101
|
Abstract
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, National Centre of Competence in Research Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
102
|
Dentin R, Denechaud PD, Benhamed F, Girard J, Postic C. Hepatic gene regulation by glucose and polyunsaturated fatty acids: a role for ChREBP. J Nutr 2006; 136:1145-9. [PMID: 16614395 DOI: 10.1093/jn/136.5.1145] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The liver is a major site for carbohydrate metabolism (glycolysis and glycogen synthesis) and triglyceride synthesis (lipogenesis). In the last decade, increasing evidence has emerged to show that nutrients, in particular, glucose and fatty acids, are able to regulate hepatic gene expression in a transcriptional manner. Indeed, although insulin was long thought to be the major regulator of hepatic gene expression, it is now clear that glucose metabolism rather that glucose itself also contributes substantially to the coordinated regulation of carbohydrate and lipid homeostasis in liver. In fact, the recent discovery of the glucose-signaling transcription factor carbohydrate responsive element binding protein (ChREBP) shed some light on the molecular mechanisms by which glycolytic and lipogenic genes are reciprocally regulated by glucose and fatty acids in liver. Here, we will review some of the recent studies that have begun to elucidate the regulation and function of this key transcription factor in liver. Indeed, a better understanding of the mechanisms by which glucose and fatty acids control hepatic gene expression may provide novel insight into the development of new therapeutic strategies for a better management of diseases involving blood glucose and/or disorders of lipid metabolism.
Collapse
Affiliation(s)
- Renaud Dentin
- Institut Cochin, INSERM U567 CNRS UMR8104, Université René Descartes, Département d'Endocrinologie, Métabolisme et Cancer, Paris, France
| | | | | | | | | |
Collapse
|
103
|
Xu J, Christian B, Jump DB. Regulation of rat hepatic L-pyruvate kinase promoter composition and activity by glucose, n-3 polyunsaturated fatty acids, and peroxisome proliferator-activated receptor-alpha agonist. J Biol Chem 2006; 281:18351-62. [PMID: 16644726 PMCID: PMC2766394 DOI: 10.1074/jbc.m601277200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Carbohydrate regulatory element-binding protein (ChREBP), MAX-like factor X (MLX), and hepatic nuclear factor-4alpha (HNF-4alpha) are key transcription factors involved in the glucose-mediated induction of hepatic L-type pyruvate kinase (L-PK) gene transcription. n-3 polyunsaturated fatty acids (PUFA) and WY14643 (peroxisome proliferator-activated receptor alpha (PPARalpha) agonist) interfere with glucose-stimulated L-PK gene transcription in vivo and in rat primary hepatocytes. Feeding rats a diet containing n-3 PUFA or WY14643 suppressed hepatic mRNA(L-PK) but did not suppress hepatic ChREBP or HNF-4alpha nuclear abundance. Hepatic MLX nuclear abundance, however, was suppressed by n-3 PUFA but not WY14643. In rat primary hepatocytes, glucose-stimulated accumulation of mRNA(LPK) and L-PK promoter activity correlated with increased ChREBP nuclear abundance. This treatment also increased L-PK promoter occupancy by RNA polymerase II (RNA pol II), acetylated histone H3 (Ac-H3), and acetylated histone H4 (Ac-H4) but did not significantly impact L-PK promoter occupancy by ChREBP or HNF-4alpha. Inhibition of L-PK promoter activity by n-3 PUFA correlated with suppressed RNA pol II, Ac-H3, and Ac-H4 occupancy on the L-PK promoter. Although n-3 PUFA transiently suppressed ChREBP and MLX nuclear abundance, this treatment did not impact ChREBP-LPK promoter interaction. HNF4alpha-LPK promoter interaction was transiently suppressed by n-3 PUFA. Inhibition of L-PK promoter activity by WY14643 correlated with a transient decline in ChREBP nuclear abundance and decreased Ac-H4 interaction with the L-PK promoter. WY14643, however, had no impact on MLX nuclear abundance or HNF4alpha-LPK promoter interaction. Although overexpressed ChREBP or HNF-4alpha did not relieve n-3 PUFA suppression of L-PK gene expression, overexpressed MLX fully abrogated n-3 PUFA suppression of L-PK promoter activity and mRNA(L-PK) abundance. Overexpressed ChREBP, but not MLX, relieved the WY14643 inhibition of L-PK. In conclusion, n-3 PUFA and WY14643/PPARalpha target different transcription factors to control L-PK gene transcription. MLX, the heterodimer partner for ChREBP, has emerged as a novel target for n-3 PUFA regulation.
Collapse
Affiliation(s)
| | | | - Donald B. Jump
- To whom correspondence should be addressed: Dept. of Physiology, 3165 Biomedical and Physical Sciences Bldg., Michigan State University, East Lansing, MI 48824. Tel.: 517-355-6475 (ext. 1133); Fax: 517-355-5125;
| |
Collapse
|
104
|
Grønning LM, Tingsabadh R, Hardy K, Dalen KT, Jat PS, Gnudi L, Shepherd PR. Glucose induces increases in levels of the transcriptional repressor Id2 via the hexosamine pathway. Am J Physiol Endocrinol Metab 2006; 290:E599-606. [PMID: 16234270 DOI: 10.1152/ajpendo.00242.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in glucose levels are known to directly alter gene expression. A number of previous studies have found that these effects are in part mediated by modulating the levels and the activity of transcription factors. We have investigated an alternative mechanism by which glucose might regulate gene expression by modulating levels of a transcriptional repressor. We have focused on Id2, which is a protein that indirectly regulates gene expression by sequestering certain transcription factors and preventing them from forming functional dimers. Id2 targets include the class A basic helix-loop-helix transcription factors and the sterol regulatory element-binding protein (SREBP)-1. We demonstrate that increases in glucose levels cause a rapid increase in levels of Id2 in J774.2 macrophages, and a number of lines of evidence indicate that this is via the hexosamine pathway because 1) the effect of glucose requires glutamine; 2) the effect of glucose is mimicked by low levels of glucosamine; 3) the effect of glucose is inhibited by azaserine, an inhibitor of glutamine:fructose-6-phosphate amidotransferase (GFAT); and 4) adenoviral mediated overexpression of GFAT increases levels of Id2. We go on to show that increases in Id2 can have functional effects on metabolic genes, because Id2 blocked the SREBP-1-induced induction of hormone-sensitive lipase (HSL) promoter activity, whereas Id2 alone does not modulate activity of the HSL promoter. In summary, these studies define a new mechanism by which glucose uses the hexosamine pathway to regulate gene expression by increasing levels of a transcriptional repressor.
Collapse
Affiliation(s)
- Line Mariann Grønning
- Department of Biochemistry and Molecular Biology, Guys Hospital, Kings College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
105
|
Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 2006; 55:865-74. [PMID: 16567505 DOI: 10.2337/diabetes.55.04.06.db05-1178] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AMP-activated protein kinase (AMPK) controls glucose uptake and glycolysis in muscle. Little is known about its role in liver glucose uptake, which is controlled by glucokinase. We report here that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), metformin, and oligomycin activated AMPK and inhibited glucose phosphorylation and glycolysis in rat hepatocytes. In vitro experiments demonstrated that this inhibition was not due to direct phosphorylation of glucokinase or its regulatory protein by AMPK. By contrast, AMPK phosphorylated liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase without affecting activity. Inhibitors of the endothelial nitric oxide synthase, stress kinases, and phosphatidylinositol 3-kinase pathways did not counteract the effects of AICAR, metformin, or oligomycin, suggesting that these signaling pathways were not involved. Interestingly, the inhibitory effect on glucose phosphorylation of these well-known AMPK activators persisted in primary cultured hepatocytes from newly engineered mice lacking both liver alpha1 and alpha2 AMPK catalytic subunits, demonstrating that this effect was clearly not mediated by AMPK. Finally, AICAR, metformin, and oligomycin were found to inhibit the glucose-induced translocation of glucokinase from the nucleus to the cytosol by a mechanism that could be related to the decrease in intracellular ATP concentrations observed in these conditions.
Collapse
Affiliation(s)
- Bruno Guigas
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology, UCL 7529, avenue Hippocrate 75, 1200 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Tsatsos NG, Towle HC. Glucose activation of ChREBP in hepatocytes occurs via a two-step mechanism. Biochem Biophys Res Commun 2005; 340:449-56. [PMID: 16375857 DOI: 10.1016/j.bbrc.2005.12.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Carbohydrate response element binding protein (ChREBP) is a transcription factor that mediates glucose-responsive changes in gene expression in hepatocytes. In the current model for glucose regulation, inhibition of ChREBP in low glucose occurs in response to cAMP-dependent protein kinase (PKA)-mediated phosphorylation of residues S196, S626, and/or T666. Activation of ChREBP in conditions of increased glucose results simply from reversal of these inhibitory phosphorylations. To test this model, we analyzed mutant forms of ChREBP that lack one or more of the proposed PKA sites and found that these forms of ChREBP still require glucose for activation. Additionally, cAMP levels in cultured hepatocytes were negligible in low glucose conditions, indicating PKA should not be active. Finally, overall ChREBP phosphorylation did not change in response to altered glucose levels. We conclude that in addition to its repression by PKA, glucose activation of ChREBP involves a second mechanism that is independent of PKA phosphorylation.
Collapse
Affiliation(s)
- Nikolas G Tsatsos
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
107
|
Nayak B, Xie P, Akagi S, Yang Q, Sun L, Wada J, Thakur A, Danesh FR, Chugh SS, Kanwar YS. Modulation of renal-specific oxidoreductase/myo-inositol oxygenase by high-glucose ambience. Proc Natl Acad Sci U S A 2005; 102:17952-7. [PMID: 16330753 PMCID: PMC1312416 DOI: 10.1073/pnas.0509089102] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Indexed: 12/19/2022] Open
Abstract
Biological properties of renal-specific oxidoreductase (RSOR), characteristics of its promoter, and underlying mechanisms regulating its expression in diabetes were analyzed. RSOR expression, normally confined to the renal cortex, was markedly increased and extended into the outer medullary tubules in db/db mice, a model of type 2 diabetes. Exposure of LLCPK cells to d-glucose resulted in a dose-dependent increase in RSOR expression and its enzymatic activity. The latter was related to one of the glycolytic enzymes, myo-inositol oxygenase. The increase in activity was in proportion to serum glucose concentration. The RSOR expression also increased in cells treated with various organic osmolytes, e.g., sorbitol, myoinositol, and glycerolphosphoryl-choline and H(2)O(2). Basal promoter activity was confined to -1,252 bp upstream of ATG, and it increased with the treatment of high glucose and osmolytes. EMSAs indicated an increased binding activity with osmotic-, carbohydrate-, and oxidant-response elements in cells treated with high glucose and was abolished by competitors. Supershifts, detected by anti-nuclear factor of activated T cells, and carbohydrate-response-element-binding protein established the binding specificity. Nuclear factor of activated T cells tonicity-enhancer-binding protein and carbohydrate-response-element-binding protein had increased nuclear expression in cells treated with high glucose. The activity of osmotic-response element exhibited a unique alternate binding pattern, as yet unreported in osmoregulatory genes. Data indicate that RSOR activity is modulated by diverse mechanisms, and it is endowed with dual properties to channel glucose intermediaries, characteristic of hepatic aldehyde reductases, and to maintain osmoregulation, a function of renal medullary genes, e.g., aldose reductase, in diabetes.
Collapse
Affiliation(s)
- Baibaswata Nayak
- Department of Pathology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Makaula S, Adam T, Essop MF. Upstream stimulatory factor 1 transactivates the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase. Arch Biochem Biophys 2005; 446:91-100. [PMID: 16376850 DOI: 10.1016/j.abb.2005.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 10/26/2005] [Accepted: 10/29/2005] [Indexed: 11/26/2022]
Abstract
E-box cis-elements act as binding sites for upstream stimulatory factors (USFs), putative glucose-responsive transcriptional modulators. Since four E-boxes were identified on the human ACCbeta promoter, we hypothesized that USF1 induces ACCbeta expression in a glucose-dependent manner. Here, murine cardiac ACCbeta expression was significantly increased in response to high carbohydrate re-feeding after fasting. However, transfection studies showed no difference in ACCbeta promoter activity in neonatal cardiomyocytes and CV-1 fibroblasts after low (5.5mM) and high (25 mM) glucose exposure. USF1 overexpression significantly increased ACCbeta promoter activity in both cell lines under low glucose conditions. With high glucose exposure, USF1 further induced ACCbeta promoter activity only in CV-1 fibroblasts. USF1-induced ACCbeta promoter responsiveness was markedly attenuated when co-transfecting cardiomyocytes with a -93/+65 or -38/+65 promoter deletion construct (lacking E-boxes 1-3). Thus, USF1 transactivates the human ACCbeta promoter in the heart, likely through an E-box cis-element located close to the transcription start site.
Collapse
Affiliation(s)
- Siyanda Makaula
- Hatter Heart Research Institute, University of Cape Town Faculty of Health Sciences, Observatory 7925, South Africa
| | | | | |
Collapse
|
109
|
Allagnat F, Martin D, Condorelli DF, Waeber G, Haefliger JA. Glucose represses connexin36 in insulin-secreting cells. J Cell Sci 2005; 118:5335-44. [PMID: 16263767 DOI: 10.1242/jcs.02600] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gap-junction protein connexin36 (Cx36) contributes to control the functions of insulin-producing cells. In this study, we investigated whether the expression of Cx36 is regulated by glucose in insulin-producing cells. Glucose caused a significant reduction of Cx36 in insulin-secreting cell lines and freshly isolated pancreatic rat islets. This decrease appeared at the mRNA and the protein levels in a dose- and time-dependent manner. 2-Deoxyglucose partially reproduced the effect of glucose, whereas glucosamine, 3-O-methyl-D-glucose and leucine were ineffective. Moreover, KCl-induced depolarization of beta-cells had no effect on Cx36 expression, indicating that glucose metabolism and ATP production are not mandatory for glucose-induced Cx36 downregulation. Forskolin mimicked the repression of Cx36 by glucose. Glucose or forskolin effects on Cx36 expression were not suppressed by the L-type Ca(2+)-channel blocker nifedipine but were fully blunted by the cAMP-dependent protein kinase (PKA) inhibitor H89. A 4 kb fragment of the human Cx36 promoter was identified and sequenced. Reporter-gene activity driven by various Cx36 promoter fragments indicated that Cx36 repression requires the presence of a highly conserved cAMP responsive element (CRE). Electrophoretic-mobility-shift assays revealed that, in the presence of a high glucose concentration, the binding activity of the repressor CRE-modulator 1 (CREM-1) is enhanced. Taken together, these data provide evidence that glucose represses the expression of Cx36 through the cAMP-PKA pathway, which activates a member of the CRE binding protein family.
Collapse
Affiliation(s)
- Florent Allagnat
- Department of Internal Medicine, Laboratory of Molecular Biology 19-135S, University Hospital, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
110
|
Hwang DY, Ismail-Beigi F. Control of Glut1 promoter activity under basal conditions and in response to hyperosmolarity: role of Sp1. Am J Physiol Cell Physiol 2005; 290:C337-44. [PMID: 16162661 DOI: 10.1152/ajpcell.00089.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously identified (Hwang DY and Ismail-Beigi F. Am J Physiol Cell Physiol 281: C1365-C1372, 2001) a 44-bp GC-rich segment of the rat proximal glucose transporter (Glut)1 promoter, located at -104 to -61, as necessary for basal transcription of the Glut1 gene. Using deletion and mutational analysis and expression of transfected reporter constructs, we report in the present study that mutation of the Sp1 site located within this segment of the promoter leads to a marked ( approximately 4-fold) decrease in basal promoter activity. Double mutations located in the Sp1 site and in a second downstream GC-rich region (-71 to -51) did not cause a further decrease in promoter activity. Gel shift and supershift assays verified the importance of the Sp1 site. Exposure of cells to trichostatin A resulted in increased expression of the endogenous Glut1 as well as the transfected wild-type construct. Finally, the presence of the Sp1 site was found to be essential for the positive response of the promoter to hyperosmolarity. We conclude that the consensus Sp1 site located in the rat proximal Glut1 promoter is necessary and sufficient for basal expression of the Glut1 gene, as well as for its response to hyperosmolarity.
Collapse
Affiliation(s)
- Daw-Yang Hwang
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4951, USA
| | | |
Collapse
|
111
|
Iguchi H, Ikeda Y, Okamura M, Tanaka T, Urashima Y, Ohguchi H, Takayasu S, Kojima N, Iwasaki S, Ohashi R, Jiang S, Hasegawa G, Ioka RX, Magoori K, Sumi K, Maejima T, Uchida A, Naito M, Osborne TF, Yanagisawa M, Yamamoto TT, Kodama T, Sakai J. SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional activity and is down-regulated in hyperinsulinemic obese mice. J Biol Chem 2005; 280:37669-80. [PMID: 16148004 DOI: 10.1074/jbc.m505392200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In obesity-related insulin resistance, pancreatic islets compensate for insulin resistance by increasing secretory capacity. Here, we report the identification of sex-determining region Y-box 6 (SOX6), a member of the high mobility group box superfamily of transcription factors, as a co-repressor for pancreatic-duodenal homeobox factor-1 (PDX1). SOX6 mRNA levels were profoundly reduced by both a long term high fat feeding protocol in normal mice and in genetically obese ob/ob mice on a normal chow diet. Interestingly, we show that SOX6 is expressed in adult pancreatic insulin-producing beta-cells and that overexpression of SOX6 decreased glucose-stimulated insulin secretion, which was accompanied by decreased ATP/ADP ratio, Ca(2+) mobilization, proinsulin content, and insulin gene expression. In a complementary fashion, depletion of SOX6 by small interfering RNAs augmented glucose-stimulated insulin secretion in insulinoma mouse MIN6 and rat INS-1E cells. These effects can be explained by our mechanistic studies that show SOX6 acts to suppress PDX1 stimulation of the insulin II promoter through a direct protein/protein interaction. Furthermore, SOX6 retroviral expression decreased acetylation of histones H3 and H4 in chromatin from the promoter for the insulin II gene, suggesting that SOX6 may decrease PDX1 stimulation through changes in chromatin structure at specific promoters. These results suggest that perturbations in transcriptional regulation that are coordinated through SOX6 and PDX1 in beta-cells may contribute to the beta-cell adaptation in obesity-related insulin resistance.
Collapse
Affiliation(s)
- Haruhisa Iguchi
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Shieh JJ, Pan CJ, Mansfield BC, Chou JY. In islet-specific glucose-6-phosphatase-related protein, the beta cell antigenic sequence that is targeted in diabetes is not responsible for the loss of phosphohydrolase activity. Diabetologia 2005; 48:1851-9. [PMID: 16012821 DOI: 10.1007/s00125-005-1848-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS There are three members of the glucose-6-phosphatase (G6Pase) family: (1) the liver/kidney/intestine G6Pase-alpha (encoded by G6PC), which is a key enzyme in glucose homeostasis; (2) the ubiquitous G6Pase-beta (encoded by G6PC3); and (3) the islet-specific G6Pase-related protein (IGRP, encoded by /G6PC2). While G6Pase-alpha and G6Pase-beta are functional glucose-6-phosphate hydrolases, IGRP possesses almost no hydrolase activity. This was unexpected since G6Pase-alpha is more closely related to IGRP than G6Pase-beta. Recently, amino acids 206-214 in IGRP were identified as a beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes, suggesting that this peptide confers functional specificity to IGRP. We therefore investigated the molecular events that inactivate IGRP activity and the effects of the beta cell antigen sequence on the stability and enzymatic activity of G6Pase-alpha. METHODS Studies were performed using site-directed mutagenesis and transient expression assays. Protein stability was evaluated by Western blotting, proteasome inhibitor studies and in vitro transcription-translation. RESULTS We showed that the residues responsible for G6Pase activity are more extensive than previously recognised. Introducing the IGRP antigenic motif into G6Pase-alpha does not completely destroy activity, although it does destabilise the protein. The low hydrolytic activity in IGRP is due to the combination of multiple independent mutations. CONCLUSIONS/INTERPRETATION The loss of catalytic activity in IGRP arises from the sum of many sequence differences. G6Pase-alpha mutants containing the beta cell antigen sequence are preferentially degraded in cells, which prevents targeting by pathogenic CD8+ T cells. It is possible that IGRP levels in beta cells could dictate susceptibilities to diabetes.
Collapse
Affiliation(s)
- J-J Shieh
- Section on Cellular Differentiation, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | | | | | | |
Collapse
|
113
|
Abstract
PURPOSE OF REVIEW The functions of nutrients and other foods have been revealed at the level of gene regulation. The advent of DNA microarray technology has enabled us to analyze the body's response to these factors in a much more holistic manner than before. This review is intended to overview the present status of this DNA microarray technology, hoping to provide food and nutrition scientists, especially those who are planning to introduce this technology, with hints and suggestions. RECENT FINDINGS The number of papers examining transcriptomics analysis in food and nutrition science has expanded over the last few years. The effects of some dietary conditions and administration of specific nutrients or food factors are studied in various animal models and cultured cells. The target food components range from macronutrients and micronutrients to other functional food factors. Such studies have already yielded fruitful results, which include discovery of novel functions of a food, uncovering hitherto unknown mechanisms of action, and analyses of food safety. SUMMARY The potency of DNA microarray technology in food and nutrition science is broadly recognized. This technique will surely continue to provide researchers and the public with valuable information on the beneficial and adverse effects of food factors. It should also be acknowledged, however, that there remain problems such as standardization of the data and sharing of the results among researchers in this field.
Collapse
Affiliation(s)
- Hisanori Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
114
|
Zhu Y, Casado M, Vaulont S, Sharma K. Role of upstream stimulatory factors in regulation of renal transforming growth factor-beta1. Diabetes 2005; 54:1976-84. [PMID: 15983197 DOI: 10.2337/diabetes.54.7.1976] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously identified an E-box to be implicated in high-glucose-induced transforming growth factor-beta1 (TGF-beta1) gene stimulation in murine mesangial cells. In the present study, we evaluated the role of upstream stimulatory factors (USFs) in mediating glucose-induced stimulation of TGF-beta1. Mesangial cells cultured in glucose concentrations exceeding 2.7 mmol/l D-glucose exhibited increased levels of USF1 and USF2 protein by Western analysis and electrophoretic mobility shift assay (EMSA). An E-box element from the murine TGF-beta1 promoter revealed USF1 and USF2 binding by EMSA. Chromatin immunoprecipitation assay revealed in vivo binding of USF1 to a glucose-responsive region of the TGF-beta1 promoter. Transient cotransfection studies of 293 cells with USF1 led to a twofold increase in TGF-beta1 promoter activity and a 46% increase in secreted TGF-beta1 protein levels. Wild-type and USF2 knockout mice exhibited a 2.5-fold stimulation of renal TGF-beta1 expression upon fasting and refeeding with a carbohydrate-rich diet, whereas USF1 knockout mice exhibited only a minimal increase of renal TGF-beta1 upon refeeding. USF1 mRNA levels were increased in mouse kidneys with carbohydrate refeeding, and USF1 protein was increased in diabetic rat kidneys compared with controls. We conclude that USF1 is stimulated by modest increases in glucose concentration in murine mesangial cells, bind to the murine TGF-beta1 promoter, contribute to carbohydrate-induced renal TGF-beta1 expression, and may play a role in diabetes-related gene regulation in the kidney.
Collapse
Affiliation(s)
- Yanqing Zhu
- Department of Medicine, Division of Nephrology, Dorrance Hamilton Research Laboratories, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
115
|
Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 2005; 87:81-6. [PMID: 15733741 DOI: 10.1016/j.biochi.2004.11.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 11/02/2004] [Indexed: 12/14/2022]
Abstract
In mammals, the regulation of hepatic metabolism plays a key role in whole body energy balance, since the liver is the major site of carbohydrate metabolism (glycolysis and glycogen synthesis) and triglyceride synthesis (lipogenesis). Lipogenesis is regulated through the acute control of key enzyme activities by means of allosteric and covalent modifications. Moreover, the synthesis of most glycolytic and lipogenic enzymes is regulated in response to dietary status, in which glucose, in particular, is a crucial energy nutrient. This latter response occurs in large part through transcriptional regulation of genes encoding glycolytic and lipogenic enzymes. In the past few years, recent advances have been made in understanding the transcriptional regulation of hepatic glycolytic and lipogenic genes by insulin and glucose. Although insulin is a major regulator of hepatic lipogenesis, there is increasing evidence that glucose also contributes to the coordinated regulation of carbohydrate and lipid metabolism in liver. Here, we review the respective roles of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) in mediating the effect of insulin on hepatic gene expression, and the role of carbohydrate responsive element binding protein (ChREBP) in regulating gene transcription by glucose.
Collapse
Affiliation(s)
- Renaud Dentin
- Département d'Endocrinologie, Institut Cochin, Inserm U567, CNRS UMR8104, Université Paris V René Descartes, 24, rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | |
Collapse
|
116
|
Laderoute KR. The interaction between HIF-1 and AP-1 transcription factors in response to low oxygen. Semin Cell Dev Biol 2005; 16:502-13. [PMID: 16144688 DOI: 10.1016/j.semcdb.2005.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a critical regulator of the transcriptional response to low oxygen conditions (hypoxia/anoxia) experienced by mammalian cells in both physiological and pathophysiological circumstances. As our understanding of the biology and biochemistry of HIF-1 has grown, it has become apparent that cells adapt to signals generated by low oxygen through a network of stress responsive transcription factors or complexes, which are influenced by HIF-1 activity. This review summarizes our current understanding of the interaction of HIF-1 with AP-1, a classic example of a family of pleiotropic transcription factors that impact on diverse cellular processes and phenotypes, including the adaptation to low oxygen stress. The review focuses on experimental studies involving cultured cells exposed to hypoxia/anoxia, and describes both established and possible interactions between HIF-1 and AP-1 at different levels of cellular organization.
Collapse
Affiliation(s)
- Keith R Laderoute
- Biosciences Division, SRI International, Bldg. L, Rm. A258, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
117
|
Carrière V, Le Gall M, Gouyon-Saumande F, Schmoll D, Brot-Laroche E, Chauffeton V, Chambaz J, Rousset M. Intestinal glucose-dependent expression of glucose-6-phosphatase: involvement of the aryl receptor nuclear translocator transcription factor. J Biol Chem 2005; 280:20094-101. [PMID: 15767253 DOI: 10.1074/jbc.m502192200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-6-phosphatase (G6Pase) catalyzes the release of glucose from glucose 6-phosphate. This enzyme was mainly studied in the liver, but while detected in the small intestine little is known about the regulation of its intestinal expression. This study describes the mechanisms of the glucose-dependent regulation of G6Pase expression in intestinal cells. Results obtained in vivo and in Caco-2/TC7 enterocytes showed that glucose increases the G6Pase mRNA level. In Caco-2/TC7 cells, glucose stabilized G6Pase mRNA and activated the transcription of the gene, meaning that glucose-dependent G6Pase expression involved both transcriptional and post-transcriptional mechanisms. Reporter-gene studies showed that, although the -299/+57 region of the human G6Pase promoter was sufficient to trigger the glucose response in the hepatoma cell line HepG2, the -1157/-1133 fragment was required for maximal activation of glucose-6-phosphatase gene transcription in Caco-2/TC7 cells. This fragment binds the aryl receptor nuclear translocator (ARNT), cAMP-responsive element-binding protein, and upstream stimulatory factor transcription factors. The DNA binding activity of these transcription factors was increased in nuclear extracts of differentiated cells from the intestinal villus of mice fed sugar-rich diets as compared with mice fed a no-sugar diet. A direct implication of ARNT in the activation of G6Pase gene transcription by glucose has been observed in Caco-2/TC7 cells using RNA interference experiments. These results support a physiological role for G6Pase in the control of nutrient absorption in the small intestine.
Collapse
|
118
|
Heck AL, Barroso CS, Callie ME, Bray MS. Gene-nutrition interaction in human performance and exercise response. Nutrition 2005; 20:598-602. [PMID: 15212740 DOI: 10.1016/j.nut.2004.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in human performance research have revealed new insight into the many factors that influence how an individual responds to exercise training. Response to exercise interventions is often highly variable among individuals, however, and exercise response may be mediated in large part by variation in genes and nutrition and by gene-environment interactions. It is well established that the quality and quantity of nutritional intake play a critical role in response to training and in athletic performance. The body's adaptation to exercise is also the result of changes in expression of genes mediated not only by exercise but by multiple factors, including the interaction between exercise, components of dietary intake, and genetic variation. This review explores the effects of genetic variation and gene-nutrition interactions in response to exercise training and athletic performance.
Collapse
Affiliation(s)
- Amy L Heck
- Graduate School of Biomedical Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
119
|
Kühn C, Thaller G, Winter A, Bininda-Emonds ORP, Kaupe B, Erhardt G, Bennewitz J, Schwerin M, Fries R. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics 2005; 167:1873-81. [PMID: 15342525 PMCID: PMC1470998 DOI: 10.1534/genetics.103.022749] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A quantitative trait locus (QTL) for milk fat percentage has been mapped consistently to the centromeric region of bovine chromosome 14 (BTA14). Two independent studies have identified the nonconservative mutation K232A in the acylCoA-diacylglycerol-acyltransferase 1 (DGAT1) gene as likely to be causal for the observed variation. Here we provide evidence for additional genetic variability at the same QTL that is associated with milk fat percentage variation within the German Holstein population. Namely, we show that alleles of the DGAT1 promoter derived from the variable number of tandem repeat (VNTR) polymorphism are associated with milk fat content in animals homozygous for the allele 232A at DGAT1. Our results present another example for more than two trait-associated alleles being involved in a major gene effect on a quantitative trait. The segregation of multiple alleles affecting milk production traits at the QTL on BTA14 has to be considered whenever marker-assisted selection programs are implemented in dairy cattle. Due to the presence of a potential transcription factor binding site in the 18mer element of the VNTR, the variation in the number of tandem repeats of the 18mer element might be causal for the variability in the transcription level of the DGAT1 gene.
Collapse
Affiliation(s)
- Christa Kühn
- Forschungsbereich Molekularbiologie, Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Takahashi K, Inuzuka M, Ingi T. Cellular signaling mediated by calphoglin-induced activation of IPP and PGM. Biochem Biophys Res Commun 2005; 325:203-14. [PMID: 15522220 DOI: 10.1016/j.bbrc.2004.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Indexed: 11/30/2022]
Abstract
Universal protein networks conserved from bacteria to animals dictate the core functions of cells. Inorganic pyrophosphatase (IPP) is an essential enzyme that plays a pivotal role in a broad spectrum of cellular biosynthetic reactions such as amino acid, nucleotide, polysaccharide, and fatty acid biosynthesis. However, the in vivo cellular regulation mechanisms of IPP and another key metabolic enzyme, phosphoglucomutase (PGM), remain unknown. This study aimed to examine the universal protein regulatory network by utilizing genome sequences, yeast proteomic data, and phosphoryl-transfer experiments. Here we report a novel human protein, henceforth referred to as calphoglin, which interacts with IPP and activates it. Calphoglin enhances PGM activity through the activated IPP and more directly on its own. Protein structure and assembly, catalytic function, and ubiquitous cellular localization of the calphoglin (-IPP-PGM) complex were conserved among Escherichia coli, yeast, and mammals. In the rat brain, calphoglin mRNA was enriched in the hippocampus and the cerebellum. Further, the linkage of the calphoglin complex to calcium signaling was demonstrated by its interactive co-localization within the calmodulin/calcineurin signaling complex, by Ca(2+)-binding and Ca(2+)-controlled activity of calphoglin-IPP, and by calphoglin-induced enhancement of microsomal Ca(2+) uptake. Collectively, these results suggest that the calphoglin complex is a common mechanism utilized in mediating bacterial cell metabolism and Ca(2+)/calmodulin/calcineurin-dependent mammalian cell activation. This is the first report of an activator of IPP and PGM, a function novel to proteins.
Collapse
Affiliation(s)
- Koichi Takahashi
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1 Asahi-machi, Niigata 951-8585, Japan
| | | | | |
Collapse
|
121
|
Ma L, Tsatsos NG, Towle HC. Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes. J Biol Chem 2005; 280:12019-27. [PMID: 15664996 DOI: 10.1074/jbc.m413063200] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes required for de novo lipogenesis are induced in mammalian liver after a meal high in carbohydrates. In addition to insulin, increased glucose metabolism initiates an intracellular signaling pathway that transcriptionally regulates genes encoding lipogenic enzymes. A cis-acting sequence, the carbohydrate response element (ChoRE), has been found in the promoter region of several of these genes. ChREBP (carbohydrate response element-binding protein) was recently identified as a candidate transcription factor in the glucose-signaling pathway. We reported that ChREBP requires the heterodimeric partner Max-like factor X (Mlx) to bind to ChoRE sequences. In this study we provide further evidence to support a direct role of Mlx in glucose signaling in the liver. We constructed two different dominant negative forms of Mlx that could dimerize with ChREBP but block its binding to DNA. When introduced into hepatocytes, both dominant negative forms of Mlx inhibited the glucose response of a transfected ChoRE-containing promoter. The glucose response was rescued by adding exogenous wild type Mlx or ChREBP, but not MondoA, a paralog of ChREBP that can also form a heterodimer with Mlx. Furthermore, dominant negative Mlx blocked the induction of glucose-responsive genes from their natural chromosomal context under high glucose conditions. In contrast, genes induced by the insulin and thyroid hormone-signaling pathways were unaffected by dominant negative Mlx. Mlx was present in the glucose-responsive complex of liver nuclear extract from which ChREBP was purified. In conclusion, Mlx is an obligatory partner of ChREBP in regulating lipogenic enzyme genes in liver.
Collapse
Affiliation(s)
- Lin Ma
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
122
|
Abe M, Wu Z, Yamamoto M, Jin JJ, Tabara Y, Mogi M, Kohara K, Miki T, Nakura J. Association of Dopamine .BETA.-Hydroxylase Polymorphism with Hypertension through Interaction with Fasting Plasma Glucose in Japanese. Hypertens Res 2005; 28:215-21. [PMID: 16097364 DOI: 10.1291/hypres.28.215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dopamine-beta-hydroxylase (DBH) catalyzes the conversion of dopamine to norepinephrine and is released from sympathetic neurons into the circulation. Several lines of evidence, including the finding of elevated plasma DBH activity in essential hypertension, suggest an important role of DBH in hypertension. Recently, a novel polymorphism (-1021C/T) in the 5' flanking region of the DBH gene has been shown to account for 35-52% of the variation in plasma DBH activity. We therefore investigated the possible association between the DBH -1021C/T polymorphism and hypertension in a large Japanese population. Moreover, because the development of hypertension is considered to be due at least partly to gene-environmental interactions, we also investigated the possible interactions between the DBH -1021C/T polymorphism and environmental factors. Consequently, we found a significant interaction between the DBH -1021C/T polymorphism and fasting plasma glucose (FPG) in the association with hypertension. CC homozygotes showed a steeper increase in probability of hypertension with FPG than T allele carriers. We also found a marginally significant trend suggesting the presence of an interaction between the DBH -1021C/T polymorphism and FPG in the association with blood pressure. Consistent with the presence of the interaction, we found that a 19 bp sequence containing the DBH -1021C/T polymorphism includes two palindromic non-canonical E boxes separated by 5 bps, and closely resembles the glucose response element of the L-type pyruvate kinase gene. These findings could be helpful in conducting further molecular and biological studies on the relationship among glucose metabolism, the sympathetic nervous system, and hypertension.
Collapse
Affiliation(s)
- Michiko Abe
- Department of Geriatric Medicine, School of Medicine, Ehime University, Shitsukawa, Toon 791-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
A number of studies have shown that malignant transformation is associated with an increase in glycolytic flux and in anaerobic and aerobic cellular lactate excretion. Using quantitative bioluminescence imaging in various primary carcinomas in patients (uterine cervix, head and neck, colorectal region) at first diagnosis of the disease, we showed that lactate concentrations in tumors in vivo can be relatively low or extremely high (up to 40 micromol/g) in different individual tumors or within the same lesion. In all tumor entities investigated, high concentrations of lactate were correlated with a high incidence of distant metastasis already in an early stage of the disease. Low lactate tumors (8 micromol/g). Lactate dehydrogenase was found to be upregulated in most of these tumors compared with surrounding normal tissue. Numerous recent reports support these data by showing various biological activities of lactate that can enhance the malignant behavior of cancer cells. These mechanisms include the activation of hyaluronan synthesis by tumor-associated fibroblasts, upregulation of vascular endothelial growth factor and of hypoxia-inducible factor 1alpha, and direct enhancement of cellular motility that generates favorable conditions for metastatic spread. Thus, lactate accumulation not only mirrors but also actively enhances the degree of tumor malignancy. We propose that determination of lactate in primary tumors may serve as a basis of a novel metabolic classification, which can lead to an improvement of prognosis and therapy in clinical oncology.
Collapse
Affiliation(s)
- Stefan Walenta
- Institute of Physiology and Pathophysiology, University of Mainz, Germany
| | | |
Collapse
|
124
|
Postic C, Dentin R, Girard J. Role of the liver in the control of carbohydrate and lipid homeostasis. DIABETES & METABOLISM 2004; 30:398-408. [PMID: 15671906 DOI: 10.1016/s1262-3636(07)70133-7] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The liver plays a unique role in controlling carbohydrate metabolism by maintaining glucose concentrations in a normal range over both short and long periods of times. In type 2 diabetes, alterations in hepatic glucose metabolism are observed, i.e. increased post-absorptive glucose production and impaired suppression of glucose production together with diminished glucose uptake following carbohydrate ingestion. The simultaneous overproduction of glucose and fatty acids in liver further stimulates the secretion of insulin by the pancreatic B cells, and elicits further peripheral insulin resistance thereby establishing a vicious circle. The present review will focus on some of the genetically-altered mouse models that have helped identify enzymes or transcription factors that are essential for maintaining either glucose or lipid homeostasis in liver. Among these mouse models, we will discuss transgenic mice overexpressing key gluconeogenic enzymes (PEPCK, G6Pase) or transcription factors (Foxo1, Pgc1-alpha) that control de novo glucose synthesis. In addition, since the possibility of controlling hepatic glucose utilization as a treatment of type 2 diabetes has been explored we will review some of the strategies proved to be valuable for improving the hyperglycemic phenotype.
Collapse
Affiliation(s)
- C Postic
- Département d'Endocrinologie, Institut Cochin, INSERM U567, CNRS UMR 8104, Université Paris V René Descartes, Paris, France.
| | | | | |
Collapse
|
125
|
Hansson PK, Asztély AK, Clapham JC, Schreyer SA. Glucose and fatty acid metabolism in McA-RH7777 hepatoma cells vs. rat primary hepatocytes: responsiveness to nutrient availability. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1684:54-62. [PMID: 15450210 DOI: 10.1016/j.bbalip.2004.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 05/19/2004] [Accepted: 06/16/2004] [Indexed: 02/03/2023]
Abstract
The overabundance of dietary fats and simple carbohydrates contributes significantly to obesity and metabolic disorders associated with obesity. The liver balances glucose and lipid distribution, and disruption of this balance plays a key role in these metabolic syndromes. We investigated (1) how hepatocytes balance glucose and fatty acid metabolism when one or both nutrients are supplied in abundance and (2) whether rat hepatoma cells (McA-RH7777) reflect nutrient partitioning in a similar manner as compared with primary hepatocytes. Increasing media palmitate concentration increased fatty acid uptake, triglyceride synthesis and beta-oxidation. However, hepatoma cells had a 2-fold higher fatty acid uptake and a 2-fold lower fatty acid oxidation as compared with primary hepatocytes. McA-RH7777 cells did not synthesize significant amounts of glycogen and preferentially metabolized the glucose into lipids or into oxidation. In primary hepatocytes, the glucose was mostly spared from oxidation and instead partitioned into both de novo glycogen and lipid synthesis. Overall, lipid production was rapidly induced in response to either glucose or fatty acid excess and this may be one of the earliest indicators of metabolic syndrome development associated with nutrient excess.
Collapse
Affiliation(s)
- Pia K Hansson
- Department of Molecular Pharmacology, HB133, AstraZeneca R&D, Mölndal S-431 83, Sweden
| | | | | | | |
Collapse
|
126
|
Ishii S, Iizuka K, Miller BC, Uyeda K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci U S A 2004; 101:15597-602. [PMID: 15496471 PMCID: PMC524841 DOI: 10.1073/pnas.0405238101] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Carbohydrate response element (ChRE)-binding protein (ChREBP) is a recently discovered transcription factor that is activated in response to high glucose concentrations in liver independently of insulin. ChREBP was first identified by its ability to bind the ChRE of the liver pyruvate kinase (LPK) gene. We recently reported that the increase in expression of multiple liver lipogenic enzyme mRNAs elicited by feeding a high-carbohydrate diet as well as that of LPK mRNA is markedly reduced in mice lacking ChREBP gene expression (ChREBP(-/-)) in comparison to WT mice. The present study provides evidence for a direct and dominant role of ChREBP in the glucose regulation of two key liver lipogenic enzymes, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). ACC, FAS, and LPK mRNA levels were higher in WT hepatocytes cultured with high (25 mM) rather than low (5.5 mM) glucose medium, but there was no effect of glucose concentration on these mRNA levels in ChREBP(-/-) hepatocytes. Similarly, reporter constructs containing ACC, FAS, or LPK gene ChREs were responsive to glucose when transfected into WT but not ChREBP(-/-) hepatocytes, and glucose transactivation of the constructs in ChREBP(-/-) hepatocytes was restored by cotransfection with a ChREBP expression plasmid. ChREBP binding to ACC, FAS, and LPK ChRE sequences in vitro was demonstrated by electrophoretic mobility super shift assays. In vivo binding of ChREBP to ACC, FAS, and LPK gene promoters in intact liver nuclei from rats fed a high-carbohydrate diet was demonstrated by using a formaldehyde crosslinking and chromatin immunoprecipitation procedure.
Collapse
Affiliation(s)
- Seiji Ishii
- Departments of Biochemistry and Internal Medicine, University of Texas Southwestern Medical School, 4500 South Lancaster Road, Dallas, TX 75216, USA
| | | | | | | |
Collapse
|
127
|
Chernajovsky Y, Gould DJ, Podhajcer OL. Gene therapy for autoimmune diseases: quo vadis? Nat Rev Immunol 2004; 4:800-11. [PMID: 15459671 DOI: 10.1038/nri1459] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biological therapies using antibodies and cytokines are becoming widespread for the treatment of chronic inflammatory autoimmune diseases. However, these treatments have several limitations - such as expense, the need for repeated injections and unwanted side-effects - that can be overcome by genetic delivery. This review summarizes the ingenuity, sophistication and variety of gene-therapy approaches that have been taken in the design of therapeutic molecules and vectors, the engineering of cells and the regulation of gene expression for the targeting of disease outcome. We focus our attention on multiple sclerosis, type 1 diabetes and rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuti Chernajovsky
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | |
Collapse
|
128
|
Cassany A, Guillemain G, Klein C, Dalet V, Brot-Laroche E, Leturque A. A karyopherin alpha2 nuclear transport pathway is regulated by glucose in hepatic and pancreatic cells. Traffic 2004; 5:10-9. [PMID: 14675421 DOI: 10.1046/j.1398-9219.2003.0143.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the role of the karyopherin alpha2 nuclear import carrier (also known as importin alpha2) in glucose signaling. In mhAT3F hepatoma cells, GFP-karyopherin alpha2 accumulated massively in the cytoplasm within minutes of glucose extracellular addition and returned to the nucleus after glucose removal. In contrast, GFP-karyopherin alpha1 distribution was unaffected regardless of glucose concentration. Glucose increased GFP-karyopherin alpha2 nuclear efflux by a factor 80 and its shuttling by a factor 4. These glucose-induced movements were not due to glycolytic ATP production. The mechanism involved was leptomycin B-insensitive, but phosphatase- and energy-dependent. HepG2 and COS-7 cells displayed no glucose-induced GFP-karyopherin alpha2 movements. In pancreatic MIN-6 cells, the glucose-induced movements of karyopherin alpha2 and the stimulation of glucose-induced gene transcription were simultaneously lost between passages 28 and 33. Thus, extracellular glucose regulates a nuclear transport pathway by increasing the nuclear efflux and shuttling of karyopherin alpha2 in cells in which glucose can stimulate the transcription of sugar-responsive genes.
Collapse
Affiliation(s)
- Aurélia Cassany
- Inserm U505, UPMC and Service commun d'imagerie cellulaire IFR58,15 rue de l'Ecole de Médecine, F-75006 Paris, France
| | | | | | | | | | | |
Collapse
|
129
|
Scott DK, Collier JJ, Doan TTT, Bunnell AS, Daniels MC, Eckert DT, O'Doherty RM. A modest glucokinase overexpression in the liver promotes fed expression levels of glycolytic and lipogenic enzyme genes in the fasted state without altering SREBP-1c expression. Mol Cell Biochem 2004; 254:327-37. [PMID: 14674713 DOI: 10.1023/a:1027306122336] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatic genes crucial for carbohydrate and lipid homeostasis are regulated by insulin and glucose metabolism. However, the relative contributions of insulin and glucose to the regulation of metabolic gene expression are poorly defined in vivo. To address this issue, adenovirus-mediated hepatic overexpression of glucokinase was used to determine the effects of increased hepatic glucose metabolism on gene expression in fasted or ad libitum fed rats. In the fasted state, a 3 fold glucokinase overexpression was sufficient to mimic feeding-induced increases in pyruvate kinase and acetyl CoA carboxylase mRNA levels, demonstrating a primary role for glucose metabolism in the regulation of these genes in vivo. Conversely, glucokinase overexpression was unable to mimic feeding-induced alterations of fatty acid synthase, glucose-6-phosphate dehydrogenase, carnitine palmitoyl transferase I or PEPCK mRNAs, indicating insulin as the primary regulator of these genes. Interestingly, glucose-6-phosphatase mRNA was increased by glucokinase overexpression in both the fasted and fed states, providing evidence, under these conditions, for the dominance of glucose over insulin signaling for this gene in vivo. Importantly, glucokinase overexpression did not alter sterol regulatory element binding protein 1-c mRNA levels in vivo and glucose signaling did not alter the expression of this gene in primary hepatocytes. We conclude that a modest hepatic overexpression of glucokinase is sufficient to alter expression of metabolic genes without changing the expression of SREBP-1c.
Collapse
Affiliation(s)
- D K Scott
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
130
|
Thomas BE, Thekkumkara TJ. Glucose mediates transcriptional repression of the human angiotensin type-1 receptor gene: role for a novel cis-acting element. Mol Biol Cell 2004; 15:4347-55. [PMID: 15269283 PMCID: PMC519131 DOI: 10.1091/mbc.e04-03-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human angiotensin type 1 receptor (hAT1R) gene is regulated by hormones, second messengers, and both pathophysiological and developmental states. The focus of the present study was to determine the role of glucose in the trans-repression of hAT1R gene transcription and to identify the functional cis-acting response element(s). Serial deletions of the hAT1R promoter region indicated that an area between -1717 and -1543 base pairs upstream of the 5' end of the cDNA sequence has a glucose responsive regulatory element (GluRE) to down-regulate the gene expression. Further analysis revealed a putative 29-bp (5'-AACTGATTTTTGTATATTGATCTTGTATT-3') repressor element located between -1582 and -1610 bp was necessary for transcriptional repression. Removal of this region from promoter construct abolished repression of the hAT1R gene transcription in human proximal tubule epithelial cells (hPTECs). Using mobility shift assays, we demonstrated DNA binding activity to the labeled repressor element in hPTEC nuclear extracts. Additional studies demonstrated increased DNA binding activity to the labeled repressor element in nuclear extracts treated with high glucose (25 mM). Southwestern analysis identified two GluRE binding proteins of 34 and 36 kDa in glucose-treated extracts. Glucose-induced activity of the repressor trans-acting factor(s) reached a maximum at 4 h, which correlated with decreased transcriptional activity of the hAT1R gene, suggesting that glucose can down-regulate the transcription of the hAT1R gene through the repressor element. Furthermore, insertion of the glucose response element into heterologous SV40 promoter (SV40) chloramphenicol acetyl transferase (CAT) vector showed orientation/distance-independent repression of SV40 promoter-mediated CAT activity in hPTECs. Our results show that the glucose response factor(s) acts as trans-acting factor(s) binding to the cis-acting repressor element in the hAT1R promoter, which may participate in the control of basal transcription as well as glucose-mediated transcriptional inhibition of the hAT1R gene.
Collapse
Affiliation(s)
- Beena E Thomas
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | |
Collapse
|
131
|
Abstract
Gene therapy has been hyped as a possible 'cure' for diabetes mellitus in the near future ever since insulin was first cloned and expressed in cultured cells in the late 1970s. In the past decade, however, the bar for gene therapy for diabetes has been raised because of recent advances in the clinical management of diabetes. Although current treatment modalities fall far short of a cure, they produce greatly improved, if imperfect, glycemic control. In this context, we review the latest advances in in vivo gene therapy and conclude that the most widely applied strategy of insulin gene transfer does not measure up to the existing treatment options, whereas the recently proved concept of induced islet neogenesis has the potential of bettering the currently available therapy. Much work remains to be done, however, before this regimen can be taken from the bench to the bedside.
Collapse
Affiliation(s)
- Lawrence Chan
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Baylor College of Medicine, Texas Medical Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
132
|
Merla G, Howald C, Antonarakis SE, Reymond A. The subcellular localization of the ChoRE-binding protein, encoded by the Williams–Beuren syndrome critical region gene 14, is regulated by 14-3-3. Hum Mol Genet 2004; 13:1505-14. [PMID: 15163635 DOI: 10.1093/hmg/ddh163] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Williams-Beuren syndrome (WBS) is a contiguous gene syndrome caused by chromosomal rearrangements at chromosome band 7q11.23. Several endocrine phenotypes, in particular impaired glucose tolerance and silent diabetes, have been described for this clinically complex disorder. The WBSCR14 gene, one of the genes mapping to the WBS critical region, encodes a member of the basic-helix-loop-helix leucine zipper family of transcription factors, which dimerizes with the Max-like protein, Mlx. This heterodimeric complex binds and activates, in a glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoter of lipogenic enzymes. We identified five novel WBSCR14-interacting proteins, four 14-3-3 isotypes and NIF3L1, which form a single polypeptide complex in mammalian cells. Phosphatase treatment abrogates the association between WBSCR14 and 14-3-3, as shown previously for multiple 14-3-3 interactors. WBSCR14 is exported actively from the nucleus through a CRM1-dependent mechanism. This translocation is contingent upon the ability to bind 14-3-3. Through this mechanism the 14-3-3 isotypes directly affect the WBSCR14:Mlx complexes, which activate the transcription of lipogenic genes.
Collapse
Affiliation(s)
- Giuseppe Merla
- Department of Genetic Medicine and Development, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
133
|
Abstract
Maintaining blood glucose levels within a narrow range is a critical physiological function requiring multiple metabolic pathways and involving several cell types, including a prominent role for hepatocytes. Under hormonal control, hepatocytes can respond to either feeding or fasting conditions by storing or producing glucose as necessary. In the fasting state, the effects of glucagon avoid hypoglycemia by stimulating glucogenesis and glycogenolysis and initiating hepatic glucose release. Postprandially, insulin prevents hyperglycemia, in part, by suppressing hepatic gluconeogenesis and glycogenolysis and facilitating hepatic glycogen synthesis. Both transcriptional regulation of rate limiting enzymes and modulation of enzyme activity through phosphorylation and allosteric regulation are involved. Type 2 diabetes mellitus is the most common serious metabolic condition in the world, and results from a subnormal response of tissues to insulin (insulin resistance) and a failure of the insulin-secreting beta cells to compensate. In type 2 diabetes, glucose is overproduced by the hepatocyte and is ineffectively metabolized by other organs. Impairments in the insulin signal transduction pathway appear to be critical lesions contributing to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Peter J Klover
- Graduate Program in Biochemistry, University of Rochester Medical Center, NY, USA
| | | |
Collapse
|
134
|
Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 2004; 101:7281-6. [PMID: 15118080 PMCID: PMC409910 DOI: 10.1073/pnas.0401516101] [Citation(s) in RCA: 557] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The liver provides for long-term energy needs of the body by converting excess carbohydrate into fat for storage. Insulin is one factor that promotes hepatic lipogenesis, but there is increasing evidence that glucose also contributes to the coordinated regulation of carbohydrate and fat metabolism in liver by mechanisms that are independent of insulin. In this study, we show that the transcription factor, carbohydrate response element-binding protein (ChREBP), is required both for basal and carbohydrate-induced expression of several liver enzymes essential for coordinated control of glucose metabolism, fatty acid, and the synthesis of fatty acids and triglycerides in vivo.
Collapse
Affiliation(s)
- Katsumi Iizuka
- Department of Biochemistry, University of Texas Southwestern Medical Center and Dallas Veterans Affairs Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA
| | | | | | | | | |
Collapse
|
135
|
Guillemain G, Da Silva Xavier G, Rafiq I, Leturque A, Rutter GA. Importin beta1 mediates the glucose-stimulated nuclear import of pancreatic and duodenal homeobox-1 in pancreatic islet beta-cells (MIN6). Biochem J 2004; 378:219-27. [PMID: 14632628 PMCID: PMC1223942 DOI: 10.1042/bj20031549] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 11/14/2003] [Accepted: 11/24/2003] [Indexed: 11/17/2022]
Abstract
The transcription factor PDX-1 (pancreatic and duodenal homeobox-1) is essential for pancreatic development and the maintainence of expression of islet beta-cell-specific genes. In an previous study [Rafiq, Kennedy and Rutter (1998) J. Biol. Chem. 273, 23241-23247] we demonstrated that PDX-1 may be activated at elevated glucose concentrations by translocation from undefined binding sites in the cytosol and nuclear membrane into the nucleoplasm. In the present study, we show that PDX-1 interacts directly and specifically in vitro with the nuclear import receptor family member, importin beta1, and that this interaction is mediated by the PDX-1 homeodomain (amino acids 146-206). Demonstrating the functional importance of the PDX-1-importin beta1 interaction, microinjection of MIN6 beta-cells with anti-(importin beta1) antibodies blocked both the nuclear translocation of PDX-1, and the activation by glucose (30 mM versus 3 mM) of the pre-proinsulin promoter. However, treatment with extracts from pancreatic islets incubated at either low or high glucose concentrations had no impact on the ability of PDX-1 to interact with importin beta1 in vitro. Furthermore, importin beta1 also interacted with SREBP1c (sterol-regulatory-element-binding protein 1c) in vitro, and microinjection of importin beta1 antibodies blocked the activation by glucose of SREBP1c target genes. Since the subcellular distribution of SREBP1c is unaffected by glucose, these findings suggest that a redistribution of importin beta1 is unlikely to explain the glucose-stimulated nuclear uptake of PDX-1. Instead, we conclude that the uptake of PDX-1 into the nucleoplasm, as glucose concentrations increase, may be mediated by release of the factor both from sites of retention in the cytosol and from non-productive complexes with importin beta1 at the nuclear membrane.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
136
|
Weigert C, Brodbeck K, Sawadogo M, Häring HU, Schleicher ED. Upstream Stimulatory Factor (USF) Proteins Induce Human TGF-β1 Gene Activation via the Glucose-response Element–1013/–1002 in Mesangial Cells. J Biol Chem 2004; 279:15908-15. [PMID: 14757763 DOI: 10.1074/jbc.m313524200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperglycemia-enhanced flux through the hexosamine biosynthetic pathway (HBP) has been implicated in the up-regulated gene expression of transforming growth factor-beta1 (TGF-beta1) in mesangial cells, thus leading to mesangial matrix expansion and diabetic glomerulosclerosis. Since the -1013 to -1002 region of the TGF-beta1 promoter shows high homology to glucose-response elements (GlRE) formerly described in genes involved in glucose metabolism, we studied the function of the GlRE in the high glucose-induced TGF-beta1 gene activation in mesangial cells. We found that high glucose concentrations enhanced the nuclear amount of upstream stimulatory factors (USF) and their binding to this sequence. Fusion of the GlRE to the thymidine kinase promoter resulted in glucose responsiveness of this promoter construct. Overexpression of either USF-1 or USF-2 increased TGF-beta1 promoter activity 2-fold, which was prevented by mutation or deletion of the GlRE. The high glucose-induced activation of the GlRE is mediated by the HBP; increased flux through the HBP induced by high glucose concentrations, by glutamine, or by overexpression of the rate-limiting enzyme glutamine:fructose-6-phosphate aminotransferase (GFAT) particularly activated USF-2 expression. GFAT-overexpressing cells showed higher USF binding activity to the GlRE and enhanced promoter activation via the GlRE. Increasing O-GlcNAc modification of proteins by streptozotocin, thereby mimicking HBP activation, also resulted in increased mRNA and nuclear protein levels of USF-2, leading to enhanced DNA binding activity to the GlRE. USF proteins themselves were not found to be O-GlcNAc-modified. Thus, we have provided evidence for a new molecular mechanism linking high glucose-enhanced HBP activity with increased nuclear USF protein levels and DNA binding activity and with up-regulated TGF-beta1 promoter activity.
Collapse
Affiliation(s)
- Cora Weigert
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Pathobiochemistry, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
137
|
Duran-Sandoval D, Mautino G, Martin G, Percevault F, Barbier O, Fruchart JC, Kuipers F, Staels B. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 2004; 53:890-8. [PMID: 15047603 DOI: 10.2337/diabetes.53.4.890] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An increased prevalence of hypertriglyceridemia and gallbladder disease occurs in patients with diabetes or insulin resistance. Hypertriglyceridemia is positively associated to gall bladder disease risk. The farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor that plays a key role in bile acid and triglyceride homeostasis. The mechanisms controlling FXR gene expression are poorly understood. This study evaluated whether FXR gene expression is regulated by alterations in glucose homeostasis. FXR expression was decreased in livers of streptozotocin-induced diabetic rats and normalized upon insulin supplementation. Concomitantly with diabetes progression, FXR expression also decreased in aging diabetic Zucker rats. In primary rat hepatocytes, D-glucose increased FXR mRNA in a dose- and time-dependent manner, whereas insulin counteracted this effect. Addition of xylitol, a precursor of xylulose-5-phosphate, to primary rat hepatocytes increased FXR expression to a comparable level as D-glucose. Finally, expression of the FXR target genes, SHP and apolipoprotein C-III, were additively regulated by D-glucose and FXR ligands. This study demonstrates that FXR is decreased in animal models of diabetes. In addition, FXR is regulated by glucose likely via the pentose phosphate pathway. Dysregulation of FXR expression may contribute to alterations in lipid and bile acid metabolism in patients with diabetes or insulin resistance.
Collapse
Affiliation(s)
- Daniel Duran-Sandoval
- Atherosclerosis Department, Unité de Recherche 545 Institute National de la Santé et de la Recherche Médicale, Pasteur Institute of Lille, and Faculty of Pharmacy, Lille2 University, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
Transient (TNDM) and permanent neonatal diabetes mellitus (PNDM) are rare conditions occurring in one in 400,000-500,000 live births. In TNDM, growth-retarded infants develop diabetes in the first few weeks of life only to go into remission in a few months with later relapse as permanent type 2 diabetes, often around the time of adolescence. We believe that pancreatic dysfunction in this condition is maintained throughout life with relapse initiated at times of metabolic stress such as puberty or pregnancy. The mechanisms involved in this rare condition may inform on fetal pancreatic development, islet cell physiology and predisposition to type 2 diabetes. In PNDM, insulin secretory failure occurs in the early postnatal period. A number of conditions are associated with PNDM, some of which have been elucidated at the molecular level. Insulin therapy is difficult to manage in the neonatal period, and in experienced hands, the insulin pump may provide a valuable tool to administer insulin.
Collapse
Affiliation(s)
- Michel Polak
- Paediatric Endocrinology and INSERM EMI 0363, Hôpital Necker-Enfants Malades, Paris, France.
| | | |
Collapse
|
139
|
Shieh JJ, Pan CJ, Mansfield BC, Chou JY. The islet-specific glucose-6-phosphatase-related protein, implicated in diabetes, is a glycoprotein embedded in the endoplasmic reticulum membrane. FEBS Lett 2004; 562:160-4. [PMID: 15044018 DOI: 10.1016/s0014-5793(04)00223-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 02/16/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
The islet-specific glucose-6-phosphatase-related protein (IGRP) has no known catalytic activity, but is of interest because it is the source of the peptide autoantigen targeted by a prevalent population of pathogenic CD8(+) T cells in non-obese diabetic mice. To better understand the potential roles of this protein in diabetes mellitus, we examine the subcellular localization and membrane topography of human IGRP. We show that IGRP is a glycoprotein, held in the endoplasmic reticulum by nine transmembrane domains, which is degraded in cells predominantly through the proteasome pathway that generates the major histocompatibility complex class I-presented peptides.
Collapse
Affiliation(s)
- Jeng-Jer Shieh
- Section on Cellular Differentiation, Heritable Disorders Branch, National Institute of Child Health and Human Development, Building 10, Room 9S241, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | | | | | | |
Collapse
|
140
|
Sauvaget D, Chauffeton V, Dugué-Pujol S, Kalopissis AD, Guillet-Deniau I, Foufelle F, Chambaz J, Leturque A, Cardot P, Ribeiro A. In vitro transcriptional induction of the human apolipoprotein A-II gene by glucose. Diabetes 2004; 53:672-8. [PMID: 14988251 DOI: 10.2337/diabetes.53.3.672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 2 diabetic patients present high triglyceride and low HDL levels, significant determinants for the risk of atherosclerosis. Transgenic mice overproducing human apolipoprotein (apo)A-II, one of the two major apos of HDLs, display the same lipid disorders. Here, we investigated the possible regulation of apoA-II gene expression by glucose. In primary rat hepatocytes and in HepG2 cells, the transcription of the human apoA-II gene was upregulated by glucose. This response was mediated by a hormone-responsive element within the enhancer of the apoA-II promoter and was dependent on hepatocyte nuclear factor-4alpha. Accordingly, in transgenic mice, the human apoA-II gene is stimulated by a high-carbohydrate diet after fasting and at weaning. By contrast, the apoA-II mRNA level is not modified in streptozotocin-induced diabetic rats. In transgenic mice overexpressing the human apoA-II gene, plasma human apoA-II concentration was positively correlated with blood glucose levels. These mice displayed a marked delay in plasma glucose tolerance as compared with control mice. We hypothesize that the following pathogenic pathway might occur in the course of type 2 diabetes: increased apoA-II level causes a rise in plasma triglyceride level and glucose intolerance, resulting in hyperglycemia, which in turn might further increase apoA-II gene transcription.
Collapse
Affiliation(s)
- Dominique Sauvaget
- Institut National de la Santé et de la Recherche Médicale (INSERM) U505, Institut Biomédical des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Stoeckman AK, Ma L, Towle HC. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem 2004; 279:15662-9. [PMID: 14742444 DOI: 10.1074/jbc.m311301200] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of genes encoding enzymes involved in de novo triglyceride synthesis (lipogenesis) is transcriptionally induced in the liver in response to increased glucose metabolism. The carbohydrate response element-binding protein (ChREBP) is a newly identified basic helix-loop-helix/leucine zipper transcription factor proposed to regulate the expression of the glucose-responsive gene pyruvate kinase. This gene contains a carbohydrate response element (ChoRE) consisting of two E box motifs separated by 5 bp that is necessary and sufficient for glucose regulation. We demonstrate that overexpression of ChREBP in primary rat hepatocytes activates other ChoRE-containing promoters in a manner consistent with their ability to respond to glucose. In vitro binding of ChREBP to ChoRE sequences was not detected. Because E box-binding proteins function as obligate dimers, we performed a yeast two-hybrid screen of a mouse liver cDNA library to identify potential heteromeric partners. Mlx (Max-like protein X) was selected as the only basic helix-loop-helix/leucine zipper interaction partner in this screen. When a plasmid expressing either Mlx or ChREBP was cotransfected with a ChoRE-containing reporter plasmid into human embryonic kidney 293 cells, no increase in promoter activity was observed. However, the expression of both proteins dramatically enhanced promoter activity. This activation was observed with reporters containing ChoREs from several different lipogenic enzyme genes. In contrast, reporters containing non-glucose-responsive E box elements were not activated by ChREBP-Mlx expression. In vitro binding of ChREBP to ChoRE-containing oligonucleotides was observed only in the presence of Mlx. ChREBP-Mlx binding discriminated between E box sites that are glucose-responsive and those that are not. We conclude that Mlx is a functional heteromeric partner of ChREBP in regulating the expression of glucose-responsive genes.
Collapse
Affiliation(s)
- Angela K Stoeckman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
142
|
Kamemura K, Hart GW. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: a new paradigm for metabolic control of signal transduction and transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:107-36. [PMID: 12882516 DOI: 10.1016/s0079-6603(03)01004-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The glycosylation of serine and threonine residues with beta-O-linked N-acetylglucosamine (O-GlcNAc) is an abundant posttranslational modification of nuclear and cytoplasmic proteins in multicellular eukaryotes. This highly dynamic glycosylation/deglycosylation of protein is catalyzed by the nucleocytoplasmic enzymes, UDP-G1cNAc: polypeptide O-beta-N-acetylglucosaminyltransferase (OGT)/O-beta-N-acetylglucosaminidase. OGT is required for embryonic stem cell viability and mouse ontogeny, thus O-GlcNAc is essential for the life of eukaryotes. The gene encoding O-GlcNAcase maps to a locus important to late-onset Alzheimer's disease. All known O-GlcNAc-modified proteins are also phosphoproteins that form reversible multimeric protein complexes. There is both a global and often site-specific reciprocal relationship between O-GlcNAc and O-phosphate in many cellular responses to stimuli. Thus, regulation of the protein-protein interaction(s) and/or protein function by dynamic glycosylation/phosphorylation has been hypothesized. In this chapter, we will review the current status of dynamic glycosylation/phosphorylation of several important regulatory proteins including c-Myc, estrogen receptors, Sp1, endothelial nitric oxide synthase, and beta-catenin. Various aspects of subcellular localization, association with binding partners, activity, and/or turnover of these proteins appear to be regulated by dynamic glycosylation/ phosphorylation in response to cellular signals or stages.
Collapse
Affiliation(s)
- Kazuo Kamemura
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
143
|
Green A, Rumberger JM, Stuart CA, Ruhoff MS. Stimulation of lipolysis by tumor necrosis factor-alpha in 3T3-L1 adipocytes is glucose dependent: implications for long-term regulation of lipolysis. Diabetes 2004; 53:74-81. [PMID: 14693700 DOI: 10.2337/diabetes.53.1.74] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) and hyperglycemia both impair insulin sensitivity in vivo. This may be secondary to stimulation of adipose tissue lipolysis and consequent increased circulating free fatty acids (FFAs). Here we report that neither TNF-alpha nor glucose alone has a pronounced effect on lipolysis in 3T3-L1 adipocytes. However, the combination of TNF-alpha plus glucose markedly stimulates lipolysis. Glucose does not affect the ability of isoproterenol to stimulate lipolysis. Alternative substrates such as acetate, pyruvate, and lactate do not allow the TNF-alpha effect. Mannose was almost as effective as glucose; fructose was marginally effective, but galactose was ineffective. The effectiveness of the sugars corresponded with production of lactate, i.e., the cells readily produced lactate from glucose or mannose, slightly from fructose, and not at all from galactose. The ability of TNF-alpha to phosphorylate extracellular signal-regulated kinase 1 (ERK1) and ERK2 and to downregulate perilipin (which has been implicated in the lipolytic effect of TNF-alpha) was not affected by glucose. We conclude that the lipolytic action of TNF-alpha is influenced by glucose in 3T3-L1 adipocytes. The findings suggest that glucose metabolism is required for the lipolytic response to TNF-alpha but not for early signaling events. These findings suggest novel mechanisms by which TNF-alpha and hyperglycemia raise FFA levels and induce insulin resistance.
Collapse
Affiliation(s)
- Allan Green
- Bassett Research Institute, Bassett Healthcare, Cooperstown, New York 13326, USA.
| | | | | | | |
Collapse
|
144
|
Okitsu T, Kobayashi N, Jun HS, Shin S, Kim SJ, Han J, Kwon H, Sakaguchi M, Totsugawa T, Kohara M, Westerman KA, Tanaka N, Leboulch P, Yoon JW. Transplantation of reversibly immortalized insulin-secreting human hepatocytes controls diabetes in pancreatectomized pigs. Diabetes 2004; 53:105-12. [PMID: 14693704 DOI: 10.2337/diabetes.53.1.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes results from the destruction of insulin-producing pancreatic beta-cells by a beta-cell-specific autoimmune process. Although converting other cell types into insulin-producing cells may compensate for the loss of the beta-cell mass while evading beta-cell-specific T-cell responses, proof-of-principle of this approach in large animal models is lacking. This investigation was initiated to determine whether an insulin-producing human hepatocyte line can control diabetes when transplanted into totally pancreatectomized diabetic pigs. We established a reversibly immortalized human hepatocyte line, YOCK-13, by transferring a human telomerase reverse transcriptase cDNA and a drug-inducible Cre recombinase cassette, followed by cDNA for a modified insulin under the control of the L-type pyruvate kinase (L-PK) promoter. YOCK-13 cells produced small amounts of modified insulin and no detectable endogenous L-PK at low glucose concentrations, whereas they produced large amounts of both modified insulin and L-PK in response to high glucose concentrations. Xenotransplantation of YOCK-13 cells via the portal vein into immunosuppressed, totally pancreatectomized pigs decreased hyperglycemia and prolonged survival without adverse effects such as portal thrombosis, liver necrosis, pulmonary embolism, and tumor development. We suggest that this reversibly immortalized, insulin-secreting human hepatocyte line may overcome the shortage of donor pancreata for islet transplantation into patients with type 1 diabetes.
Collapse
Affiliation(s)
- Teru Okitsu
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Jousse C, Averous J, Bruhat A, Carraro V, Mordier S, Fafournoux P. Amino acids as regulators of gene expression: molecular mechanisms. Biochem Biophys Res Commun 2004; 313:447-52. [PMID: 14684183 DOI: 10.1016/j.bbrc.2003.07.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Regulation of gene expression by nutrients in mammals is an important mechanism allowing them to adapt their physiological functions according to the supply of nutrient in the diet. It has been shown recently that amino acids are able to regulate by themselves the expression of numerous genes. CHOP, asparagine synthetase, and IGFBP-1 regulation following AA starvation will be described in this review with special interest in the molecular mechanisms involved.
Collapse
Affiliation(s)
- Céline Jousse
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | | | |
Collapse
|
146
|
Massillon D, Arinze IJ, Xu C, Bone F. Regulation of glucose-6-phosphatase gene expression in cultured hepatocytes and H4IIE cells by short-chain fatty acids: role of hepatic nuclear factor-4alpha. J Biol Chem 2003; 278:40694-701. [PMID: 12915406 DOI: 10.1074/jbc.m303182200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms underlying dietary nutrient regulation of glucose-6-phosphatase (Glc-6-Pase) gene expression are not well understood. Here we investigated the effects of short-chain fatty acids on the expression of this gene in primary cultures of rat hepatocytes and H4IIE hepatoma cells. Propionate, butyrate, valerate, and caproate induced severalfold increases in the expression of Glc-6-Pase mRNA. In reporter gene assays, propionate, valerate, caproate, and also octanoate increased Glc-6-Pase promoter activity by 6-16-fold. Butyrate, by itself, had little or no effect on promoter activity, but it induced a robust increase (45-fold) in promoter activity in cells co-transfected with a plasmid expressing the transcription factor HNF-4alpha (alpha isoforms of hepatic nuclear factor 4). HNF-4alpha also enhanced promoter activity induced by other short-chain fatty acids. A dominant negative form of HNF-4alpha abrogated the fatty acid-induced promoter activity, a finding that accentuates a role for HNF-4alpha in the transcription process studied here. In cells transfected with HNF-4alpha, short-chain fatty acids and trichostatin A, an inhibitor of histone deacetylase, synergistically enhanced promoter activity, suggesting that hyperacetylation of histones is an important component of the transactivation of the Glc-6-Pase gene promoter by HNF-4alpha. Region-751/-466 of this promoter contains seven putative HNF-4alpha-binding motifs. Binding of HNF-4alpha to this region was confirmed by electrophoretic mobility shift and chromatin immunoprecipitation assays, indicating that HNF-4alpha is recruited to the Glc-6-Pase gene promoter during short-chain fatty acid-induced transcription from this promoter.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Chromatin/metabolism
- DNA-Binding Proteins
- Fatty Acids, Volatile/metabolism
- Gene Expression Regulation, Enzymologic
- Genes, Dominant
- Genes, Reporter
- Glucose-6-Phosphatase/biosynthesis
- Glucose-6-Phosphatase/genetics
- Hepatocyte Nuclear Factor 4
- Hepatocytes/enzymology
- Histone Deacetylases/metabolism
- Histones/metabolism
- Hydroxamic Acids/pharmacology
- Models, Genetic
- Phosphoproteins/physiology
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Rats
- Time Factors
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- Duna Massillon
- Departments of Nutrition and Physiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA.
| | | | | | | |
Collapse
|
147
|
Yim S, Choi SM, Choi Y, Lee N, Chung J, Park H. Insulin and hypoxia share common target genes but not the hypoxia-inducible factor-1alpha. J Biol Chem 2003; 278:38260-8. [PMID: 12876287 DOI: 10.1074/jbc.m306016200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Both hypoxia and insulin induce common target genes, including vascular endothelial growth factors and several glycolytic enzymes. However, these two signals eventually trigger quite different metabolic pathways. Hypoxia induces glycolysis, resulting in anaerobic ATP production, while insulin increases glycolysis for energy storage. Hypoxia-induced gene expression is mediated by the hypoxia-inducible factor-1 (HIF-1) that consists of HIF-1alpha and the aromatic hydrocarbon nuclear translocator (Arnt). Hypoxia-induced gene expression is initiated by the stabilization of the HIF-1alpha subunit. Here we investigated whether insulin-induced gene expression also requires stabilization of HIF-1alpha. Our results indicate that hypoxia but not insulin stabilizes HIF-1alpha protein levels, whereas both insulin- and hypoxia-induced gene expression require the presence of the Arnt protein. Insulin treatment fails to inactivate proline hydroxylation of HIF-1alpha, which triggers recruitment of the von Hippel-Lindau protein and oxygen-dependent degradation of HIF-1alpha. Insulin-induced gene expression is inhibited by the presence of the phosphoinositide (PI) 3-kinase inhibitor LY294002 and the dominant negative mutant of the p85 subunit of PI 3-kinase, whereas hypoxia-induced gene expression is not. Pyrrolidine dithiocarbamate, a scavenger of H2O2, reduces insulin-induced gene expression but not hypoxia-induced gene expression. Although both hypoxia and insulin induce the expression of common target genes through a hypoxia-responsive element- and Arnt-dependent mechanism, insulin cannot stabilize the HIF-1alpha protein. We believe that insulin activates other putative partner proteins for Arnt in PI 3-kinase- and H2O2-dependent pathways.
Collapse
Affiliation(s)
- Sujin Yim
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | | | | | | | | | | |
Collapse
|
148
|
Riu E, Ferre T, Hidalgo A, Mas A, Franckhauser S, Otaegui P, Bosch F. Overexpression of c-myc in the liver prevents obesity and insulin resistance. FASEB J 2003; 17:1715-7. [PMID: 12958186 DOI: 10.1096/fj.02-1163fje] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alterations in hepatic glucose metabolism play a key role in the development of the hyperglycemia observed in type 2 diabetes. Because the transcription factor c-Myc induces hepatic glucose uptake and utilization and blocks gluconeogenesis, we examined whether hepatic overexpression of c-myc counteracts the insulin resistance induced by a high-fat diet. After 3 months on this diet, control mice became obese, hyperglycemic, and hyperinsulinemic, indicating that they had developed insulin resistance. In contrast, transgenic mice remained lean and showed improved glucose disposal and normal levels of blood glucose and insulin, indicating that they had developed neither obesity nor insulin resistance. These findings were concomitant with normalization of hepatic glucokinase and pyruvate kinase gene expression and enzyme activity, which led to normalization of intrahepatic glucose-6-phosphate and glycogen content. In the liver of control mice fed a high-fat diet, the expression of genes encoding proteins that control energy metabolism, such as sterol receptor element binding protein 1-c, peroxisome proliferator activated receptor alpha, and uncoupling protein-2, was altered. In contrast, in the liver of transgenic mice fed a high-fat diet, the expression of these genes was normal. These results suggest that c-myc overexpression counteracted the obesity and insulin resistance induced by a high-fat diet by modulating the expression of genes that regulate hepatic metabolism.
Collapse
Affiliation(s)
- Efren Riu
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, and Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Spain
| | | | | | | | | | | | | |
Collapse
|
149
|
Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J 2003; 373:1-18. [PMID: 12879880 PMCID: PMC1223487 DOI: 10.1042/bj20030405] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amino acid availability regulates cellular physiology by modulating gene expression and signal transduction pathways. However, although the signalling intermediates between nutrient availability and altered gene expression have become increasingly well documented, how eukaryotic cells sense the presence of either a nutritionally rich or deprived medium is still uncertain. From recent studies it appears that the intracellular amino acid pool size is particularly important in regulating translational effectors, thus, regulated transport of amino acids across the plasma membrane represents a means by which the cellular response to amino acids could be controlled. Furthermore, evidence from studies with transportable amino acid analogues has demonstrated that flux through amino acid transporters may act as an initiator of nutritional signalling. This evidence, coupled with the substrate selectivity and sensitivity to nutrient availability classically associated with amino acid transporters, plus the recent discovery of transporter-associated signalling proteins, demonstrates a potential role for nutrient transporters as initiators of cellular nutrient signalling. Here, we review the evidence supporting the idea that distinct amino acid "receptors" function to detect and transmit certain nutrient stimuli in higher eukaryotes. In particular, we focus on the role that amino acid transporters may play in the sensing of amino acid levels, both directly as initiators of nutrient signalling and indirectly as regulators of external amino acid access to intracellular receptor/signalling mechanisms.
Collapse
Affiliation(s)
- Russell Hyde
- Division of Molecular Physiology, MSI/WTB Complex, University of Dundee, Scotland, UK
| | | | | |
Collapse
|
150
|
Averous J, Bruhat A, Mordier S, Fafournoux P. Recent advances in the understanding of amino acid regulation of gene expression. J Nutr 2003; 133:2040S-2045S. [PMID: 12771362 DOI: 10.1093/jn/133.6.2040s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammals, the impact of nutrients on gene expression has become an important area of research. Because amino acids have multiple and important functions, their homeostasis has to be finely maintained. However, amino acidemia can be affected by certain nutritional conditions or various forms of stress. Consequently, mammals must adjust several of the physiological functions involved in the adaptation to amino acid availability by regulating expression of numerous genes. It has been shown that amino acids alone can modify the expression of target genes. However, understanding of amino acid-dependent control of gene expression has just started to emerge. This review focuses on recent advances in the understanding of mechanisms involved in the amino acid control of gene expression.
Collapse
Affiliation(s)
- Julien Averous
- Unité de Nutrition et Métabolisme Protéique, Institut National de la Recherche Agronomique de Theix, 63122 Saint Genès Champanelle, France
| | | | | | | |
Collapse
|