPL 2023; 54:56-64. [PMID: 37545851 PMCID: PMC10403690 DOI: 10.1016/j.euros.2023.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 08/08/2023] Open
Abstract
Context Prostate cancer (PC) disproportionately affects men of Black race, and lower educational and socioeconomic status. Guidelines are based on randomised controlled trials (RCTs); however, the representation of different races, educations, and socioeconomic backgrounds in these trials is unclear. Objective To assess reporting of equality, diversity, and inclusion characteristics (Equality, Diversity and Inclusion [EDI]) and differences in treatment effects between different races, and educational or socioeconomic status. Evidence acquisition We conducted a systematic review of CENTRAL, MEDLINE, and Embase in April 2020 examining RCTs investigating treatments for PC. Outcomes collected were race/ethnicity, educational attainment, and socioeconomic status. RCTs investigating PC treatment in any population or setting were included. Data extraction of characteristics was performed independently by pairs of reviewers and checked by a senior author. The Cochrane risk of bias tool assessed the quality of included papers. Evidence synthesis A total of 265 trials were included, and 138 of these were available as full-text articles. Fifty-four trials including 19 039 participants reported any EDI data. All 54 trials reported race, 11 reported ethnicity, three reported educational attainment, and one reported socioeconomic status. Patients of White race were the majority of the recruited population (82.6%), while the minority prevalence was as follows: Black 9.8% and Asian 5.7%. Three studies reported mortality outcomes depending on the participant's race. All three studies investigated different treatments, so a meta-analysis was not performed. No studies reported outcomes stratified by the educational or socioeconomic status of participants. Conclusions There is poor reporting of patient race, ethnicity, socioeconomic background, and educational attainment in RCTs for PC treatments between 2010 and 2020. Addressing this for future studies will help explain differences in the incidence of and mortality from PC and improve the generalisability of results. Patient summary In this study, we reviewed prostate cancer treatment trials to see whether these reported race, education, and socioeconomic backgrounds of their patient populations. We conclude that reporting of these characteristics is poor. This needs to be improved in future to improve outcomes for patients with prostate cancer of all ethnical, racial, and socioeconomic groups.
Collapse
Affiliation(s)
| | | | | | | | | | - Hannah Warren
- University College London Division of Surgery and Interventional Science, London, UK
| | - Axel Bex
- University College London Division of Surgery and Interventional Science, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| | - Veeru Kasivisvanathan
- University College London Division of Surgery and Interventional Science, London, UK
| | - Caroline Moore
- University College London Division of Surgery and Interventional Science, London, UK
| | - Kurinchi Gurusamy
- University College London Division of Surgery and Interventional Science, London, UK
| | - Mark Emberton
- University College London Division of Surgery and Interventional Science, London, UK
| | | | - Maxine G.B. Tran
- University College London Division of Surgery and Interventional Science, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
114
|
Perez‐Cornago A, Smith‐Byrne K, Hazelwood E, Watling CZ, Martin S, Frayling T, Lewis S, Martin RM, Yaghootkar H, Travis RC, Key TJ. Genetic predisposition to metabolically unfavourable adiposity and prostate cancer risk: A Mendelian randomization analysis. Cancer Med 2023; 12:16482-16489. [PMID: 37305903 PMCID: PMC10469819 DOI: 10.1002/cam4.6220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND The associations of adiposity with aggressive prostate cancer risk are unclear. Using two-sample Mendelian randomization, we assessed the association of metabolically unfavourable adiposity (UFA), favourable adiposity (FA) and for comparison body mass index (BMI), with prostate cancer, including aggressive prostate cancer. METHODS We examined the association of these genetically predicted adiposity-related traits with risk of prostate cancer overall, aggressive and early onset disease using outcome summary statistics from the PRACTICAL consortium (including 15,167 aggressive cases). RESULTS In inverse-variance weighted models, there was little evidence that genetically predicted one standard deviation higher UFA, FA and BMI were associated with aggressive prostate cancer [OR: 0.85 (95% CI:0.61-1.19), 0.80 (0.53-1.23) and 0.97 (0.88-1.08), respectively]; these associations were largely consistent in sensitivity analyses accounting for horizontal pleiotropy. There was no strong evidence that genetically determined UFA, FA or BMI were associated with overall prostate cancer or early age of onset prostate cancer. CONCLUSIONS We did not find differences in the associations of UFA and FA with prostate cancer risk, which suggest that adiposity is unlikely to influence prostate cancer via the metabolic factors assessed; however, these did not cover some aspects related to metabolic health that may link obesity with aggressive prostate cancer, which should be explored in future studies.
Collapse
Affiliation(s)
- Aurora Perez‐Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Karl Smith‐Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Emma Hazelwood
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Cody Z. Watling
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Susan Martin
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter HospitalExeterUK
| | - Timothy Frayling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter HospitalExeterUK
| | - Sarah Lewis
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Richard M. Martin
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- NIHR Bristol Biomedical Research CentreUniversity Hospitals Bristol and Weston NHS Foundation Trust and the University of BristolBristolUK
| | - Hanieh Yaghootkar
- Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life SciencesBrunel University LondonUxbridgeUK
- Research Centre for Optimal Health, School of Life SciencesUniversity of WestminsterLondonUK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| |
Collapse
|
115
|
Smith LA, Cahill JA, Graim K. Equitable machine learning counteracts ancestral bias in precision medicine, improving outcomes for all. RESEARCH SQUARE 2023:rs.3.rs-3168446. [PMID: 37546907 PMCID: PMC10402189 DOI: 10.21203/rs.3.rs-3168446/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gold standard genomic datasets severely under-represent non-European populations, leading to inequities and a limited understanding of human disease [1-8]. Therapeutics and outcomes remain hidden because we lack insights that we could gain from analyzing ancestry-unbiased genomic data. To address this significant gap, we present PhyloFrame, the first-ever machine learning method for equitable genomic precision medicine. PhyloFrame corrects for ancestral bias by integrating big data tissue-specific functional interaction networks, global population variation data, and disease-relevant transcriptomic data. Application of PhyloFrame to breast, thyroid, and uterine cancers shows marked improvements in predictive power across all ancestries, less model overfitting, and a higher likelihood of identifying known cancer-related genes. The ability to provide accurate predictions for underrepresented groups, in particular, is substantially increased. These results demonstrate how AI can mitigate ancestral bias in training data and contribute to equitable representation in medical research.
Collapse
Affiliation(s)
- Leslie A Smith
- Department of Computer & Information Science & Engineering, University of Florida, 432 Newell Dr, Gainesville, 32611, FL, USA
| | - James A Cahill
- Environmental Engineering Sciences Department, University of Florida, 432 Newell Dr, Gainesville, 32611, FL, USA
| | - Kiley Graim
- Department of Computer & Information Science & Engineering, University of Florida, 432 Newell Dr, Gainesville, 32611, FL, USA
| |
Collapse
|
116
|
Darst BF, Shen J, Madduri RK, Rodriguez AA, Xiao Y, Sheng X, Saunders EJ, Dadaev T, Brook MN, Hoffmann TJ, Muir K, Wan P, Le Marchand L, Wilkens L, Wang Y, Schleutker J, MacInnis RJ, Cybulski C, Neal DE, Nordestgaard BG, Nielsen SF, Batra J, Clements JA, Cancer BioResource AP, Grönberg H, Pashayan N, Travis RC, Park JY, Albanes D, Weinstein S, Mucci LA, Hunter DJ, Penney KL, Tangen CM, Hamilton RJ, Parent MÉ, Stanford JL, Koutros S, Wolk A, Sørensen KD, Blot WJ, Yeboah ED, Mensah JE, Lu YJ, Schaid DJ, Thibodeau SN, West CM, Maier C, Kibel AS, Cancel-Tassin G, Menegaux F, John EM, Grindedal EM, Khaw KT, Ingles SA, Vega A, Rosenstein BS, Teixeira MR, Kogevinas M, Cannon-Albright L, Huff C, Multigner L, Kaneva R, Leach RJ, Brenner H, Hsing AW, Kittles RA, Murphy AB, Logothetis CJ, Neuhausen SL, Isaacs WB, Nemesure B, Hennis AJ, Carpten J, Pandha H, De Ruyck K, Xu J, Razack A, Teo SH, Newcomb LF, Fowke JH, Neslund-Dudas C, Rybicki BA, Gamulin M, Usmani N, Claessens F, Gago-Dominguez M, Castelao JE, Townsend PA, Crawford DC, Petrovics G, Casey G, Roobol MJ, Hu JF, Berndt SI, Van Den Eeden SK, Easton DF, Chanock SJ, Cook MB, Wiklund F, Witte JS, Eeles RA, Kote-Jarai Z, Watya S, Gaziano JM, Justice AC, Conti DV, Haiman CA. Evaluating approaches for constructing polygenic risk scores for prostate cancer in men of African and European ancestry. Am J Hum Genet 2023; 110:1200-1206. [PMID: 37311464 PMCID: PMC10357473 DOI: 10.1016/j.ajhg.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Genome-wide polygenic risk scores (GW-PRSs) have been reported to have better predictive ability than PRSs based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer-risk variants from multi-ancestry GWASs and fine-mapping studies (PRS269). GW-PRS models were trained with a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls that we previously used to develop the multi-ancestry PRS269. Resulting models were independently tested in 1,586 cases and 1,047 controls of African ancestry from the California Uganda Study and 8,046 cases and 191,825 controls of European ancestry from the UK Biobank and further validated in 13,643 cases and 210,214 controls of European ancestry and 6,353 cases and 53,362 controls of African ancestry from the Million Veteran Program. In the testing data, the best performing GW-PRS approach had AUCs of 0.656 (95% CI = 0.635-0.677) in African and 0.844 (95% CI = 0.840-0.848) in European ancestry men and corresponding prostate cancer ORs of 1.83 (95% CI = 1.67-2.00) and 2.19 (95% CI = 2.14-2.25), respectively, for each SD unit increase in the GW-PRS. Compared to the GW-PRS, in African and European ancestry men, the PRS269 had larger or similar AUCs (AUC = 0.679, 95% CI = 0.659-0.700 and AUC = 0.845, 95% CI = 0.841-0.849, respectively) and comparable prostate cancer ORs (OR = 2.05, 95% CI = 1.87-2.26 and OR = 2.21, 95% CI = 2.16-2.26, respectively). Findings were similar in the validation studies. This investigation suggests that current GW-PRS approaches may not improve the ability to predict prostate cancer risk compared to the PRS269 developed from multi-ancestry GWASs and fine-mapping.
Collapse
Affiliation(s)
- Burcu F Darst
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Jiayi Shen
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Yukai Xiao
- Argonne National Laboratory, Lemont, IL, USA
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peggy Wan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Lynne Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, VIC, Australia
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK; University of Cambridge, Department of Oncology, Addenbrooke's Hospital, Cambridge, UK; Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Børge G Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Sune F Nielsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia; Translational Research Institute, Brisbane, QLD, Australia
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia; Translational Research Institute, Brisbane, QLD, Australia
| | - Australian Prostate Cancer BioResource
- Translational Research Institute, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre-Qld, Queensland University of Technology, Brisbane, QLD, Australia; Prostate Cancer Research Program, Monash University, Melbourne, VIC, Australia; Dame Roma Mitchell Cancer Centre, University of Adelaide, Adelaide, SA, Australia; Chris O'Brien Lifehouse and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Nora Pashayan
- University College London, Department of Applied Health Research, London, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kathryn L Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada; Department of Surgery (Urology), University of Toronto, Toronto, ON, Canada
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, Canada; Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alicja Wolk
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; International Epidemiology Institute, Rockville, MD, USA
| | - Edward D Yeboah
- University of Ghana Medical School, Accra, Ghana; Korle Bu Teaching Hospital, Accra, Ghana
| | - James E Mensah
- University of Ghana Medical School, Accra, Ghana; Korle Bu Teaching Hospital, Accra, Ghana
| | - Yong-Jie Lu
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Daniel J Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Catharine M West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | | | - Adam S Kibel
- Division of Urologic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Géraldine Cancel-Tassin
- CeRePP, Tenon Hospital, Paris, France; Sorbonne Universite, GRC 5 Predictive Onco-urology, Tenon Hospital, Paris, France
| | - Florence Menegaux
- "Exposome and Heredity", CESP (UMR 1018), Faculté de Médecine, Université Paris-Saclay, Inserm, Gustave Roussy, Villejuif, France
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, UK
| | - Sue A Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain; Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Barry S Rosenstein
- Department of Radiation Oncology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal; Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Chad Huff
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Luc Multigner
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Robin J Leach
- Department of Urology, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ann W Hsing
- Department of Medicine and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Adam B Murphy
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Christopher J Logothetis
- The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, TX, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - William B Isaacs
- James Buchanan Brady Urological Institute, Johns Hopkins Hospital and Medical Institution, Baltimore, MD, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anselm J Hennis
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA; Chronic Disease Research Centre and Faculty of Medical Sciences, University of the West Indies, Bridgetown, Barbados
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, The University of Surrey, Guildford, Surrey, UK
| | - Kim De Ruyck
- Ghent University, Faculty of Medicine and Health Sciences, Basic Medical Sciences, Gent, Belgium
| | - Jianfeng Xu
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Azad Razack
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia (CRM), Outpatient Centre, Subang Jaya Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Lisa F Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Urology, University of Washington, Seattle, WA, USA
| | - Jay H Fowke
- Division of Epidemiology, Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Marija Gamulin
- Department of Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada; Division of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saúde, SERGAS, Santiago de Compostela, Spain; University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Jose Esteban Castelao
- Genetic Oncology Unit, CHUVI Hospital, Complexo Hospitalario Universitario de Vigo, Instituto de Investigación Biomédica Galicia Sur (IISGS), Vigo (Pontevedra), Spain
| | - Paul A Townsend
- Division of Cancer Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Health Innovation Manchester, University of Manchester, Manchester, UK; The University of Surrey, Guildford, Surrey, UK
| | - Dana C Crawford
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Uniformed Services University, Bethesda, MD, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Monique J Roobol
- 109 Department of Urology, Erasmus University Medical Center, Cancer Institute, Rotterdam, the Netherlands
| | - Jennifer F Hu
- The University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen K Van Den Eeden
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA; Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - John S Witte
- Department of Epidemiology and Population Health, Department of Biomedical Data Science, Stanford Cancer Institute, Stanford, CA, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, Sutton, London, UK; Royal Marsden NHS Foundation Trust, London, UK
| | | | - Stephen Watya
- School of Public Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - John M Gaziano
- VA Boston Healthcare System, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Amy C Justice
- VA Connecticut Healthcare System, West Haven, CT, USA; Yale School of Medicine, New Haven, CT, USA
| | - David V Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
117
|
Lake J, Warly Solsberg C, Kim JJ, Acosta-Uribe J, Makarious MB, Li Z, Levine K, Heutink P, Alvarado CX, Vitale D, Kang S, Gim J, Lee KH, Pina-Escudero SD, Ferrucci L, Singleton AB, Blauwendraat C, Nalls MA, Yokoyama JS, Leonard HL. Multi-ancestry meta-analysis and fine-mapping in Alzheimer's disease. Mol Psychiatry 2023; 28:3121-3132. [PMID: 37198259 PMCID: PMC10615750 DOI: 10.1038/s41380-023-02089-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/19/2023]
Abstract
Genome-wide association studies (GWAS) of Alzheimer's disease are predominantly carried out in European ancestry individuals despite the known variation in genetic architecture and disease prevalence across global populations. We leveraged published GWAS summary statistics from European, East Asian, and African American populations, and an additional GWAS from a Caribbean Hispanic population using previously reported genotype data to perform the largest multi-ancestry GWAS meta-analysis of Alzheimer's disease and related dementias to date. This method allowed us to identify two independent novel disease-associated loci on chromosome 3. We also leveraged diverse haplotype structures to fine-map nine loci with a posterior probability >0.8 and globally assessed the heterogeneity of known risk factors across populations. Additionally, we compared the generalizability of multi-ancestry- and single-ancestry-derived polygenic risk scores in a three-way admixed Colombian population. Our findings highlight the importance of multi-ancestry representation in uncovering and understanding putative factors that contribute to risk of Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Warly Solsberg
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonggeol Jeffrey Kim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Preventive Neurology Unit, Centre for Prevention Diagnosis and Detection, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute and the department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Zizheng Li
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kristin Levine
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Peter Heutink
- Alector, Inc. 131 Oyster Point Blvd, Suite 600, South San Francisco, CA, 94080, USA
| | - Chelsea X Alvarado
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Dan Vitale
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Sarang Kang
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
| | - Jungsoo Gim
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
| | - Kun Ho Lee
- Gwangju Alzheimer's disease and Related Dementia Cohort Research Center, Chosun University, Gwangju, 61452, Korea
- BK FOUR Department of Integrative Biological Sciences, Chosun University, Gwangju, 61452, Korea
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Korea
- Korea Brain Research Institute, Daegu, 41062, Korea
| | - Stefanie D Pina-Escudero
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International LLC, Washington, DC, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer S Yokoyama
- Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hampton L Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Data Tecnica International LLC, Washington, DC, USA.
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
118
|
Schafer EJ, Jemal A, Wiese D, Sung H, Kratzer TB, Islami F, Dahut WL, Knudsen KE. Disparities and Trends in Genitourinary Cancer Incidence and Mortality in the USA. Eur Urol 2023; 84:117-126. [PMID: 36566154 DOI: 10.1016/j.eururo.2022.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous studies have reported on incidence and mortality patterns for individual genitourinary cancers in the USA. However, these studies addressed individual cancer types rather than genitourinary cancers overall. OBJECTIVE To comprehensively examine disparities and trends in the incidence and mortality for the four major genitourinary cancers (bladder, kidney, prostate, and testis) in the USA. DESIGN, SETTING, AND PARTICIPANTS We obtained incidence data from the National Cancer Institute 22-registry Surveillance, Epidemiology and End Results (SEER) database and the US Cancer Statistics database (Centers for Disease Control and Prevention) and mortality data from the National Center for Health Statistics to examine cross-sectional and temporal trends in incidence and death rates stratified by sex, race/ethnicity, and county. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Age-adjusted incidence and death rates were calculated using SEER*Stat software. Temporal trends were analyzed using Joinpoint regression for a two-sided significance level of p < 0.05. RESULTS AND LIMITATIONS Incidence and mortality rates for bladder and kidney cancers were two to four times higher for men than for women. Among non-Hispanic White individuals, the highest incidence rates were found in the Northeast for bladder cancer and in Appalachia for kidney cancer, whereas the highest death rates for prostate cancer were found in the West. Incidence rates increased for cancers of the kidney and testis and for advanced-stage prostate cancer in almost all racial/ethnic populations and for bladder cancer in the American Indian/Alaska Native population. Death rates increased for testicular cancer in the Hispanic population and stabilized for prostate cancer among White and Asian American/Pacific Islander men after a steady decline since the early 1990s. Study limitations include misclassification of race/ethnicity on medical records and death certificates. CONCLUSIONS We found persistent sociodemographic disparities and unfavorable trends in incidence or mortality for all four major genitourinary cancers. Future studies should elucidate the reasons for these patterns. PATIENT SUMMARY In the USA, rates of cancer cases are increasing for kidney, testis, and advanced-stage prostate cancers in the overall population, and for bladder cancer in the American Indian/Alaska Native population. Differences in the rates by sex and race/ethnicity remain.
Collapse
Affiliation(s)
- Elizabeth J Schafer
- Surveillance & Health Equity Science Department, American Cancer Society, Atlanta, GA, USA
| | - Ahmedin Jemal
- Surveillance & Health Equity Science Department, American Cancer Society, Atlanta, GA, USA.
| | - Daniel Wiese
- Surveillance & Health Equity Science Department, American Cancer Society, Atlanta, GA, USA
| | - Hyuna Sung
- Surveillance & Health Equity Science Department, American Cancer Society, Atlanta, GA, USA
| | - Tyler B Kratzer
- Surveillance & Health Equity Science Department, American Cancer Society, Atlanta, GA, USA
| | - Farhad Islami
- Surveillance & Health Equity Science Department, American Cancer Society, Atlanta, GA, USA
| | - William L Dahut
- Office of the Chief Scientific Officer, American Cancer Society, Atlanta, GA, USA
| | - Karen E Knudsen
- Office of the Chief Executive Officer, American Cancer Society, Atlanta, GA, USA
| |
Collapse
|
119
|
Craddock J, Jiang J, Patrick SM, Mutambirwa SBA, Stricker PD, Bornman MSR, Jaratlerdsiri W, Hayes VM. Alterations in the Epigenetic Machinery Associated with Prostate Cancer Health Disparities. Cancers (Basel) 2023; 15:3462. [PMID: 37444571 DOI: 10.3390/cancers15133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is driven by acquired genetic alterations, including those impacting the epigenetic machinery. With African ancestry as a significant risk factor for aggressive disease, we hypothesize that dysregulation among the roughly 656 epigenetic genes may contribute to prostate cancer health disparities. Investigating prostate tumor genomic data from 109 men of southern African and 56 men of European Australian ancestry, we found that African-derived tumors present with a longer tail of epigenetic driver gene candidates (72 versus 10). Biased towards African-specific drivers (63 versus 9 shared), many are novel to prostate cancer (18/63), including several putative therapeutic targets (CHD7, DPF3, POLR1B, SETD1B, UBTF, and VPS72). Through clustering of all variant types and copy number alterations, we describe two epigenetic PCa taxonomies capable of differentiating patients by ancestry and predicted clinical outcomes. We identified the top genes in African- and European-derived tumors representing a multifunctional "generic machinery", the alteration of which may be instrumental in epigenetic dysregulation and prostate tumorigenesis. In conclusion, numerous somatic alterations in the epigenetic machinery drive prostate carcinogenesis, but African-derived tumors appear to achieve this state with greater diversity among such alterations. The greater novelty observed in African-derived tumors illustrates the significant clinical benefit to be derived from a much needed African-tailored approach to prostate cancer healthcare aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Jenna Craddock
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa 0208, South Africa
| | - Phillip D Stricker
- Department of Urology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Vanessa M Hayes
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
120
|
Rhee J, Barry KH, Huang WY, Sampson JN, Hofmann JN, Silverman DT, Calafat AM, Botelho JC, Kato K, Purdue MP, Berndt SI. A prospective nested case-control study of serum concentrations of per- and polyfluoroalkyl substances and aggressive prostate cancer risk. ENVIRONMENTAL RESEARCH 2023; 228:115718. [PMID: 36958379 PMCID: PMC10239560 DOI: 10.1016/j.envres.2023.115718] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent organic pollutants detectable in the serum of most U.S. adults. Some studies of highly-exposed individuals have suggested an association between PFAS and prostate cancer, but evidence from population-based studies is limited. We investigated the association between pre-diagnostic serum PFAS concentrations and aggressive prostate cancer risk in a large prospective study. We measured pre-diagnostic serum concentrations of eight PFAS, including perfluorooctanoate (PFOA), for 750 aggressive prostate cancer cases and 750 individually matched controls within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. We assessed the reproducibility of PFAS concentrations in serial samples collected up to six years apart among 60 controls using intraclass correlation coefficients (ICCs). Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association with prostate cancer, adjusting for other PFAS and potential confounders. Concentrations of most PFAS were consistent (ICC>0.7) across the serial samples over time. We observed an inverse association between PFOA and aggressive prostate cancer (ORcontinuous = 0.79, 95% CI = 0.63, 0.99), but the association was limited to cases diagnosed ≤3 years after blood collection and became statistically non-significant for cases diagnosed with later follow-up (>3 years, ORcontinuous = 0.90, 95% CI = 0.79, 1.03). Other PFAS were not associated with aggressive prostate cancer risk. Although we cannot rule out an increased risk at higher levels, our findings from a population with PFAS serum concentrations comparable to the general population do not support an association with increased risk of aggressive prostate cancer.
Collapse
Affiliation(s)
- Jongeun Rhee
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Kathryn H Barry
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA
| | - Antonia M Calafat
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kayoko Kato
- Organic Analytical Toxicology Branch, Division of Laboratory Sciences, National Center for Environmental Health of the U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark P Purdue
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA.
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Rockville, MD, USA.
| |
Collapse
|
121
|
Chen F, Madduri RK, Rodriguez AA, Darst BF, Chou A, Sheng X, Wang A, Shen J, Saunders EJ, Rhie SK, Bensen JT, Ingles SA, Kittles RA, Strom SS, Rybicki BA, Nemesure B, Isaacs WB, Stanford JL, Zheng W, Sanderson M, John EM, Park JY, Xu J, Wang Y, Berndt SI, Huff CD, Yeboah ED, Tettey Y, Lachance J, Tang W, Rentsch CT, Cho K, Mcmahon BH, Biritwum RB, Adjei AA, Tay E, Truelove A, Niwa S, Sellers TA, Yamoah K, Murphy AB, Crawford DC, Patel AV, Bush WS, Aldrich MC, Cussenot O, Petrovics G, Cullen J, Neslund-Dudas CM, Stern MC, Kote-Jarai Z, Govindasami K, Cook MB, Chokkalingam AP, Hsing AW, Goodman PJ, Hoffmann TJ, Drake BF, Hu JJ, Keaton JM, Hellwege JN, Clark PE, Jalloh M, Gueye SM, Niang L, Ogunbiyi O, Idowu MO, Popoola O, Adebiyi AO, Aisuodionoe-Shadrach OI, Ajibola HO, Jamda MA, Oluwole OP, Nwegbu M, Adusei B, Mante S, Darkwa-Abrahams A, Mensah JE, Diop H, Van Den Eeden SK, Blanchet P, Fowke JH, Casey G, Hennis AJ, Lubwama A, Thompson IM, Leach R, Easton DF, Preuss MH, Loos RJ, Gundell SM, Wan P, Mohler JL, Fontham ET, Smith GJ, Taylor JA, Srivastava S, Eeles RA, Carpten JD, Kibel AS, Multigner L, Parent MÉ, Menegaux F, Cancel-Tassin G, Klein EA, Andrews C, Rebbeck TR, Brureau L, Ambs S, Edwards TL, Watya S, Chanock SJ, Witte JS, Blot WJ, Michael Gaziano J, Justice AC, Conti DV, Haiman CA. Evidence of Novel Susceptibility Variants for Prostate Cancer and a Multiancestry Polygenic Risk Score Associated with Aggressive Disease in Men of African Ancestry. Eur Urol 2023; 84:13-21. [PMID: 36872133 PMCID: PMC10424812 DOI: 10.1016/j.eururo.2023.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Genetic factors play an important role in prostate cancer (PCa) susceptibility. OBJECTIVE To discover common genetic variants contributing to the risk of PCa in men of African ancestry. DESIGN, SETTING, AND PARTICIPANTS We conducted a meta-analysis of ten genome-wide association studies consisting of 19378 cases and 61620 controls of African ancestry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Common genotyped and imputed variants were tested for their association with PCa risk. Novel susceptibility loci were identified and incorporated into a multiancestry polygenic risk score (PRS). The PRS was evaluated for associations with PCa risk and disease aggressiveness. RESULTS AND LIMITATIONS Nine novel susceptibility loci for PCa were identified, of which seven were only found or substantially more common in men of African ancestry, including an African-specific stop-gain variant in the prostate-specific gene anoctamin 7 (ANO7). A multiancestry PRS of 278 risk variants conferred strong associations with PCa risk in African ancestry studies (odds ratios [ORs] >3 and >5 for men in the top PRS decile and percentile, respectively). More importantly, compared with men in the 40-60% PRS category, men in the top PRS decile had a significantly higher risk of aggressive PCa (OR = 1.23, 95% confidence interval = 1.10-1.38, p = 4.4 × 10-4). CONCLUSIONS This study demonstrates the importance of large-scale genetic studies in men of African ancestry for a better understanding of PCa susceptibility in this high-risk population and suggests a potential clinical utility of PRS in differentiating between the risks of developing aggressive and nonaggressive disease in men of African ancestry. PATIENT SUMMARY In this large genetic study in men of African ancestry, we discovered nine novel prostate cancer (PCa) risk variants. We also showed that a multiancestry polygenic risk score was effective in stratifying PCa risk, and was able to differentiate risk of aggressive and nonaggressive disease.
Collapse
Affiliation(s)
- Fei Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Burcu F Darst
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alisha Chou
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Sheng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anqi Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiayi Shen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Suhn K Rhie
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeannette T Bensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sue A Ingles
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rick A Kittles
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sara S Strom
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - William B Isaacs
- James Buchanan Brady Urological Institute, Johns Hopkins Hospital and Medical Institution, Baltimore, MD, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Esther M John
- Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Ying Wang
- Department of Population Science, American Cancer Society, Kennesaw, GA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Chad D Huff
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Yao Tettey
- Department of Pathology, University of Ghana, Accra, Ghana; Korle Bu Teaching Hospital, Accra, Ghana
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher T Rentsch
- Yale School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA; Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Kelly Cho
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Benjamin H Mcmahon
- Theoretical Biology Division, Los Alamos National Lab, Los Alamos, NM, USA
| | | | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, Accra, Ghana
| | - Evelyn Tay
- Korle Bu Teaching Hospital, Accra, Ghana
| | | | | | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kosj Yamoah
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA; Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Adam B Murphy
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Dana C Crawford
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Kennesaw, GA, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Melinda C Aldrich
- Division of Epidemiology, Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olivier Cussenot
- Department of Urology and Predictive Onco-Urology Group, Sorbonne Université, GRC 5 Predictive Onco-Urology, APHP-Sorbonne Université, Paris, France; CeRePP, Tenon Hospital, Paris, France
| | - Gyorgy Petrovics
- Department of Surgery, Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Cullen
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Department of Surgery, Center for Prostate Disease Research, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Ann W Hsing
- Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Bettina F Drake
- Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer J Hu
- The University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jacob M Keaton
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Nashville, TN, USA
| | - Peter E Clark
- Atrium Health/Levine Cancer Institute, Charlotte, NC, USA
| | | | | | | | - Olufemi Ogunbiyi
- College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Michael O Idowu
- College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Olufemi Popoola
- College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Akindele O Adebiyi
- College of Medicine, University of Ibadan and University College Hospital, Ibadan, Nigeria
| | - Oseremen I Aisuodionoe-Shadrach
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | - Hafees O Ajibola
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | - Mustapha A Jamda
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | - Olabode P Oluwole
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | - Maxwell Nwegbu
- College of Health Sciences, University of Abuja, University of Abuja Teaching Hospital and Cancer Science Center, Abuja, Nigeria
| | | | | | | | | | - Halimatou Diop
- Laboratoires Bacteriologie et Virologie, Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Stephen K Van Den Eeden
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Pascal Blanchet
- CHU de Pointe-à-Pitre, Univ Antilles, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Pointe-à-Pitre, Guadeloupe, France
| | - Jay H Fowke
- Department of Preventive Medicine, Division of Epidemiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Graham Casey
- Department of Public Health Science, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Anselm J Hennis
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | - Ian M Thompson
- CHRISTUS Santa Rosa Medical Center Hospital, San Antonio, TX, USA
| | - Robin Leach
- Department of Urology, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susan M Gundell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peggy Wan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James L Mohler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Elizabeth T Fontham
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Gary J Smith
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Shiv Srivastava
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Rosaline A Eeles
- The Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK
| | - John D Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam S Kibel
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, Canada
| | - Florence Menegaux
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif Cédex, France; Paris-Sud University, Villejuif Cédex, France
| | - Geraldine Cancel-Tassin
- Department of Urology and Predictive Onco-Urology Group, Sorbonne Université, GRC 5 Predictive Onco-Urology, APHP-Sorbonne Université, Paris, France; CeRePP, Tenon Hospital, Paris, France
| | - Eric A Klein
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Caroline Andrews
- Harvard TH Chan School of Public Health and Division of Population Sciences, Dana Farber Cancer Institute, Boston, MA, USA; Glickman Urological & Kidney Institute, Cleveland, OH, USA
| | - Timothy R Rebbeck
- Harvard TH Chan School of Public Health and Division of Population Sciences, Dana Farber Cancer Institute, Boston, MA, USA
| | - Laurent Brureau
- CHU de Pointe-à-Pitre, Univ Antilles, Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Pointe-à-Pitre, Guadeloupe, France
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; International Epidemiology Institute, Rockville, MD, USA
| | - J Michael Gaziano
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA
| | - Amy C Justice
- Yale School of Medicine, New Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
122
|
Lui AJ, Pagadala MS, Zhong AY, Lynch J, Karunamuni R, Lee KM, Plym A, Rose BS, Carter H, Kibel AS, DuVall SL, Gaziano JM, Panizzon MS, Hauger RL, Seibert TM. Agent Orange exposure and prostate cancer risk in the Million Veteran Program. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.14.23291413. [PMID: 37398205 PMCID: PMC10312838 DOI: 10.1101/2023.06.14.23291413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Purpose Exposure to Agent Orange, a known carcinogen, might increase risk of prostate cancer (PCa). We sought to investigate the association of Agent Orange exposure and PCa risk when accounting for race/ethnicity, family history, and genetic risk in a diverse population of US Vietnam War veterans. Methods & Materials This study utilized the Million Veteran Program (MVP), a national, population-based cohort study of United States military veterans conducted 2011-2021 with 590,750 male participants available for analysis. Agent Orange exposure was obtained using records from the Department of Veterans Affairs (VA) using the US government definition of Agent Orange exposure: active service in Vietnam while Agent Orange was in use. Only veterans who were on active duty (anywhere in the world) during the Vietnam War were included in this analysis (211,180 participants). Genetic risk was assessed via a previously validated polygenic hazard score calculated from genotype data. Age at diagnosis of any PCa, diagnosis of metastatic PCa, and death from PCa were assessed via Cox proportional hazards models. Results Exposure to Agent Orange was associated with increased PCa diagnosis (HR 1.04, 95% CI 1.01-1.06, p=0.003), primarily among Non-Hispanic White men (HR 1.09, 95% CI 1.06- 1.12, p<0.001). When accounting for race/ethnicity and family history, Agent Orange exposure remained an independent risk factor for PCa diagnosis (HR 1.06, 95% CI 1.04-1.09, p<0.05). Univariable associations of Agent Orange exposure with PCa metastasis (HR 1.08, 95% CI 0.99-1.17) and PCa death (HR 1.02, 95% CI 0.84-1.22) did not reach significance on multivariable analysis. Similar results were found when accounting for polygenic hazard score. Conclusions Among US Vietnam War veterans, Agent Orange exposure is an independent risk factor for PCa diagnosis, though associations with PCa metastasis or death are unclear when accounting for race/ethnicity, family history, and/or polygenic risk.
Collapse
|
123
|
Qiao J, Wu Y, Zhang S, Xu Y, Zhang J, Zeng P, Wang T. Evaluating significance of European-associated index SNPs in the East Asian population for 31 complex phenotypes. BMC Genomics 2023; 24:324. [PMID: 37312035 DOI: 10.1186/s12864-023-09425-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified many single-nucleotide polymorphisms (SNPs) associated with complex phenotypes in the European (EUR) population; however, the extent to which EUR-associated SNPs can be generalized to other populations such as East Asian (EAS) is not clear. RESULTS By leveraging summary statistics of 31 phenotypes in the EUR and EAS populations, we first evaluated the difference in heritability between the two populations and calculated the trans-ethnic genetic correlation. We observed the heritability estimates of some phenotypes varied substantially across populations and 53.3% of trans-ethnic genetic correlations were significantly smaller than one. Next, we examined whether EUR-associated SNPs of these phenotypes could be identified in EAS using the trans-ethnic false discovery rate method while accounting for winner's curse for SNP effect in EUR and difference of sample sizes in EAS. We found on average 54.5% of EUR-associated SNPs were also significant in EAS. Furthermore, we discovered non-significant SNPs had higher effect heterogeneity, and significant SNPs showed more consistent linkage disequilibrium and allele frequency patterns between the two populations. We also demonstrated non-significant SNPs were more likely to undergo natural selection. CONCLUSIONS Our study revealed the extent to which EUR-associated SNPs could be significant in the EAS population and offered deep insights into the similarity and diversity of genetic architectures underlying phenotypes in distinct ancestral groups.
Collapse
Affiliation(s)
- Jiahao Qiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuxuan Wu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yue Xu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jinhui Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
124
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
125
|
Kachuri L, Hoffmann TJ, Jiang Y, Berndt SI, Shelley JP, Schaffer KR, Machiela MJ, Freedman ND, Huang WY, Li SA, Easterlin R, Goodman PJ, Till C, Thompson I, Lilja H, Van Den Eeden SK, Chanock SJ, Haiman CA, Conti DV, Klein RJ, Mosley JD, Graff RE, Witte JS. Genetically adjusted PSA levels for prostate cancer screening. Nat Med 2023; 29:1412-1423. [PMID: 37264206 PMCID: PMC10287565 DOI: 10.1038/s41591-023-02277-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/27/2023] [Indexed: 06/03/2023]
Abstract
Prostate-specific antigen (PSA) screening for prostate cancer remains controversial because it increases overdiagnosis and overtreatment of clinically insignificant tumors. Accounting for genetic determinants of constitutive, non-cancer-related PSA variation has potential to improve screening utility. In this study, we discovered 128 genome-wide significant associations (P < 5 × 10-8) in a multi-ancestry meta-analysis of 95,768 men and developed a PSA polygenic score (PGSPSA) that explains 9.61% of constitutive PSA variation. We found that, in men of European ancestry, using PGS-adjusted PSA would avoid up to 31% of negative prostate biopsies but also result in 12% fewer biopsies in patients with prostate cancer, mostly with Gleason score <7 tumors. Genetically adjusted PSA was more predictive of aggressive prostate cancer (odds ratio (OR) = 3.44, P = 6.2 × 10-14, area under the curve (AUC) = 0.755) than unadjusted PSA (OR = 3.31, P = 1.1 × 10-12, AUC = 0.738) in 106 cases and 23,667 controls. Compared to a prostate cancer PGS alone (AUC = 0.712), including genetically adjusted PSA improved detection of aggressive disease (AUC = 0.786, P = 7.2 × 10-4). Our findings highlight the potential utility of incorporating PGS for personalized biomarkers in prostate cancer screening.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas J Hoffmann
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Yu Jiang
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - John P Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Shengchao A Li
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Ryder Easterlin
- Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Cathee Till
- SWOG Statistics and Data Management Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ian Thompson
- CHRISTUS Santa Rosa Medical Center Hospital, San Antonio, TX, USA
| | - Hans Lilja
- Departments of Laboratory Medicine, Surgery and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David V Conti
- Center for Genetic Epidemiology, Department of Population and Preventive Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan D Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca E Graff
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
| | - John S Witte
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Biomedical Data Science and Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
126
|
Campa D, Gentiluomo M, Stein A, Aoki MN, Oliverius M, Vodičková L, Jamroziak K, Theodoropoulos G, Pasquali C, Greenhalf W, Arcidiacono PG, Uzunoglu F, Pezzilli R, Luchini C, Puzzono M, Loos M, Giaccherini M, Katzke V, Mambrini A, Kiudeliene E, Federico KE, Johansen J, Hussein T, Mohelnikova-Duchonova B, van Eijck CHJ, Brenner H, Farinella R, Pérez JS, Lovecek M, Büchler MW, Hlavac V, Izbicki JR, Hackert T, Chammas R, Zerbi A, Lawlor R, Felici A, Götz M, Capurso G, Ginocchi L, Gazouli M, Kupcinskas J, Cavestro GM, Vodicka P, Moz S, Neoptolemos JP, Kunovsky L, Bojesen SE, Carrara S, Gioffreda D, Morkunas E, Abian O, Bunduc S, Basso D, Boggi U, Wlodarczyk B, Szentesi A, Vanella G, Chen I, Bijlsma MF, Kiudelis V, Landi S, Schöttker B, Corradi C, Giese N, Kaaks R, Peduzzi G, Hegyi P, Morelli L, Furbetta N, Soucek P, Latiano A, Talar-Wojnarowska R, Lindgaard SC, Dijk F, Milanetto AC, Tavano F, Cervena K, Erőss B, Testoni SG, Verhagen-Oldenampsen JHE, Małecka-Wojciesko E, Costello E, Salvia R, Maiello E, Ermini S, Sperti C, Holleczek B, Perri F, Skieceviciene J, Archibugi L, Lucchesi M, Rizzato C, Canzian F. The PANcreatic Disease ReseArch (PANDoRA) consortium: Ten years' experience of association studies to understand the genetic architecture of pancreatic cancer. Crit Rev Oncol Hematol 2023; 186:104020. [PMID: 37164172 DOI: 10.1016/j.critrevonc.2023.104020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023] Open
Abstract
Pancreatic cancer has an incidence that almost matches its mortality. Only a small number of risk factors and 33 susceptibility loci have been identified. so Moreover, the relative rarity of pancreatic cancer poses significant hurdles for research aimed at increasing our knowledge of the genetic mechanisms contributing to the disease. Additionally, the inability to adequately power research questions prevents small monocentric studies from being successful. Several consortia have been established to pursue a better understanding of the genetic architecture of pancreatic cancers. The Pancreatic disease research (PANDoRA) consortium is the largest in Europe. PANDoRA is spread across 12 European countries, Brazil and Japan, bringing together 29 basic and clinical research groups. In the last ten years, PANDoRA has contributed to the discovery of 25 susceptibility loci, a feat that will be instrumental in stratifying the population by risk and optimizing preventive strategies.
Collapse
Affiliation(s)
- Daniele Campa
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy.
| | - Manuel Gentiluomo
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Martin Oliverius
- Department of Surgery, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodičková
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Pilsen, Czech Republic
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - George Theodoropoulos
- First Department of Propaedeutic Surgery, Hippocration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Claudio Pasquali
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - William Greenhalf
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientic Institute, Milan, Italy
| | - Faik Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Marta Puzzono
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martin Loos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Verena Katzke
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mambrini
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Edita Kiudeliene
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Julia Johansen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Tamás Hussein
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Casper H J van Eijck
- Department of Surgery, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Juan Sainz Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Complejo Hospitales Universitarios de Granada, Universidad de Granada, Granada, Spain; Department of Immunology, University of Granada, Granada, Spain
| | - Martin Lovecek
- Department of Surgery I, University Hospital Olomouc, Olomouc, Czech Republic
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto Do Câncer Do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Alessandro Zerbi
- Pancreatic Unit, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Rita Lawlor
- ARC-Net Research Center, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Alessio Felici
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Mara Götz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Laura Ginocchi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Juozas Kupcinskas
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen Charles University, Pilsen, Czech Republic
| | - Stefania Moz
- Azienda Ospedale-Università di Padova Medicina di Laboratorio, Padova, Italy
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lumir Kunovsky
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic; 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Stig E Bojesen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Silvia Carrara
- Endoscopic Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Egidijus Morkunas
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olga Abian
- Instituto BIFI-Universidad de Zaragoza, Zaragoza, Spain
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Center for Digestive Diseases and Liver Transplant, Fundeni Clinical Insitute, Bucharest, Romania
| | - Daniela Basso
- Dept. of Medicine, University of Padova Medicina di Laboratorio, Padova, Italy
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Barbara Wlodarczyk
- Dept of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Giuseppe Vanella
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Inna Chen
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Maarten F Bijlsma
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Vytautas Kiudelis
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Stefano Landi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Corradi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Nathalia Giese
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology C020, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giulia Peduzzi
- Unit of Genetic, Department of Biology, University of Pisa, Pisa, Italy
| | - Péter Hegyi
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Translational Pancreatology Research Group, Interdisciplinary Centre of Excellence for Research Development and Innovation University of Szeged, Szeged, Hungary
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | | | - Sidsel C Lindgaard
- Departments of Oncology and Medicine, Copenhagen University Hospital, Herlev, Denmark
| | - Frederike Dijk
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Anna Caterina Milanetto
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 3, Padova, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Faculty of Medicine Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bálint Erőss
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary; Center for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Sabrina G Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientic Institute, Milan, Italy
| | | | | | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Roberto Salvia
- Department of Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | | | - Cosimo Sperti
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova Chirurgia Generale 1, Padova, Italy
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Saarland Cancer Registry, Saarbrücken, Germany
| | - Francesco Perri
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Jurgita Skieceviciene
- Institute for Digestive Research and Gastroenterology Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy; Digestive and Liver Disease Unit, Sant' Andrea Hospital, Rome, Italy
| | - Maurizio Lucchesi
- Oncological Department Massa Carrara, Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
127
|
Bartell E, Lin K, Tsuo K, Gan W, Vedantam S, Cole JB, Baronas JM, Yengo L, Marouli E, Amariuta T, Chen Z, Li L, Renthal NE, Jacobsen CM, Salem RM, Walters RG, Hirschhorn JN. Genetics of skeletal proportions in two different populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541772. [PMID: 37292977 PMCID: PMC10245876 DOI: 10.1101/2023.05.22.541772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human height can be divided into sitting height and leg length, reflecting growth of different parts of the skeleton whose relative proportions are captured by the ratio of sitting to total height (as sitting height ratio, SHR). Height is a highly heritable trait, and its genetic basis has been well-studied. However, the genetic determinants of skeletal proportion are much less well-characterized. Expanding substantially on past work, we performed a genome-wide association study (GWAS) of SHR in ∼450,000 individuals with European ancestry and ∼100,000 individuals with East Asian ancestry from the UK and China Kadoorie Biobanks. We identified 565 loci independently associated with SHR, including all genomic regions implicated in prior GWAS in these ancestries. While SHR loci largely overlap height-associated loci (P < 0.001), the fine-mapped SHR signals were often distinct from height. We additionally used fine-mapped signals to identify 36 credible sets with heterogeneous effects across ancestries. Lastly, we used SHR, sitting height, and leg length to identify genetic variation acting on specific body regions rather than on overall human height.
Collapse
|
128
|
Darst BF, Shen J, Madduri RK, Rodriguez AA, Xiao Y, Sheng X, Saunders EJ, Dadaev T, Brook MN, Hoffmann TJ, Muir K, Wan P, Le Marchand L, Wilkens L, Wang Y, Schleutker J, MacInnis RJ, Cybulski C, Neal DE, Nordestgaard BG, Nielsen SF, Batra J, Clements JA, Grönberg H, Pashayan N, Travis RC, Park JY, Albanes D, Weinstein S, Mucci LA, Hunter DJ, Penney KL, Tangen CM, Hamilton RJ, Parent MÉ, Stanford JL, Koutros S, Wolk A, Sørensen KD, Blot WJ, Yeboah ED, Mensah JE, Lu YJ, Schaid DJ, Thibodeau SN, West CM, Maier C, Kibel AS, Cancel-Tassin G, Menegaux F, John EM, Grindedal EM, Khaw KT, Ingles SA, Vega A, Rosenstein BS, Teixeira MR, Kogevinas M, Cannon-Albright L, Huff C, Multigner L, Kaneva R, Leach RJ, Brenner H, Hsing AW, Kittles RA, Murphy AB, Logothetis CJ, Neuhausen SL, Isaacs WB, Nemesure B, Hennis AJ, Carpten J, Pandha H, De Ruyck K, Xu J, Razack A, Teo SH, Newcomb LF, Fowke JH, Neslund-Dudas C, Rybicki BA, Gamulin M, Usmani N, Claessens F, GagoDominguez M, Castelao JE, Townsend PA, Crawford DC, Petrovics G, Casey G, Roobol MJ, Hu JF, Berndt SI, Van Den Eeden SK, Easton DF, Chanock SJ, Cook MB, Wiklund F, Witte JS, Eeles RA, Kote-Jarai Z, Watya S, Gaziano JM, Justice AC, Conti DV, Haiman CA. Evaluating Approaches for Constructing Polygenic Risk Scores for Prostate Cancer in Men of African and European Ancestry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.12.23289860. [PMID: 37292833 PMCID: PMC10246022 DOI: 10.1101/2023.05.12.23289860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genome-wide polygenic risk scores (GW-PRS) have been reported to have better predictive ability than PRS based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer risk variants from multi-ancestry GWAS and fine-mapping studies (PRS 269 ). GW-PRS models were trained using a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls used to develop the multi-ancestry PRS 269 . Resulting models were independently tested in 1,586 cases and 1,047 controls of African ancestry from the California/Uganda Study and 8,046 cases and 191,825 controls of European ancestry from the UK Biobank and further validated in 13,643 cases and 210,214 controls of European ancestry and 6,353 cases and 53,362 controls of African ancestry from the Million Veteran Program. In the testing data, the best performing GW-PRS approach had AUCs of 0.656 (95% CI=0.635-0.677) in African and 0.844 (95% CI=0.840-0.848) in European ancestry men and corresponding prostate cancer OR of 1.83 (95% CI=1.67-2.00) and 2.19 (95% CI=2.14-2.25), respectively, for each SD unit increase in the GW-PRS. However, compared to the GW-PRS, in African and European ancestry men, the PRS 269 had larger or similar AUCs (AUC=0.679, 95% CI=0.659-0.700 and AUC=0.845, 95% CI=0.841-0.849, respectively) and comparable prostate cancer OR (OR=2.05, 95% CI=1.87-2.26 and OR=2.21, 95% CI=2.16-2.26, respectively). Findings were similar in the validation data. This investigation suggests that current GW-PRS approaches may not improve the ability to predict prostate cancer risk compared to the multi-ancestry PRS 269 constructed with fine-mapping.
Collapse
Affiliation(s)
- Burcu F. Darst
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jiayi Shen
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Yukai Xiao
- Argonne National Laboratory, Lemont, IL, USA
| | - Xin Sheng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | - Thomas J. Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peggy Wan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Lynne Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Robert J. MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - David E. Neal
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
- University of Cambridge, Department of Oncology, Addenbrooke’s Hospital, Cambridge, UK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge UK
| | - Børge G. Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Sune F. Nielsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
| | - Australian Prostate Cancer BioResource
- Translational Research Institute, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre-Qld, Queensland University of Technology, Brisbane; Prostate Cancer Research Program, Monash University, Melbourne; Dame Roma Mitchell Cancer Centre, University of Adelaide, Adelaide; Chris O’Brien Lifehouse and The Kinghorn Cancer Centre, Sydney, Australia
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Nora Pashayan
- University College London, Department of Applied Health Research, London, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jong Y. Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - David J. Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kathryn L. Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | | | - Robert J. Hamilton
- Dept. of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
- Dept. of Surgery (Urology), University of Toronto, Canada
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, Canada
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC, Canada
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alicja Wolk
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Karina D. Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - William J. Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Edward D. Yeboah
- University of Ghana Medical School, Accra, Ghana
- Korle Bu Teaching Hospital, Accra, Ghana
| | - James E. Mensah
- University of Ghana Medical School, Accra, Ghana
- Korle Bu Teaching Hospital, Accra, Ghana
| | - Yong-Jie Lu
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Daniel J. Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Catharine M. West
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Radiotherapy Related Research, The Christie Hospital NHS Foundation Trust, Manchester, UK
| | | | - Adam S. Kibel
- Division of Urologic Surgery, Brigham and Womens Hospital, Boston, MA, USA
| | - Géraldine Cancel-Tassin
- CeRePP, Tenon Hospital, Paris, France
- Sorbonne Universite, GRC 5 Predictive Onco-urology, Tenon Hospital, Paris, France
| | - Florence Menegaux
- “Exposome and Heredity”, CESP (UMR 1018), Faculté de Médecine, Université Paris-Saclay, Inserm, Gustave Roussy, Villejuif, France
| | - Esther M. John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Kay-Tee Khaw
- Clinical Gerontology Unit, University of Cambridge, Cambridge, UK
| | - Sue A. Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago De Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago De Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Spain
| | - Barry S. Rosenstein
- Department of Radiation Oncology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel R. Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - NC-LA PCaP Investigators
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lisa Cannon-Albright
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Chad Huff
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Robin J. Leach
- Department of Urology, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio Texas, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ann W. Hsing
- Department of Medicine and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rick A. Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Adam B. Murphy
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Christopher J. Logothetis
- The University of Texas M. D. Anderson Cancer Center, Department of Genitourinary Medical Oncology, Houston, TX, USA
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - William B. Isaacs
- James Buchanan Brady Urological Institute, Johns Hopkins Hospital and Medical Institution, Baltimore, MD, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anselm J. Hennis
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
- Chronic Disease Research Centre and Faculty of Medical Sciences, University of the West Indies, Bridgetown, Barbados
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, The University of Surrey, Guildford, Surrey, UK
| | - Kim De Ruyck
- Ghent University, Faculty of Medicine and Health Sciences, Basic Medical Sciences, Gent, Belgium
| | - Jianfeng Xu
- Program for Personalized Cancer Care and Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Azad Razack
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia (CRM), Outpatient Centre, Subang Jaya Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Canary PASS Investigators
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Lisa F. Newcomb
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jay H. Fowke
- Division of Epidemiology, Department of Preventive Medicine, The University of Tennessee Health Science Center, TN, USA
| | | | | | - Marija Gamulin
- Department of Oncology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Manuela GagoDominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saúde, SERGAS, Santiago de Compostela, Spain
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Jose Esteban Castelao
- Genetic Oncology Unit, CHUVI Hospital, Complexo Hospitalario Universitario de Vigo, Instituto de Investigación Biomédica Galicia Sur (IISGS), Vigo (Pontevedra), Spain
| | - Paul A. Townsend
- Division of Cancer Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Health Innovation Manchester, University of Manchester, UK
- The University of Surrey, Guildford, Surrey, UK
| | - Dana C. Crawford
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Uniformed Services University, Bethesda, MD, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Monique J. Roobol
- 109 Department of Urology, Erasmus University Medical Center, Cancer Institute, Rotterdam, The Netherlands
| | - Jennifer F. Hu
- The University of Miami School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen K. Van Den Eeden
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael B. Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - John S. Witte
- Department of Epidemiology and Population Health, Department of Biomedical Data Science, Stanford Cancer Institute, Stanford, CA, USA
| | - Rosalind A. Eeles
- The Institute of Cancer Research, Sutton, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | | | - Stephen Watya
- School of Public Health, Makerere University College of Health Sciences, Kampala Uganda
| | - John M. Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amy C. Justice
- VA Connecticut Healthcare System, West Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - David V. Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
129
|
Pagadala M, Sears TJ, Wu VH, Pérez-Guijarro E, Kim H, Castro A, Talwar JV, Gonzalez-Colin C, Cao S, Schmiedel BJ, Goudarzi S, Kirani D, Au J, Zhang T, Landi T, Salem RM, Morris GP, Harismendy O, Patel SP, Alexandrov LB, Mesirov JP, Zanetti M, Day CP, Fan CC, Thompson WK, Merlino G, Gutkind JS, Vijayanand P, Carter H. Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response. Nat Commun 2023; 14:2744. [PMID: 37173324 PMCID: PMC10182072 DOI: 10.1038/s41467-023-38271-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.
Collapse
Affiliation(s)
- Meghana Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hyo Kim
- Undergraduate Bioengineering Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Castro
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - James V Talwar
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Steven Cao
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Divya Kirani
- Undergraduate Biology and Bioinformatics Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Au
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivier Harismendy
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sandip Pravin Patel
- Center for Personalized Cancer Therapy, Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jill P Mesirov
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Laboratory of Immunology and Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wesley K Thompson
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | | | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
130
|
Duncan A, Nousome D, Ricks R, Kuo HC, Ravindranath L, Dobi A, Cullen J, Srivastava S, Chesnut GT, Petrovics G, Kohaar I. Association of TP53 Single Nucleotide Polymorphisms with Prostate Cancer in a Racially Diverse Cohort of Men. Biomedicines 2023; 11:biomedicines11051404. [PMID: 37239075 DOI: 10.3390/biomedicines11051404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence indicates the involvement of a genetic component in prostate cancer (CaP) susceptibility and clinical severity. Studies have reported the role of germline mutations and single nucleotide polymorphisms (SNPs) of TP53 as possible risk factors for cancer development. In this single institutional retrospective study, we identified common SNPs in the TP53 gene in AA and CA men and performed association analyses for functional TP53 SNPs with the clinico-pathological features of CaP. The SNP genotyping analysis of the final cohort of 308 men (212 AA; 95 CA) identified 74 SNPs in the TP53 region, with a minor allele frequency (MAF) of at least 1%. Two SNPs were non-synonymous in the exonic region of TP53: rs1800371 (Pro47Ser) and rs1042522 (Arg72Pro). The Pro47Ser variant had an MAF of 0.01 in AA but was not detected in CA. Arg72Pro was the most common SNP, with an MAF of 0.50 (0.41 in AA; 0.68 in CA). Arg72Pro was associated with a shorter time to biochemical recurrence (BCR) (p = 0.046; HR = 1.52). The study demonstrated ancestral differences in the allele frequencies of the TP53 Arg72Pro and Pro47Ser SNPs, providing a valuable framework for evaluating CaP disparities among AA and CA men.
Collapse
Affiliation(s)
- Allison Duncan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Randy Ricks
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Huai-Ching Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| |
Collapse
|
131
|
Zhan Y, Ruan X, Liu J, Huang D, Huang J, Huang J, Chun TTS, Ng ATL, Wu Y, Wei G, Jiang H, Xu D, Na R. Genetic Polymorphisms of the Telomerase Reverse Transcriptase Gene in Relation to Prostate Tumorigenesis, Aggressiveness and Mortality: A Cross-Ancestry Analysis. Cancers (Basel) 2023; 15:cancers15092650. [PMID: 37174115 PMCID: PMC10177366 DOI: 10.3390/cancers15092650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) has been consistently associated with prostate cancer (PCa) risk. However, few studies have explored the association between TERT variants and PCa aggressiveness. METHODS Individual and genetic data were obtained from UK Biobank and a Chinese PCa cohort (Chinese Consortium for Prostate Cancer Genetics). RESULTS A total of 209,694 Europeans (14,550 PCa cases/195,144 controls) and 8873 Chinese (4438 cases/4435 controls) were involved. Nineteen susceptibility loci with five novel ones (rs144704378, rs35311994, rs34194491, rs144020096, and rs7710703) were detected in Europeans, whereas seven loci with two novel ones (rs7710703 and rs11291391) were discovered in the Chinese cohort. The index SNP for the two ancestries was rs2242652 (odds ratio [OR] = 1.16, 95% confidence interval [CI]:1.12-1.20, p = 4.12 × 10-16) and rs11291391 (OR = 1.73, 95%CI:1.34-2.25, p = 3.04 × 10-5), respectively. SNPs rs2736100 (OR = 1.49, 95%CI:1.31-1.71, p = 2.91 × 10-9) and rs2853677 (OR = 1.74, 95%CI:1.52-1.98, p = 3.52 × 10-16) were found significantly associated with aggressive PCa, while rs35812074 was marginally related to PCa death (hazard ratio [HR] = 1.61, 95%CI:1.04-2.49, p = 0.034). Gene-based analysis showed a significant association of TERT with PCa (European: p = 3.66 × 10-15, Chinese: p = 0.043) and PCa severity (p = 0.006) but not with PCa death (p = 0.171). CONCLUSION TERT polymorphisms were associated with prostate tumorigenesis and severity, and the genetic architectures of PCa susceptibility loci were heterogeneous among distinct ancestries.
Collapse
Affiliation(s)
- Yongle Zhan
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiacheng Liu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinlun Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tsun Tsun Stacia Chun
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ada Tsui-Lin Ng
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Division of Urology, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Yishuo Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Gonghong Wei
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Na
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
132
|
Herberts C, Wyatt AW, Nguyen PL, Cheng HH. Genetic and Genomic Testing for Prostate Cancer: Beyond DNA Repair. Am Soc Clin Oncol Educ Book 2023; 43:e390384. [PMID: 37207301 DOI: 10.1200/edbk_390384] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant progress has been made in genetic and genomic testing for prostate cancer across the disease spectrum. Molecular profiling is increasingly relevant for routine clinical management, fueled in part by advancements in testing technology and integration of biomarkers into clinical trials. In metastatic prostate cancer, defects in DNA damage response genes are now established predictors of benefit to US Food and Drug Administration-approved poly (ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors, and trials are actively investigating these and other targeted treatment strategies in earlier disease states. Excitingly, opportunities for molecularly informed management beyond DNA damage response genes are also maturing. Germline genetic variants (eg, BRCA2 or MSH2/6) and polygenic germline risk scores are being investigated to inform cancer screening and active surveillance in at-risk carriers. RNA expression tests have recently gained traction in localized prostate cancer, enabling patient risk stratification and tailored treatment intensification via radiotherapy and/or androgen deprivation therapy for localized or salvage treatment. Finally, emerging minimally invasive circulating tumor DNA technology promises to enhance biomarker testing in advanced disease pending additional methodological and clinical validation. Collectively, genetic and genomic tests are rapidly becoming indispensable tools for informing the optimal clinical management of prostate cancer.
Collapse
Affiliation(s)
- Cameron Herberts
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul L Nguyen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| | - Heather H Cheng
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
133
|
Soh PXY, Hayes VM. Common Genetic Variants Associated with Prostate Cancer Risk: The Need for African Inclusion. Eur Urol 2023:S0302-2838(23)02729-X. [PMID: 37100647 DOI: 10.1016/j.eururo.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Pamela X Y Soh
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Camperdown, Australia
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Camperdown, Australia.
| |
Collapse
|
134
|
Vickers AJ, Mahal B, Ogunwobi OO. Racism Does Not Cause Prostate Cancer, It Causes Prostate Cancer Death. J Clin Oncol 2023; 41:2151-2154. [PMID: 36693227 PMCID: PMC10448930 DOI: 10.1200/jco.22.02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Andrew J. Vickers
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brandon Mahal
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Olorunseun O. Ogunwobi
- Hunter College Center for Cancer Health Disparities Research, Hunter College, City University of New York, NY
| |
Collapse
|
135
|
Houlahan KE, Livingstone J, Fox NS, Kurganovs N, Zhu H, Sietsma Penington J, Jung CH, Yamaguchi TN, Heisler LE, Jovelin R, Costello AJ, Pope BJ, Kishan AU, Corcoran NM, Bristow RG, Waszak SM, Weischenfeldt J, He HH, Hung RJ, Hovens CM, Boutros PC. A polygenic two-hit hypothesis for prostate cancer. J Natl Cancer Inst 2023; 115:468-472. [PMID: 36610996 PMCID: PMC10086625 DOI: 10.1093/jnci/djad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is one of the most heritable cancers. Hundreds of germline polymorphisms have been linked to prostate cancer diagnosis and prognosis. Polygenic risk scores can predict genetic risk of a prostate cancer diagnosis. Although these scores inform the probability of developing a tumor, it remains unknown how germline risk influences the tumor molecular evolution. We cultivated a cohort of 1250 localized European-descent patients with germline and somatic DNA profiling. Men of European descent with higher genetic risk were diagnosed earlier and had less genomic instability and fewer driver genes mutated. Higher genetic risk was associated with better outcome. These data imply a polygenic "two-hit" model where germline risk reduces the number of somatic alterations required for tumorigenesis. These findings support further clinical studies of polygenic risk scores as inexpensive and minimally invasive adjuncts to standard risk stratification. Further studies are required to interrogate generalizability to more ancestrally and clinically diverse populations.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Ontario Institute for Cancer Research, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Julie Livingstone
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
| | - Natalie S Fox
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Natalie Kurganovs
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC, Australia
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Helen Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, Australia
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
| | | | | | - Anthony J Costello
- Division of Urology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Bernard J Pope
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Amar U Kishan
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | - Niall M Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC, Australia
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
- Division of Urology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Urology, Peninsula Health, Frankston, VIC, Australia
- The Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Robert G Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Manchester Cancer Research Centre, Manchester, UK
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Housheng H He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Christopher M Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC, Australia
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Institute for Precision Health, University of California, Los Angeles, CA, USA
- Ontario Institute for Cancer Research, Toronto, Canada
- Vector Institute, Toronto, Canada
- Department of Urology, University of California, Los Angeles, CA, USA
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| |
Collapse
|
136
|
Richardson A, Darst B, Wojcik G, Wagle N, Haricharan S. Research Silos in Cancer Disparities: Obstacles to Improving Clinical Outcomes for Underserved Patient Populations. Clin Cancer Res 2023; 29:1194-1199. [PMID: 36638200 PMCID: PMC10073283 DOI: 10.1158/1078-0432.ccr-22-3182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Despite much vaunted progress in cancer therapeutics and diagnostics, outcomes for many groups of non-White patients with cancer remain worse than those for their White compatriots. One reason for this is the lack of inclusion and representation of non-White patients in clinical trials, preclinical datasets, and among researchers, a shortfall that is gaining wide recognition within the cancer research community and the lay public. Several reviews and editorials have commented on the negative impacts of the status quo on progress in cancer research toward medical breakthroughs that help all communities and not just White patients with cancer. In this perspective, we describe the existence of research silos focused either on the impact of socioeconomic factors proceeding from systemic racism on cancer outcomes, or on genetic ancestry as it affects the molecular biology of cancer developing in specific patient populations. While both these research areas are critical for progress toward precision medicine equity, breaking down these silos will help us gain an integrated understanding of how race and racism impact cancer development, progression, and patient outcomes. Bringing this comprehensive approach to cancer disparities research will undoubtedly improve our overall understanding of how stress and environmental factors affect the molecular biology of cancer, which will lead to the development of new diagnostics and therapeutics that are applicable across cancer patient demographics.
Collapse
Affiliation(s)
| | - Burcu Darst
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Genevieve Wojcik
- Dept of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Nikhil Wagle
- Dept of Medicine, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Svasti Haricharan
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
137
|
Wei J, Beebe-Dimmer J, Shi Z, Sample C, Yan G, Rifkin AS, Sadeghpour A, Gielzak M, Choi S, Moon D, Zheng SL, Helfand BT, Walsh PC, Xu J, Cooney KA, Isaacs WB. Association of rare, recurrent nonsynonymous variants in the germline of prostate cancer patients of African ancestry. Prostate 2023; 83:454-461. [PMID: 36567534 DOI: 10.1002/pros.24477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although men of African ancestry (AA) have the highest mortality rate from prostate cancer (PCa), relatively little is known about the germline variants that are associated with PCa risk in AA men. The goal of this study is to systematically evaluate rare, recurrent nonsynonymous variants across the exome for their association with PCa in AA men. METHODS Whole exome sequencing (WES) of germline DNA in two AA PCa patient cohorts of Johns Hopkins Hospital (N = 960) and Wayne State University (N = 747) was performed. All nonsynonymous variants present in both case cohorts, with a carrier rate between 0.5% and 1%, were identified. Their carrier rates were compared with rates from 8128 African/African American (AFR) control subjects from The Genome Aggregation Database (gnomAD) using Fisher's exact test. Significant variants, defined as false discovery rate (FDR) adjusted p-value ≤ 0.05, were further evaluated in AA PCa cases (N = 132) and controls (N = 1184) from the UK Biobank (UKB). RESULTS Two variants reached a pre-specified statistical significance level. The first was p.R14Q in GPRC5C (found in 0.47% of PCa cases and 0.01% of population controls); odds ratio (OR) for PCa was 37.46 (95% confidence interval CI 4.68-299.72), pexact = 7.01E-06, FDR-adjusted p-value = 0.05. The second was p.R511Q in IGF1R (found in 0.53% of PCa cases and 0.01% of population controls); OR for PCa was 21.54 (95%CI 4.65-99.76), pexact = 5.51E-06, FDR-adjusted p-value = 0.05. The mean percentage of African ancestry was similar between variant carriers and noncarriers of each variant, p > 0.05. In the UKB AA men, GPRC5C R14Q was 0.76% and 0.08% in cases and controls, respectively, OR for PCa was 9.00 (95%CI 0.56-145.23), pexact = 0.19. However, IGF1R R511Q was not found in cases or controls. CONCLUSIONS This WES study identified two rare, recurrent nonsynonymous PCa risk-associated variants in AA. Confirmation in additional large populations of AA PCa cases and controls is required.
Collapse
Affiliation(s)
- Jun Wei
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Jennifer Beebe-Dimmer
- Barabara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Christopher Sample
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Guifang Yan
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrew S Rifkin
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Azita Sadeghpour
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - Marta Gielzak
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sodam Choi
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - David Moon
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
- Department of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Patrick C Walsh
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Kathleen A Cooney
- Department of Medicine, Duke University School of Medicine and Duke Cancer Institute, Durham, North Carolina, USA
| | - William B Isaacs
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
138
|
Plym A, Zhang Y, Stopsack KH, Delcoigne B, Wiklund F, Haiman C, Kenfield SA, Kibel AS, Giovannucci E, Penney KL, Mucci LA. A Healthy Lifestyle in Men at Increased Genetic Risk for Prostate Cancer. Eur Urol 2023; 83:343-351. [PMID: 35637041 DOI: 10.1016/j.eururo.2022.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Prostate cancer is the most heritable cancer. There is a need to identify possible modifiable factors for men at an increased risk of prostate cancer due to genetic factors. OBJECTIVE To examine whether men at an increased genetic risk of prostate cancer can offset their risk of disease or disease progression by adhering to a healthy lifestyle. DESIGN, SETTING, AND PARTICIPANTS We prospectively followed 12 411 genotyped men in the Health Professionals Follow-up Study (1993-2019) and the Physicians' Health Study (1983-2010). Genetic risk of prostate cancer was quantified using a polygenic risk score (PRS). A healthy lifestyle was defined by healthy weight, vigorous physical activity, not smoking, and a healthy diet. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Overall and lethal prostate cancer events (metastatic disease/prostate cancer-specific death) were analyzed using time-to-event analyses estimating hazard ratios (HRs) and lifetime risks. RESULTS AND LIMITATIONS During 27 yr of follow-up, 3005 overall prostate cancer and 435 lethal prostate cancer events were observed. The PRS enabled risk stratification not only for overall prostate cancer, but also for lethal disease with a four-fold difference between men in the highest and lowest quartiles (HR, 4.32; 95% confidence interval [CI], 3.16-5.89). Among men in the highest PRS quartile, adhering to a healthy lifestyle was associated with a decreased rate of lethal prostate cancer (HR, 0.55; 95% CI, 0.36-0.86) compared with having an unhealthy lifestyle, translating to a lifetime risk of 1.6% (95% CI, 0.8-3.1%) among the healthy and 5.3% (95% CI, 3.6-7.8%) among the unhealthy. Adhering to a healthy lifestyle was not associated with a decreased risk of overall prostate cancer. CONCLUSIONS Our findings suggest that a genetic predisposition for prostate cancer is not deterministic for a poor cancer outcome. Maintaining a healthy lifestyle may provide a way to offset the genetic risk of lethal prostate cancer. PATIENT SUMMARY This study examined whether the genetic risk of prostate cancer can be attenuated by a healthy lifestyle including a healthy weight, regular exercise, not smoking, and a healthy diet. We observed that adherence to a healthy lifestyle reduced the risk of metastatic disease and prostate cancer death among men at the highest genetic risk. We conclude that men at a high genetic risk of prostate cancer may benefit from adhering to a healthy lifestyle.
Collapse
Affiliation(s)
- Anna Plym
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Yiwen Zhang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Konrad H Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bénédicte Delcoigne
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Stacey A Kenfield
- Departments of Urology and Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Adam S Kibel
- Urology Division, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
139
|
Kerman BJ, Brunette CA, Harris EJ, Antwi AA, Lemke AA, Vassy JL. Primary care physician use of patient race and polygenic risk scores in medical decision-making. Genet Med 2023; 25:100800. [PMID: 36748708 PMCID: PMC10085844 DOI: 10.1016/j.gim.2023.100800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The use of patient race in medicine is controversial for its potential either to exacerbate or address health disparities. Polygenic risk scores (PRSs) have emerged as a tool for risk stratification models used in preventive medicine. We examined whether PRS results affect primary care physician (PCP) medical decision-making and whether that effect varies by patient race. METHODS Using an online survey with a randomized experimental design among PCPs in a national database, we ascertained decision-making around atherosclerotic cardiovascular disease prevention and prostate cancer screening for case scenario patients who were clinically identical except for randomized reported race. RESULTS Across 369 PCPs (email open rate = 10.8%, partial completion rate = 93.7%), recommendations varied with PRS results in expected directions (low-risk results, no available PRS results, and high-risk results). Still, physicians randomized to scenarios with Black patients were more likely to recommend statin therapy than those randomized to scenarios with White patients (odds ratio = 1.74, 95% CI = 1.16-2.59, P = .007) despite otherwise identical clinical profiles and independent of PRS results. Similarly, physicians were more likely to recommend prostate cancer screening for Black patients than for White patients (odds ratio = 1.58, 95% CI = 1.06-2.35, P = .025) despite otherwise identical clinical and genetic profiles. CONCLUSION Despite advances in precision risk stratification, physicians will likely continue to use patient race implicitly or explicitly in medical decision-making.
Collapse
Affiliation(s)
- Benjamin J Kerman
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA
| | | | - Elizabeth J Harris
- Department of Medicine, Harvard Medical School, Boston, MA; Veterans Affairs Boston Healthcare System, Boston, MA
| | | | - Amy A Lemke
- Norton Children's Research Institute, Affiliated with the University of Louisville School of Medicine, Louisville, KY
| | - Jason L Vassy
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA; Veterans Affairs Boston Healthcare System, Boston, MA; Precision Population Health, Ariadne Labs, Boston, MA.
| |
Collapse
|
140
|
Schaffer KR, Shi M, Shelley JP, Tosoian JJ, Kachuri L, Witte JS, Mosley JD. A Polygenic Risk Score for Prostate Cancer Risk Prediction. JAMA Intern Med 2023; 183:386-388. [PMID: 36877498 PMCID: PMC9989952 DOI: 10.1001/jamainternmed.2022.6795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/12/2022] [Indexed: 03/07/2023]
Abstract
This retrospective cohort study compares 2 risk calculator systems that compute the probabilities of finding high-grade or any cancer on biopsy results in men undergoing a first prostate biopsy.
Collapse
Affiliation(s)
- Kerry R. Schaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt–Ingram Cancer Center, Nashville, Tennessee
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John P. Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeffrey J. Tosoian
- Vanderbilt–Ingram Cancer Center, Nashville, Tennessee
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
| | - John S. Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, California
- Department of Biomedical Data Science and Genetics (by courtesy), Stanford University, Stanford, California
| | - Jonathan D. Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
141
|
Deng Y, Huang J, Wong MCS. Association between serum uric acid and prostate cancer risk in East Asian populations: a Mendelian randomization study. Eur J Nutr 2023; 62:1323-1329. [PMID: 36542132 DOI: 10.1007/s00394-022-03076-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Previous observational studies showed that serum uric acid (SUA) was associated with prostate cancer, but the causal relationship is unclear. This study aimed to explore the potential causal association between SUA and prostate cancer risk using Mendelian randomization (MR) analyses in the East Asian populations. METHODS Publicly available summary-level genome-wide association studies (GWAS) data on SUA were obtained from a genome-wide meta-analysis of three Japanese cohorts (121,745 subjects). The GWAS data on prostate cancer were derived from Biobank Japan (109,347 subjects with 5,408 cases and 103,939 controls). A total of 34 SUA-related single-nucleotide polymorphisms (SNPs) (P value < 5 × 10-8) were identified as instrumental variables. The inverse variance weighted method was used as the primary method to compute the odds ratios (ORs) and 95% confidence intervals (95% CIs) for per standard deviation increase in SUA. MR Egger, weighted median, and weighted mode were also applied to test the robustness of the results. RESULTS Genetically predicted SUA was positively associated with prostate cancer risk using inverse variance weighted (OR = 1.12; 95% CI 1.00-1.26; P = 0.043). The positive association was robust when MR Egger (OR = 1.16; 95% CI 1.01-1.34; P = 0.048), weighted median (OR = 1.18; 95% CI 1.03-1.36; P = 0.018), and weighted mode (OR = 1.14; 95% CI 1.01-1.29; P = 0.041) were used. CONCLUSION There were potential causal associations between higher genetically predicted SUA levels and increased prostate cancer risk. Further, MR studies with more valid SNPs and more cancer cases are needed. Validation of the findings is also recommended.
Collapse
Affiliation(s)
- Yunyang Deng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Martin Chi Sang Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- School of Public Health, the Chinese Academy of Medical Sciences and the Peking Union Medical College, Beijing, 100000, China.
- School of Public Health, Peking University, Beijing, 100000, China.
| |
Collapse
|
142
|
Kanesvaran R, Chia PL, Chiong E, Chua MLK, Ngo NT, Ow S, Sim HG, Tan MH, Tay KH, Wong ASC, Wong SW, Tan PH. An approach to genetic testing in patients with metastatic castration-resistant prostate cancer in Singapore. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023; 52:135-148. [PMID: 38904491 DOI: 10.47102/annals-acadmedsg.2022372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Introduction There has been a rapid evolution in the treatment strategies for metastatic castration-resistant prostate cancer (mCRPC) following the identification of targetable mutations, making genetic testing essential for patient selection. Although several international guidelines recommend genetic testing for patients with mCRPC, there is a lack of locally endorsed clinical practice guidelines in Singapore. Method A multidisciplinary specialist panel with representation from medical and radiation oncology, urology, pathology, interventional radiology, and medical genetics discussed the challenges associated with patient selection, genetic counselling and sample processing in mCRPC. Results A clinical model for incorporating genetic testing into routine clinical practice in Singapore was formulated. Tumour testing with an assay that is able to detect both somatic and germline mutations should be utilised. The panel also recommended the "mainstreaming" approach for genetic counselling in which pre-test counselling is conducted by the managing clinician and post-test discussion with a genetic counsellor, to alleviate the bottlenecks at genetic counselling stage in Singapore. The need for training of clinicians to provide pre-test genetic counselling and educating the laboratory personnel for appropriate sample processing that facilitates downstream genetic testing was recognised. Molecular tumour boards and multidisciplinary discussions are recommended to guide therapeutic decisions in mCRPC. The panel also highlighted the issue of reimbursement for genetic testing to reduce patient-borne costs and increase the reach of genetic testing among this patient population. Conclusion This article aims to provide strategic and implementable recommendations to overcome the challenges in genetic testing for patients with mCRPC in Singapore.
Collapse
Affiliation(s)
| | - Puey Ling Chia
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore
| | - Edmund Chiong
- Department of Urology, National University Hospital, Singapore
- Department of Surgery, National University of Singapore, Singapore
| | | | - Nye Thane Ngo
- Division of Pathology, Singapore General Hospital, Singapore
| | - Samuel Ow
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Hong Gee Sim
- Ravenna Urology Clinic, Gleneagles Medical Centre, Singapore
| | | | - Kiang Hiong Tay
- Department of Vascular and Interventional Radiation, Singapore General Hospital, Singapore
| | | | | | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
143
|
Srinivasan S, Kryza T, Bock N, Tse BWC, Sokolowski KA, Panchadsaram J, Moya L, Stephens C, Dong Y, Röhl J, Alinezhad S, Vela I, Perry-Keene JL, Buzacott K, Gago-Dominguez M, Schleutker J, Maier C, Muir K, Tangen CM, Gronberg H, Pashayan N, Albanes D, Wolk A, Stanford JL, Berndt SI, Mucci LA, Koutros S, Cussenot O, Sorensen KD, Grindedal EM, Key TJ, Haiman CA, Giles GG, Vega A, Wiklund F, Neal DE, Kogevinas M, Stampfer MJ, Nordestgaard BG, Brenner H, Gamulin M, Claessens F, Melander O, Dahlin A, Stattin P, Hallmans G, Häggström C, Johansson R, Thysell E, Rönn AC, Li W, Brown N, Dimeski G, Shepherd B, Dadaev T, Brook MN, Spurdle AB, Stenman UH, Koistinen H, Kote-Jarai Z, Klein RJ, Lilja H, Ecker RC, Eeles R, Clements J, Batra J. Biochemical activity induced by a germline variation in KLK3 (PSA) associates with cellular function and clinical outcome in prostate cancer. RESEARCH SQUARE 2023:rs.3.rs-2650312. [PMID: 37034758 PMCID: PMC10081352 DOI: 10.21203/rs.3.rs-2650312/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility. The non-synonymous KLK3 SNP, rs17632542 (c.536T>C; Ile163Thr-substitution in PSA) is associated with reduced prostate cancer risk, however, the functional relevance is unknown. Here, we identify that the SNP variant-induced change in PSA biochemical activity as a previously undescribed function mediating prostate cancer pathogenesis. The 'Thr' PSA variant led to small subcutaneous tumours, supporting reduced prostate cancer risk. However, 'Thr' PSA also displayed higher metastatic potential with pronounced osteolytic activity in an experimental metastasis in-vivo model. Biochemical characterization of this PSA variant demonstrated markedly reduced proteolytic activity that correlated with differences in in-vivo tumour burden. The SNP is associated with increased risk for aggressive disease and prostate cancer-specific mortality in three independent cohorts, highlighting its critical function in mediating metastasis. Carriers of this SNP allele had reduced serum total PSA and a higher free/total PSA ratio that could contribute to late biopsy decisions and delay in diagnosis. Our results provide a molecular explanation for the prominent 19q13.3 KLK locus, rs17632542 SNP, association with a spectrum of prostate cancer clinical outcomes.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
| | - Thomas Kryza
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
| | - Brian WC Tse
- Preclinical Imaging Facility, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Kamil A. Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Janaththani Panchadsaram
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
| | - Leire Moya
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
| | - Carson Stephens
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
| | - Ying Dong
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
| | - Joan Röhl
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
| | - Saeid Alinezhad
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
| | - Ian Vela
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Department of Urology, Princess Alexandra Hospital, Brisbane, Woolloongabba, Brisbane, QLD, Australia
| | - Joanna L. Perry-Keene
- Pathology Queensland, Sunshine Coast University Hospital Laboratory, Birtinya, Sunshine Coast, QLD, Australia
| | - Katie Buzacott
- Pathology Queensland, Sunshine Coast University Hospital Laboratory, Birtinya, Sunshine Coast, QLD, Australia
| | - The IMPACT Study
- The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, IDIS, Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - The PROFILE Study Steering Committee
- The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
- Ronald and Rita McAulay Foundation, London, UK
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- University of Oxford, Oxford, UK
- Queen Mary University of London, London, UK
| | - Johanna Schleutker
- Institute of Biomedicine, Kiinamyllynkatu 10, FI-20014 University of Turku, Finland
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, PO Box 52, 20521 Turku, Finland
| | - Christiane Maier
- Humangenetik Tuebingen, Paul-Ehrlich-Str 23, D-72076 Tuebingen, Germany
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, M13 9PL, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Catherine M. Tangen
- SWOG Statistical Center, Division of Public Health Sciences
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Nora Pashayan
- Department of Applied Health Research, University College London, London, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, CB1 8RN, UK
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, USA
| | - Alicja Wolk
- Division of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, 98109-1024, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, USA
| | - Lorelei A. Mucci
- Department of Epidemiology,Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, USA
| | - Olivier Cussenot
- CeRePP and Sorbonne Universite, GRC N°5 AP-HP, Tenon Hospital, Paris, France
| | - Karina Dalsgaard Sorensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University & Department of Molecular Medicine (MOMA), Aarhus University Hospital, DK-8200 Aarhus N., Denmark
| | | | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christopher A. Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, USA
| | - Graham G. Giles
- Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Biomedical Network on Rare Diseases (CIBERER), Santiago de Compostela, Spain
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - David E. Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, England
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, England
| | - Manolis Kogevinas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Meir J. Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Børge G. Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marija Gamulin
- Division of Medical Oncology, Urogenital Unit, Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Anders Dahlin
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Pär Stattin
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Christel Häggström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | | | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Ann-Charlotte Rönn
- Clinical Research Center, Karolinska University Hospital, Huddinge, Sweden
| | - Weiqiang Li
- Icahn Institute for Data Science and Genome Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nigel Brown
- Department of Chemical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, Australia
| | - Goce Dimeski
- Department of Chemical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, Australia
| | - Benjamin Shepherd
- Department of Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, Australia
| | - Tokhir Dadaev
- The Institute of Cancer Research, London, SM2 5NG, UK
| | - Mark N. Brook
- The Institute of Cancer Research, London, SM2 5NG, UK
| | - Amanda B. Spurdle
- Molecular Cancer Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Robert J. Klein
- Icahn Institute for Data Science and Genome Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hans Lilja
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, England
- Departments of Laboratory Medicine, Surgery (Urology Service) and Medicine (Genitourinary Oncology), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Rupert C. Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
- TissueGnostics GmbH, Vienna, Austria
| | - Rosalind Eeles
- The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | | | - The Australian Prostate Cancer BioResource
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT)
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, Queensland (QLD), Australia
- Centre for Genomic and Personalised Health, Queensland University of Technology, Brisbane, QLD
| |
Collapse
|
144
|
Klein RJ. Bringing Prostate Cancer Polygenic Risk Scores to the Clinic. JAMA Intern Med 2023; 183:388-389. [PMID: 36877497 DOI: 10.1001/jamainternmed.2022.6782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
145
|
Genetic Risk Prediction for Prostate Cancer: Implications for Early Detection and Prevention. Eur Urol 2023; 83:241-248. [PMID: 36609003 DOI: 10.1016/j.eururo.2022.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
CONTEXT Prostate cancer (PCa) is a leading cause of death and partially heritable. Genetic risk prediction might be useful for strategies to reduce PCa mortality through early detection and prevention. OBJECTIVE To review evidence for genetic risk prediction for PCa. EVIDENCE ACQUISITION A collaborative literature review was conducted using PubMed and Google Scholar. Search terms included genetic, risk, prediction, and "prostate cancer". Articles addressing screening, early detection, or prevention were prioritized, as were studies involving diverse populations. EVIDENCE SYNTHESIS Rare pathogenic mutations (RPMs), especially in DNA damage repair genes, increase PCa risk. RPMs in BRCA2 are most clearly deleterious, conferring 2-8.6 times higher risk of PCa and a higher risk of aggressive disease. Common genetic variants can be combined into genetic risk scores (GRSs). A high GRS (top 20-25% of the population) confers two to three times higher risk of PCa than average; a very high GRS (top 1-5%) confers six to eight times higher risk. GRSs are not specific for aggressive PCa, possibly due to methodological limitations and/or a field effect of an elevated risk for both low- and high-grade PCa. It is challenging to disentangle genetics from structural racism and social determinants of health to understand PCa racial disparities. GRSs are independently associated with a lethal PCa risk after accounting for family history and race/ancestry. Healthy lifestyle might partially mitigate the risk of lethal PCa. CONCLUSIONS Genetic risk assessment is becoming more common; implementation studies are needed to understand the implications and to avoid exacerbating healthcare disparities. Men with a high genetic risk of PCa can reasonably be encouraged to adhere to a healthy lifestyle. PATIENT SUMMARY Prostate cancer risk is inherited through rare mutations and through the combination of hundreds of common genetic markers. Some men with a high genetic risk (especially BRCA2 mutations) likely benefit from early screening for prostate cancer. The risk of lethal prostate cancer can be reduced through a healthy lifestyle.
Collapse
|
146
|
Brook MN, Ní Raghallaigh H, Govindasami K, Dadaev T, Rageevakumar R, Keating D, Hussain N, Osborne A, Lophatananon A, Muir KR, Kote-Jarai Z, Eeles RA. Family History of Prostate Cancer and Survival Outcomes in the UK Genetic Prostate Cancer Study. Eur Urol 2023; 83:257-266. [PMID: 36528478 DOI: 10.1016/j.eururo.2022.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND A family history (FH) of prostate cancer (PrCa) is associated with an increased likelihood of PrCa diagnosis. Conflicting evidence exists regarding familial PrCa and clinical outcomes among PrCa patients, including all-cause mortality/overall survival (OS), PrCa-specific survival (PCSS), aggressive histology, and stage at diagnosis. OBJECTIVE To determine how the number, degree, and age of a PrCa patient's affected relatives are associated with OS and PCSS of those already diagnosed with PrCa. DESIGN, SETTING, AND PARTICIPANTS The UK Genetic Prostate Cancer Study is a longitudinal, multi-institutional, observational study collecting baseline and follow-up clinical data since 1992. We examined OS and PCSS in 16340 men by degree and number of relatives with prostate and genetically related cancers (breast, ovarian, and colorectal). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary outcome was all-cause mortality among PrCa patients. The risk of death with respect to FH was assessed by calculating hazard ratios from Cox proportional hazard regression models, adjusting for relevant factors. RESULTS AND LIMITATIONS A stronger FH was inversely associated with the risk of all-cause and PrCa-specific mortality. This association was greater in those with an increasing number (p-trend < 0.001) and increasing closeness (p-trend < 0.001) of the diagnosed relatives. Patients with at least one first-degree relative were at a lower risk of all-cause mortality than those with no FH (hazard ratio = 0.82 [95% confidence interval 0.75-0.89]). The population is largely of European ancestry, and this may cause an issue with representation and generalisation. Data are missing on epidemiological risk factors for death such as smoking and on comorbidities. Recall of family members' diagnoses may affect the classification of FH in unconfirmed cases. CONCLUSIONS Based on the investigation of the type and timing of relatives' cancers, it is likely that reductions in mortality are due almost completely to a greater awareness of the disease. This study provides information for clinicians guiding patients and their relatives based on their familial risk. It shows the importance of screening and awareness programmes, which are likely to improve survival among men with an FH. PATIENT SUMMARY We were interested in how a family history of prostate cancer affects survival in prostate cancer patients. We studied 16340 patients, categorised them according to the strength of their family history, and found that the stronger their family history, the better they did in terms of overall survival. We looked at the type and timing of patients' diagnoses compared with those of their relatives and found that this effect is likely to be explained by awareness, which indicates the importance of screening and awareness programmes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, UK
| | | | - Kenneth R Muir
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, UK
| | | | - Rosalind A Eeles
- The Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
147
|
Quan X, Cai W, Xi C, Wang C, Yan L. AIMedGraph: a comprehensive multi-relational knowledge graph for precision medicine. Database (Oxford) 2023; 2023:7059703. [PMID: 36856726 PMCID: PMC9976745 DOI: 10.1093/database/baad006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
The development of high-throughput molecular testing techniques has enabled the large-scale exploration of the underlying molecular causes of diseases and the development of targeted treatment for specific genetic alterations. However, knowledge to interpret the impact of genetic variants on disease or treatment is distributed in different databases, scientific literature studies and clinical guidelines. AIMedGraph was designed to comprehensively collect and interrogate standardized information about genes, genetic alterations and their therapeutic and diagnostic relevance and build a multi-relational, evidence-based knowledge graph. Graph database Neo4j was used to represent precision medicine knowledge as nodes and edges in AIMedGraph. Entities in the current release include 30 340 diseases/phenotypes, 26 140 genes, 187 541 genetic variants, 2821 drugs, 15 125 clinical trials and 797 911 supporting literature studies. Edges in this release cover 621 731 drug interactions, 9279 drug susceptibility impacts, 6330 pharmacogenomics effects, 30 339 variant pathogenicity and 1485 drug adverse reactions. The knowledge graph technique enables hidden knowledge inference and provides insight into potential disease or drug molecular mechanisms. Database URL: http://aimedgraph.tongshugene.net:8201.
Collapse
Affiliation(s)
- Xueping Quan
- Correspondence may also be addressed to Xueping Quan. Tel: +8621-58886662;
| | - Weijing Cai
- Department of Innovative Technology, Shanghai Tongshu Biotechnology Research Institute, No26 and 28, 377 Lane of Shanlian Road, Baoshan District, Shanghai 200444, China
| | - Chenghang Xi
- Department of Artificial Intelligence, Shanghai Tongshu Biotechnology Research Institute, No26 and 28, 377 Lane of Shanlian Road, Baoshan District, Shanghai 200444, China
| | - Chunxiao Wang
- Department of Innovative Technology, Shanghai Tongshu Biotechnology Research Institute, No26 and 28, 377 Lane of Shanlian Road, Baoshan District, Shanghai 200444, China
| | | |
Collapse
|
148
|
Ma C, Ericsson C, Carlsson SV, Lilja H, Kibel A, Graff RE, Plym A, Giovannucci E, Mucci LA, Preston MA, Penney KL. Addition of a Genetic Risk Score for Identification of Men with a Low Prostate-specific Antigen Level in Midlife at Risk of Developing Lethal Prostate Cancer. EUR UROL SUPPL 2023; 50:27-30. [PMID: 36861107 PMCID: PMC9969275 DOI: 10.1016/j.euros.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/22/2023] Open
Abstract
Men with a low prostate-specific antigen (PSA) level (<1 ng/ml) in midlife may extend the rescreening interval (if aged 40-59 yr) or forgo future PSA screening (if aged >60 yr) owing to their low risk of aggressive prostate cancer (PCa). However, there is a subset of men who develop lethal PCa despite low baseline PSA. We investigated how a PCa polygenic risk score (PRS) in addition to baseline PSA impacts the prediction of lethal PCa among 483 men aged 40-70 yr from the Physicians' Health Study followed over a median of 33 yr. We examined the association of the PRS with the risk of lethal PCa (lethal cases vs controls) using logistic regression adjusted for baseline PSA. The PCa PRS was associated with risk of lethal PCa (odds ratio per 1 standard deviation in PRS [OR] 1.79, 95% confidence interval [CI] 1.28-2.49). The association between the PRS and lethal PCa was stronger for those with PSA <1 ng/ml (OR 2.23, 95% CI 1.19-4.21) than for men with PSA ≥1 ng/ml (OR 1.61, 95% CI 1.07-2.42). Our PCa PRS improved the identification of men with PSA <1 ng/ml at greater risk of future lethal PCa who should consider ongoing PSA testing. Patient summary A subset of men develop fatal prostate cancer despite having low prostate-specific antigen (PSA) levels in middle age. A risk score based on multiple genes can help in predicting men who may be at risk of developing lethal prostate cancer and who should be advised to have regular PSA measurements.
Collapse
Affiliation(s)
- Chaoran Ma
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline Ericsson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sigrid V. Carlsson
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hans Lilja
- Department of Pathology and Laboratory Medicine and Medicine, GU-Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Adam Kibel
- Division of Urology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rebecca E. Graff
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA
| | - Anna Plym
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Division of Urology, Brigham and Women’s Hospital, Boston, MA, USA,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A. Preston
- Division of Urology, Brigham and Women’s Hospital, Boston, MA, USA,Corresponding authors. Division of Urology, Brigham and Women’s Hospital, 45 Francis Street, Boston, MA 02115, USA. Tel. +1 617 5258274. E-mail address: (M.A. Preston). Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA. Tel. +1 617 5250860. E-mail address: (K.L. Penney).
| | - Kathryn L. Penney
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Corresponding authors. Division of Urology, Brigham and Women’s Hospital, 45 Francis Street, Boston, MA 02115, USA. Tel. +1 617 5258274. E-mail address: (M.A. Preston). Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA. Tel. +1 617 5250860. E-mail address: (K.L. Penney).
| |
Collapse
|
149
|
Wu Q, Jung J. Genome-wide polygenic risk score for major osteoporotic fractures in postmenopausal women using associated single nucleotide polymorphisms. J Transl Med 2023; 21:127. [PMID: 36797788 PMCID: PMC9933300 DOI: 10.1186/s12967-023-03974-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Osteoporosis is highly polygenic and heritable, with heritability ranging from 50 to 80%; most inherited susceptibility is associated with the cumulative effect of many common genetic variants. However, existing genetic risk scores (GRS) only provide a few percent predictive power for osteoporotic fracture. METHODS We derived and validated a novel genome-wide polygenic score (GPS) comprised of 103,155 common genetic variants to quantify this susceptibility and tested this GPS prediction ability in an independent dataset (n = 15,776). RESULTS Among postmenopausal women, we found a fivefold gradient in the risk of major osteoporotic fracture (MOF) (p < 0.001) and a 15.25-fold increased risk of severe osteoporosis (p < 0.001) across the GPS deciles. Compared with the remainder of the GPS distribution, the top GPS decile was associated with a 3.59-, 2.48-, 1.92-, and 1.58-fold increased risk of any fracture, MOF, hip fracture, and spine fracture, respectively. The top GPS decile also identified nearly twofold more high-risk osteoporotic patients than the top decile of conventional GRS based on 1103 conditionally independent genome-wide significant SNPs. Although the relative risk of severe osteoporosis for postmenopausal women at around 50 is relatively similar, the cumulative incident at 20-year follow-up is significantly different between the top GPS decile (13.7%) and the bottom decile (< 1%). In the subgroup analysis, the GPS transferability in non-Hispanic White is better than in other racial/ethnic groups. CONCLUSIONS This new method to quantify inherited susceptibility to osteoporosis and osteoporotic fracture affords new opportunities for clinical prevention and risk assessment.
Collapse
Affiliation(s)
- Qing Wu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH, 43210, USA.
| | - Jongyun Jung
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH, 43210, USA
| |
Collapse
|
150
|
Miao J, Guo H, Song G, Zhao Z, Hou L, Lu Q. Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics. Nat Commun 2023; 14:832. [PMID: 36788230 PMCID: PMC9929290 DOI: 10.1038/s41467-023-36544-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Polygenic risk scores (PRS) calculated from genome-wide association studies (GWAS) of Europeans are known to have substantially reduced predictive accuracy in non-European populations, limiting their clinical utility and raising concerns about health disparities across ancestral populations. Here, we introduce a statistical framework named X-Wing to improve predictive performance in ancestrally diverse populations. X-Wing quantifies local genetic correlations for complex traits between populations, employs an annotation-dependent estimation procedure to amplify correlated genetic effects between populations, and combines multiple population-specific PRS into a unified score with GWAS summary statistics alone as input. Through extensive benchmarking, we demonstrate that X-Wing pinpoints portable genetic effects and substantially improves PRS performance in non-European populations, showing 14.1%-119.1% relative gain in predictive R2 compared to state-of-the-art methods based on GWAS summary statistics. Overall, X-Wing addresses critical limitations in existing approaches and may have broad applications in cross-population polygenic risk prediction.
Collapse
Affiliation(s)
- Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hanmin Guo
- Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China
| | - Gefei Song
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zijie Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lin Hou
- Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China.
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|