101
|
Suh YS, Lee J, George J, Seol D, Jeong K, Oh SY, Bang C, Jun Y, Kong SH, Lee HJ, Kim JI, Kim WH, Yang HK, Lee C. RNA expression of 6 genes from metastatic mucosal gastric cancer serves as the global prognostic marker for gastric cancer with functional validation. Br J Cancer 2024; 130:1571-1584. [PMID: 38467827 PMCID: PMC11059174 DOI: 10.1038/s41416-024-02642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Molecular analysis of advanced tumors can increase tumor heterogeneity and selection bias. We developed a robust prognostic signature for gastric cancer by comparing RNA expression between very rare early gastric cancers invading only mucosal layer (mEGCs) with lymph node metastasis (Npos) and those without metastasis (Nneg). METHODS Out of 1003 mEGCs, all Npos were matched to Nneg using propensity scores. Machine learning approach comparing Npos and Nneg was used to develop prognostic signature. The function and robustness of prognostic signature was validated using cell lines and external datasets. RESULTS Extensive machine learning with cross-validation identified the prognostic classifier consisting of four overexpressed genes (HDAC5, NPM1, DTX3, and PPP3R1) and two downregulated genes (MED12 and TP53), and enabled us to develop the risk score predicting poor prognosis. Cell lines engineered to high-risk score showed increased invasion, migration, and resistance to 5-FU and Oxaliplatin but maintained sensitivity to an HDAC inhibitor. Mouse models after tail vein injection of cell lines with high-risk score revealed increased metastasis. In three external cohorts, our risk score was identified as the independent prognostic factor for overall and recurrence-free survival. CONCLUSION The risk score from the 6-gene classifier can successfully predict the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Donghyeok Seol
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoungyun Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Young Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Chanmi Bang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yukyung Jun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|
102
|
Kuric M, Beck S, Schneider D, Rindt W, Evers M, Meißner-Weigl J, Zeck S, Krug M, Herrmann M, Hartmann TN, Leich E, Rudert M, Docheva D, Seckinger A, Hose D, Jundt F, Ebert R. Modeling Myeloma Dissemination In Vitro with hMSC-interacting Subpopulations of INA-6 Cells and Their Aggregation/Detachment Dynamics. CANCER RESEARCH COMMUNICATIONS 2024; 4:1150-1164. [PMID: 38598843 PMCID: PMC11057410 DOI: 10.1158/2767-9764.crc-23-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.
Collapse
Affiliation(s)
- Martin Kuric
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Susanne Beck
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Doris Schneider
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Wyonna Rindt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Marietheres Evers
- University of Würzburg, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Jutta Meißner-Weigl
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Sabine Zeck
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Melanie Krug
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Marietta Herrmann
- University Hospital Würzburg, IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, Würzburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ellen Leich
- University of Würzburg, Institute of Pathology, Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Maximilian Rudert
- Orthopedic Department, Clinic König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Anja Seckinger
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Jette, Belgium
| | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Jette, Belgium
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| |
Collapse
|
103
|
Vandermeulen L, Geric I, Fumagalli L, Kreir M, Lu A, Nonneman A, Premereur J, Wolfs L, Policarpo R, Fattorelli N, De Bondt A, Van Den Wyngaert I, Asselbergh B, Fiers M, De Strooper B, d'Ydewalle C, Mancuso R. Regulation of human microglial gene expression and function via RNAase-H active antisense oligonucleotides in vivo in Alzheimer's disease. Mol Neurodegener 2024; 19:37. [PMID: 38654375 PMCID: PMC11040766 DOI: 10.1186/s13024-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-β plaques in vivo in a model of AD. CONCLUSIONS This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.
Collapse
Affiliation(s)
- Lina Vandermeulen
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ivana Geric
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Laura Fumagalli
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mohamed Kreir
- Preclinical Development & Safety, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ashley Lu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Annelies Nonneman
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Jessie Premereur
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Rafaela Policarpo
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Nicola Fattorelli
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium.
| | - Renzo Mancuso
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium.
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
104
|
Callahan TJ, Tripodi IJ, Stefanski AL, Cappelletti L, Taneja SB, Wyrwa JM, Casiraghi E, Matentzoglu NA, Reese J, Silverstein JC, Hoyt CT, Boyce RD, Malec SA, Unni DR, Joachimiak MP, Robinson PN, Mungall CJ, Cavalleri E, Fontana T, Valentini G, Mesiti M, Gillenwater LA, Santangelo B, Vasilevsky NA, Hoehndorf R, Bennett TD, Ryan PB, Hripcsak G, Kahn MG, Bada M, Baumgartner WA, Hunter LE. An open source knowledge graph ecosystem for the life sciences. Sci Data 2024; 11:363. [PMID: 38605048 PMCID: PMC11009265 DOI: 10.1038/s41597-024-03171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 different large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.
Collapse
Affiliation(s)
- Tiffany J Callahan
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Ignacio J Tripodi
- Computer Science Department, Interdisciplinary Quantitative Biology, University of Colorado Boulder, Boulder, CO, 80301, USA
| | - Adrianne L Stefanski
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Luca Cappelletti
- AnacletoLab, Dipartimento di Informatica, Universit`a degli Studi di Milano, Via Celoria 18, 20133, Milan, Italy
| | - Sanya B Taneja
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jordan M Wyrwa
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elena Casiraghi
- AnacletoLab, Dipartimento di Informatica, Universit`a degli Studi di Milano, Via Celoria 18, 20133, Milan, Italy
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Justin Reese
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
| | - Charles Tapley Hoyt
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard D Boyce
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15206, USA
| | - Scott A Malec
- Division of Translational Informatics, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Deepak R Unni
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marcin P Joachimiak
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter N Robinson
- Berlin Institute of Health at Charité-Universitatsmedizin, 10117, Berlin, Germany
| | - Christopher J Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emanuele Cavalleri
- AnacletoLab, Dipartimento di Informatica, Universit`a degli Studi di Milano, Via Celoria 18, 20133, Milan, Italy
| | - Tommaso Fontana
- AnacletoLab, Dipartimento di Informatica, Universit`a degli Studi di Milano, Via Celoria 18, 20133, Milan, Italy
| | - Giorgio Valentini
- AnacletoLab, Dipartimento di Informatica, Universit`a degli Studi di Milano, Via Celoria 18, 20133, Milan, Italy
- ELLIS, European Laboratory for Learning and Intelligent Systems, Milan Unit, Italy
| | - Marco Mesiti
- AnacletoLab, Dipartimento di Informatica, Universit`a degli Studi di Milano, Via Celoria 18, 20133, Milan, Italy
| | - Lucas A Gillenwater
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brook Santangelo
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nicole A Vasilevsky
- Data Collaboration Center, Critical Path Institute, 1840 E River Rd. Suite 100, Tucson, AZ, 85718, USA
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tellen D Bennett
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Patrick B Ryan
- Janssen Research and Development, Raritan, NJ, 08869, USA
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Michael G Kahn
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Michael Bada
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - William A Baumgartner
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Lawrence E Hunter
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
105
|
Gupta A, Thirunavukkarasu S, Rangel-Moreno J, Ahmed M, Swanson RV, Mbandi SK, Smrcka AV, Kaushal D, Scriba TJ, Khader SA. Phospholipase C epsilon-1 (PLCƐ1) mediates macrophage activation and protection against tuberculosis. Infect Immun 2024; 92:e0049523. [PMID: 38451080 PMCID: PMC11003233 DOI: 10.1128/iai.00495-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infects up to a quarter of the world's population. Although immune responses can control Mtb infection, 5%-10% of infected individuals can progress to active TB disease (progressors). A myriad of host factors regulate disease progression in TB and a better understanding of immune correlates of protection and disease is pivotal for the development of new therapeutics. Comparison of human whole blood transcriptomic metadata with that of macaque TB progressors and Mtb-infected diversity outbred mice (DO) led to the identification of differentially regulated gene (DEG) signatures, associated with TB progression or control. The current study assessed the function of Phospholipase C epsilon (PLCƐ1), the top downregulated gene across species in TB progressors, using a gene-specific knockout mouse model of Mtb infection and in vitro Mtb-infected bone marrow-derived macrophages. PLCƐ1 gene expression was downregulated in TB progressors across species. PLCε1 deficiency in the mouse model resulted in increased susceptibility to Mtb infection, coincident accumulation of lung myeloid cells, and reduced ability to mount antibacterial responses. However, PLCε1 was not required for the activation and accumulation of T cells in mice. Our results suggest an important early role for PLCƐ1 in shaping innate immune response to TB and may represent a putative target for host-directed therapy.
Collapse
Affiliation(s)
- Ananya Gupta
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | | | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mushtaq Ahmed
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Rosemary V. Swanson
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alan V. Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Deepak Kaushal
- Southwest National Primate Research Centre (SNPRC) at Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Shabaana A. Khader
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
106
|
Zhang X, Ge L, Jin G, Liu Y, Yu Q, Chen W, Chen L, Dong T, Miyagishima KJ, Shen J, Yang J, Lv G, Xu Y, Yang Q, Ye L, Yi S, Li H, Zhang Q, Chen G, Liu W, Yang Y, Li W, Ou J. Cold-induced FOXO1 nuclear transport aids cold survival and tissue storage. Nat Commun 2024; 15:2859. [PMID: 38570500 PMCID: PMC10991392 DOI: 10.1038/s41467-024-47095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Cold-induced injuries severely limit opportunities and outcomes of hypothermic therapies and organ preservation, calling for better understanding of cold adaptation. Here, by surveying cold-altered chromatin accessibility and integrated CUT&Tag/RNA-seq analyses in human stem cells, we reveal forkhead box O1 (FOXO1) as a key transcription factor for autonomous cold adaptation. Accordingly, we find a nonconventional, temperature-sensitive FOXO1 transport mechanism involving the nuclear pore complex protein RANBP2, SUMO-modification of transporter proteins Importin-7 and Exportin-1, and a SUMO-interacting motif on FOXO1. Our conclusions are supported by cold survival experiments with human cell models and zebrafish larvae. Promoting FOXO1 nuclear entry by the Exportin-1 inhibitor KPT-330 enhances cold tolerance in pre-diabetic obese mice, and greatly prolongs the shelf-life of human and mouse pancreatic tissues and islets. Transplantation of mouse islets cold-stored for 14 days reestablishes normoglycemia in diabetic mice. Our findings uncover a regulatory network and potential therapeutic targets to boost spontaneous cold adaptation.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Cancer Biology, Dana-Farber Cancer Institute; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lihao Ge
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Guanghui Jin
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Qingfen Yu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weizhao Chen
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Dong
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kiyoharu J Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juan Shen
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China
| | - Jinghong Yang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China
| | - Yan Xu
- Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhong Yi
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China.
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Guangdong province engineering laboratory for transplantation medicine, Guangzhou, China.
| |
Collapse
|
107
|
Rinne MK, Urvas L, Mandrika I, Fridmanis D, Riddy DM, Langmead CJ, Kukkonen JP, Xhaard H. Characterization of a putative orexin receptor in Ciona intestinalis sheds light on the evolution of the orexin/hypocretin system in chordates. Sci Rep 2024; 14:7690. [PMID: 38565870 PMCID: PMC10987541 DOI: 10.1038/s41598-024-56508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.
Collapse
Affiliation(s)
- Maiju K Rinne
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, 00014, Helsinki, Finland
- Department of Pharmacology, Medicum, University of Helsinki, POB 63, 00014, Helsinki, Finland
| | - Lauri Urvas
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Jyrki P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, POB 66, 00014, Helsinki, Finland.
- Department of Pharmacology, Medicum, University of Helsinki, POB 63, 00014, Helsinki, Finland.
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, POB 56, 00014, Helsinki, Finland.
| |
Collapse
|
108
|
Xiao C, Wu X, Gallagher CS, Rasooly D, Jiang X, Morton CC. Genetic contribution of reproductive traits to risk of uterine leiomyomata: a large-scale, genome-wide, cross-trait analysis. Am J Obstet Gynecol 2024; 230:438.e1-438.e15. [PMID: 38191017 DOI: 10.1016/j.ajog.2023.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Although phenotypic associations between female reproductive characteristics and uterine leiomyomata have long been observed in epidemiologic investigations, the shared genetic architecture underlying these complex phenotypes remains unclear. OBJECTIVE We aimed to investigate the shared genetic basis, pleiotropic effects, and potential causal relationships underlying reproductive traits (age at menarche, age at natural menopause, and age at first birth) and uterine leiomyomata. STUDY DESIGN With the use of large-scale, genome-wide association studies conducted among women of European ancestry for age at menarche (n=329,345), age at natural menopause (n=201,323), age at first birth (n=418,758), and uterine leiomyomata (ncases/ncontrols=35,474/267,505), we performed a comprehensive, genome-wide, cross-trait analysis to examine systematically the common genetic influences between reproductive traits and uterine leiomyomata. RESULTS Significant global genetic correlations were identified between uterine leiomyomata and age at menarche (rg, -0.17; P=3.65×10-10), age at natural menopause (rg, 0.23; P=3.26×10-07), and age at first birth (rg, -0.16; P=1.96×10-06). Thirteen genomic regions were further revealed as contributing significant local correlations (P<.05/2353) to age at natural menopause and uterine leiomyomata. A cross-trait meta-analysis identified 23 shared loci, 3 of which were novel. A transcriptome-wide association study found 15 shared genes that target tissues of the digestive, exo- or endocrine, nervous, and cardiovascular systems. Mendelian randomization suggested causal relationships between a genetically predicted older age at menarche (odds ratio, 0.88; 95% confidence interval, 0.85-0.92; P=1.50×10-10) or older age at first birth (odds ratio, 0.95; 95% confidence interval, 0.90-0.99; P=.02) and a reduced risk for uterine leiomyomata and between a genetically predicted older age at natural menopause and an increased risk for uterine leiomyomata (odds ratio, 1.08; 95% confidence interval, 1.06-1.09; P=2.30×10-27). No causal association in the reverse direction was found. CONCLUSION Our work highlights that there are substantial shared genetic influences and putative causal links that underlie reproductive traits and uterine leiomyomata. The findings suggest that early identification of female reproductive risk factors may facilitate the initiation of strategies to modify potential uterine leiomyomata risk.
Collapse
Affiliation(s)
- Changfeng Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Danielle Rasooly
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.
| | - Cynthia Casson Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Manchester Centre for Audiology and Deafness, Manchester Academic Health Science Center, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
109
|
Ouedraogo WYDD, Ouangraoua A. Orthology and Paralogy Relationships at Transcript Level. J Comput Biol 2024; 31:277-293. [PMID: 38621191 DOI: 10.1089/cmb.2023.0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Eukaryotic genes undergo a mechanism called alternative processing, resulting in transcriptome diversity by allowing the production of multiple distinct transcripts from a gene. More than half of human genes are affected, and the resulting transcripts are highly conserved among orthologous genes of distinct species. In this work, we present the definition of orthology and paralogy between transcripts of homologous genes, together with an algorithm to compute clusters of conserved orthologous and paralogous transcripts. Gene-level homology relationships are utilized to define various types of homology relationships between transcripts originating from the same ancestral transcript. A Reciprocal Best Hits approach is employed to infer clusters of isoorthologous and recent paralogous transcripts. We applied this method to transcripts from simulated gene families as well as real gene families from the Ensembl-Compara database. The results are consistent with those from previous studies that compared orthologous gene transcripts. Furthermore, our findings provide evidence that searching for conserved transcripts between homologous genes, beyond the scope of orthologous genes, is likely to yield valuable information.
Collapse
Affiliation(s)
| | - Aida Ouangraoua
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
110
|
Zhu X, Hong S, Bu J, Liu Y, Liu C, Li R, Zhang T, Zhang Z, Li L, Zhou X, Hua Z, Zhu B, Hou B. Antiviral memory B cells exhibit enhanced innate immune response facilitated by epigenetic memory. SCIENCE ADVANCES 2024; 10:eadk0858. [PMID: 38552009 PMCID: PMC10980274 DOI: 10.1126/sciadv.adk0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The long-lasting humoral immunity induced by viral infections or vaccinations depends on memory B cells with greatly increased affinity to viral antigens, which are evolved from germinal center (GC) responses. However, it is unclear whether antiviral memory B cells represent a distinct subset among the highly heterogeneous memory B cell population. Here, we examined memory B cells induced by a virus-mimicking antigen at both transcriptome and epigenetic levels and found unexpectedly that antiviral memory B cells exhibit an enhanced innate immune response, which appeared to be facilitated by the epigenetic memory that is established through the memory B cell development. In addition, T-bet is associated with the altered chromatin architecture and is required for the formation of the antiviral memory B cells. Thus, antiviral memory B cells are distinct from other GC-derived memory B cells in both physiological functions and epigenetic landmarks.
Collapse
Affiliation(s)
- Xiping Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Hong
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiachen Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingping Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuqiang Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolin Hua
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baidong Hou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
111
|
Duncan AG, Mitchell JA, Moses AM. Improving the performance of supervised deep learning for regulatory genomics using phylogenetic augmentation. Bioinformatics 2024; 40:btae190. [PMID: 38588559 PMCID: PMC11042905 DOI: 10.1093/bioinformatics/btae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/12/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
MOTIVATION Supervised deep learning is used to model the complex relationship between genomic sequence and regulatory function. Understanding how these models make predictions can provide biological insight into regulatory functions. Given the complexity of the sequence to regulatory function mapping (the cis-regulatory code), it has been suggested that the genome contains insufficient sequence variation to train models with suitable complexity. Data augmentation is a widely used approach to increase the data variation available for model training, however current data augmentation methods for genomic sequence data are limited. RESULTS Inspired by the success of comparative genomics, we show that augmenting genomic sequences with evolutionarily related sequences from other species, which we term phylogenetic augmentation, improves the performance of deep learning models trained on regulatory genomic sequences to predict high-throughput functional assay measurements. Additionally, we show that phylogenetic augmentation can rescue model performance when the training set is down-sampled and permits deep learning on a real-world small dataset, demonstrating that this approach improves data efficiency. Overall, this data augmentation method represents a solution for improving model performance that is applicable to many supervised deep-learning problems in genomics. AVAILABILITY AND IMPLEMENTATION The open-source GitHub repository agduncan94/phylogenetic_augmentation_paper includes the code for rerunning the analyses here and recreating the figures.
Collapse
Affiliation(s)
- Andrew G Duncan
- Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | - Alan M Moses
- Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
112
|
Pott J, Kheirkhah A, Gadin JR, Kleber ME, Delgado GE, Kirsten H, Forer L, Hauck SM, Burkhardt R, Scharnagl H, Loeffler M, März W, Thiery J, Gieger C, Peters A, Silveira A, Hooft FV, Kronenberg F, Scholz M. Sex and statin-related genetic associations at the PCSK9 gene locus: results of genome-wide association meta-analysis. Biol Sex Differ 2024; 15:26. [PMID: 38532495 PMCID: PMC10964567 DOI: 10.1186/s13293-024-00602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player of lipid metabolism with higher plasma levels in women throughout their life. Statin treatment affects PCSK9 levels also showing evidence of sex-differential effects. It remains unclear whether these differences can be explained by genetics. METHODS We performed genome-wide association meta-analyses (GWAS) of PCSK9 levels stratified for sex and statin treatment in six independent studies of Europeans (8936 women/11,080 men respectively 14,825 statin-free/5191 statin-treated individuals). Loci associated in one of the strata were tested for statin- and sex-interactions considering all independent signals per locus. Independent variants at the PCSK9 gene locus were then used in a stratified Mendelian Randomization analysis (cis-MR) of PCSK9 effects on low-density lipoprotein cholesterol (LDL-C) levels to detect differences of causal effects between the subgroups. RESULTS We identified 11 loci associated with PCSK9 in at least one stratified subgroup (p < 1.0 × 10-6), including the PCSK9 gene locus and five other lipid loci: APOB, TM6SF2, FADS1/FADS2, JMJD1C, and HP/HPR. The interaction analysis revealed eight loci with sex- and/or statin-interactions. At the PCSK9 gene locus, there were four independent signals, one with a significant sex-interaction showing stronger effects in men (rs693668). Regarding statin treatment, there were two significant interactions in PCSK9 missense mutations: rs11591147 had stronger effects in statin-free individuals, and rs11583680 had stronger effects in statin-treated individuals. Besides replicating known loci, we detected two novel genome-wide significant associations: one for statin-treated individuals at 6q11.1 (within KHDRBS2) and one for males at 12q24.22 (near KSR2/NOS1), both with significant interactions. In the MR of PCSK9 on LDL-C, we observed significant causal estimates within all subgroups, but significantly stronger causal effects in statin-free subjects compared to statin-treated individuals. CONCLUSIONS We performed the first double-stratified GWAS of PCSK9 levels and identified multiple biologically plausible loci with genetic interaction effects. Our results indicate that the observed sexual dimorphism of PCSK9 and its statin-related interactions have a genetic basis. Significant differences in the causal relationship between PCSK9 and LDL-C suggest sex-specific dosages of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
| | - Azin Kheirkhah
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jesper R Gadin
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Solna, Sweden
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- SYNLAB Academy, Synlab Holding Deutschland GmbH, Mannheim and Augsburg, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Faculty of Medicine, University of Kiel, Kiel, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angela Silveira
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Solna, Sweden
| | - Ferdinand Van't Hooft
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Solna, Sweden
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
113
|
Goel H, Printz RL, Pannala VR, AbdulHameed MDM, Wallqvist A. Probing Liver Injuries Induced by Thioacetamide in Human In Vitro Pooled Hepatocyte Experiments. Int J Mol Sci 2024; 25:3265. [PMID: 38542239 PMCID: PMC10970511 DOI: 10.3390/ijms25063265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024] Open
Abstract
Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
| |
Collapse
|
114
|
Henze H, Hüttner SS, Koch P, Schüler SC, Groth M, von Eyss B, von Maltzahn J. Denervation alters the secretome of myofibers and thereby affects muscle stem cell lineage progression and functionality. NPJ Regen Med 2024; 9:10. [PMID: 38424446 PMCID: PMC10904387 DOI: 10.1038/s41536-024-00353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.
Collapse
Affiliation(s)
- Henriette Henze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Sören S Hüttner
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Svenja C Schüler
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Björn von Eyss
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus - Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany.
| |
Collapse
|
115
|
Ota N, Kato H, Shiojiri N. Gene expression in the liver of the hagfish (Eptatretus burgeri) belonging to the Cyclostomata is ancestral to that of mammals. Anat Rec (Hoboken) 2024; 307:690-700. [PMID: 37644755 DOI: 10.1002/ar.25313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Although the liver of the hagfish, an earliest diverged lineage among vertebrates, has a histological architecture similar to that of mammals, its gene expression has not been explored yet. The present study was undertaken to comparatively characterize gene expression in the liver of the hagfish with that of the mouse, using in situ hybridization technique. Expression of alb (albumin) was detectable in all hepatocytes of the hagfish liver, but was negative in intrahepatic bile ducts. Their expression in abundant periportal ductules was weak. The expression pattern basically resembled that in mammalian livers, indicating that the differential expression of hepatocyte markers in hepatocytes and biliary cells may have been acquired in ancestral vertebrates. alb expression was almost homogeneous in the hagfish liver, whereas that in the mouse liver lobule was zonal. The glul (glutamate-ammonia ligase) expression was also homogeneously detectable in hepatocytes without zonation, and weakly so in biliary cells of the hagfish, which contrasted with its restricted pericentral expression in mouse livers. These findings indicated that the hagfish liver did not have mammalian-type zonation. Whereas tetrapods had Hnf (hepatocyte nuclear factor) 1a and Hnf1b genes encoding the transcription factors, the hagfish had a single gene of their orthologue hnf1. Although HNF1α and HNF1β were immunohistochemically detected in hepatocytes and biliary cells of the mouse, respectively, hnf1 was expressed in both hepatocytes and biliary cells of the hagfish. These data indicate that gene expression of hnf1 in the hagfish liver may be ancestral with that of alb and glul during vertebrate evolution.
Collapse
Affiliation(s)
- Noriaki Ota
- Graduate School of Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Hideaki Kato
- Department of Biology, Faculty of Education, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Nobuyoshi Shiojiri
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka City, Shizuoka, Japan
| |
Collapse
|
116
|
Amarnani A, Lopez-Ocasio M, Dilshat R, Anumukonda K, Davila J, Malakhov N, Huan C, Magnusdottir E, Steingrimsson E, Roman CA. Mitf regulates gene expression networks implicated in B cell homeostasis, germinal center responses, and tolerance. Front Immunol 2024; 15:1339325. [PMID: 38444862 PMCID: PMC10912573 DOI: 10.3389/fimmu.2024.1339325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The microphthalmia transcription factor Mitf has been shown to regulate B cell activation and tolerance. However, the underlying B cell-specific mechanisms responsible, and those that distinguish Mitf from closely related Mitf/TFE (MiT) transcription factors Tfe3, Tfeb, and Tfec, remain obscure. Methods Two complementary mouse models of Mitf and MiT deficiency were used: the Mitfmi-vga9/mi-vga9 systemic loss-of-function mutation, and B-cell specific MiT family inactivation via transgenic expression of a trans-dominant negative (TDN) protein (TDN-B). These models were employed to identify MiT family candidate target genes and pathways. Results Both models displayed spontaneous splenomegaly coincident with elevated plasma cell numbers, autoantibody titers, and proteinuria. These abnormalities appeared dependent on T helper cells, but independent of other non-B cell intrinsic effects of systemic Mitf inactivation. MiT inactivation in B cells augmented aspects of lupus-like autoimmune disease on the C57BL/6-Faslpr/lpr background. In both models, RNAseq of ex vivo resting B cells showed transcriptional upregulation of genes that control cell cycle, germinal center responses, and plasma cell differentiation. Among the genes strongly upregulated in both models were Socs6, Isp53 (Baiap1), S1pR2, and IgG2b/c. Mitf null B cells, but not TDN-B cells, showed evidence of type I interferon dysregulation. Discussion These studies clarify Mitf's role as 1) a key regulator of a B cell intrinsic germinal center program that influences self-tolerance through novel target genes, and 2) a regulator of systemic inflammatory processes that can impact the B cell microenvironment. This distinction of Mitf's function from that of related MiT transcription factors advances our understanding of B cell regulation and autoimmunity.
Collapse
Affiliation(s)
- Abhimanyu Amarnani
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- School of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Medicine, Division of Rheumatology, New York University Langone Health, New York, NY, United States
| | - Maria Lopez-Ocasio
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Kamala Anumukonda
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Anuko Tech Inc., Hillsborough, NJ, United States
| | - Jonathan Davila
- School of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Urology, Northwell Health, Staten Island, NY, United States
| | - Nikita Malakhov
- School of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Hematology and Oncology, NewYork-Presbyterian-Weill Cornell Medical Center, New York, NY, United States
| | - Chongmin Huan
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Erna Magnusdottir
- Department of Anatomy, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Christopher A. Roman
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- School of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
117
|
Singh A, Georgy JT, Dhananjayan S, Sigamani E, John AO, Joel A, Chandramohan J, Abarna R, Rebekah G, Backianathan S, Abraham DT, Paul MJ, Chacko RT, Manipadam MT, Pai R. Comparative analysis of mutational patterns in triple negative breast cancer before and after neoadjuvant chemotherapy in patients with residual disease. Gene 2024; 895:147980. [PMID: 37951371 DOI: 10.1016/j.gene.2023.147980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with poor survival compared to other subtypes. Patients with residual disease after neoadjuvant chemotherapy (NAC) face an increased risk of relapse and death. We aimed to characterize the mutational landscape of this subset to offer insights into relapse pathogenesis and potential therapeutic targets. We retrospectively analyzed archived paired (pre- and post-NAC) tumor samples from 25 patients with TNBC with residual disease using a targeted 72-gene next-generation sequencing panel. Our findings revealed a stable mutational burden in both pre- and post-NAC samples, with a median count of 12 variants (IQR 7-17.25) per sample. TP53, PMS2, PTEN, ERBB2, and NOTCH1 variants were observed in pre-NAC samples predominantly. Notably, post-NAC samples exhibited a significant increase in AR gene mutations, suggesting potential prognostic and predictive implications. No difference in mutational burden was found between patients who did and did not receive platinum (p = 0.94), or between those with and without recurrence (p = 0.49). We employed K-means clustering to categorize the patients based on their variant profiles, aiding in the prediction of possible patterns associated with recurrence. Our study was limited by its small sample size and retrospective design, suggesting the need for further validation in larger prospective cohorts.
Collapse
Affiliation(s)
- Ashish Singh
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Josh Thomas Georgy
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Sakthi Dhananjayan
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Elanthenral Sigamani
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Ajoy Oommen John
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Anjana Joel
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Jagan Chandramohan
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Rajadurai Abarna
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Selvamani Backianathan
- Department of Radiotherapy, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Deepak Thomas Abraham
- Department of Endocrine Surgery, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | | | - Raju Titus Chacko
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | | | - Rekha Pai
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India.
| |
Collapse
|
118
|
Lee S, Clémentine C, Kim H. Exploring the genetic factors behind the discrepancy in resistance to bovine tuberculosis between African zebu cattle and European taurine cattle. Sci Rep 2024; 14:2370. [PMID: 38287127 PMCID: PMC10824790 DOI: 10.1038/s41598-024-52606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
Caused by the pathogenic agent Mycobacterium bovis, bovine tuberculosis (bTB) is a major concern in cattle breeding due to both its zoonotic potential and economic impact. Greater resistance to this disease has been reported in certain African zebu breeds compared to European taurine breeds. However the genetic basis for the lower susceptibility to bTB infection observed in zebu cattle remains poorly explored. This study was conducted on whole genome sequencing data of three bTB infection-resistant African zebu breeds and two bTB infection-susceptible taurine breeds to decipher the genetic background. A set of four selection signature statistics based on linkage disequilibrium, site frequency spectrum, and population differentiation were used on SNPs whereas between population variance based VST and t-test were used on CNVs. As a complement, genes from previous literature reported as candidate genes for bTB resistance were also inspected to identify genetic variations. Interestingly, the resulting nine candidate genes had deleterious missense variants (SHC3, IFNGR1, TLR2, TLR6, IL1A, LRRK2, EP300 and IRAK4) or a CNV difference (CD48) segregating between the groups. The genes found in the study play a role in immune pathways activated during Mycobacterium infection, contributing to the proliferation of immune cells and the granuloma formation, ultimately modulating the outcome of the infectious event. In particular, a deleterious variant in the LRRK2 gene, whose deficiency has been linked to improved prognosis upon tuberculosis infection, was found in the bTB infection-resistant zebu breeds. Therefore, these genes constitute credible candidates in explaining the discrepancy in Mycobacterium bovis infection susceptibility among different breed.
Collapse
Affiliation(s)
- SangJung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Charton Clémentine
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
119
|
Bahl E, Chatterjee S, Mukherjee U, Elsadany M, Vanrobaeys Y, Lin LC, McDonough M, Resch J, Giese KP, Abel T, Michaelson JJ. Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data. Nat Commun 2024; 15:779. [PMID: 38278804 PMCID: PMC10817898 DOI: 10.1038/s41467-023-44503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/15/2023] [Indexed: 01/28/2024] Open
Abstract
Neuronal activity-dependent transcription directs molecular processes that regulate synaptic plasticity, brain circuit development, behavioral adaptation, and long-term memory. Single cell RNA-sequencing technologies (scRNAseq) are rapidly developing and allow for the interrogation of activity-dependent transcription at cellular resolution. Here, we present NEUROeSTIMator, a deep learning model that integrates transcriptomic signals to estimate neuronal activation in a way that we demonstrate is associated with Patch-seq electrophysiological features and that is robust against differences in species, cell type, and brain region. We demonstrate this method's ability to accurately detect neuronal activity in previously published studies of single cell activity-induced gene expression. Further, we applied our model in a spatial transcriptomic study to identify unique patterns of learning-induced activity across different brain regions in male mice. Altogether, our findings establish NEUROeSTIMator as a powerful and broadly applicable tool for measuring neuronal activation, whether as a critical covariate or a primary readout of interest.
Collapse
Affiliation(s)
- Ethan Bahl
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Snehajyoti Chatterjee
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Utsav Mukherjee
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - Muhammad Elsadany
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Yann Vanrobaeys
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Li-Chun Lin
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Miriam McDonough
- Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, IA, USA
| | - Jon Resch
- Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, IA, USA
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jacob J Michaelson
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
- Department of Communication Sciences & Disorders, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
120
|
Silva DO, Fernandes Júnior GA, Fonseca LFS, Mota LFM, Bresolin T, Carvalheiro R, de Albuquerque LG. Genome-wide association study for stayability at different calvings in Nellore beef cattle. BMC Genomics 2024; 25:93. [PMID: 38254039 PMCID: PMC10804543 DOI: 10.1186/s12864-024-10020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUNDING Stayability, which may be defined as the probability of a cow remaining in the herd until a reference age or at a specific number of calvings, is usually measured late in the animal's life. Thus, if used as selection criteria, it will increase the generation interval and consequently might decrease the annual genetic gain. Measuring stayability at an earlier age could be a reasonable strategy to avoid this problem. In this sense, a better understanding of the genetic architecture of this trait at different ages and/or at different calvings is important. This study was conducted to identify possible regions with major effects on stayability measured considering different numbers of calvings in Nellore cattle as well as pathways that can be involved in its expression throughout the female's productive life. RESULTS The top 10 most important SNP windows explained, on average, 17.60% of the genetic additive variance for stayability, varying between 13.70% (at the eighth calving) and 21% (at the fifth calving). These SNP windows were located on 17 chromosomes (1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 27, and 28), and they harbored a total of 176 annotated genes. The functional analyses of these genes, in general, indicate that the expression of stayability from the second to the sixth calving is mainly affected by genetic factors related to reproductive performance, and nervous and immune systems. At the seventh and eighth calvings, genes and pathways related to animal health, such as density bone and cancer, might be more relevant. CONCLUSION Our results indicate that part of the target genomic regions in selecting for stayability at earlier ages (from the 2th to the 6th calving) would be different than selecting for this trait at later ages (7th and 8th calvings). While the expression of stayability at earlier ages appeared to be more influenced by genetic factors linked to reproductive performance together with an overall health/immunity, at later ages genetic factors related to an overall animal health gain relevance. These results support that selecting for stayability at earlier ages (perhaps at the second calving) could be applied, having practical implications in breeding programs since it could drastically reduce the generation interval, accelerating the genetic progress.
Collapse
Affiliation(s)
- Diogo Osmar Silva
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil.
| | - Gerardo Alves Fernandes Júnior
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Larissa Fernanda Simielli Fonseca
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Lúcio Flávio Macedo Mota
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Tiago Bresolin
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Roberto Carvalheiro
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Lucia Galvão de Albuquerque
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil.
- National Council for Scientific and Technological Development (CNPq), Brasília, Brazil.
- Present address: Departamento de Zootecnia, Via de acesso Paulo Donato Castellane s/n., São Paulo, Jaboticabal, CEP: 14884-900, Brazil.
| |
Collapse
|
121
|
Gress C, Litzenburger T, Schmid R, Xiao K, Heissig F, Muller M, Gupta A, Hohlfeld JM. Transcriptomic characterization of the human segmental endotoxin challenge model. Sci Rep 2024; 14:1721. [PMID: 38242945 PMCID: PMC10798985 DOI: 10.1038/s41598-024-51547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024] Open
Abstract
Segmental instillation of lipopolysaccharide (LPS) by bronchoscopy safely induces transient airway inflammation in human lungs. This model enables investigation of pulmonary inflammatory mechanisms as well as pharmacodynamic analysis of investigational drugs. The aim of this work was to describe the transcriptomic profile of human segmental LPS challenge with contextualization to major respiratory diseases. Pre-challenge bronchoalveolar lavage (BAL) fluid and biopsies were sampled from 28 smoking, healthy participants, followed by segmental instillation of LPS and saline as control. Twenty-four hours post instillation, BAL and biopsies were collected from challenged lung segments. Total RNA of cells from BAL and biopsy samples were sequenced and analysed for differentially expressed genes (DEGs). After challenge with LPS compared with saline, 6316 DEGs were upregulated and 241 were downregulated in BAL, but only one DEG was downregulated in biopsy samples. Upregulated DEGs in BAL were related to molecular functions such as "Inflammatory response" or "chemokine receptor activity", and upregulated pro-inflammatory pathways such as "Wnt-"/"Ras-"/"JAK-STAT" "-signaling pathway". Furthermore, the segmental LPS challenge model resembled aspects of the five most prevalent respiratory diseases chronic obstructive pulmonary disease (COPD), asthma, pneumonia, tuberculosis and lung cancer and featured similarities with acute exacerbations in COPD (AECOPD) and community-acquired pneumonia. Overall, our study provides extensive information about the transcriptomic profile from BAL cells and mucosal biopsies following LPS challenge in healthy smokers. It expands the knowledge about the LPS challenge model providing potential overlap with respiratory diseases in general and infection-triggered respiratory insults such as AECOPD in particular.
Collapse
Affiliation(s)
- Christina Gress
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Clinical Airway Research, 30625, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | | | - Ramona Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Ke Xiao
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Clinical Airway Research, 30625, Hannover, Germany
| | - Florian Heissig
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Meike Muller
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Clinical Airway Research, 30625, Hannover, Germany
- German Center for Lung Research (DZL-BREATH), Hannover, Germany
| | - Abhya Gupta
- Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Clinical Airway Research, 30625, Hannover, Germany.
- German Center for Lung Research (DZL-BREATH), Hannover, Germany.
- Hannover Medical School, Department of Respiratory Medicine and Infectious Disease, Hannover, Germany.
| |
Collapse
|
122
|
Scholz M, Horn K, Pott J, Wuttke M, Kühnapfel A, Nasr MK, Kirsten H, Li Y, Hoppmann A, Gorski M, Ghasemi S, Li M, Tin A, Chai JF, Cocca M, Wang J, Nutile T, Akiyama M, Åsvold BO, Bansal N, Biggs ML, Boutin T, Brenner H, Brumpton B, Burkhardt R, Cai J, Campbell A, Campbell H, Chalmers J, Chasman DI, Chee ML, Chee ML, Chen X, Cheng CY, Cifkova R, Daviglus M, Delgado G, Dittrich K, Edwards TL, Endlich K, Michael Gaziano J, Giri A, Giulianini F, Gordon SD, Gudbjartsson DF, Hallan S, Hamet P, Hartman CA, Hayward C, Heid IM, Hellwege JN, Holleczek B, Holm H, Hutri-Kähönen N, Hveem K, Isermann B, Jonas JB, Joshi PK, Kamatani Y, Kanai M, Kastarinen M, Khor CC, Kiess W, Kleber ME, Körner A, Kovacs P, Krajcoviechova A, Kramer H, Krämer BK, Kuokkanen M, Kähönen M, Lange LA, Lash JP, Lehtimäki T, Li H, Lin BM, Liu J, Loeffler M, Lyytikäinen LP, Magnusson PKE, Martin NG, Matsuda K, Milaneschi Y, Mishra PP, Mononen N, Montgomery GW, Mook-Kanamori DO, Mychaleckyj JC, März W, Nauck M, Nikus K, Nolte IM, Noordam R, Okada Y, Olafsson I, Oldehinkel AJ, Penninx BWJH, Perola M, Pirastu N, Polasek O, et alScholz M, Horn K, Pott J, Wuttke M, Kühnapfel A, Nasr MK, Kirsten H, Li Y, Hoppmann A, Gorski M, Ghasemi S, Li M, Tin A, Chai JF, Cocca M, Wang J, Nutile T, Akiyama M, Åsvold BO, Bansal N, Biggs ML, Boutin T, Brenner H, Brumpton B, Burkhardt R, Cai J, Campbell A, Campbell H, Chalmers J, Chasman DI, Chee ML, Chee ML, Chen X, Cheng CY, Cifkova R, Daviglus M, Delgado G, Dittrich K, Edwards TL, Endlich K, Michael Gaziano J, Giri A, Giulianini F, Gordon SD, Gudbjartsson DF, Hallan S, Hamet P, Hartman CA, Hayward C, Heid IM, Hellwege JN, Holleczek B, Holm H, Hutri-Kähönen N, Hveem K, Isermann B, Jonas JB, Joshi PK, Kamatani Y, Kanai M, Kastarinen M, Khor CC, Kiess W, Kleber ME, Körner A, Kovacs P, Krajcoviechova A, Kramer H, Krämer BK, Kuokkanen M, Kähönen M, Lange LA, Lash JP, Lehtimäki T, Li H, Lin BM, Liu J, Loeffler M, Lyytikäinen LP, Magnusson PKE, Martin NG, Matsuda K, Milaneschi Y, Mishra PP, Mononen N, Montgomery GW, Mook-Kanamori DO, Mychaleckyj JC, März W, Nauck M, Nikus K, Nolte IM, Noordam R, Okada Y, Olafsson I, Oldehinkel AJ, Penninx BWJH, Perola M, Pirastu N, Polasek O, Porteous DJ, Poulain T, Psaty BM, Rabelink TJ, Raffield LM, Raitakari OT, Rasheed H, Reilly DF, Rice KM, Richmond A, Ridker PM, Rotter JI, Rudan I, Sabanayagam C, Salomaa V, Schneiderman N, Schöttker B, Sims M, Snieder H, Stark KJ, Stefansson K, Stocker H, Stumvoll M, Sulem P, Sveinbjornsson G, Svensson PO, Tai ES, Taylor KD, Tayo BO, Teren A, Tham YC, Thiery J, Thio CHL, Thomas LF, Tremblay J, Tönjes A, van der Most PJ, Vitart V, Völker U, Wang YX, Wang C, Wei WB, Whitfield JB, Wild SH, Wilson JF, Winkler TW, Wong TY, Woodward M, Sim X, Chu AY, Feitosa MF, Thorsteinsdottir U, Hung AM, Teumer A, Franceschini N, Parsa A, Köttgen A, Schlosser P, Pattaro C. X-chromosome and kidney function: evidence from a multi-trait genetic analysis of 908,697 individuals reveals sex-specific and sex-differential findings in genes regulated by androgen response elements. Nat Commun 2024; 15:586. [PMID: 38233393 PMCID: PMC10794254 DOI: 10.1038/s41467-024-44709-1] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024] Open
Abstract
X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.
Collapse
Affiliation(s)
- Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany.
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Janne Pott
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
- Department of Medicine IV - Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas Kühnapfel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - M Kamal Nasr
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Anselm Hoppmann
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Sahar Ghasemi
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Man Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Judy Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Teresa Nutile
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso'-CNR, Naples, Italy
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Bjørn Olav Åsvold
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nisha Bansal
- Division of Nephrology, University of Washington, Seattle, WA, USA
- Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Thibaud Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Ben Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jianwen Cai
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Harry Campbell
- Centre for Global Health, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - John Chalmers
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Miao Ling Chee
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Miao Li Chee
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Renata Cifkova
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer University Hospital, Prague, Czech Republic
- Department of Medicine II, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Graciela Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Katalin Dittrich
- University Hospital for Children and Adolescents, Pediatric Research Unit, Medical Faculty, University Medical Center, University of Leipzig, Leipzig, Germany
| | - Todd L Edwards
- Department of Veteran's Affairs, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karlhans Endlich
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
| | - Ayush Giri
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Iceland School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Stein Hallan
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Pavel Hamet
- Montreal University Hospital Research Center, CHUM, Montréal, QC, Canada
- Medpharmgene, Montreal, QC, Canada
| | - Catharina A Hartman
- Interdisciplinary Centre Psychopathology and Emotion regulation (ICPE), Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Jacklyn N Hellwege
- Department of Veteran's Affairs, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Berend Isermann
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Laboratory Medicine, University of Leipzig, Leipzig, Germany
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- Beijing Institute of Ophthalmology, Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany
| | - Peter K Joshi
- Centre for Global Health, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Wieland Kiess
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- University Hospital for Children and Adolescents, Pediatric Research Unit, Medical Faculty, University Medical Center, University of Leipzig, Leipzig, Germany
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Antje Körner
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- University Hospital for Children and Adolescents, Pediatric Research Unit, Medical Faculty, University Medical Center, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Alena Krajcoviechova
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer University Hospital, Prague, Czech Republic
| | - Holly Kramer
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
- Division of Nephrology and Hypertension, Loyola University Chicago, Chicago, IL, USA
| | - Bernhard K Krämer
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Mikko Kuokkanen
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - James P Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hengtong Li
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Bridget M Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, and The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | | | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, the Netherlands
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, and The Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Charlottesville, VA, USA
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Augsburg, Germany
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Yukinori Okada
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Albertine J Oldehinkel
- Interdisciplinary Centre Psychopathology and Emotion regulation (ICPE), Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, the Netherlands
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nicola Pirastu
- Centre for Global Health, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
- Biostatistics Unit - Population and Medical Genomics Programme, Genomics Research Centre, Human Technopole Palazzo Italia, Viale Rita Levi‑Montalcini, 1, 20157, Milan, Italy
| | | | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Tanja Poulain
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- University Hospital for Children and Adolescents, Pediatric Research Unit, Medical Faculty, University Medical Center, University of Leipzig, Leipzig, Germany
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Department of Epidemiology, Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Ton J Rabelink
- Department of Internal Medicine, Section of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory of Experimental Vascular Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Humaira Rasheed
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Medicine and Laboratory Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Anne Richmond
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Neil Schneiderman
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Mario Sims
- Department of Social Medicine, Population and Public Health, University of California at Riverside School of Medicine, Riverside, CA, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | | | | | | | - Per O Svensson
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Andrej Teren
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Cardiology and Intensive Care Medicine, University Hospital OWL of Bielefeld University, Campus Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Joachim Thiery
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Laboratory Medicine, University of Leipzig, Leipzig, Germany
| | - Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Laurent F Thomas
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Johanne Tremblay
- Montreal University Hospital Research Center, CHUM, Montréal, QC, Canada
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chaolong Wang
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sarah H Wild
- Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - James F Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Centre for Global Health, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Mark Woodward
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
- The George Institute for Global Health, School of Public Health, Imperial College London, London, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Adriana M Hung
- Department of Veteran's Affairs, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Division of Nephrology & Hypertension, Nashville, TN, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Afshin Parsa
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| |
Collapse
|
123
|
Santos LGC, Parreira VDSC, da Silva EMG, Santos MDM, Fernandes ADF, Neves-Ferreira AGDC, Carvalho PC, Freitas FCDP, Passetti F. SpliceProt 2.0: A Sequence Repository of Human, Mouse, and Rat Proteoforms. Int J Mol Sci 2024; 25:1183. [PMID: 38256255 PMCID: PMC10816255 DOI: 10.3390/ijms25021183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository provides an even broader range of computationally translated proteins and serves, for example, to aid with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database. We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and murines based on transcript reconstruction, sequence annotation and detection at the transcriptome and proteome levels. In this release, the annotation data used in the reconstruction of transcripts based on the methodology of ternary matrices were acquired from new databases such as Ensembl, UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository and its applications represent a valuable resource for the proteogenomics community.
Collapse
Affiliation(s)
- Letícia Graziela Costa Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Vinícius da Silva Coutinho Parreira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Marlon Dias Mariano Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Alexander da Franca Fernandes
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Flávia Cristina de Paula Freitas
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| |
Collapse
|
124
|
Godfrey LK, Forster J, Liffers ST, Schröder C, Köster J, Henschel L, Ludwig KU, Lähnemann D, Trajkovic-Arsic M, Behrens D, Scarpa A, Lawlor RT, Witzke KE, Sitek B, Johnsen SA, Rahmann S, Horsthemke B, Zeschnigk M, Siveke JT. Pancreatic cancer acquires resistance to MAPK pathway inhibition by clonal expansion and adaptive DNA hypermethylation. Clin Epigenetics 2024; 16:13. [PMID: 38229153 PMCID: PMC10792938 DOI: 10.1186/s13148-024-01623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEKi) failed due to inherent and acquired resistance mechanisms. To gain insights into molecular changes during the formation of resistance to oncogenic MAPK pathway inhibition, we utilized short-term passaged primary tumor cells from ten PDACs of genetically engineered mice. We followed gain and loss of resistance upon MEKi exposure and withdrawal by longitudinal integrative analysis of whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and mass spectrometry data. RESULTS We found that resistant cell populations under increasing MEKi treatment evolved by the expansion of a single clone but were not a direct consequence of known resistance-conferring mutations. Rather, resistant cells showed adaptive DNA hypermethylation of 209 and hypomethylation of 8 genomic sites, most of which overlap with regulatory elements known to be active in murine PDAC cells. Both DNA methylation changes and MEKi resistance were transient and reversible upon drug withdrawal. Furthermore, MEKi resistance could be reversed by DNA methyltransferase inhibition with remarkable sensitivity exclusively in the resistant cells. CONCLUSION Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.
Collapse
Affiliation(s)
- Laura K Godfrey
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
| | - Jan Forster
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
- Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany
| | - Sven-Thorsten Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
| | - Christopher Schröder
- Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany
| | - Johannes Köster
- Bioinformatics and Computational Oncology, Institute for Artificial Intelligence in Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Leonie Henschel
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - David Lähnemann
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
| | - Diana Behrens
- EPO Experimental Pharmacology and Oncology GmbH, Berlin-Buch, Germany
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Pathological Anatomy Section, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Cancer Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- ARC-Net Cancer Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Kathrin E Witzke
- Medizinisches Proteom-Center/Zentrum Für Protein-Diagnostik, Ruhr-Universität Bochum, Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center/Zentrum Für Protein-Diagnostik, Ruhr-Universität Bochum, Bochum, Germany
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Sven Rahmann
- Algorithmic Bioinformatics, Center for Bioinformatics Saar and Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Zeschnigk
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT) West, Campus Essen, Essen, Germany.
| |
Collapse
|
125
|
Srivastava P, Gupta S, Bamba C, Daniel R, Kaur P, Kaur A, Panigrahi I, Mandal K. Neurofibromatosis type 1: Clinical characteristics and mutation spectrum in a North Indian cohort. Heliyon 2024; 10:e23685. [PMID: 38226287 PMCID: PMC10788438 DOI: 10.1016/j.heliyon.2023.e23685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a unique, highly penetrant neuro-cutaneous disorder with a wide range of manifestations. Though the clinical diagnosis of NF1 is straight forward, there can be other disorders which mimic NF1, especially its cutaneous features. Here we describe the clinical and mutation spectrum of a series of individuals whose primary diagnosis was NF1 or NF1 related disorders. Methods We have screened 29 unrelated individuals who fulfilled the clinical criteria of NF1. Whole exome sequencing (WES) was done in all individuals except one with suspected microdeletion syndrome with NF1 in whom Cytogenetic microarray (CMA) was done. Results Out of 29 suspected patients, 25 had germline pathogenic/likely pathogenic variants involving NF1 gene. Five novel and 20 known variants in coding and non-coding regions were identified, among them 7 variants were deletions (28%), 7 nonsense (28%), 3 splice-site (12%), 4 missense (16%), 2 duplications (8%) and 2 (8%) were contiguous deletions. In those where NF1 variants were not detected, 3 had neurofibromatosis type 2 (NF2) and 1 rare autosomal recessive form of Elher Danlos syndrome. Conclusion We hereby present the wide range of manifestations in different age groups and the mutation spectrum ranging from small scale variants to contiguous gene deletion syndromes involving NF1 gene. We highlight the usefulness of molecular testing and its importance in tumor surveillance and genetic counseling in this disorder.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Shifali Gupta
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Chitra Bamba
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Roshan Daniel
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Parminder Kaur
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Anupriya Kaur
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Inusha Panigrahi
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
126
|
Cinar MU, Oliveira RD, Hadfield TS, Lichtenwalner A, Brzozowski RJ, Settlemire CT, Schoenian SG, Parker C, Neibergs HL, Cockett NE, White SN. Genome-wide association with footrot in hair and wool sheep. Front Genet 2024; 14:1297444. [PMID: 38288162 PMCID: PMC10822918 DOI: 10.3389/fgene.2023.1297444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Ovine footrot is an infectious disease with important contributions from Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is characterized by separation of the hoof from underlying tissue, and this causes severe lameness that negatively impacts animal wellbeing, growth, and profitability. Large economic losses result from lost production as well as treatment costs, and improved genetic tools to address footrot are a valuable long-term goal. Prior genetic studies had examined European wool sheep, but hair sheep breeds such as Katahdin and Blackbelly have been reported to have increased resistance to footrot, as well as to intestinal parasites. Thus, footrot condition scores were collected from 251 U.S. sheep including Katahdin, Blackbelly, and European-influenced crossbred sheep with direct and imputed genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density. Genome-wide association was performed with a mixed model accounting for farm and principal components derived from animal genotypes, as well as a random term for the genomic relationship matrix. We identified three genome-wide significant associations, including SNPs in or near GBP6 and TCHH. We also identified 33 additional associated SNPs with genome-wide suggestive evidence, including a cluster of 6 SNPs in a peak near the genome-wide significance threshold located near the glutamine transporter gene SLC38A1. These findings suggest genetic susceptibility to footrot may be influenced by genes involved in divergent biological processes such as immune responses, nutrient availability, and hoof growth and integrity. This is the first genome-wide study to investigate susceptibility to footrot by including hair sheep and also the first study of any kind to identify multiple genome-wide significant associations with ovine footrot. These results provide a foundation for developing genetic tests for marker-assisted selection to improve resistance to ovine footrot once additional steps like fine mapping and validation are complete.
Collapse
Affiliation(s)
- Mehmet Ulas Cinar
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkiye
| | - Ryan D. Oliveira
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Tracy S. Hadfield
- Department of Animal, Agricultural Experiment Station, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Anne Lichtenwalner
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| | | | | | - Susan G. Schoenian
- Western Maryland Research and Education Center, University of Maryland, College Park, MD, United States
| | - Charles Parker
- Department of Animal Sciences, Professor Emeritus, The Ohio State University, Columbus, OH, United States
| | - Holly L. Neibergs
- Department of Animal Science, Washington State University, Pullman, WA, United States
| | - Noelle E. Cockett
- Department of Animal, Agricultural Experiment Station, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Stephen N. White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
127
|
Gu X, Wang M, Zhang XO. TE-TSS: an integrated data resource of human and mouse transposable element (TE)-derived transcription start site (TSS). Nucleic Acids Res 2024; 52:D322-D333. [PMID: 37956335 PMCID: PMC10767810 DOI: 10.1093/nar/gkad1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Transposable elements (TEs) are abundant in the genome and serve as crucial regulatory elements. Some TEs function as epigenetically regulated promoters, and these TE-derived transcription start sites (TSSs) play a crucial role in regulating genes associated with specific functions, such as cancer and embryogenesis. However, the lack of an accessible database that systematically gathers TE-derived TSS data is a current research gap. To address this, we established TE-TSS, an integrated data resource of human and mouse TE-derived TSSs (http://xozhanglab.com/TETSS). TE-TSS has compiled 2681 RNA sequencing datasets, spanning various tissues, cell lines and developmental stages. From these, we identified 5768 human TE-derived TSSs and 2797 mouse TE-derived TSSs, with 47% and 38% being experimentally validated, respectively. TE-TSS enables comprehensive exploration of TSS usage in diverse samples, providing insights into tissue-specific gene expression patterns and transcriptional regulatory elements. Furthermore, TE-TSS compares TE-derived TSS regions across 15 mammalian species, enhancing our understanding of their evolutionary and functional aspects. The establishment of TE-TSS facilitates further investigations into the roles of TEs in shaping the transcriptomic landscape and offers valuable resources for comprehending their involvement in diverse biological processes.
Collapse
Affiliation(s)
- Xiaobing Gu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingdong Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Ou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
128
|
Salomone F, Pipitone RM, Longo M, Malvestiti F, Amorini AM, Distefano A, Casirati E, Ciociola E, Iraci N, Leggio L, Zito R, Vicario N, Saoca C, Pennisi G, Cabibi D, Lazzarino G, Fracanzani AL, Dongiovanni P, Valenti L, Petta S, Volti GL, Grimaudo S. SIRT5 rs12216101 T>G variant is associated with liver damage and mitochondrial dysfunction in patients with non-alcoholic fatty liver disease. J Hepatol 2024; 80:10-19. [PMID: 37890719 DOI: 10.1016/j.jhep.2023.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND & AIMS Sirtuin 5, encoded by the SIRT5 gene, is a NAD+-dependent deacylase that modulates mitochondrial metabolic processes through post-translational modifications. In this study, we aimed to examine the impact of the SIRT5 rs12216101 T>G non-coding single nucleotide polymorphism on disease severity in patients with non-alcoholic fatty liver disease (NAFLD). METHODS The rs12216101 variant was genotyped in 2,606 consecutive European patients with biopsy-proven NAFLD. Transcriptomic analysis, expression of mitochondrial complexes and oxidative stress levels were measured in liver samples from a subset of bariatric patients. Effects of SIRT5 pharmacological inhibition were evaluated in HepG2 cells exposed to excess free fatty acids. Mitochondrial energetics in vitro were investigated by high-performance liquid chromatography. RESULTS In the whole cohort, the frequency distribution of SIRT5 rs12216101 TT, TG and GG genotypes was 47.0%, 42.3% and 10.7%, respectively. At multivariate logistic regression analysis adjusted for sex, age >50 years, diabetes, and PNPLA3 rs738409 status, the SIRT5 rs12216101 T>G variant was associated with the presence of non-alcoholic steatohepatitis (odds ratio 1.20, 95% CI 1.03-1.40) and F2-F4 fibrosis (odds ratio 1.18; 95% CI 1.00-1.37). Transcriptomic analysis showed that the SIRT5 rs12216101 T>G variant was associated with upregulation of transcripts involved in mitochondrial metabolic pathways, including the oxidative phosphorylation system. In patients carrying the G allele, western blot analysis confirmed an upregulation of oxidative phosphorylation complexes III, IV, V and consistently higher levels of reactive oxygen species, reactive nitrogen species and malondialdehyde, and lower ATP levels. Administration of a pharmacological SIRT5 inhibitor preserved mitochondrial energetic homeostasis in HepG2 cells, as evidenced by restored ATP/ADP, NAD+/NADH, NADP+/NADPH ratios and glutathione levels. CONCLUSIONS The SIRT5 rs12216101 T>G variant, heightening SIRT5 activity, is associated with liver damage, mitochondrial dysfunction, and oxidative stress in patients with NAFLD. IMPACT AND IMPLICATIONS In this study we discovered that the SIRT5 rs12216101 T>G variant is associated with higher disease severity in patients with non-alcoholic fatty liver disease (NAFLD). This risk variant leads to a SIRT5 gain-of-function, enhancing mitochondrial oxidative phosphorylation and thus leading to oxidative stress. SIRT5 may represent a novel disease modulator in NAFLD.
Collapse
Affiliation(s)
- Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, Catania, Italy.
| | | | - Miriam Longo
- Medicine & Metabolic Diseases, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Alfio Distefano
- Deparment of Clinical and Molecular Medicine, University of Gothenburg, Sweden
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ester Ciociola
- Deparment of Clinical and Molecular Medicine, University of Gothenburg, Sweden
| | - Nunzio Iraci
- Department BIOMETEC, University of Catania, Catania, Italy
| | | | - Rossella Zito
- Department PROMISE, University of Palermo, Palermo, Italy
| | - Nunzio Vicario
- Department BIOMETEC, University of Catania, Catania, Italy
| | - Concetta Saoca
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Grazia Pennisi
- Department PROMISE, University of Palermo, Palermo, Italy
| | - Daniela Cabibi
- Department PROMISE, University of Palermo, Palermo, Italy
| | | | - Anna Ludovica Fracanzani
- Medicine & Metabolic Diseases, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paola Dongiovanni
- Medicine & Metabolic Diseases, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
129
|
Pultar M, Oesterreicher J, Hartmann J, Weigl M, Diendorfer A, Schimek K, Schädl B, Heuser T, Brandstetter M, Grillari J, Sykacek P, Hackl M, Holnthoner W. Analysis of extracellular vesicle microRNA profiles reveals distinct blood and lymphatic endothelial cell origins. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e134. [PMID: 38938681 PMCID: PMC11080916 DOI: 10.1002/jex2.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/22/2023] [Accepted: 12/22/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are crucial mediators of cell-to-cell communication in physiological and pathological conditions. Specifically, EVs released from the vasculature into blood were found to be quantitatively and qualitatively different in diseases compared to healthy states. However, our understanding of EVs derived from the lymphatic system is still scarce. In this study, we compared the mRNA and microRNA (miRNA) expression in blood vascular (BEC) and lymphatic (LEC) endothelial cells. After characterization of the EVs by fluorescence-triggered flow cytometry, nanoparticle tracking analysis and cryo-transmission electron microscopy (cryo-TEM) we utilized small RNA-sequencing to characterize miRNA signatures in the EVs and identify cell-type specific miRNAs in BEC and LEC. We found miRNAs specifically enriched in BEC and LEC on the cellular as well as the extracellular vesicle level. Our data provide a solid basis for further functional in vitro and in vivo studies addressing the role of EVs in the blood and lymphatic vasculature.
Collapse
Affiliation(s)
- Marianne Pultar
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- TAmiRNA GmbHViennaAustria
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | | | - Moritz Weigl
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- TAmiRNA GmbHViennaAustria
| | | | - Katharina Schimek
- Technische Universität Berlin, Medical BiotechnologyBerlinGermany
- TissUse GmbHBerlinGermany
| | - Barbara Schädl
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- University Clinic of DentistryMedical University of ViennaViennaAustria
| | - Thomas Heuser
- Vienna Biocenter Core Facilities GmbH, EM FacilityViennaAustria
| | | | - Johannes Grillari
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Department of Biotechnology, Institute of Molecular BiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Peter Sykacek
- Department of Biotechnology, Institute of Computational BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for TraumatologyThe Research Centre in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
130
|
Xu Z, Lee MC, Sheehan K, Fujii K, Rabl K, Rader G, Varney S, Sharma M, Eilers H, Kober K, Miaskowski C, Levine JD, Schumacher MA. Chemotherapy for pain: reversing inflammatory and neuropathic pain with the anticancer agent mithramycin A. Pain 2024; 165:54-74. [PMID: 37366593 PMCID: PMC10723648 DOI: 10.1097/j.pain.0000000000002972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT The persistence of inflammatory and neuropathic pain is poorly understood. We investigated a novel therapeutic paradigm by targeting gene networks that sustain or reverse persistent pain states. Our prior observations found that Sp1-like transcription factors drive the expression of TRPV1, a pain receptor, that is blocked in vitro by mithramycin A (MTM), an inhibitor of Sp1-like factors. Here, we investigate the ability of MTM to reverse in vivo models of inflammatory and chemotherapy-induced peripheral neuropathy (CIPN) pain and explore MTM's underlying mechanisms. Mithramycin reversed inflammatory heat hyperalgesia induced by complete Freund adjuvant and cisplatin-induced heat and mechanical hypersensitivity. In addition, MTM reversed both short-term and long-term (1 month) oxaliplatin-induced mechanical and cold hypersensitivity, without the rescue of intraepidermal nerve fiber loss. Mithramycin reversed oxaliplatin-induced cold hypersensitivity and oxaliplatin-induced TRPM8 overexpression in dorsal root ganglion (DRG). Evidence across multiple transcriptomic profiling approaches suggest that MTM reverses inflammatory and neuropathic pain through broad transcriptional and alternative splicing regulatory actions. Mithramycin-dependent changes in gene expression following oxaliplatin treatment were largely opposite to and rarely overlapped with changes in gene expression induced by oxaliplatin alone. Notably, RNAseq analysis revealed MTM rescue of oxaliplatin-induced dysregulation of mitochondrial electron transport chain genes that correlated with in vivo reversal of excess reactive oxygen species in DRG neurons. This finding suggests that the mechanism(s) driving persistent pain states such as CIPN are not fixed but are sustained by ongoing modifiable transcription-dependent processes.
Collapse
Affiliation(s)
- Zheyun Xu
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Man-Cheung Lee
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kayla Sheehan
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Keisuke Fujii
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Katalin Rabl
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Gabriella Rader
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Scarlett Varney
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kord Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, United States
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, United States
| | - Jon D. Levine
- Division of Neuroscience, Departments of Medicine and Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mark A. Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
131
|
Shah V, Singh JK, Srivastava SK, Konnur A, Gang S, Pandey SN. INF2 and ROBO2 gene mutation in an Indian family with end stage renal failure and follow-up of renal transplantation. Nephrology (Carlton) 2024; 29:48-54. [PMID: 37772439 DOI: 10.1111/nep.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Accurate genetic diagnosis of end-stage renal disease patients with a family history of renal dysfunction is very essential. It not only helps in proper prognosis, but becomes crucial in designating donor for live related renal transplant. We here present a case of family with deleterious mutations in INF2 and ROBO2 and its importance of genetic testing before preparing for kidney transplantation. CASE PRESENTATION We report the case of a 29-year-female with end-stage renal disease and rapidly progressive renal failure. Mutational analysis revealed an Autosomal Dominant inheritance pattern and mutation in exon 4 of the INF2 gene (p. Thr215Ser) and exon 26 of the ROBO2 gene (p. Arg1371Cys). Her mother was diagnosed for CKD stage 4 with creatinine level of 4.3 mg/dL. Genetic variants (INF2 and ROBO2) identified in proband were tested in her sisters and mother. Her elder sister was positive for both heterozygous variants (INF2 and ROBO2). Her mother was positive for mutation in INF2 gene, and her donor elder sister did not showed mutation in INF2 gene and had mutation in ROBO2 gene without any clinical symptoms. CONCLUSION This case report emphasize that familial genetic screening has allowed us in allocating the donor selection in family where family member had history of genetic defect of Chronic Kidney Disease. Information of the causative renal disorder is extremely valuable for risk-assessment and planning of kidney transplantation.
Collapse
Affiliation(s)
- Vandit Shah
- Department of Pathology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Jaikee Kumar Singh
- Structural Biology and Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Sandeep Kumar Srivastava
- Structural Biology and Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhijit Konnur
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Sishir Gang
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | | |
Collapse
|
132
|
Full F, Walter S, Neugebauer E, Tan J, Drayman N, Franke V, Tay S, Landthaler M, Akalin A, Ensser A, Wyler E. Herpesviruses mimic zygotic genome activation to promote viral replication. RESEARCH SQUARE 2023:rs.3.rs-3125635. [PMID: 38168299 PMCID: PMC10760233 DOI: 10.21203/rs.3.rs-3125635/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DUX4 is a germline transcription factor and a master regulator of zygotic genome activation. During early embryogenesis, DUX4 is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In adult somatic cells, DUX4 expression is silenced and its activation in adult muscle cells causes the genetic disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Here we show that herpesviruses from alpha-, beta- and gamma-herpesvirus subfamilies as well as papillomaviruses actively induce DUX4 expression to promote viral transcription and replication. We demonstrate that HSV-1 immediate early proteins directly induce expression of DUX4 and its target genes including endogenous retroelements, which mimics zygotic genome activation. We further show that DUX4 directly binds to the viral genome and promotes viral transcription. DUX4 is functionally required for herpesvirus infection, since genetic depletion of DUX4 by CRISPR/Cas9 abrogates viral replication. Our results show that herpesviruses induce DUX4 expression and its downstream germline-specific genes and retroelements, thus mimicking an early embryonic-like transcriptional program that prevents epigenetic silencing of the viral genome and facilitates herpesviral gene expression.
Collapse
Affiliation(s)
- Florian Full
- University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg
| | - Stephanie Walter
- Institute for Clinical and Molecular Virology, University Hospital Erlangen
| | - Eva Neugebauer
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg
| | - Jiang Tan
- Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg
| | - Nir Drayman
- The Department of Molecular Biology and Biochemistry, the Center for Virus Research and the Center for Complex Biological Systems, The University of California, Irvine
| | | | | | | | | | | | | |
Collapse
|
133
|
Drabeck DH, Wiese J, Gilbertson E, Arroyave J, Arcila D, Alter SE, Borowsky R, Hendrickson D, Stiassny M, McGaugh SE. Gene loss and relaxed selection of plaat1 in vertebrates adapted to low-light environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571336. [PMID: 38168154 PMCID: PMC10760033 DOI: 10.1101/2023.12.12.571336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family are phospholipases essential for the degradation of organelles in the lens of the eye. They translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny, and selection of plaat1 across bony fishes and tetrapods. We show that plaat1 (likely ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual acuity and blind mammals and fish. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light-environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.
Collapse
Affiliation(s)
- Danielle H Drabeck
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| | - Jonathan Wiese
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| | - Erin Gilbertson
- University of San Francisco, Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Dahiana Arcila
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - S Elizabeth Alter
- California State University Monterey Bay, Biology and Chemistry Department, Chapman Academic Science Center, Seaside, CA
| | - Richard Borowsky
- Department of Biology, New York University, Washington Square, New York, NY, 10003, USA
| | - Dean Hendrickson
- Biodiversity Center, Texas Natural History Collections, University of Texas at Austin, Austin, TX 78758, United States
| | - Melanie Stiassny
- Department of Ichthyology, American Museum of Natural History, New York, NY 10024, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, 1475 Gortner Ave, St. Paul, MN 55108
| |
Collapse
|
134
|
Nava-Quiroz KJ, López-Flores LA, Pérez-Rubio G, Rojas-Serrano J, Falfán-Valencia R. Peptidyl Arginine Deiminases in Chronic Diseases: A Focus on Rheumatoid Arthritis and Interstitial Lung Disease. Cells 2023; 12:2829. [PMID: 38132149 PMCID: PMC10741699 DOI: 10.3390/cells12242829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Protein citrullination is accomplished by a broad enzyme family named Peptidyl Arginine Deiminases (PADs), which makes this post-translational modification in many proteins that perform physiological and pathologic mechanisms in the body. Due to these modifications, citrullination has become a significant topic in the study of pathological processes. It has been related to some chronic and autoimmune diseases, including rheumatoid arthritis (RA), interstitial lung diseases (ILD), multiple sclerosis (MS), and certain types of cancer, among others. Antibody production against different targets, including filaggrin, vimentin, and collagen, results in an immune response if they are citrullinated, which triggers a continuous inflammatory process characteristic of autoimmune and certain chronic diseases. PAD coding genes (PADI1 to PADI4 and PADI6) harbor variations that can be important in these enzymes' folding, activity, function, and half-life. However, few studies have considered these genetic factors in the context of chronic diseases. Exploring PAD pathways and their role in autoimmune and chronic diseases is a major topic in developing new pharmacological targets and valuable biomarkers to improve diagnosis and prevention. The present review addresses and highlights genetic, molecular, biochemical, and physiopathological factors where PAD enzymes perform a major role in autoimmune and chronic diseases.
Collapse
Affiliation(s)
- Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Luis A. López-Flores
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
- Programa de Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| | - Jorge Rojas-Serrano
- Rheumatology Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Tlalpan, Mexico City 14080, Mexico; (K.J.N.-Q.); (G.P.-R.)
| |
Collapse
|
135
|
Shi J, Yang C, Zhang J, Zhao K, Li P, Kong C, Wu X, Sun H, Zheng R, Sun W, Chen L, Kong X. NAT10 Is Involved in Cardiac Remodeling Through ac4C-Mediated Transcriptomic Regulation. Circ Res 2023; 133:989-1002. [PMID: 37955115 DOI: 10.1161/circresaha.122.322244] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Heart failure, characterized by cardiac remodeling, is associated with abnormal epigenetic processes and aberrant gene expression. Here, we aimed to elucidate the effects and mechanisms of NAT10 (N-acetyltransferase 10)-mediated N4-acetylcytidine (ac4C) acetylation during cardiac remodeling. METHODS NAT10 and ac4C expression were detected in both human and mouse subjects with cardiac remodeling through multiple assays. Subsequently, acetylated RNA immunoprecipitation and sequencing, thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), and ribosome sequencing (Ribo-seq) were employed to elucidate the role of ac4C-modified posttranscriptional regulation in cardiac remodeling. Additionally, functional experiments involving the overexpression or knockdown of NAT10 were conducted in mice models challenged with Ang II (angiotensin II) and transverse aortic constriction. RESULTS NAT10 expression and RNA ac4C levels were increased in in vitro and in vivo cardiac remodeling models, as well as in patients with cardiac hypertrophy. Silencing and inhibiting NAT10 attenuated Ang II-induced cardiomyocyte hypertrophy and cardiofibroblast activation. Next-generation sequencing revealed ac4C changes in both mice and humans with cardiac hypertrophy were associated with changes in global mRNA abundance, stability, and translation efficiency. Mechanistically, NAT10 could enhance the stability and translation efficiency of CD47 and ROCK2 transcripts by upregulating their mRNA ac4C modification, thereby resulting in an increase in their protein expression during cardiac remodeling. Furthermore, the administration of Remodelin, a NAT10 inhibitor, has been shown to prevent cardiac functional impairments in mice subjected to transverse aortic constriction by suppressing cardiac fibrosis, hypertrophy, and inflammatory responses, while also regulating the expression levels of CD47 and ROCK2 (Rho associated coiled-coil containing protein kinase 2). CONCLUSIONS Therefore, our data suggest that modulating epitranscriptomic processes, such as ac4C acetylation through NAT10, may be a promising therapeutic target against cardiac remodeling.
Collapse
Affiliation(s)
- Jing Shi
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China (C.Y.)
| | - Jing Zhang
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Kun Zhao
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Peng Li
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Chuiyu Kong
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Jiangsu, China (C.K.)
| | - Xiaoguang Wu
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Haoliang Sun
- Department of Cardiovascular Surgery (H.S., R.Z.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Rui Zheng
- Department of Cardiovascular Surgery (H.S., R.Z.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Wei Sun
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
| | - Lianmin Chen
- Changzhou Medical Center of the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University and Department of Cardiology of the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China (L.C.)
| | - Xiangqing Kong
- Department of Cardiology (J.S., K.Z., J.Z., P.L., X.W., W.S., X.K.), The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, China
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China (X.K.)
| |
Collapse
|
136
|
Wilson CA, Postlethwait JH. A maternal-to-zygotic-transition gene block on the zebrafish sex chromosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570431. [PMID: 38106184 PMCID: PMC10723407 DOI: 10.1101/2023.12.06.570431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting the hypothesis that the Chr4R transcriptome might be different from the rest of the genome. We conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes and identified four regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brain and liver validated few transcripts from Region-2 in somatic cells, but without sex-specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. In Region-2, protein-coding genes lack human orthologs; it has zinc finger genes expressed early in zygotic genome activation; it has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and an distinct set of repetitive elements. The colocalization of 1) genes silenced in ovaries but not in testes that are 2) expressed in embryos briefly at the onset of zygotic genome activation; 3) maternal-specific genes for translation machinery; 4) maternal-specific spliceosome components; and 4) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a Maternal-to-Zygotic-Transition Gene Regulatory Block.
Collapse
|
137
|
De Kegel B, Ryan CJ. Paralog dispensability shapes homozygous deletion patterns in tumor genomes. Mol Syst Biol 2023; 19:e11987. [PMID: 37963083 DOI: 10.15252/msb.202311987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Genomic instability is a hallmark of cancer, resulting in tumor genomes having large numbers of genetic aberrations, including homozygous deletions of protein coding genes. That tumor cells remain viable in the presence of such gene loss suggests high robustness to genetic perturbation. In model organisms and cancer cell lines, paralogs have been shown to contribute substantially to genetic robustness-they are generally more dispensable for growth than singletons. Here, by analyzing copy number profiles of > 10,000 tumors, we test the hypothesis that the increased dispensability of paralogs shapes tumor genome evolution. We find that genes with paralogs are more likely to be homozygously deleted and that this cannot be explained by other factors known to influence copy number variation. Furthermore, features that influence paralog dispensability in cancer cell lines correlate with paralog deletion frequency in tumors. Finally, paralogs that are broadly essential in cancer cell lines are less frequently deleted in tumors than non-essential paralogs. Overall, our results suggest that homozygous deletions of paralogs are more frequently observed in tumor genomes because paralogs are more dispensable.
Collapse
Affiliation(s)
- Barbara De Kegel
- School of Computer Science and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Colm J Ryan
- School of Computer Science and Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
138
|
Zhou S, Luo H, Tian Y, Li H, Zeng Y, Wang X, Shan S, Xiong J, Cheng G. Investigating the shared genetic architecture of post-traumatic stress disorder and gastrointestinal tract disorders: a genome-wide cross-trait analysis. Psychol Med 2023; 53:7627-7635. [PMID: 37218628 DOI: 10.1017/s0033291723001423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Observational studies suggest a correlation between post-traumatic stress disorder (PTSD) and gastrointestinal tract (GIT) disorders. However, the genetic overlap, causal relationships, and underlining mechanisms between PTSD and GIT disorders were absent. METHODS We obtained genome-wide association study statistics for PTSD (23 212 cases, 151 447 controls), peptic ulcer disease (PUD; 16 666 cases, 439 661 controls), gastroesophageal reflux disease (GORD; 54 854 cases, 401 473 controls), PUD and/or GORD and/or medications (PGM; 90 175 cases, 366 152 controls), irritable bowel syndrome (IBS; 28 518 cases, 426 803 controls), and inflammatory bowel disease (IBD; 7045 cases, 449 282 controls). We quantified genetic correlations, identified pleiotropic loci, and performed multi-marker analysis of genomic annotation, fast gene-based association analysis, transcriptome-wide association study analysis, and bidirectional Mendelian randomization analysis. RESULTS PTSD globally correlates with PUD (rg = 0.526, p = 9.355 × 10-7), GORD (rg = 0.398, p = 5.223 × 10-9), PGM (rg = 0.524, p = 1.251 × 10-15), and IBS (rg = 0.419, p = 8.825 × 10-6). Cross-trait meta-analyses identify seven genome-wide significant loci between PTSD and PGM (rs13107325, rs1632855, rs1800628, rs2188100, rs3129953, rs6973700, and rs73154693); three between PTSD and GORD (rs13107325, rs1632855, and rs3132450); one between PTSD and IBS/IBD (rs4937872 and rs114969413, respectively). Proximal pleiotropic genes are mainly enriched in immune response regulatory pathways, and in brain, digestive, and immune systems. Gene-level analyses identify five candidates: ABT1, BTN3A2, HIST1H3J, ZKSCAN4, and ZKSCAN8. We found significant causal effects of GORD, PGM, IBS, and IBD on PTSD. We observed no reverse causality of PTSD with GIT disorders, except for GORD. CONCLUSIONS PTSD and GIT disorders share common genetic architectures. Our work offers insights into the biological mechanisms, and provides genetic basis for translational research studies.
Collapse
Affiliation(s)
- Siquan Zhou
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hang Luo
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Ye Tian
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Haoqi Li
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Yaxian Zeng
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
139
|
Drag MH, Debes KP, Franck CS, Flethøj M, Lyhne MK, Møller JE, Ludvigsen TP, Jespersen T, Olsen LH, Kilpeläinen TO. Nanopore sequencing reveals methylation changes associated with obesity in circulating cell-free DNA from Göttingen Minipigs. Epigenetics 2023; 18:2199374. [PMID: 37032646 PMCID: PMC10088973 DOI: 10.1080/15592294.2023.2199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Profiling of circulating cell-free DNA (cfDNA) by tissue-specific base modifications, such as 5-methylcytosines (5mC), may enable the monitoring of ongoing pathophysiological processes. Nanopore sequencing allows genome-wide 5mC detection in cfDNA without bisulphite conversion. The aims of this study were: i) to find differentially methylated regions (DMRs) of cfDNA associated with obesity in Göttingen minipigs using Nanopore sequencing, ii) to validate a subset of the DMRs using methylation-specific PCR (MSP-PCR), and iii) to compare the cfDNA DMRs with those from whole blood genomic DNA (gDNA). Serum cfDNA and gDNA were obtained from 10 lean and 7 obese Göttingen Minipigs both with experimentally induced myocardial infarction and sequenced using Oxford Nanopore MinION. A total of 1,236 cfDNA DMRs (FDR<0.01) were associated with obesity. In silico analysis showed enrichment of the adipocytokine signalling, glucagon signalling, and cellular glucose homoeostasis pathways. A strong cfDNA DMR was discovered in PPARGC1B, a gene linked to obesity and type 2 diabetes. The DMR was validated using MSP-PCR and correlated significantly with body weight (P < 0.05). No DMRs intersected between cfDNA and gDNA, suggesting that cfDNA originates from body-wide shedding of DNA. In conclusion, nanopore sequencing detected differential methylation in minute quantities (0.1-1 ng/µl) of cfDNA. Future work should focus on translation into human and comparing 5mC from somatic tissues to pinpoint the exact location of pathology.
Collapse
Affiliation(s)
- Markus Hodal Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Conservation, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Clara Sandkamm Franck
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flethøj
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Mille Kronborg Lyhne
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital and Odense University Hospital, Odense, Denmark
| | | | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
140
|
Benedum J, Franke V, Appel LM, Walch L, Bruno M, Schneeweiss R, Gruber J, Oberndorfer H, Frank E, Strobl X, Polyansky A, Zagrovic B, Akalin A, Slade D. The SPOC proteins DIDO3 and PHF3 co-regulate gene expression and neuronal differentiation. Nat Commun 2023; 14:7912. [PMID: 38036524 PMCID: PMC10689479 DOI: 10.1038/s41467-023-43724-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Transcription is regulated by a multitude of activators and repressors, which bind to the RNA polymerase II (Pol II) machinery and modulate its progression. Death-inducer obliterator 3 (DIDO3) and PHD finger protein 3 (PHF3) are paralogue proteins that regulate transcription elongation by docking onto phosphorylated serine-2 in the C-terminal domain (CTD) of Pol II through their SPOC domains. Here, we show that DIDO3 and PHF3 form a complex that bridges the Pol II elongation machinery with chromatin and RNA processing factors and tethers Pol II in a phase-separated microenvironment. Their SPOC domains and C-terminal intrinsically disordered regions are critical for transcription regulation. PHF3 and DIDO exert cooperative and antagonistic effects on the expression of neuronal genes and are both essential for neuronal differentiation. In the absence of PHF3, DIDO3 is upregulated as a compensatory mechanism. In addition to shared gene targets, DIDO specifically regulates genes required for lipid metabolism. Collectively, our work reveals multiple layers of gene expression regulation by the DIDO3 and PHF3 paralogues, which have specific, co-regulatory and redundant functions in transcription.
Collapse
Affiliation(s)
- Johannes Benedum
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Vedran Franke
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Lisa-Marie Appel
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lena Walch
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Melania Bruno
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Rebecca Schneeweiss
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Juliane Gruber
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Helena Oberndorfer
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Emma Frank
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Xué Strobl
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anton Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Altuna Akalin
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center, Berlin, Germany
| | - Dea Slade
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria.
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
141
|
Nickoloff JA, Jaiswal AS, Sharma N, Williamson EA, Tran MT, Arris D, Yang M, Hromas R. Cellular Responses to Widespread DNA Replication Stress. Int J Mol Sci 2023; 24:16903. [PMID: 38069223 PMCID: PMC10707325 DOI: 10.3390/ijms242316903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Aruna S. Jaiswal
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Elizabeth A. Williamson
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Manh T. Tran
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Dominic Arris
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Ming Yang
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| |
Collapse
|
142
|
Wagner P, Brügemann K, Yin T, Engel P, König S. Inferring Causalities of Environmental and Genetic Factors for Differential Somatic Cell Count and Mastitis Pathogens in Dairy Cows Using Structural Equation Modelling. Genes (Basel) 2023; 14:2102. [PMID: 38003045 PMCID: PMC10671585 DOI: 10.3390/genes14112102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to establish and evaluate a structural equation model to infer causal relationships among environmental and genetic factors on udder health. For this purpose, 537 Holstein Friesian cows were genotyped, and milk samples were analyzed for novel traits including differential somatic cell counts and specific mastitis pathogens. In the structural model, four latent variables (intramammary infection (IMI), production, time and genetics) were defined, which were explained using manifest measurable variables. The measurable variables included udder pathogens and somatic differential cell counts, milk composition, as well as significant SNP markers from previous genome-wide associations for major and minor pathogens. The housing system effect (i.e., compost-bedded pack barns versus cubicle barns) indicated a small influence on IMI with a path coefficient of -0.05. However, housing system significantly affected production (0.37), with ongoing causal effects on IMI (0.17). Thus, indirect associations between housing and udder health could be inferred via structural equation modeling. Furthermore, genotype by environment interactions on IMI can be represented, i.e., the detection of specific latent variables such as significant SNP markers only for specific housing systems. For the latent variable genetics, especially one SNP is of primary interest. This SNP is located in the EVA1A gene, which plays a fundamental role in the MAPK1 signaling pathway. Other identified genes (e.g., CTNNA3 and CHL1) support results from previous studies, and this gene also contributes to mechanisms of the MAPK1 signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, Ludwigstr. 21b, 35390 Giessen, Germany
| |
Collapse
|
143
|
Schleussner N, Cauchy P, Franke V, Giefing M, Fornes O, Vankadari N, Assi SA, Costanza M, Weniger MA, Akalin A, Anagnostopoulos I, Bukur T, Casarotto MG, Damm F, Daumke O, Edginton-White B, Gebhardt JCM, Grau M, Grunwald S, Hansmann ML, Hartmann S, Huber L, Kärgel E, Lusatis S, Noerenberg D, Obier N, Pannicke U, Fischer A, Reisser A, Rosenwald A, Schwarz K, Sundararaj S, Weilemann A, Winkler W, Xu W, Lenz G, Rajewsky K, Wasserman WW, Cockerill PN, Scheidereit C, Siebert R, Küppers R, Grosschedl R, Janz M, Bonifer C, Mathas S. Transcriptional reprogramming by mutated IRF4 in lymphoma. Nat Commun 2023; 14:6947. [PMID: 37935654 PMCID: PMC10630337 DOI: 10.1038/s41467-023-41954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.
Collapse
Affiliation(s)
- Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Medical Center Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Vedran Franke
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, 60-479, Poland
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariantonia Costanza
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Ioannis Anagnostopoulos
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Thomas Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marco G Casarotto
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Benjamin Edginton-White
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Michael Grau
- Department of Physics, University of Marburg, 35052, Marburg, Germany
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Grunwald
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Martin-Leo Hansmann
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
- Institute for Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lionel Huber
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Eva Kärgel
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simone Lusatis
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Daniel Noerenberg
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Anja Reisser
- Department of Physics, Institute of Biophysics, Ulm University, Ulm, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Srinivasan Sundararaj
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Andre Weilemann
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wiebke Winkler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Wendan Xu
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, 13125, Berlin, Germany
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Ralf Küppers
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany.
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
144
|
Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, Bleicher A, Novak G, Liu TT, Newman S, Ricke WA, Matkowskyj KA, Ong IM, Jang C, Simcox J, Lamming DW. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab 2023; 35:1976-1995.e6. [PMID: 37939658 PMCID: PMC10655617 DOI: 10.1016/j.cmet.2023.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yasmine H Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Anneliese Bleicher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Grace Novak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Teresa T Liu
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Sarah Newman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Kristina A Matkowskyj
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
145
|
Rowland ME, Jiang Y, Shafiq S, Ghahramani A, Pena-Ortiz MA, Dumeaux V, Bérubé NG. Systemic and intrinsic functions of ATRX in glial cell fate and CNS myelination in male mice. Nat Commun 2023; 14:7090. [PMID: 37925436 PMCID: PMC10625541 DOI: 10.1038/s41467-023-42752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Myelin, an extension of the oligodendrocyte plasma membrane, wraps around axons to facilitate nerve conduction. Myelination is compromised in ATR-X intellectual disability syndrome patients, but the causes are unknown. We show that loss of ATRX leads to myelination deficits in male mice that are partially rectified upon systemic thyroxine administration. Targeted ATRX inactivation in either neurons or oligodendrocyte progenitor cells (OPCs) reveals OPC-intrinsic effects on myelination. OPCs lacking ATRX fail to differentiate along the oligodendrocyte lineage and acquire a more plastic state that favors astrocytic differentiation in vitro and in vivo. ATRX chromatin occupancy in OPCs greatly overlaps with that of the chromatin remodelers CHD7 and CHD8 as well as H3K27Ac, a mark of active enhancers. Overall, our data indicate that ATRX regulates the onset of myelination systemically via thyroxine, and by promoting OPC differentiation and suppressing astrogliogenesis. These functions of ATRX identified in mice could explain white matter pathogenesis observed in ATR-X syndrome patients.
Collapse
Affiliation(s)
- Megan E Rowland
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
| | - Yan Jiang
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sarfraz Shafiq
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alireza Ghahramani
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Miguel A Pena-Ortiz
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada
- Graduate Program in Neuroscience, Western University, London, ON, Canada
| | - Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Nathalie G Bérubé
- Children's Health Research Institute, Division of Genetics & Development, London, ON, Canada.
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Graduate Program in Neuroscience, Western University, London, ON, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
146
|
Zhao B, Zhao J, Wang M, Guo Y, Mehmood A, Wang W, Xiong Y, Luo S, Wei DQ, Zhao XQ, Wang Y. Exploring microproteins from various model organisms using the mip-mining database. BMC Genomics 2023; 24:661. [PMID: 37919660 PMCID: PMC10623795 DOI: 10.1186/s12864-023-09735-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Microproteins, prevalent across all kingdoms of life, play a crucial role in cell physiology and human health. Although global gene transcription is widely explored and abundantly available, our understanding of microprotein functions using transcriptome data is still limited. To mitigate this problem, we present a database, Mip-mining ( https://weilab.sjtu.edu.cn/mipmining/ ), underpinned by high-quality RNA-sequencing data exclusively aimed at analyzing microprotein functions. The Mip-mining hosts 336 sets of high-quality transcriptome data from 8626 samples and nine representative living organisms, including microorganisms, plants, animals, and humans, in our Mip-mining database. Our database specifically provides a focus on a range of diseases and environmental stress conditions, taking into account chemical, physical, biological, and diseases-related stresses. Comparatively, our platform enables customized analysis by inputting desired data sets with self-determined cutoff values. The practicality of Mip-mining is demonstrated by identifying essential microproteins in different species and revealing the importance of ATP15 in the acetic acid stress tolerance of budding yeast. We believe that Mip-mining will facilitate a greater understanding and application of microproteins in biotechnology. Moreover, it will be beneficial for designing therapeutic strategies under various biological conditions.
Collapse
Affiliation(s)
- Bowen Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muyao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangfan Guo
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weibin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China
| | - Shenggan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China.
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, 518055, Guangdong, China.
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
147
|
Rogala S, Ali T, Melissari MT, Währisch S, Schuster P, Sarre A, Emídio RC, Boettger T, Rogg EM, Kaur J, Krishnan J, Dumbović G, Dimmeler S, Ounzain S, Pedrazzini T, Herrmann BG, Grote P. The lncRNA Sweetheart regulates compensatory cardiac hypertrophy after myocardial injury in murine males. Nat Commun 2023; 14:7024. [PMID: 37919291 PMCID: PMC10622434 DOI: 10.1038/s41467-023-42760-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs. We describe and characterize the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function but becomes essential for the tissue adaptation process after myocardial infarction in murine males. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes that depend on Swhtr after cardiac stress are significantly occupied and therefore most likely regulated by NKX2-5. The Swhtr transcript interacts with NKX2-5 and disperses upon hypoxic stress in cardiomyocytes, indicating an auxiliary role of Swhtr for NKX2-5 function in tissue adaptation after myocardial injury.
Collapse
Affiliation(s)
- Sandra Rogala
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany
| | - Tamer Ali
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany
- Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Maria-Theodora Melissari
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sandra Währisch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | - Peggy Schuster
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne Medical School, Lausanne, Switzerland
| | - Rebeca Cordellini Emídio
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Thomas Boettger
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart- and Lung Research, 61231, Bad Nauheim, Germany
| | - Eva-Maria Rogg
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jaskiran Kaur
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Jaya Krishnan
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Gabrijela Dumbović
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
- HAYA Therapeutics, Rte de la Corniche 6, 1066, Lausanne, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Cardiovascular Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
148
|
Todd KL, Lai J, Sek K, Huang YK, Newman DM, Derrick EB, Koay HF, Nguyen D, Hoang TX, Petley EV, Chan CW, Munoz I, House IG, Lee JN, Kim JS, Li J, Tong J, N de Menezes M, Scheffler CM, Yap KM, Chen AXY, Dunbar PA, Haugen B, Parish IA, Johnstone RW, Darcy PK, Beavis PA. A 2AR eGFP reporter mouse enables elucidation of A 2AR expression dynamics during anti-tumor immune responses. Nat Commun 2023; 14:6990. [PMID: 37914685 PMCID: PMC10620403 DOI: 10.1038/s41467-023-42734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
There is significant clinical interest in targeting adenosine-mediated immunosuppression, with several small molecule inhibitors having been developed for targeting the A2AR receptor. Understanding of the mechanism by which A2AR is regulated has been hindered by difficulty in identifying the cell types that express A2AR due to a lack of robust antibodies for these receptors. To overcome this limitation, here an A2AR eGFP reporter mouse is developed, enabling the expression of A2AR during ongoing anti-tumor immune responses to be assessed. This reveals that A2AR is highly expressed on all tumor-infiltrating lymphocyte subsets including Natural Killer (NK) cells, NKT cells, γδ T cells, conventional CD4+ and CD8+ T lymphocytes and on a MHCIIhiCD86hi subset of type 2 conventional dendritic cells. In response to PD-L1 blockade, the emergence of PD-1+A2AR- cells correlates with successful therapeutic responses, whilst IL-18 is identified as a cytokine that potently upregulates A2AR and synergizes with A2AR deficiency to improve anti-tumor immunity. These studies provide insight into the biology of A2AR in the context of anti-tumor immunity and reveals potential combination immunotherapy approaches.
Collapse
Affiliation(s)
- Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia.
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Yu-Kuan Huang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Dane M Newman
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Emily B Derrick
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Hui-Fern Koay
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Dat Nguyen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Thang X Hoang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Cheok Weng Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Isabelle Munoz
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Joel N Lee
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Joelle S Kim
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Jasmine Li
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Junming Tong
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Maria N de Menezes
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Christina M Scheffler
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Kah Min Yap
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Phoebe A Dunbar
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Brandon Haugen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Department of Immunology, Monash University, Clayton, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
149
|
Ewald J, Zhou G, Lu Y, Xia J. Using ExpressAnalyst for Comprehensive Gene Expression Analysis in Model and Non-Model Organisms. Curr Protoc 2023; 3:e922. [PMID: 37929753 DOI: 10.1002/cpz1.922] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
ExpressAnalyst is a web-based platform that enables intuitive, end-to-end transcriptomics and proteomics data analysis. Users can start from FASTQ files, gene/protein abundance tables, or gene/protein lists. ExpressAnalyst will perform read quantification, gene expression table processing and normalization, differential expression analysis, or meta-analysis with complex study designs. The results are presented via various interactive visualizations such as volcano plots, heatmaps, networks, and ridgeline charts, with built-in functional enrichment analysis to allow flexible data exploration and understanding. ExpressAnalyst currently contains built-in support for 29 common organisms. For non-model organisms without good reference genomes, it can perform comprehensive transcriptome profiling directly from RNA-seq reads. These common tasks are covered in 11 Basic Protocols. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: RNA-seq count table uploading, processing, and normalization Basic Protocol 2: Differential expression analysis with linear models Basic Protocol 3: Functional analysis with volcano plot, enrichment network, and ridgeline visualization Basic Protocol 4: Hierarchical clustering analysis of transcriptomics data using interactive heatmaps Basic Protocol 5: Cross-species gene expression analysis based on ortholog mapping results Basic Protocol 6: Proteomics and microarray data processing and normalization Basic Protocol 7: Preparing multiple gene expression tables for meta-analysis Basic Protocol 8: Statistical and functional meta-analysis of gene expression data Basic Protocol 9: Functional analysis of transcriptomics signatures Basic Protocol 10: Dose-response and time-series data analysis Basic Protocol 11: RNA-seq reads processing and quantification with and without reference transcriptomes.
Collapse
Affiliation(s)
- Jessica Ewald
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Yao Lu
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| |
Collapse
|
150
|
Kim J, Daadi EW, Daadi ES, Oh T, Deleidi M, Daadi MM. LRRK2 Attenuates Antioxidant Response in Familial Parkinson's Disease Derived Neural Stem Cells. Cells 2023; 12:2550. [PMID: 37947628 PMCID: PMC10648992 DOI: 10.3390/cells12212550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons which leads to impaired motor and cognitive functions. PD is predominantly an idiopathic disease; however, about 5% of cases are linked to hereditary mutations. The most common mutation in both familial and sporadic PD is the G2019S mutation of leucine-rich repeat kinase 2 (LRRK2). Currently, it is not fully understood how this mutation leads to PD pathology. In this study, we isolated self-renewable, multipotent neural stem cells (NSCs) from induced pluripotent stem cells (iPSCs) harboring the G2019S LRRK2 mutation and compared them with their isogenic gene corrected counterparts using single-cell RNA-sequencing. Unbiased single-cell transcriptomic analysis revealed perturbations in many canonical pathways, specifically NRF2-mediated oxidative stress response, and glutathione redox reactions. Through various functional assays, we observed that G2019S iPSCs and NSCs exhibit increased basal levels of reactive oxygen species (ROS). We demonstrated that mutant cells show significant increase in the expression for KEAP1 and decrease in NRF2 associated with a reduced antioxidant response. The decreased viability of mutant NSCs in the H2O2-induced oxidative stress assay was rescued by two potent antioxidant drugs, PrC-210 at concentrations of 500 µM and 1 mM and Edaravone at concentrations 50 µM and 100 µM. Our data suggest that the hyperactive LRRK2 G2019S kinase activity leads to increase in KEAP1, which binds NRF2 and leads to its degradation, reduction in the antioxidant response, increased ROS, mitochondria dysfunction and cell death observed in the PD phenotype.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Department of Cell Systems & Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas Sebastien Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163, Paris Cité University, 75015 Paris, France
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Department of Cell Systems & Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| |
Collapse
|