101
|
Kagan V, Tyurina Y, Bayir H, Chu C, Kapralov A, Vlasova I, Belikova N, Tyurin V, Amoscato A, Epperly M, Greenberger J, DeKosky S, Shvedova A, Jiang J. The “pro-apoptotic genies” get out of mitochondria: Oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 2006; 163:15-28. [DOI: 10.1016/j.cbi.2006.04.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 01/13/2023]
|
102
|
Abstract
To elaborate the peroxidase activity of cytochrome c in the generation of free radicals from H2O2, the mechanism of DNA cleavage mediated by the cytochrome c/H2O2 system was investigated. When plasmid DNA was incubated with cytochrome c and H2O2, the cleavage of DNA was proportional to the cytochrome c and H2O2 concentrations. Radical scavengers, such as azide, mannitol, and ethanol, significantly inhibited the cytochrome c/H2O2 system-mediated DNA cleavage. These results indicated that free radicals might participate in the DNA cleavage by the cytochrome c and H2O2 system. Incubation of cytochrome c with H2O2 resulted in a time-dependent release of iron ions from the cytochrome c molecule. During the incubation of deoxyribose with cytochrome c and H2O2, the damage to deoxyribose increased in a time-dependent manner, suggesting that the released iron ions may participate in a Fenton-like reaction to produce dOH radicals that may cause the DNA cleavage. Evidence that the iron-specific chelator, desferoxamine (DFX), prevented the DNA cleavage induced by the cytochrome c/H2O2 system supports this mechanism. Thus we suggest that DNA cleavage is mediated via the generation of dOH by a combination of the peroxidase reaction of cytochrome c and the Fenton-like reaction of free iron ions released from oxidatively damaged cytochrome c in the cytochrome c/H2O2 system.
Collapse
Affiliation(s)
- Nam Hoon Kim
- Department of Genetic Engineering, Cheongju University, Cheongju 360-764, Korea
| | | |
Collapse
|
103
|
Yao Y, Vieira A. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity. Neurotoxicology 2006; 28:93-100. [PMID: 16956663 DOI: 10.1016/j.neuro.2006.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/06/2006] [Accepted: 07/27/2006] [Indexed: 11/22/2022]
Abstract
Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, P<0.01) with reported Vaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction, and provide a basis for in vivo testing of these flavonoids and their physiological metabolites in the context of neuro- and mitochondrio-protective effects.
Collapse
Affiliation(s)
- Yu Yao
- Metabolic and Endocrine Research Laboratory and IHRE, Applied Sciences K9600, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | |
Collapse
|
104
|
Yoon DK, Hwang IK, Yoo KY, Lee YB, Lee JJ, Kim JH, Kang TC, Lee BH, Sohn HS, Won MH. Comparison of alpha-synuclein immunoreactivity and protein levels in ischemic hippocampal CA1 region between adult and aged gerbils and correlation with Cu,Zn-superoxide dismutase. Neurosci Res 2006; 55:434-41. [PMID: 16759729 DOI: 10.1016/j.neures.2006.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/24/2006] [Accepted: 04/26/2006] [Indexed: 11/21/2022]
Abstract
In this study, we examined changes in the level and immunoreactivity of alpha-synuclein in the hippocampal CA1 region of adult (6 months old) and aged (24 months old) gerbils after 5 min of transient forebrain ischemia. The delayed neuronal death of CA1 pyramidal cells in adult gerbils was severer than that in aged gerbils 4 days after ischemia/reperfusion. Alpha-synuclein immunoreactivity in the CA1 region of adult and aged gerbils significantly changed after ischemia. In control animals, alpha-synuclein immunoreactivity and level in the aged-gerbil CA1 region were higher than those in the adult-gerbil CA1 region. In both adult and aged gerbils, alpha-synuclein immunoreactivity and level started to increase 3h after ischemia, and they were highest 1 day after ischemia. Thereafter, alpha-synuclein immunoreactivity and level decreased with time after ischemia. We also observed the effects of Cu,Zn-superoxide dismutase (SOD1) on ischemic damage using the Pep-1 transduction domain. Alpha-synuclein level in the CA1 region was lower in Pep-1-SOD1-treated adult and aged gerbils than in vehicle-treated adult and aged gerbils. We conclude that neuronal loss in the hippocampal CA1 region of adult gerbils was more prominent than that in aged gerbils 4 days after ischemia/reperfusion. The higher level of alpha-synuclein in the aged-gerbil CA1 region than that in the adult-gerbil CA1 region may be associated with the earlier induction of reactive oxygen species, and Pep-1-SOD1 potentially and reversibly inhibits the accumulation of alpha-synuclein in the CA1 region after transient ischemia.
Collapse
Affiliation(s)
- Dae-Kun Yoon
- Department of Surgery, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Carnosine and Related Compounds Protect against the Hydrogen Peroxide-Mediated Cytochrome c Modification. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.5.663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
106
|
Tofaris GK, Garcia Reitböck P, Humby T, Lambourne SL, O’Connell M, Ghetti B, Gossage H, Emson PC, Wilkinson LS, Goedert M, Grazia Spillantini M. Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders. J Neurosci 2006; 26:3942-50. [PMID: 16611810 PMCID: PMC6673887 DOI: 10.1523/jneurosci.4965-05.2006] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dysfunction of the 140 aa protein alpha-synuclein plays a central role in Lewy body disorders, including Parkinson's disease, as well as in multiple system atrophy. Here, we show that the expression of truncated human alpha-synuclein(1-120), driven by the rat tyrosine hydroxylase promoter on a mouse alpha-synuclein null background, leads to the formation of pathological inclusions in the substantia nigra and olfactory bulb and to a reduction in striatal dopamine levels. At the behavioral level, the transgenic mice showed a progressive reduction in spontaneous locomotion and an increased response to amphetamine. These findings suggest that the C-terminal of alpha-synuclein is an important regulator of aggregation in vivo and will help to understand the mechanisms underlying the pathogenesis of Lewy body disorders and multiple system atrophy.
Collapse
|
107
|
HASHIMOTO MAKOTO, ROCKENSTEIN EDWARD, MASLIAH ELIEZER. Transgenic Models of α-Synuclein Pathology. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2003.tb07475.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
108
|
Kaul S, Anantharam V, Kanthasamy A, Kanthasamy AG. Wild-type alpha-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal cells against MPP+-induced apoptotic cell death. ACTA ACUST UNITED AC 2005; 139:137-52. [PMID: 15978696 DOI: 10.1016/j.molbrainres.2005.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 05/06/2005] [Accepted: 05/12/2005] [Indexed: 11/18/2022]
Abstract
Alpha-synuclein is a pre-synaptic protein of unknown function that has been implicated in the pathogenesis of Parkinson's disease (PD). Recently, we demonstrated that 1-methyl-4-phenylpyridinium (MPP+) induces caspase-3-dependent proteolytic activation of PKCdelta, which subsequently contributes to neuronal apoptotic cell death in mesencephalic dopaminergic neuronal cells. In the present study, we examined whether PKCdelta interacts with alpha-synuclein to modulate MPP+-induced dopaminergic degeneration. Over-expression of wild-type human alpha-synuclein in mesencephalic dopaminergic neuronal cells (N27 cells) attenuated MPP+-induced (300 microM) cytotoxicity, release of mitochondrial cytochrome c, and subsequent caspase-3 activation, without affecting reactive oxygen species (ROS) generation. Wild-type alpha-synuclein over-expression also dramatically reduced MPP+-induced caspase-3-mediated proteolytic cleavage of PKCdelta, whereas over-expression of the mutant human alpha-synucleinA53T did not alter the PKCdelta cleavage under similar conditions. Immunoprecipitation-kinase assay revealed reduced PKCdelta kinase activity in wild-type alpha-synuclein over-expressing cells in response to MPP+ treatment. Wild-type alpha-synuclein over-expression also rescued mesencephalic dopaminergic neuronal cells from MPP+-induced apoptotic cell death, while alpha-synucleinA53T exacerbated the MPP+-induced DNA fragmentation. Furthermore, co-immunoprecipitation studies revealed that alpha-synuclein interacts with the pro-apoptotic proteins PKCdelta and BAD, but not with the anti-apoptotic protein Bcl-2 following MPP+ treatment. We also observed that the interaction between PKCdelta and alpha-synuclein does not involve direct phosphorylation. Together, our results demonstrate that wild-type alpha-synuclein interacts with the pro-apoptotic molecules BAD and PKCdelta to protect dopaminergic neuronal cells against neurotoxic insults.
Collapse
Affiliation(s)
- Siddharth Kaul
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, 2062, Veterinary Medicine Building, Iowa Sate University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
109
|
Hiraoka Y, Granja AT, Fialho AM, Schlarb-Ridley BG, Das Gupta TK, Chakrabarty AM, Yamada T. Human cytochrome c enters murine J774 cells and causes G1 and G2/M cell cycle arrest and induction of apoptosis. Biochem Biophys Res Commun 2005; 338:1284-90. [PMID: 16256942 DOI: 10.1016/j.bbrc.2005.10.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
Cytochrome c is well known as a carrier of electrons during respiration. Current evidence indicates that cytochrome c also functions as a major component of apoptosomes to induce apoptosis in eukaryotic cells as well as an antioxidant. More recently, a prokaryotic cytochrome c, cytochrome c(551) from Pseudomonas aeruginosa, has been shown to enter in mammalian cells such as the murine macrophage-like J774 cells and causes inhibition of cell cycle progression. Much less is known about such functions by mammalian cytochromes c, particularly the human cytochrome c. We now report that similar to P. aeruginosa cytochrome c(551), the purified human cytochrome c protein can enter J774 cells and induce cell cycle arrest at the G(1) to S phase, as well as at the G(2)/M phase at higher concentrations. Unlike P. aeruginosa cytochrome c(551) which had no effect on the induction of apoptosis, human cytochrome c induces significant apoptosis and cell death in J774 cells, presumably through inhibition of the cell cycle at the G(2)/M phase. When incubated with human breast cancer MCF-7 and normal mammary epithelial cell line MCF-10A1 cells, human cytochrome c entered in both types of cells but induced cell death only in the normal MCF-10A1 cells. The ability of human cytochrome c to enter J774 cells was greatly reduced at 4 degrees C, suggesting energy requirement in the entry process.
Collapse
Affiliation(s)
- Yoshinori Hiraoka
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis. Neurotoxicology 2005; 26:701-19. [PMID: 16112328 DOI: 10.1016/j.neuro.2004.07.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 07/25/2004] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is increasingly recognized as a neurodegenerative disorder strongly associated with environmental chemical exposures. Recent epidemiological data demonstrate that environmental risk factors may play a dominant role as compared to genetic factors in the etiopathogenesis of idiopathic Parkinson's disease. Identification of key genetic defects such as alpha-synuclein and parkin mutations in PD also underscores the important role of genetic factors in the disease. Thus, understanding the interplay between genes and environment in PD may be critical to unlocking the mysteries of this 200-year-old neurodegenerative disease. Pesticides and metals are the most common classes of environmental chemicals that promote dopaminergic degeneration. The organochlorine pesticide dieldrin has been found in human PD postmortem brain tissues, suggesting that this pesticide has potential to promote nigral cell death. Though dieldrin has been banned, humans continue to be exposed to the pesticide through contaminated dairy products and meats due to the persistent accumulation of the pesticide in the environment. This review summarizes various neurotoxic studies conducted in both cell culture and animals models following dieldrin exposure and discusses their relevance to key pathological mechanisms associated with nigral dopaminergic degeneration including oxidative stress, mitochondrial dysfunction, protein aggregation, and apoptosis.
Collapse
Affiliation(s)
- Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, USA.
| | | | | | | |
Collapse
|
111
|
Zhang X, Xie W, Qu S, Pan T, Wang X, Le W. Neuroprotection by iron chelator against proteasome inhibitor-induced nigral degeneration. Biochem Biophys Res Commun 2005; 333:544-9. [PMID: 15950935 DOI: 10.1016/j.bbrc.2005.05.150] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
The cause of the neurodegenerative process in Parkinson's disease (PD) remains unclear, but evidence suggests that failure of the ubiquitin-proteasome system may play a major role in the pathogenesis of the disease. Iron is believed to be a key contributor to PD pathology by inducing aggregation of alpha-synuclein and by generating oxidative stress. Our present studies have shown that micro-injection of the proteasome inhibitor lactacystin into the substantia nigra (SN) of C57BL/6 mice causes significant loss of dopaminergic cells and induces intracellular inclusion body formation. We have also found that co-injection of the iron chelator desferrioxamine not only attenuates the lactacystin-induced dopamine neuron loss, but also reduces the presence of ubiquitin-positive intracellular inclusions in the SN, whereas use of iron-deficient diet has no such protective effects. These results may support that iron plays a key role in proteasome inhibitor-induced nigral pathology and that reducing iron reactivity may prevent dopaminergic neuron degeneration and reduce abnormal protein aggregation.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Neurology, The 2nd Affiliated Hospital to Wenzhou Medical College, China
| | | | | | | | | | | |
Collapse
|
112
|
Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MBH. Multifunctional Activities of Green Tea Catechins in Neuroprotection. Neurosignals 2005; 14:46-60. [PMID: 15956814 DOI: 10.1159/000085385] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/01/2005] [Indexed: 12/16/2022] Open
Abstract
Many lines of evidence suggest that oxidative stress resulting in reactive oxygen species (ROS) generation and inflammation play a pivotal role in the age-associated cognitive decline and neuronal loss in neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases. One cardinal chemical pathology observed in these disorders is the accumulation of iron at sites where the neurons die. The buildup of an iron gradient in conjunction with ROS (superoxide, hydroxyl radical and nitric oxide) are thought to constitute a major trigger in neuronal toxicity and demise in all these diseases. Thus, promising future treatment of neurodegenerative diseases and aging depends on availability of effective brain permeable, iron-chelatable/radical scavenger neuroprotective drugs that would prevent the progression of neurodegeneration. Tea flavonoids (catechins) have been reported to possess potent iron-chelating, radical-scavenging and anti-inflammatory activities and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. Recent studies have indicated that in addition to the known antioxidant activity of catechins, other mechanisms such as modulation of signal transduction pathways, cell survival/death genes and mitochondrial function, contribute significantly to the induction of cell viability. This review will focus on the multifunctional properties of green tea and its major component (-)-epigallocatechin-3-gallate (EGCG) and their ability to induce neuroprotection and neurorescue in vitro and in vivo. In particular, their transitional metal (iron and copper) chelating property and inhibition of oxidative stress.
Collapse
Affiliation(s)
- Silvia A Mandel
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
113
|
Everse J, Coates PW. Role of peroxidases in Parkinson disease: a hypothesis. Free Radic Biol Med 2005; 38:1296-310. [PMID: 15855048 DOI: 10.1016/j.freeradbiomed.2005.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/10/2005] [Accepted: 01/20/2005] [Indexed: 11/19/2022]
Abstract
Extensive research has been done to elucidate the underlying molecular events causing neurodegenerative diseases such as Parkinson disease, yet the cause and the individual steps in the progression of such diseases are still unknown. Here we advance the hypothesis that, rather than or in addition to inorganic radical molecules, heme-containing peroxidase enzymes may play a major role in the etiology of Parkinson disease. This hypothesis is based on the following considerations: (1) several heme-containing enzymes with peroxidase activity are present in the substantia nigra pars compacta; (2) these peroxidases have the ability to catalyze the oxidation of proteins and lipids; (3) certain heme peroxidases are known to destroy cells in vivo; (4) heme peroxidases have the stability and specificity that could account for the fact that specific molecules and cells are subject to damage in Parkinson disease, rather than a random destruction; (5) heme peroxidase activity could account for certain reactions in connection with parkinsonism that thus far have not been adequately explained; and (6) the participation of a heme peroxidase could explain some recent observations that are inconsistent with the oxyradical theory. The peroxidase-catalyzed oxidative pathway proposed here does not preclude the participation of apoptosis as an additional mechanism for cell destruction.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|
114
|
Norris EH, Giasson BI. Role of oxidative damage in protein aggregation associated with Parkinson's disease and related disorders. Antioxid Redox Signal 2005; 7:672-84. [PMID: 15890012 DOI: 10.1089/ars.2005.7.672] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease, the most common movement disorder, is characterized by the loss of brainstem neurons, specifically dopaminergic neurons in the substantia nigra, as well as the accumulation of neuronal cytoplasmic filamentous proteinaceous inclusions comprised of polymerized alpha-synuclein. It was reported recently that alpha-synuclein can induce the formation of filamentous tau inclusions, which are characteristic of disorders like Alzheimer's disease and Lewy body variant of Alzheimer's disease, suggesting that a similar mechanism may exist between alpha-synuclein fibrillogenesis and tau polymerization. Pathological brain inclusions comprised of alpha-synuclein or tau proteins are associated with a spectrum of neurodegenerative disorders, and oxidative and nitrative injury has been implicated in all of these diseases. However, the role of oxidative damage in alpha-synuclein and tau polymerization and pathological inclusion formation is complex. Differences in the level, type, and temporal sequence of the oxidative alterations appear to result in both inhibitory and stimulatory effects on the fibrillogenesis of these proteins.
Collapse
Affiliation(s)
- Erin H Norris
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
115
|
Lundvig D, Lindersson E, Jensen PH. Pathogenic effects of α-synuclein aggregation. ACTA ACUST UNITED AC 2005; 134:3-17. [PMID: 15790525 DOI: 10.1016/j.molbrainres.2004.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2004] [Indexed: 11/25/2022]
Abstract
Biochemical and genetic evidence point towards alpha-synuclein aggregation as having a pivotal role in the onset and progression of several neurodegenerative disorders, including Parkinson's disease, multiple system atrophy and Lewy body dementia. We review recent data on how alpha-synuclein aggregates may impact on cellular homeostatic mechanisms including cellular transport and degradation and transcriptional regulation. alpha-Synuclein aggregates can exist as several molecular species and their different features are discussed in the context of the methodologies used for their study and the many chemical and physical factors that influence their formation.
Collapse
Affiliation(s)
- Ditte Lundvig
- Department of Medical Biochemistry, University of Aarhus, Building 170, Ole Worms Alle 170, DK-8000, Aarchus, Denmark
| | | | | |
Collapse
|
116
|
Tsuchiya K, Tajima H, Kuwae T, Takeshima T, Nakano T, Tanaka M, Sunaga K, Fukuhara Y, Nakashima K, Ohama E, Mochizuki H, Mizuno Y, Katsube N, Ishitani R. Pro-apoptotic protein glyceraldehyde-3-phosphate dehydrogenase promotes the formation of Lewy body-like inclusions. Eur J Neurosci 2005; 21:317-26. [PMID: 15673432 DOI: 10.1111/j.1460-9568.2005.03870.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as a classical glycolytic protein; however, previous studies by our group and others have demonstrated that GAPDH is a general mediator initiating one or more apoptotic cascades. Our most recent findings have elucidated that an expression of a pro-apoptotic protein GAPDH is critically regulated at the promoter region of the gene. Apoptotic signals for its subsequent aggregate formation and nuclear translocation are controlled by the respective functional domains harboured within its cDNA component. In this study, coexpression of GAPDH with either wild-type or mutant (A53T) alpha-synuclein and less likely with beta-synuclein in transfected COS-7 cells was found to induce Lewy body-like cytoplasmic inclusions. Unlike its full-length construct, the deleted mutant GAPDH construct (C66) abolished these apoptotic signals, disfavouring the formation of inclusions. The generated inclusions were ubiquitin- and thioflavin S-positive appearing fibrils. Furthermore, GAPDH coimmunoprecipitated with wild-type alpha-synuclein in this paradigm. Importantly, immunohistochemical examinations of post mortem materials from patients with sporadic Parkinson's disease revealed the colocalized profiles immunoreactive against these two proteins in the peripheral zone of Lewy bodies from the affected brain regions (i.e. locus coeruleus). Moreover, a quantitative assessment showed that about 20% of Lewy bodies displayed both antigenicities. These results suggest that pro-apoptotic protein GAPDH may be involved in the Lewy body formation in vivo, probably associated with the apoptotic death pathway.
Collapse
Affiliation(s)
- Katsumi Tsuchiya
- Group on Cellular Neurobiology, Josai University, Sakado, Saitama 350-0248, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Zecca L, Berg D, Arzberger T, Ruprecht P, Rausch WD, Musicco M, Tampellini D, Riederer P, Gerlach M, Becker G. In vivo detection of iron and neuromelanin by transcranial sonography: A new approach for early detection of substantia nigra damage. Mov Disord 2005; 20:1278-85. [PMID: 15986424 DOI: 10.1002/mds.20550] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early diagnosis of Parkinson's disease (PD) in nonsymptomatic patients is a key issue. An increased echogenicity of the substantia nigra (SN) was found previously in Parkinsonian patients and in a low percentage of healthy adults. These nonsymptomatic subjects also showed a reduced 18F-dopa uptake in striatum, suggesting a preclinical injury of the nigrostriatal system that could later proceed into PD. To investigate the ability of ultrasonography to detect markers of SN degeneration, such as iron deposition and neuromelanin depletion, we scanned postmortem brains from normal subjects at different ages by ultrasound and measured the echogenic area of the SN. The SN was then dissected and used for histological examinations and determination of iron, ferritin, and neuromelanin content. A significant positive correlation was found between the echogenic area of the SN and the concentration of iron, H- and L-ferritins. Multivariate analysis carried out considering the iron content showed a significant negative correlation between echogenicity and neuromelanin content of the SN. In PD, a typical loss of neuromelanin and increase of iron is observed in this brain area. The finding of a positive correlation between iron and ferritin levels and a negative correlation of neuromelanin content with the area of echogenicity at the SN could therefore provide an interesting basis for diagnosis and therapeutic follow-up studies in PD.
Collapse
Affiliation(s)
- Luigi Zecca
- Institute of Biomedical Technologies-CNR, Segrate (Milano), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
|
119
|
Chen YR, Chen CL, Liu X, Li H, Zweier JL, Mason RP. Involvement of protein radical, protein aggregation, and effects on NO metabolism in the hypochlorite-mediated oxidation of mitochondrial cytochrome c. Free Radic Biol Med 2004; 37:1591-603. [PMID: 15477010 DOI: 10.1016/j.freeradbiomed.2004.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/06/2004] [Accepted: 07/08/2004] [Indexed: 11/29/2022]
Abstract
Cytochrome c (cyt c)-derived protein radicals, radical adduct aggregates, and protein tyrosine nitration have been implicated in the pro-apoptotic event connecting inflammation to the development of diseases. During inflammation, one of the reactive oxygen species metabolized via neutrophil activation is hypochlorite (HOCl); destruction of the mitochondrial electron transport chain by hypochlorite is considered to be a damaging factor. Previous study has shown that HOCl induces the site-specific oxidation of cyt c at met-80. In this work, we have assessed the hypothesis that exposure of cyt c to physiologically relevant concentrations of HOCl leads to protein-derived radical and consequent protein aggregation, which subsequently affects cyt c's regulation of nitric oxide metabolism. Reaction intermediates, chemical pathways available for protein aggregation, and protein nitration were examined. A weak ESR signal for immobilized nitroxide derived from the protein was detected when a high concentration of cyt c was reacted with hypochlorite in the presence of the nitroso spin trap 2-methyl-2-nitrosopropane. When a low concentration of cyt c was exposed to the physiologically relevant levels of HOCl in the presence of 5,5-dimethyl-pyrroline N-oxide (DMPO), we detected DMPO nitrone adducts derived from both protein and protein aggregate radicals as assessed by Western blot using an antibody raised against the DMPO nitrone adduct. The cyt c-derived protein radicals formed by HOCl were located on lysine and tyrosine residues, with lysine predominating. Cyt c-derived protein aggregates induced by HOCl involved primarily lysine residues and hydrophobic interaction. In addition, HOCl-oxidized cyt c (HOCl-cyt c) exhibited a higher affinity for NO and enhancement of nonenzymatic NO synthesis from nitrite reduction. Furthermore, HOCl-mediated cyt c oxidation also resulted in a significant elevation of cyt c nitration derived from either NO trapping of the cyt c-derived tyrosyl radical or cyt c-catalyzed one-electron oxidation of nitrite.
Collapse
Affiliation(s)
- Yeong-Renn Chen
- 607 Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, College of Medicine, 473 West, 12th Avenue Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
120
|
Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004; 5:863-73. [PMID: 15496864 DOI: 10.1038/nrn1537] [Citation(s) in RCA: 1304] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is increasing evidence that iron is involved in the mechanisms that underlie many neurodegenerative diseases. Conditions such as neuroferritinopathy and Friedreich ataxia are associated with mutations in genes that encode proteins that are involved in iron metabolism, and as the brain ages, iron accumulates in regions that are affected by Alzheimer's disease and Parkinson's disease. High concentrations of reactive iron can increase oxidative-stress induced neuronal vulnerability, and iron accumulation might increase the toxicity of environmental or endogenous toxins. By studying the accumulation and cellular distribution of iron during ageing, we should be able to increase our understanding of these neurodegenerative disorders and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Luigi Zecca
- Institute of Biomedical Technologies-Italian National Research Council, 20090 Segrate, Milano, Italy.
| | | | | | | | | |
Collapse
|
121
|
Abstract
Alpha-synuclein is the main component of the intracellular protein aggregates in neurons of patients with Parkinson's disease. The occurrence of the disease is associated with oxidative damage. Although it is known that peroxidative chemistry leads to the aggregation of alpha-synuclein in vitro, the specific amino acid types of alpha-synuclein involved in this type of aggregation have not been identified. We show, using human cytochrome c plus H(2)O(2) as the source oxidative stress, that the tyrosines of alpha-synuclein are required for aggregation. The studies reveal the chemical basis for a crucial step in the aggregation process.
Collapse
Affiliation(s)
- Alina Olteanu
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
122
|
Mandel S, Youdim MBH. Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 2004; 37:304-17. [PMID: 15223064 DOI: 10.1016/j.freeradbiomed.2004.04.012] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 04/05/2004] [Accepted: 04/08/2004] [Indexed: 12/19/2022]
Abstract
Neurodegeneration in Parkinson's, Alzheimer's, and other neurodegenerative diseases seems to be multifactorial, in that a complex set of toxic reactions including inflammation, glutamatergic neurotoxicity, increases in iron and nitric oxide, depletion of endogenous antioxidants, reduced expression of trophic factors, dysfunction of the ubiquitin-proteasome system, and expression of proapoptotic proteins leads to the demise of neurons. Thus, the fundamental objective in neurodegeneration and neuroprotection research is to determine which of these factors constitutes the primary event, the sequence in which these events occur, and whether they act in concurrence in the pathogenic process. This has led to the current notion that drugs directed against a single target will be ineffective and rather a single drug or cocktail of drugs with pluripharmacological properties may be more suitable. Green tea catechin polyphenols, formerly thought to be simple radical scavengers, are now considered to invoke a spectrum of cellular mechanisms of action related to their neuroprotective activity. These include pharmacological activities like iron chelation, scavenging of radicals, activation of survival genes and cell signaling pathways, and regulation of mitochondrial function and possibly of the ubiquitin-proteasome system. As a consequence these compounds are receiving significant attention as therapeutic cytoprotective agents for the treatment of neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology and Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa 31096, Israel
| | | |
Collapse
|
123
|
Abstract
The alpha-synuclein gene is implicated in Parkinson's disease, the symptoms of which occur after a marked loss of substantia nigra dopamine neurons. While the function of alpha-synuclein is not entirely elucidated, one function appears to be as a normal regulatory protein that can bind to and inhibit tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Soluble alpha-synuclein levels may be diminished in Parkinson's disease substantia nigra dopamine neurons both by reduced expression and by alpha-synuclein aggregation as Lewy bodies and Lewy neurites form. The loss of functional alpha-synuclein may then result in dysregulation of tyrosine hydroxylase, dopamine transport and dopamine storage, resulting in excess cytosolic dopamine. Because dopamine and its metabolites are reactive molecules capable of generating highly reactive quinones and reactive oxygen species, a failure to package dopamine into vesicles could cause irreversible damage to cellular macromolecules and contribute to resultant neurotoxicity. This review focuses on how a loss of normal alpha-synuclein function may contribute to the dopamine-related loss of substantia nigra neurons during Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- Ruth G Perez
- Department of Neurology, University of Pittsburgh, BST-South S-510, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
124
|
Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E. Enhanced substantia nigra mitochondrial pathology in human α-synuclein transgenic mice after treatment with MPTP111-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Exp Neurol 2004; 186:158-72. [PMID: 15026254 DOI: 10.1016/s0014-4886(03)00342-x] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Revised: 06/16/2003] [Accepted: 07/02/2003] [Indexed: 12/21/2022]
Abstract
Recent studies have implicated alpha-synuclein (alpha-S) in the pathogenesis of Parkinson's disease (PD). The mechanisms underlying PD are not completely understood; however, mitochondrial complex I inhibition and oxidative injury may be involved. Because the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a potent complex I inhibitor that can cause oxidative injury and mimic many aspects of PD in treated animals, we sought to determine whether the overexpression of alpha-S in transgenic (tg) mice (alpha-S-tg) would enhance the substantia nigra (SN) pathology resulting from treatment with MPTP. For this purpose, alpha-S-tg mice were produced expressing high levels of wild-type (wt) human alpha-S under the control of the neuron-specific Thy-1 promoter. Alpha-S-tg mice and non-tg controls were treated with MPTP (15 mg/kg ip, twice a week for 2 weeks) or saline (Sal) and then examined 2 weeks after completion of treatment by transmission electron microscopy (EM). We found that alpha-S-tg mice treated with MPTP had extensive mitochondrial alterations, increases in mitochondrial size, filamentous neuritic aggregations, axonal degeneration, and formation of electron dense perinuclear cytoplasmic inclusions in the SN that did not occur in the hippocampus or neocortex, nor in MPTP-treated non-tg mice or Sal-treated alpha-S-tg mice. These findings support the potential involvement of alpha-S expression in the vulnerability of SN neurons to toxicity from mitochondrial complex I inhibitors and the subsequent development of neurodegenerative pathology.
Collapse
Affiliation(s)
- David D Song
- Neurology Service, VA San Diego Healthcare System, San Diego, CA 92161-9127, USA.
| | | | | | | | | |
Collapse
|
125
|
Trimmer PA, Borland MK, Keeney PM, Bennett JP, Parker WD. Parkinson's disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 2004; 88:800-12. [PMID: 14756800 DOI: 10.1046/j.1471-4159.2003.02168.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many models of Parkinson's disease (PD) have succeeded in replicating dopaminergic neuron loss or alpha-synuclein aggregation but not the formation of classical Lewy bodies, the pathological hallmark of PD. Our cybrid model of sporadic PD was created by introducing the mitochondrial genes from PD patients into neuroblastoma cells that lack mitochondrial DNA. Previous studies using cybrids have shown that information encoded by mitochondrial DNA in patients contributes to many pathogenic features of sporadic PD. In this paper, we report the generation of fibrillar and vesicular inclusions in a long-term cybrid cell culture model that replicates the essential antigenic and structural features of Lewy bodies in PD brain without the need for exogenous protein expression or inhibition of mitochondrial or proteasomal function. The inclusions generated by PD cybrid cells stained with eosin, thioflavin S, and antibodies to alpha-synuclein, ubiquitin, parkin, synphilin-1, neurofilament, beta-tubulin, the proteasome, nitrotyrosine, and cytochrome c. Future studies of these cybrids will enable us to better understand how Lewy bodies form and what role they play in the pathogenesis of PD.
Collapse
Affiliation(s)
- Patricia A Trimmer
- Center for the Study of Neurodegenerative Diseases and Department of Neurology, University of Virginia, School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
126
|
Olteanu A, Patel CN, Dedmon MM, Kennedy S, Linhoff MW, Minder CM, Potts PR, Deshmukh M, Pielak GJ. Stability and apoptotic activity of recombinant human cytochrome c. Biochem Biophys Res Commun 2004; 312:733-40. [PMID: 14680826 DOI: 10.1016/j.bbrc.2003.10.182] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Indexed: 10/26/2022]
Abstract
An efficient system for producing human cytochrome c variants is important to help us understand the roles of this protein in biological processes relevant to human diseases including apoptosis and oxidative stress. Here, we describe an Escherichia coli expression system for producing recombinant human cytochrome c. We also characterize the structure, stability, and function of the protein and show its utility for studying apoptosis. Yields of greater than 8 mg of pure protein per liter culture were attained. Circular dichroism spectropolarimetry studies show that the secondary and tertiary structures of the human protein are nearly identical to those of the horse protein, but the human protein is more stable than other eukaryotic cytochromes c. Furthermore, recombinant human cytochrome c is capable of inducing caspase-3 activity in a cell-free caspase activation assay. We use data from this assay along with data from the literature to define the apaf-1 binding site on human cytochrome c.
Collapse
Affiliation(s)
- Alina Olteanu
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Zhou S, Yao Y, Davison A, Vieira A. A cytochrome c-enhanced peroxidation reaction with potential use in screening dietary antioxidants. J Pharm Biomed Anal 2004; 34:1057-61. [PMID: 15019039 DOI: 10.1016/j.jpba.2003.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2002] [Revised: 08/25/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
Reactive oxygen species (ROS) that result from events such as cellular respiration can cause damage to biological molecules and tissues. A variety of endogenous and dietary antioxidants function in moderating the extent of oxidative damage in the body. In this report, a pro-oxidant system is presented as an assay for screening possible antioxidant activities of dietary factors. The assay reaction involves peroxidatic oxidation of the redox indicator N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD). It is shown that the reaction rate is enhanced by up to 10-fold in the presence of cytochrome c (cyt c), a mitochondrial electron transport protein. The extent to which selected dietary antioxidant factors inhibit the cytochrome c-enhanced peroxidatic oxidation of TMPD is also reported. Considering the known pathological consequences of mitochondrial membrane disruption and cytochrome c release in the cell, this reaction and assay may be of pathological and therapeutic relevance.
Collapse
Affiliation(s)
- Suiping Zhou
- Laboratory for Metabolic and Endocrine Research, K9600 Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | |
Collapse
|
128
|
Chen YR, Chen CL, Chen W, Zweier JL, Augusto O, Radi R, Mason RP. Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J Biol Chem 2004; 279:18054-62. [PMID: 14761966 DOI: 10.1074/jbc.m307706200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative alteration of mitochondrial cytochrome c (cyt c) has been linked to disease pathophysiology and is one of the causative factors for pro-apoptotic events. Hydrogen peroxide induces a short-lived cyt c-derived tyrosyl radical as detected by the electron spin resonance (ESR) spin-trapping technique. This investigation was undertaken to characterize the fate and consequences of the cyt c-derived tyrosyl radical. The direct ESR spectrum from the reaction of cyt c with H(2)O(2) revealed a single-line signal with a line width of approximately 10 G. The detected ESR signal could be prevented by pretreatment of cyt c with iodination, implying that the tyrosine residue of cyt c was involved. The ESR signal can be enhanced and stabilized by a divalent metal ion such as Zn(2+), indicating the formation of the protein tyrosine ortho-semiquinone radical (ToQ.). The production of cyt c-derived ToQ. is inhibited by the spin trap, 2-methyl-2-nitrosopropane (MNP), suggesting the participation of tyrosyl radical in the formation of the ortho-semiquinone radical. The endothelium relaxant factor nitric oxide is well known to mediate mitochondrial respiration and apoptosis. The consumption of NO by cyt c was enhanced by addition of H(2)O(2) as verified by inhibition electrochemical detection using an NO electrode. The rate of NO consumption in the system containing cyt c/NO/H(2)O(2) was decreased by the spin traps 5,5-dimethyl pyrroline N-oxide and MNP, suggesting NO trapping of the cyt c-derived tyrosyl radical. The above result was further confirmed by NO quenching of the ESR signal of the MNP adduct of cyt c tyrosyl radical. Immunoblotting analysis of cyt c after exposure to NO in the presence of H(2)O(2) revealed the formation of 3-nitrotyrosine. The addition of superoxide dismutase did not change the cyt c nitration, indicating that it is peroxynitrite-independent. The results of this study may provide useful information in understanding the interconnection among cyt c, H(2)O(2), NO, and apoptosis.
Collapse
Affiliation(s)
- Yeong-Renn Chen
- Davis Heart & Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Choi P, Snyder H, Petrucelli L, Theisler C, Chong M, Zhang Y, Lim K, Chung KKK, Kehoe K, D'Adamio L, Lee JM, Cochran E, Bowser R, Dawson TM, Wolozin B. SEPT5_v2 is a parkin-binding protein. ACTA ACUST UNITED AC 2004; 117:179-89. [PMID: 14559152 DOI: 10.1016/s0169-328x(03)00318-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in parkin are associated with various inherited forms of Parkinson's disease (PD). Parkin is a ubiquitin ligase enzyme that catalyzes the covalent attachment of ubiquitin moieties onto substrate proteins destined for proteasomal degradation. The substrates of parkin-mediated ubiquitination have yet to be completely identified. Using a yeast two-hybrid screen, we isolated the septin, human SEPT5_v2 (also known as cell division control-related protein 2), as a putative parkin-binding protein. SEPT5_v2 is highly homologous to another septin, SEPT5, which was recently identified as a target for parkin-mediated ubiquitination. SEPT5_v2 binds to parkin at the amino terminus and in the ring finger domains. Several lines of evidence have validated the putative link between parkin and SEPT5_v2. Parkin co-precipitates with SEPT5_v2 from human substantia nigra lysates. Parkin ubiquitinates SEPT5_v2 in vitro, and both SEPT5_v1 and SEPT5_v2 accumulate in brains of patients with ARJP, suggesting that parkin is essential for the normal metabolism of these proteins. These findings suggest that an important relationship exists between parkin and septins.
Collapse
Affiliation(s)
- P Choi
- Department of Pharmacology, Loyola University Medical Center, Bldg 102/3634, 2160 S 1st Ave, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Castro L, Eiserich JP, Sweeney S, Radi R, Freeman BA. Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration. Arch Biochem Biophys 2004; 421:99-107. [PMID: 14678790 DOI: 10.1016/j.abb.2003.08.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitration of protein tyrosine residues to 3-nitrotyrosine (NO2Tyr) serves as both a marker and mediator of pathogenic reactions of nitric oxide (*NO), with peroxynitrite (ONOO-) and leukocyte peroxidase-derived nitrogen dioxide (*NO2) being proximal mediators of nitration reactions in vivo. Cytochrome c is a respiratory and apoptotic signaling heme protein localized exofacially on the inner mitochondrial membrane. We report herein a novel function for cytochrome c as a catalyst for nitrite (NO2-) and hydrogen peroxide (H2O2)-mediated nitration reactions. Cytochrome c catalyzes both self- and adjacent-molecule (hydroxyphenylacetic acid, Mn-superoxide dismutase) nitration via heme-dependent mechanisms involving tyrosyl radical and *NO2 production, as for phagocyte peroxidases. Although low molecular weight phenolic nitration yields were similar for cytochrome c and the proteolytic fragment of cytochrome c microperoxidase-11 (MPx-11), greater extents of protein nitration occurred when MPx-11 served as catalyst. Partial proteolysis of cytochrome c increased both the peroxidase and nitrating activities of cytochrome c. Extensive tyrosine nitration of Mn-superoxide dismutase occurred when exposed to either cytochrome c or MPx-11 in the presence of H2O2 and NO2-, with no apparent decrease in catalytic activity. These results reveal a post-translational tyrosine modification mechanism that is mediated by an abundant hemoprotein present in both mitochondrial and cytosolic compartments. The data also infer that the distribution of specific proteins capable of serving as potent catalysts of nitration can lend both spatial and molecular specificity to biomolecule nitration reactions.
Collapse
Affiliation(s)
- Laura Castro
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | | | | | | | | |
Collapse
|
131
|
Youdim MBH. What have we learnt from CDNA microarray gene expression studies about the role of iron in MPTP induced neurodegeneration and Parkinson's disease? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:73-88. [PMID: 12946050 DOI: 10.1007/978-3-7091-0643-3_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There have been numerous hypotheses concerning the etiology and mechanism of dorsal raphe dopaminergic neurodegeneration in Parkinson's disease and its animal models, MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-hydroxydopamine. The advent of cDNA microarray gene expression where expression of thousands of genes can be globally assessed has indicated that mechanism of neurodegeneration by MPTP is a complex cascade of vicious circles. One of these is the alteration of genes associated with iron metabolism, a transitional metal closely associated with inducing the formation of reactive oxygen species and inducing oxidative stress. cDNA gene expression analyses support the established hypothesis of oxidative induced neurodegeneration involving iron deposition in substantia nigra pars compacta (SNPC) parkinsonian brains. The regulation of cellular iron metabolism has been further enhanced by the recent discovery of two iron regulatory proteins, IRP1 and IRP2 which control the level of iron with in the cell. When the cellular level of iron increases IRP2 is degraded by ubiquitination and no further iron accumulates. The reverse occurs when the level of iron is low within the cell. Knock-out IRP1 and IRP2 mice have shown that in latter mice brain iron accumulation precedes the neurodegeneration, ataxia and bradykinesia observed in these animals. Indeed MPTP treatment, which results in iron accumulation in SNCP, abolishes IRP2 with the concomitant increase in alpha-synuclein. Iron chelators such as R-apomorphine and EGCG, which protect against MPTP neurotoxicity, prevent the loss of IRP2 and the increase in alpha-synuclein. The presence of iron together with alpha-synuclein in SNPC may be detrimental for dopaminergic neurons. Since, iron has been shown to cause aggregation of alpha-synuclein to a neurotoxic agent. The use of iron chelators penetrating the blood brain barrier as neuroprotective drugs has been envisaged.
Collapse
Affiliation(s)
- M B H Youdim
- Eve Topf and National Parkinson Foundation Centers Of Excellence For Neurodegenerative Diseases Research, and Department of Pharmacology, Technion-Faculty of Medicine, Haifa, Israel.
| |
Collapse
|
132
|
Uversky VN. A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 2003; 21:211-34. [PMID: 12956606 DOI: 10.1080/07391102.2003.10506918] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Under the physiological conditions in vitro, alpha-synuclein, a conservative presynaptic protein, the aggregation and fibrillation of which is assumed to be involved into the pathogenesis of Parkinson's disease and several other neurodegenerative disorders, known as synucleinopathies, is characterized by the lack of rigid well-defined structure; i.e., it belongs to the class of intrinsically unstructured proteins. Intriguingly, alpha-synuclein is characterized by a remarkable conformational plasticity, adopting a series of different conformations depending on the environment. For example, this protein may either stay substantially unfolded, or adopt an amyloidogenic partially folded conformation, or fold into alpha-helical or beta-structural species, both monomeric and oligomeric. Furthermore, it might form several morphologically different types of aggregates, including oligomers (spheres or doughnuts), amorphous aggregates, and or amyloid-like fibrils. The peculiarities of this astonishing conformational behavior are analyzed to shed light on structural plasticity of this protein-chameleon.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Biological Instrumentation, Russian Academy of Sciences Pushchino, Moscow Region, Russia.
| |
Collapse
|
133
|
Abstract
Parkinson's disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Current PD medications treat symptoms; none halt or retard dopaminergic neuron degeneration. The main obstacle to developing neuroprotective therapies is a limited understanding of the key molecular events that provoke neurodegeneration. The discovery of PD genes has led to the hypothesis that misfolding of proteins and dysfunction of the ubiquitin-proteasome pathway are pivotal to PD pathogenesis. Previously implicated culprits in PD neurodegeneration, mitochondrial dysfunction and oxidative stress, may also act in part by causing the accumulation of misfolded proteins, in addition to producing other deleterious events in dopaminergic neurons. Neurotoxin-based models (particularly MPTP) have been important in elucidating the molecular cascade of cell death in dopaminergic neurons. PD models based on the manipulation of PD genes should prove valuable in elucidating important aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process.
Collapse
Affiliation(s)
- William Dauer
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
134
|
He Y, Thong PS, Lee T, Leong SK, Mao BY, Dong F, Watt F. Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys. Free Radic Biol Med 2003; 35:540-7. [PMID: 12927603 DOI: 10.1016/s0891-5849(03)00385-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Though increasing lines of evidence suggest that iron accumulation and iron-induced oxidative stress might be important pathological factors responsible for substantia nigra (SN) cell death in Parkinson's disease (PD), it is still unknown whether iron accumulation is a primary cause or consequence of nigral cell death. Using nuclear microscopy, iron histochemistry, TUNEL method for apoptosis detection, and tyrosine hydroxylase (TH) immunohistochemistry, the present study investigated possible changes in iron contents in the SN and correlations of dopaminergic cell death progression with the process of iron accumulation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced parkinsonian monkey from 1 d to 18 months after MPTP administration. Our study demonstrated that apoptosis occurred in the ipsilateral SN at 1 d after MPTP injection and the number of TH-positive cells decreased significantly from 1 week onward. However, iron content was significantly increased in the ipsilateral SN from 4.5 months to 18 months after MPTP injection, and the iron increase was significantly correlated to the extent of dopaminergic cell death. These results suggest that dopaminergic cell death induced by MPTP administration might lead to iron accumulation in the monkey SN, and increased iron might contribute to the progression of nigral degeneration.
Collapse
Affiliation(s)
- Yi He
- Department of Surgery, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
135
|
Gu G, Deutch AY, Franklin J, Levy S, Wallace DC, Zhang J. Profiling genes related to mitochondrial function in mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun 2003; 308:197-205. [PMID: 12890501 DOI: 10.1016/s0006-291x(03)01233-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since mitochondrial dysfunction plays an important role in the pathogenesis of dopaminergic neurodegeneration in Parkinson's disease, we determined the expression of genes related to mitochondrial function in the substantia nigra of mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a cDNA array. MPTP treatment significantly depleted striatal dopamine, but did not result in apparent neuronal loss in the substantia nigra at 3 and 18 days post-treatment. We also examined changes in genes in the hypothalamus, a region containing dopaminergic neurons that are relatively resistant to MPTP. Finally, we confirmed those genes identified by microarrays as differentially expressed in the substantia nigra but not in the hypothalamus using in situ hybridization. Our results demonstrated that MPTP significantly changed the expressions of six genes in nigral neurons, four of which were related to the mitochondrial electron transport chain: the NADH-ubiquinone oxidoreductase 13 kDa B subunit, the NADH-ubiquinone oxidoreductase MNLL subunit, cytochrome c, and the cytochrome c oxidase Va subunit. Two other differentially expressed genes were the dihydropyridine-sensitive L-type calcium channel alpha-2 subunit precursor and type III alpha-1 procollagen. None of these six genes are encoded by mitochondrial DNA. The potential significance of these gene alterations in the context of Parkinson's disease is discussed.
Collapse
Affiliation(s)
- Guangyu Gu
- Division of Neuropathology, Department of Pathology, University of Washington School of Medicine, Box 359660, Harborview Medical Center, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
136
|
Kitamura Y, Taniguchi T, Shimohama S, Akaike A, Nomura Y. Neuroprotective mechanisms of antiparkinsonian dopamine D2-receptor subfamily agonists. Neurochem Res 2003; 28:1035-40. [PMID: 12737528 DOI: 10.1023/a:1023207222944] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerous studies have shown that endogenous and/or environmental neurotoxins and oxidative stress may participate in the pathogenesis of Parkinson's disease (PD), but the detailed mechanisms are still unclear. While dopamine (DA) replacement therapy with L-DOPA (levodopa) improves PD symptoms, it does not inhibit the degeneration of DA neurons in the substantia nigra. Recently, bromocriptine, pramipexole and several other agonists of the dopamine D2-receptor subfamily (including D2, D3 and D4-subtypes) have been shown to have neuroprotective effects in parkinsonian models in vitro and in vivo. Their neuroprotective effects may be mediated directly and/or indirectly by antioxidant effects, mitochondrial stabilization or induction of the antiapoptotic Bcl-2 family.
Collapse
Affiliation(s)
- Yoshihisa Kitamura
- Department of Neurobiology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan.
| | | | | | | | | |
Collapse
|
137
|
Abstract
Hallmark lesions of neurodegenerative synucleinopathies contain alpha-synuclein (alpha-syn) that is modified by nitration of tyrosine residues and possibly by dityrosine cross-linking to generated stable oligomers. Data gathered from in vitro experiments and from model systems of cells transfected with wild-type and mutant alpha-syn revealed that conditions resulting in alpha-syn nitration also induce formation of alpha-syn inclusions with similar biochemical characteristics to protein extracted from human lesions. The detection of tyrosine-nitrated alpha-syn signifies the formation of reactive nitrogen species capable of both radical and electrophilic attack on aromatic residues as well as nucleophilic additions and oxidations. The cellular sources and biochemical reactivity of reactive nitrogen species in the central nervous system remain largely unknown, but kinetically fast reactions of nitric oxide with superoxide to form peroxynitrite as well as enzymatic one-electron oxidation of nitrite are two important sources of reactive nitrogen species. Based on these findings a model is proposed where the process of fibrilization can be differentially affected by oxidants and nitrating species. Posttranslational modifications of alpha-syn by reactive nitrogen species inhibits fibril formation and results in urea- and SDS- insoluble, protease-resistant alpha-syn aggregates that maybe responsible for cellular toxicity.
Collapse
Affiliation(s)
- Harry Ischiropoulos
- Stokes Research Institute, Department of Biochemistry and Biophysics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
138
|
Vila M, Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 2003; 4:365-75. [PMID: 12728264 DOI: 10.1038/nrn1100] [Citation(s) in RCA: 370] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miquel Vila
- Department of Neurology, Columbia University, 650 West 168th Street, BB-307, New York, New York 10032, USA.
| | | |
Collapse
|
139
|
Gomez-Isla T, Irizarry MC, Mariash A, Cheung B, Soto O, Schrump S, Sondel J, Kotilinek L, Day J, Schwarzschild MA, Cha JHJ, Newell K, Miller DW, Uéda K, Young AB, Hyman BT, Ashe KH. Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 2003; 24:245-58. [PMID: 12498958 DOI: 10.1016/s0197-4580(02)00091-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alpha-synuclein is a major component of Lewy bodies (LBs) in the substantia nigra and cortex in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), and in glial inclusions in multiple systems atrophy (MSA). Mutations in alpha-synuclein have been associated with autosomal dominant forms of PD. We investigated the clinical and neuropathological effects of overexpression of human alpha-synuclein, alpha-synuclein A30P, and alpha-synuclein A53T under the control of the hamster prion protein (PrP) promoter; 5-15x endogenous levels of protein expression were achieved with widespread neuronal, including nigral, transgene expression. High expression of alpha-synuclein A30P in the Tg5093 line was associated with a progressive motor disorder with rigidity, dystonia, gait impairment, and tremor. Histological analysis of this line showed aberrant expression of the protein in cell soma and progressive CNS gliosis, but no discrete Lewy body-like alpha-synuclein inclusions could be identified. Biochemical analysis demonstrated alpha-synuclein fragmentation. Despite strong expression of the transgene in the nigra, there was no specific deterioration of the nigrostriatal dopaminergic system as assessed by quantitation of nigral tyrosine hydroxylase (TH) containing neurons, striatal TH immunoreactivity, dopamine levels, or dopamine receptor number and function. Lower expressing lines had no specific behavioral or histopathological phenotype. Thus, high expression of mutant human alpha-synuclein resulted in a progressive motor and widespread CNS gliotic phenotype independent of dopaminergic dysfunction in the Tg5093 line.
Collapse
Affiliation(s)
- Teresa Gomez-Isla
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Andersen JK. Paraquat and iron exposure as possible synergistic environmental risk factors in Parkinson's disease. Neurotox Res 2003; 5:307-13. [PMID: 14715449 DOI: 10.1007/bf03033150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Julie K Andersen
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| |
Collapse
|
141
|
Jeng WY, Chen CY, Chang HC, Chuang WJ. Expression and characterization of recombinant human cytochrome c in E. coli. J Bioenerg Biomembr 2002; 34:423-31. [PMID: 12678434 DOI: 10.1023/a:1022561924392] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytochrome c is a heme protein involved in electron transfer, cell apoptosis, and diseases associated with oxidative stress. Here we expressed human cytochrome c in E. coli and purified it to homogeneity with a yield of 10-15 mg/L. The redox potential of recombinant human cytochrome c was 0.246 V which was measured by cyclic voltammetry. This is similar to that of horse cytochrome c with a value of 0.249 V. The sequential assignment and structural analysis of recombinant human ferrocytochrome c were obtained using multidimensional NMR spectroscopy. On the basis of our NMR studies, the recombinant human cytochrome c produced in E. coli exhibits the same tertiary fold as horse cytochrome c. These results provide evidence that human cytochrome c expressed in E. coli possesses a similar function and structure to that of the horse protein. It is known that cytochrome c plays a role in many human diseases. This study serves as the basis for gaining insight into human diseases by exploring structure and function relationships of cytochrome c to its interacting proteins.
Collapse
Affiliation(s)
- Wen-Yih Jeng
- Department of Biochemistry, National Cheng Kung University College of Medicine, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
142
|
Masliah E, Hashimoto M. Development of new treatments for Parkinson's disease in transgenic animal models: a role for beta-synuclein. Neurotoxicology 2002; 23:461-8. [PMID: 12428718 DOI: 10.1016/s0161-813x(02)00029-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuronal death in Parkinson's disease (PD), one of the most common neurodegenerative disorders in the adult and aging population is probably caused by misfolding of synaptic proteins such as alpha-synuclein. Although, some treatments are currently available to control some of the symptoms of PD, none of these approaches directly addresses the mechanisms of disease. With the advent of new experimental animal models for this disorder, the potential for development and discovery of new treatment has been significantly bolstered. Among them, overexpression of alpha-synuclein results in motor deficits. dopaminergic loss and formation of inclusion bodies. Co-expression of mutant amyloid precursor protein, accelerates alpha-synuclein aggregation and enhances the neurodegenerative pathology in these mice, providing a unique model where to investigate the interactions between Abeta1-42 and alpha-synuclein and to develop treatments for combined Alzheimer's disease and PD. Development of anti-parkinsonian treatments based on these models includes: (i) anti-aggregation or pro-degradation compounds, (ii) neuroprotective compounds, and (iii) neurotrophic agents. Among them, we characterized beta-synuclein, the non-amyloidogenic homologue of alpha-synuclein, as an inhibitor of aggregation of alpha-synuclein. Our results raise the intriguing possibility that beta-synuclein might be a natural negative regulator of alpha-synuclein aggregation, and that a similar class of endogenous factors might regulate the aggregation state of other molecules involved in neurodegeneration. Such an anti-amyloidogenic property of beta-synuclein might also provide a novel strategy for the treatment of neurodegenerative disorders.
Collapse
|
143
|
Masliah E, Hansen LA, Rockenstein E, Hashimoto M. Progress in the development of new treatments for combined Alzheimer's and Parkinson's diseases. Drug Dev Res 2002. [DOI: 10.1002/ddr.10082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
144
|
An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002. [PMID: 12177198 DOI: 10.1523/jneurosci.22-16-07006.2002] [Citation(s) in RCA: 412] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic systemic complex I inhibition caused by rotenone exposure induces features of Parkinson's disease (PD) in rats, including selective nigrostriatal dopaminergic degeneration and formation of ubiquitin- and alpha-synuclein-positive inclusions (Betarbet et al., 2000). To determine underlying mechanisms of rotenone-induced cell death, we developed a chronic in vitro model based on treating human neuroblastoma cells with 5 nm rotenone for 1-4 weeks. For up to 4 weeks, cells grown in the presence of rotenone had normal morphology and growth kinetics, but at this time point, approximately 5% of cells began to undergo apoptosis. Short-term rotenone treatment (1 week) elevated soluble alpha-synuclein protein levels without changing message levels, suggesting that alpha-synuclein degradation was retarded. Chronic rotenone exposure (4 weeks) increased levels of SDS-insoluble alpha-synuclein and ubiquitin. After a latency of >2 weeks, rotenone-treated cells showed evidence of oxidative stress, including loss of glutathione and increased oxidative DNA and protein damage. Chronic rotenone treatment (4 weeks) caused a slight elevation in basal apoptosis and markedly sensitized cells to further oxidative challenge. In response to H2O2, there was cytochrome c release from mitochondria, caspase-3 activation, and apoptosis, all of which occurred earlier and to a much greater extent in rotenone-treated cells; caspase inhibition provided substantial protection. These studies indicate that chronic low-grade complex I inhibition caused by rotenone exposure induces accumulation and aggregation of alpha-synuclein and ubiquitin, progressive oxidative damage, and caspase-dependent death, mechanisms that may be central to PD pathogenesis.
Collapse
|
145
|
Chen YR, Deterding LJ, Sturgeon BE, Tomer KB, Mason RP. Protein oxidation of cytochrome C by reactive halogen species enhances its peroxidase activity. J Biol Chem 2002; 277:29781-91. [PMID: 12050149 DOI: 10.1074/jbc.m200709200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive halogen species (RHS; X(2) and HOX, where X represents Cl, Br, or I) are metabolites mediated by neutrophil activation and its accompanying respiratory burst. We have investigated the interaction between RHS and mitochondrial cytochrome c (cyt c) by using electrospray mass spectrometry and electron spin resonance (ESR). When the purified cyt c was reacted with an excess amount of hypochlorous acid (HOCl) at pH 7.4, the peroxidase activity of cyt c was increased by 4.5-, 6.9-, and 8.6-fold at molar ratios (HOCl/cyt c) of 2, 4, and 8, respectively. In comparison with native cyt c, the mass spectra obtained from the HOCl-treated cyt c revealed that oxygen is covalently incorporated into the protein as indicated by molecular ions of m/z = 12,360 (cyt c), 12,376 (cyt c + O), and 12,392 (cyt c + 2O). Using tandem mass spectrometry, a peptide (obtained from the tryptic digests of HOCl-treated cyt c) corresponding to the amino acid sequence MIFAGIK, which contains the methionine that binds to the heme, was identified to be involved in the oxygen incorporation. The location of the oxygen incorporation was unequivocally determined to be the methionine residue, suggesting that the oxidation of heme ligand (Met-80) by HOCl results in the enhancement of peroxidase activity of cyt c. ESR spectroscopy of HOCl-oxidized cyt c, when reacted with H(2)O(2) in the presence of the nitroso spin trap 2-methyl-2-nitrosopropane (MNP), yielded more immobilized MNP/tyrosyl adduct than native cyt c. In the presence of H(2)O(2), the peroxidase activity of HOCl-oxidized cyt c exhibited an increasing ability to oxidize tyrosine to tyrosyl radical as measured directly by fast flow ESR. Titration of both native cyt c and HOCl-oxidized cyt c with various amounts of H(2)O(2) indicated that the latter has a decreased apparent K(m) for H(2)O(2), implicating that protein oxidation of cyt c increases its accessibility to H(2)O(2). HOCl-oxidized cyt c also displayed an impaired ability to support oxygen consumption by the purified mitochondrial cytochrome c oxidase, suggesting that protein oxidation of cyt c may break the electron transport chain and inhibit energy transduction in mitochondria.
Collapse
Affiliation(s)
- Yeong-Renn Chen
- Laboratory of Pharmacology and Chemistry and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
146
|
Kahle PJ, Haass C, Kretzschmar HA, Neumann M. Structure/function of alpha-synuclein in health and disease: rational development of animal models for Parkinson's and related diseases. J Neurochem 2002; 82:449-57. [PMID: 12153470 DOI: 10.1046/j.1471-4159.2002.01020.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Philipp J Kahle
- Department of Biochemistry, Ludwig Maximilians University, Munich, Germany.
| | | | | | | |
Collapse
|
147
|
Perry G, Sayre LM, Atwood CS, Castellani RJ, Cash AD, Rottkamp CA, Smith MA. The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs 2002; 16:339-52. [PMID: 11994023 DOI: 10.2165/00023210-200216050-00006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abnormalities in the metabolism of the transition metals iron and copper have been demonstrated to play a crucial role in the pathogenesis of various neurodegenerative diseases. Metal homeostasis as it pertains to alterations in brain function in neurodegenerative diseases is reviewed in this article in depth. While there is documented evidence for alterations in the homeostasis, redox-activity and localisation of transition metals, it is also important to realise that alterations in specific copper- and iron-containing metalloenzymes appear to play a crucial role in the neurodegenerative process. These changes provide the opportunity to identify pathways where modification of the disease process can occur, potentially offering opportunities for clinical intervention. As understanding of disease aetiology evolves, so do the tools with which diseases are treated. In this article, we examine not only the possible mechanism of disease but also how pharmaceuticals may intervene, from direct and indirect antioxidant therapy to strategies involving gene therapy.
Collapse
Affiliation(s)
- George Perry
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
148
|
Gómez-Santos C, Ferrer I, Reiriz J, Viñals F, Barrachina M, Ambrosio S. MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res 2002; 935:32-9. [PMID: 12062470 DOI: 10.1016/s0006-8993(02)02422-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein is a brain presynaptic protein that is linked to familiar early onset Parkinson's disease and it is also a major component of Lewy bodies in sporadic Parkinson's disease and other neurodegenerative disorders. Alpha-synuclein expression increases in substantia nigra of both MPTP-treated rodents and non-human primates, used as animal models of parkinsonism. Here we describe an increase in alpha-synuclein expression in a human neuroblastoma cell line, SH-SY5Y, caused by 5-100 microM MPP+, the active metabolite of MPTP, which induces apoptosis in SH-SY5Y cells after a 4-day treatment. We also analysed the activation of the MAPK family, which is involved in several cellular responses to toxins and stressing conditions. Parallel to the increase in alpha-synuclein expression we observed activation of MEK1,2 and ERK/MAPK but not of SAPK/JNK or p38 kinase. The inhibition of the ERK/MAPK pathway with U0126, however, did not affect the increase in alpha-synuclein. The highest increase in alpha-synuclein (more than threefold) in 4-day cultures was found in adherent cells treated with low concentrations of MPP+ (5 microM). Inhibition of ERK/MAPK reduced the damage caused by MPP+. We suggest that alpha-synuclein increase and ERK/MAPK activation have a prominent role in the cell mechanisms of rescue and damage, respectively, after MPP+ -treatment.
Collapse
Affiliation(s)
- Cristina Gómez-Santos
- Unitat de Bioquímica, Departament Ciències Fisiològiques II, Campus Bellvitge, Universitat de Barcelona, c/. Feixa Llarga s/n, L'Hospitalet del Llobregat, E-08907 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
149
|
Junn E, Mouradian MM. Human alpha-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci Lett 2002; 320:146-50. [PMID: 11852183 DOI: 10.1016/s0304-3940(02)00016-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
alpha-Synuclein is a major component of Lewy bodies found in the brains of patients with Parkinson's disease (PD). Two point mutations in alpha-synuclein (A53T and A30P) are identified in few families with dominantly inherited PD. Yet the mechanism by which this protein is involved in nigral cell death remains poorly understood. Mounting evidence suggests the importance of oxidative stress in the pathogenesis of PD. Here we investigated the effects of wild-type and two mutant forms of alpha-synuclein on intracellular reactive oxygen species (ROS) levels using clonal SH-SY5Y cells engineered to over-express these proteins. All three cell lines, and particularly mutant alpha-synuclein-expressing cells, had increased ROS levels relative to control LacZ-engineered cells. In addition, cell viability was significantly curtailed following the exposure of all three alpha-synuclein-engineered cells to dopamine, but more so with mutant alpha-synuclein. These results suggest that over-expression of alpha-synuclein, and especially its mutant forms, exaggerates the vulnerability of neurons to dopamine-induced cell death through excess intracellular ROS generation. Thus, these findings provide a link between mutations or over-expression of alpha-synuclein and apoptosis of dopaminergic neurons by lowering the threshold of these cells to oxidative damage.
Collapse
Affiliation(s)
- Eunsung Junn
- Genetic Pharmacology Unit, Experimental Therapeutics Branch, NINDS, National Institutes of Health, Bethesda, MD 20892-1406, USA
| | | |
Collapse
|
150
|
Kitamura Y, Kakimura JI, Taniguchi T. Antiparkinsonian drugs and their neuroprotective effects. Biol Pharm Bull 2002; 25:284-90. [PMID: 11913520 DOI: 10.1248/bpb.25.284] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Parkinson's disease, while dopamine (DA) replacement therapy, such as with L-DOPA (levodopa), improves the symptoms, it does not inhibit the degeneration of DA neurons in the substantia nigra. Numerous studies have suggested that both endogenous and environmental neurotoxins and oxidative stress may participate in this disease, but the detailed mechanisms are still unclear. Recent genetic studies in familial Parkinson's disease and parkinsonism have shown several gene mutations. This new information regarding its pathogenesis offers novel prospects for effective strategies involving the neuroprotection of vulnerable DA neurons. This review summarizes current findings regarding the pathogenesis and antiparkinsonian drugs, and discusses their possibilities of targets to develop novel neuroprotective drugs.
Collapse
|