101
|
Swain DM, Sahoo RK, Chandan RK, Ghosh S, Kumar R, Jha G, Tuteja N. Concurrent overexpression of rice G-protein β and γ subunits provide enhanced tolerance to sheath blight disease and abiotic stress in rice. PLANTA 2019; 250:1505-1520. [PMID: 31332521 DOI: 10.1007/s00425-019-03241-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/15/2019] [Indexed: 05/12/2023]
Abstract
Our study demonstrates that simultaneous overexpression of RGB1 and RGG1 genes provides multiple stress tolerance in rice by inducing stress responsive genes and better management of ROS scavenging/photosynthetic machineries. The heterotrimeric G-proteins act as signalling molecules and modulate various cellular responses including stress tolerance in eukaryotes. The gamma (γ) subunit of rice G-protein (RGG1) was earlier reported to promote salinity stress tolerance in rice. In the present study, we report that a rice gene-encoding beta (β) subunit of G-protein (RGB1) gets upregulated during both biotic (upon a necrotrophic fungal pathogen, Rhizoctonia solani infection) and drought stresses. Marker-free transgenic IR64 rice lines that simultaneously overexpress both RGB1 and RGG1 genes under CaMV35S promoter were raised. The overexpressing (OE) lines showed enhanced tolerance to R. solani infection and salinity/drought stresses. Several defense marker genes including OsMPK3 were significantly upregulated in the R. solani-infected OE lines. We also found the antioxidant machineries to be upregulated during salinity as well as drought stress in the OE lines. Overall, the present study provides evidence that concurrent overexpression of G-protein subunits (RGG1 and RGB1) impart multiple (both biotic and abiotic) stress tolerance in rice which could be due to the enhanced expression of stress-marker genes and better management of reactive oxygen species (ROS)-scavenging/photosynthetic machinery. The current study suggests an improved approach for simultaneous improvement of biotic and abiotic stress tolerance in rice which remains a major challenge for its sustainable cultivation.
Collapse
Affiliation(s)
- Durga Madhab Swain
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Ranjan Kumar Sahoo
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ravindra Kumar Chandan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Life Sciences, Central University of Gujrat, Sector-30, Gandhinagar, 382030, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
102
|
Ye Y, Lin R, Su H, Chen H, Luo M, Yang L, Zhang M. The functional identification of glycine-rich TtASR from Tetragonia tetragonoides (Pall.) Kuntze involving in plant abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:212-223. [PMID: 31518852 DOI: 10.1016/j.plaphy.2019.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, we reported on an ASR gene (TtASR) related to salt/drought tolerance from the edible halophyte Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae). A phylogenetic analysis revealed that TtASR was evolutionarily close to other two halophytic glycine-rich ASR members, SbASR-1 (from Salicornia brachiate) and SlASR (from Suaeda liaotungensis), with a typical abscisic acid (ABA)/water-deficit stress (WDS) domain at C-terminal. Quantitative RT-PCR analyses showed that TtASR was expressed in all tested different organs of the T. tetragonoides plant and that expression levels were apparently induced after salt, osmotic stress, and ABA treatments in T. tetragonoides seedlings. An induction of TtASR improved the growth performance of yeast and bacteria more than the control under high salinity, osmotic stress, and oxidative stress. TtASR was not a nuclear-specific protein in plant, and the transcriptional activation assay also demonstrated that TtASR could not activate reporter gene's expression in yeast. TtASR overexpressed Arabidopsis plants exhibited higher tolerance for salt/drought and oxidative stresses and lower ROS accumulation than wild type (WT) plants, accompanied by increased CAT, SOD activities, higher proline content, and lower MDA content in vivo. The results indicated that the TtASR was involved in plant responses to salt and drought, probably by mediating water homeostasis or by acting as ROS scavengers, and that it decreased the membrane damage and improved cellular osmotic adjustment that respond to abiotic stresses in microorganisms and plants.
Collapse
Affiliation(s)
- Yuyan Ye
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China.
| | - Ruoyi Lin
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China; College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Huaxiang Su
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Hongfeng Chen
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| | - Lixiang Yang
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China.
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
103
|
Yoon JS, Kim JY, Lee MB, Seo YW. Over-expression of the Brachypodium ASR gene, BdASR4, enhances drought tolerance in Brachypodium distachyon. PLANT CELL REPORTS 2019; 38:1109-1125. [PMID: 31134348 DOI: 10.1007/s00299-019-02429-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/21/2019] [Indexed: 05/13/2023]
Abstract
BdASR4 expression was up-regulated during abiotic stress and hormone treatments. Plants over-expressing BdASR4 improved drought tolerant. BdASR4 may regulate antioxidant activities and transcript levels of stress-related and abscisic acid-responsive genes. Abiotic stress conditions negatively affect plant growth and developmental processes, causing a reduction in crop productivity. The abscisic acid-, stress-, ripening-induced (ASR) proteins play important roles in the protection of plants from abiotic stress. Brachypodium distachyon L. is a well-studied monocot model plant. However, ASR proteins of Brachypodium have not been widely studied. In this study, five ASR genes of Brachypodium plant were cloned and characterized. The BdASR genes were expressed in response to various abiotic stresses and hormones. In particular, BdASR4 was shown to encode a protein containing a nuclear localization signal in its C-terminal region, which enabled protein localization in the nucleus. To further examine functions of BdASR4, transgenic Brachypodium plants harboring BdASR4 were generated. Over-expression of BdASR4 was associated with strong drought tolerance, and plants over-expressing BdASR4 preserved more water and displayed higher antioxidant enzyme activities than did the wild-type plants. The transcript levels of stress-responsive genes, reactive oxygen species scavenger-associated genes, and abscisic acid-responsive genes tended to be higher in transgenic plants than in WT plants. Moreover, plants over-expressing BdASR4 were hypersensitive to exogenous abscisic acid at the germination stage. Taken together, these findings suggest multiple roles for BdASR4 in the plant response to drought stress by regulating antioxidant enzymes and the transcription of stress- and abscisic acid-responsive genes.
Collapse
Affiliation(s)
- Jin Seok Yoon
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jae Yoon Kim
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Department of Plant Resources, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Man Bo Lee
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Yong Weon Seo
- Department of Biosystems and Biotechnology, Korea University, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
104
|
Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ. Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. Biochem J 2019; 476:2393-2409. [PMID: 31375565 DOI: 10.1042/bcj20190435] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 11/17/2022]
Abstract
Salinity stress adversely affects the growth and productivity of different crops. In the present study, we isolated the rhizospheric bacteria Arthrobacter woluwensis AK1 from Pohang beach, South Korea and determined its plant growth-promoting potential under NaCl salt stress (0, 100, and 200 mM). AK1 has phosphate-solubilizing activity and produce siderophores, organic acids, and phytohormones such as gibberellic acid (GA) and indole-3-acetic acid (IAA) that significantly alleviate sodium chloride (NaCl) stress and increase all plant growth attributes. Furthermore, inoculation of AK1 significantly decreased endogenous abscisic acid (ABA) content, extensively regulated the antioxidant activities and mitigated NaCl stress. Similarly, inductively coupled plasma mass spectrometry results showed that soybean plants inoculated with AK1 significantly decreased the amount of sodium (Na+) uptake during NaCl stress after 6 and 12 days. Four genes, auxin resistant 1 (GmLAX1), potassium channel AKT2 (GmAKT2), soybean salt tolerance 1 (GmST1), and salt tolerance-associated gene on chromosome 3 (GmSALT3) were up-regulated, while two genes chloride channel gene (GmNHX1) and Na+/H+ antiporter (GmCLC1) were down-regulated in soybean AK1treated plants. In conclusion, AK1 can mitigate salinity stress, increase plant growth and could be utilized as an eco-friendly bio-fertilizer under salinity stress.
Collapse
Affiliation(s)
- Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
105
|
Zhang Q, Zhai J, Shao L, Lin W, Peng C. Accumulation of Anthocyanins: An Adaptation Strategy of Mikania micrantha to Low Temperature in Winter. FRONTIERS IN PLANT SCIENCE 2019; 10:1049. [PMID: 31555311 PMCID: PMC6726734 DOI: 10.3389/fpls.2019.01049] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 05/03/2023]
Abstract
The accumulation of anthocyanins in leaves and stems of Mikania micrantha improves its adaptability to low-temperature environments during winter in areas where this species is invasive. The accumulation of anthocyanins in M. micrantha causes the plants to exhibit red coloration when encountering low-temperature environments during winter. Many studies have reported that the accumulation of anthocyanins near the plant surface filters light and improves photoprotection. However, the results of this study showed that the main role of anthocyanins accumulation in M. micrantha during winter was to increase both antioxidant capability and tolerance to low temperature. The results showed that the anthocyanin contents were significantly higher in red leaves and stems than in green leaves and stems, with more than 60-fold greater content in red leaves than in green leaves. In addition, the total antioxidant capability was significantly greater in red leaves and stems than in green leaves and stems. After 4°C treatment for 12 h, a large amount of reactive oxygen species accumulated in green leaves and stems, and the maximum photochemical efficiency decreased significantly. Compared with that of the green leaves, the net photosynthetic rate of red leaves was significantly higher. The biomass statistics revealed that the dry matter accumulation of M. micrantha plants with relatively large amounts of anthocyanins was significantly greater than that of plants with relatively low anthocyanin levels during the same period. Our results suggest that the accumulation of anthocyanins during winter is an adaptation strategy of M. micrantha to low winter temperatures.
Collapse
Affiliation(s)
- Qilei Zhang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Junjie Zhai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ling Shao
- College of Life Science, Zhao Qing University, Zhaoqing, China
| | - Wei Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Changlian Peng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
106
|
Pérez-Díaz J, Pérez-Díaz JR, Medeiros DB, Zuther E, Hong CY, Nunes-Nesi A, Hincha DK, Ruiz-Lara S, Casaretto JA. Transcriptome analysis reveals potential roles of a barley ASR gene that confers stress tolerance in transgenic rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:29-39. [PMID: 31129469 DOI: 10.1016/j.jplph.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/29/2023]
Abstract
Control of gene expression and induction of cellular protection mechanisms are two important processes that plants employ to protect themselves against abiotic stresses. ABA-, stress, and ripening-induced (ASR) proteins have been identified to participate in such responses. Previous studies have proposed that these proteins can act as transcription factors and as molecular chaperones protecting transgenic plants against stresses; however a gene network regulated by ASRs has not been explored. To expand our knowledge on the function of these proteins in cereals, we present the functional characterization of a barley ASR gene. Expression of HvASR5 was almost ubiquitous in different organs and responded to ABA and to different stress treatments. When expressed ectopically, HvASR5 was able to confer drought and salt stress tolerance to Arabidopsis thaliana and to improve growth performance of rice plants under stress conditions. A transcriptomic analysis with two transgenic rice lines overexpressing HvASR5 helped to identify potential downstream targets and understand ASR-regulated cellular processes. HvASR5 up-regulated the expression of a distinct set of genes associated with stress responses, metabolic processes (particularly carbohydrate metabolism), as well as reproduction and development. These data, together with the confirmed nuclear and cytoplasmic localization of HvASR5, further support the hypothesis that HvASR5 can also carry out roles as molecular protector and transcriptional regulator.
Collapse
Affiliation(s)
- Jorge Pérez-Díaz
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - David B Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Simón Ruiz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - José A Casaretto
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
107
|
Yu J, Fan N, Li R, Zhuang L, Xu Q, Huang B. Proteomic Profiling for Metabolic Pathways Involved in Interactive Effects of Elevated Carbon Dioxide and Nitrogen on Leaf Growth in a Perennial Grass Species. J Proteome Res 2019; 18:2446-2457. [PMID: 31081640 DOI: 10.1021/acs.jproteome.8b00951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elevated atmospheric CO2 and nitrogen are major environmental factors affecting shoot growth. The objectives of this study are to determine the interactive effects of elevated CO2 and nitrogen on leaf growth in tall fescue ( Festuca arundinacea) and to identify major proteins and associated metabolic pathways underlying CO2-regulation of leaf growth under insufficient and sufficient nitrate conditions using proteomic analysis. Plants of tall fescue treated with low nitrate level (0.25 mM, LN), moderate nitrate level (4 mM, MN) and high nitrate level (32 mM, HN) were exposed to ambient (400 μmol mol-1) and elevated (800 μmol mol-1) CO2 concentrations in environment-controlled growth chambers. Increased atmospheric CO2 concentration increased leaf length and shoot biomass, which corresponded to increased content of indo-acetic acid, gibberellic acid, cytokinins and reduced content of abscisic acid under sufficient nitrate conditions (MN and HN conditions). Low nitrate supply limited shoot growth and hormonal responses to elevated CO2. Proteomic analysis of plants exposed to elevated CO2 under LN and MN conditions demonstrated the increases in the abundance of many proteins due to elevated CO2 under MN condition involved with cell cycle and proliferation, transcription and translation, photosynthesis (ribosomal and chlorophyll a/b-binding proteins), amino acids synthesis, sucrose and starch metabolism, as well as ABA signaling pathways (ABA-induced proteins). Our results revealed major proteins and associated metabolic pathways associated with the interactive effects of elevated CO2 and nitrate regulating leaf growth in a perennial grass species.
Collapse
Affiliation(s)
- Jingjin Yu
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Ningli Fan
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Ran Li
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Lili Zhuang
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Qian Xu
- College of Agro-grassland Science , Nanjing Agricultural University , Nanjing 210095 , PR China
| | - Bingru Huang
- Department of Plant Biology and Pathology , Rutgers, the State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
108
|
Zhao Y, Xu F, Liu J, Guan F, Quan H, Meng F. The adaptation strategies of Herpetospermum pedunculosum (Ser.) Baill at altitude gradient of the Tibetan plateau by physiological and metabolomic methods. BMC Genomics 2019; 20:451. [PMID: 31159723 PMCID: PMC6547600 DOI: 10.1186/s12864-019-5778-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Herpetospermum pedunculosum (Ser.) Baill is annual scandent herbs. They are used in the treatment of piles, inflammation of the stomach and the intestines. It can survive the extreme environment of the Tibetan Plateau (TP). However, the underlying mechanisms of this adaptation to H. pedunculosum from TP remain unclear. Here, we combined physiological and metabolomics methods to analyze H. pedunculosum response to altitude gradient differences. RESULTS At high altitude, increases in the activities of Ascorbate peroxidase (APX), Glutathione reductase (GR), Dehydroascorbate reductase (DHAR), Monodehydroascorbate reductase (MDHAR), Superoxide dismutase (SOD) have been observed in leaves. Total Glutathion content, total Ascorbate content and the ASA (ascorbic acid)/docosahexaenoic acid (DHA) ration were highly elevated from low altitude to high altitude. In addition, high altitude induces decrease of the Anthocyanidin content (ANTH) and increase of abscisic acid content (ABA). The GC-MS analyses identified of 50 metabolites from leaves of H. pedunculosum. In addition, a metabolic network was constructed based on metabolomic datasets using a weighted correlation network analysis (WGCNA) approach. The network analysis uncovered 4 distinguished metabolic modules highly associated with I, II, III and IV respectively. Furthermore, the analysis successfully classified 50 samples into seven groups: carbohydrates, amino acids, organic acids, lipid components, polyamine, secondary metabolism and others. CONCLUSIONS In the present study, the content of parts of amino acid components increased in samples collected at higher altitudes, and most of metabolites, including carbohydrates and organic acids were assigned to the carbon metabolic pathway comprising reductive pentose phosphate pathway, glycolysis and TCA cycle, indicating the direct relationship between adaptability and the carbon metabolic pathway and amino acids in H. pedunculosum response to high altitude. The results of this study laid the foundation of the molecular mechanism on H. pedunculosum from high altitude.
Collapse
Affiliation(s)
- Yong Zhao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fuling Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Fachun Guan
- Jilin Academy of Agricultural Science, Changchun, 130033, China
- Tibet Agriculture and Animal Husbandry College, Nyingchi, 860000, China
| | - Hong Quan
- Tibet Agriculture and Animal Husbandry College, Nyingchi, 860000, China
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
109
|
Liang Y, Jiang Y, Du M, Li B, Chen L, Chen M, Jin D, Wu J. ZmASR3 from the Maize ASR Gene Family Positively Regulates Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2019; 20:E2278. [PMID: 31072025 PMCID: PMC6539908 DOI: 10.3390/ijms20092278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in drought stress responses. However, the function of maize ASR genes in enhancing drought tolerance is not known. Here, nine maize ASR members were cloned, and the molecular features of these genes were analyzed. Phenotype results of overexpression of maize ZmASR3 gene in Arabidopsis showed lower malondialdehyde (MDA) levels and higher relative water content (RWC) and proline content than the wild type under drought conditions, demonstrating that ZmASR3 can improve drought tolerance. Further experiments showed that ZmASR3-overexpressing transgenic lines displayed increased stomatal closure and reduced reactive oxygen species (ROS) accumulation by increasing the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) under drought conditions. Moreover, overexpression of ZmASR3 in Arabidopsis increased ABA content and reduced sensitivity to exogenous ABA in both the germination and post-germination stages. In addition, the ROS-related, stress-responsive, and ABA-dependent pathway genes were activated in transgenic lines under drought stress. Taken together, these results suggest that ZmASR3 acts as a positive regulator of drought tolerance in plants.
Collapse
Affiliation(s)
- Yani Liang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yingli Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Ming Du
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Baoyan Li
- Institute of Plant Protection, Yantai Academy of Agricultural Sciences, Yantai 265500, China.
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Mingchao Chen
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Demiao Jin
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
110
|
Chen Y, Chen Y, Shi Z, Jin Y, Sun H, Xie F, Zhang L. Biosynthesis and Signal Transduction of ABA, JA, and BRs in Response to Drought Stress of Kentucky Bluegrass. Int J Mol Sci 2019. [PMID: 30875790 DOI: 10.artn128910.3390/ijms20061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Kentucky bluegrass (KB, Poa pratensis) is one of the most widely used cool-season turfgrass species, but it is sensitive to drought stress. Molecular studies in KB are hindered by its large and complex genome structure. In this study, a comparative transcriptomic study was conducted between a short and long period of water deficiency. Three transcriptome libraries were constructed and then sequenced by using leaf RNA samples of plants at 0, 2, and 16 h after PEG6000 treatment. A total of 199,083 differentially expressed genes (DEGs) were found. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed that DEGs were enriched in "Plant hormone signal transduction" and "MAPK signaling pathway-Plant". Some key up-regulated genes, including PYL, JAZ, and BSK, were involved in hormone signaling transduction of abscisic acid, jasmonic acid, and brassinosteroid and possibly these genes play important roles in coping with drought stress in KB. Furthermore, our results showed that the concentrations of ABA, JA and BR increased significantly with the extension of the drought period. The specific DEGs encoding functional proteins, kinase and transcription factors, could be valuable information for genetic manipulation to promote drought tolerance of KB in the future.
Collapse
Affiliation(s)
- Yajun Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Zhenjie Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yifeng Jin
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Huashan Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Fuchun Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
111
|
Chen Y, Chen Y, Shi Z, Jin Y, Sun H, Xie F, Zhang L. Biosynthesis and Signal Transduction of ABA, JA, and BRs in Response to Drought Stress of Kentucky Bluegrass. Int J Mol Sci 2019; 20:E1289. [PMID: 30875790 PMCID: PMC6471471 DOI: 10.3390/ijms20061289] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 01/17/2023] Open
Abstract
Kentucky bluegrass (KB, Poa pratensis) is one of the most widely used cool-season turfgrass species, but it is sensitive to drought stress. Molecular studies in KB are hindered by its large and complex genome structure. In this study, a comparative transcriptomic study was conducted between a short and long period of water deficiency. Three transcriptome libraries were constructed and then sequenced by using leaf RNA samples of plants at 0, 2, and 16 h after PEG6000 treatment. A total of 199,083 differentially expressed genes (DEGs) were found. The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation revealed that DEGs were enriched in "Plant hormone signal transduction" and "MAPK signaling pathway-Plant". Some key up-regulated genes, including PYL, JAZ, and BSK, were involved in hormone signaling transduction of abscisic acid, jasmonic acid, and brassinosteroid and possibly these genes play important roles in coping with drought stress in KB. Furthermore, our results showed that the concentrations of ABA, JA and BR increased significantly with the extension of the drought period. The specific DEGs encoding functional proteins, kinase and transcription factors, could be valuable information for genetic manipulation to promote drought tolerance of KB in the future.
Collapse
Affiliation(s)
- Yajun Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yang Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Zhenjie Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Yifeng Jin
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Huashan Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Fuchun Xie
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
112
|
Li X, Wei W, Li F, Zhang L, Deng X, Liu Y, Yang S. The Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Is Critical for Abiotic Stress Response in Wheat. Int J Mol Sci 2019; 20:E1104. [PMID: 30836662 PMCID: PMC6429432 DOI: 10.3390/ijms20051104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPCp) are ubiquitous proteins that play pivotal roles in plant metabolism and are involved in stress response. However, the mechanism of GAPCp's function in plant stress resistance process remains unclear. Here we isolated, identified, and characterized the TaGAPCp1 gene from Chinese Spring wheat for further investigation. Subcellular localization assay indicated that the TaGAPCp1 protein was localized in the plastid of tobacco (Nicotiana tobacum) protoplast. In addition, quantitative real-time PCR (qRT-PCR) unraveled that the expression of TaGAPCp1 (GenBank: MF477938.1) was evidently induced by osmotic stress and abscisic acid (ABA). This experiment also screened its interaction protein, cytochrome b6-f complex iron sulfite subunit (Cyt b6f), from the wheat cDNA library using TaGAPCp1 protein as a bait via the yeast two-hybrid system (Y2H) and the interaction between Cyt b6f and TaGAPCp1 was verified by bimolecular fluorescence complementation assay (BiFC). Moreover, H₂O₂ could also be used as a signal molecule to participate in the process of Cyt b6f response to abiotic stress. Subsequently, we found that the chlorophyll content in OE-TaGAPCp1 plants was significantly higher than that in wild type (WT) plants. In conclusion, our data revealed that TaGAPCp1 plays an important role in abiotic stress response in wheat and this stress resistance process may be completed by H₂O₂-mediated ABA signaling pathway.
Collapse
Affiliation(s)
- Xixi Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wenjie Wei
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fangfang Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xia Deng
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ying Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
113
|
Xiong Q, Cao C, Shen T, Zhong L, He H, Chen X. Comprehensive metabolomic and proteomic analysis in biochemical metabolic pathways of rice spikes under drought and submergence stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:237-247. [PMID: 30611782 DOI: 10.1016/j.bbapap.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
Drought and submergence are the main adverse factors affecting plant growth and yield formation in parts of China, especially in the Yangtze River region. In this study, T1 (drought duration: 10 d), T2 (submergence duration: 8 d) and CK (control) treatments were applied. This work aimed to study the changes in metabolic pathways of rice under drought and submergence stress during the panicle differentiation stage. The identification and analysis of differential metabolites and differentially expressed proteins functions indicate that drought and submergence mainly promoted the energy metabolism pathway, carbon fixation in photosynthetic organism pathway, carbohydrate metabolic process, and reactive oxygen species (ROS) metabolic process functions. Under drought stress, the inhibition of photosynthetic rate is mainly through stomatal conductance restriction, and flavonoid pathway regulates the metabolic process of ROS. Under submergence stress, the electron transfer chain was destroyed to inhibit the photosynthetic rate, and the antioxidant system was activated to regulate the metabolism of ROS. The changes in related enzymes or proteins in metabolic regulatory networks are analyzed, which will be conducive to understanding the response mechanism of rice drought and submergence more deeply and provide a scientific basis for rice drought and submergence prevention and mitigation, and the breeding of drought- and submergence-resistant varieties.
Collapse
Affiliation(s)
- Qiangqiang Xiong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Chaohao Cao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Tianhua Shen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China
| | - HaoHua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China.
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Jiangxi 330045, China.
| |
Collapse
|
114
|
Buckley CR, Caine RS, Gray JE. Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields? FRONTIERS IN PLANT SCIENCE 2019; 10:1783. [PMID: 32117345 PMCID: PMC7026486 DOI: 10.3389/fpls.2019.01783] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/20/2019] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa L.) contributes to the diets of around 3.5 billion people every day and is consumed more than any other plant. Alarmingly, climate predictions suggest that the frequency of severe drought and high-temperature events will increase, and this is set to threaten the global rice supply. In this review, we consider whether water or heat stresses in crops - especially rice - could be mitigated through alterations to stomata; minute pores on the plant epidermis that permit carbon acquisition and regulate water loss. In the short-term, water loss is controlled via alterations to the degree of stomatal "openness", or, in the longer-term, by altering the number (or density) of stomata that form. A range of molecular components contribute to the regulation of stomatal density, including transcription factors, plasma membrane-associated proteins and intercellular and extracellular signaling molecules. Much of our existing knowledge relating to stomatal development comes from research conducted on the model plant, Arabidopsis thaliana. However, due to the importance of cereal crops to global food supply, studies on grass stomata have expanded in recent years, with molecular-level discoveries underscoring several divergent developmental and morphological features. Cultivation of rice is particularly water-intensive, and there is interest in developing varieties that require less water yet still maintain grain yields. This could be achieved by manipulating stomatal development; a crop with fewer stomata might be more conservative in its water use and therefore more capable of surviving periods of water stress. However, decreasing stomatal density might restrict the rate of CO2 uptake and reduce the extent of evaporative cooling, potentially leading to detrimental effects on yields. Thus, the extent to which crop yields in the future climate will be affected by increasing or decreasing stomatal density should be determined. Here, our current understanding of the regulation of stomatal development is summarised, focusing particularly on the genetic mechanisms that have recently been described for rice and other grasses. Application of this knowledge toward the creation of "climate-ready" rice is discussed, with attention drawn to the lesser-studied molecular elements whose contributions to the complexity of grass stomatal development must be understood to advance efforts.
Collapse
|
115
|
Comprehensive Analysis of the Cadmium Tolerance of Abscisic Acid-, Stress- and Ripening-Induced Proteins (ASRs) in Maize. Int J Mol Sci 2019; 20:ijms20010133. [PMID: 30609672 PMCID: PMC6337223 DOI: 10.3390/ijms20010133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023] Open
Abstract
In plants, abscisic acid-, stress-, and ripening-induced (ASR) proteins have been shown to impart tolerance to multiple abiotic stresses such as drought and salinity. However, their roles in metal stress tolerance are poorly understood. To screen plant Cd-tolerance genes, the yeast-based gene hunting method which aimed to screen Cd-tolerance colonies from maize leaf cDNA library hosted in yeast was carried out. Here, maize ZmASR1 was identified to be putative Cd-tolerant through this survival screening strategy. In silico analysis of the functional domain organization, phylogenetic classification and tissue-specific expression patterns revealed that maize ASR1 to ASR5 are typical ASRs with considerable expression in leaves. Further, four of them were cloned for testifying Cd tolerance using yeast complementation assay. The results indicated that they all confer Cd tolerance in Cd-sensitive yeast. Then they were transiently expressed in tobacco leaves for subcellular localization analysis and for Cd-challenged lesion assay, continuously. The results demonstrated that all 4 maize ASRs tested are localized to the cell nucleus and cytoplasm in tobacco leaves. Moreover, they were confirmed to be Cd-tolerance genes in planta through lesion analysis in Cd-infiltrated leaves transiently expressing them. Taken together, our results demonstrate that maize ASRs play important roles in Cd tolerance, and they could be used as promising candidate genes for further functional studies toward improving the Cd tolerance in plants.
Collapse
|
116
|
Wang X, Zhang H, Shao LY, Yan X, Peng H, Ouyang JX, Li SB. Expression and function analysis of a rice OsHSP40 gene under salt stress. Genes Genomics 2018; 41:175-182. [PMID: 30298358 DOI: 10.1007/s13258-018-0749-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Heat shock proteins (HSPs) play essential roles in both plant growth and abiotic stress tolerance. In rice, OsHSP40 was recently reported to regulate programmed cell death (PCD) of suspension cells under high temperature. However, the expression and functions of OsHSP40 under normal growth or other abiotic stress conditions is still unknown. We reported the expression and function of a rice OsHSP40 gene under salt stress. Homologous proteins of OsHSP40 were collected from the NCBI database and constructed the neighbor-joining (NJ) phylogenetic tree. The expression pattern of OsHSP40 was detected by qRT-PCR under NaCl (150 mM) treatment. Then, identified a rice T-DNA insertion mutant oshsp40. At last, we compared and analyzed the phenotypes of oshsp40 and wild type under salt stress. OsHSP40 was a constitutively expressed small HSP (sHSP) gene and was close related to other plant sHSPs. Moreover, the expression of OsHSP40 was regulated by salt, varying across time points and tissues. Furthermore, the growth of T-DNA insertion mutant of OsHSP40 (designated as oshsp40) was suppressed by NaCl (150 mM) compared with that of the WT at seedling stage. Detailed measurement showed root and shoot length of the oshsp40 seedlings were significantly shorter than those of the WT seedlings under NaCl stress. In addition, the pot experiment results revealed that seedlings of oshsp40 withered more seriously compared with those of WT after NaCl treatment and recovery, and that survival rate and fresh weight of oshsp40 seedlings were significantly reduced. Taken together, these data suggested that OsHSP40 had multiple functions in rice normal growth and abiotic stress tolerance.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Huan Zhang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Lu-Yuan Shao
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Hui Peng
- College of Life Sciences, Guangxi Normal University, Guilin, 541004, China.,Hunan Hi-Tech Bio-Agro Co., Ltd, Yueyang, 414400, China
| | - Jie-Xiu Ouyang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China. .,Medical Laboratory Education Center, Nanchang University, Nanchang, 330031, China.
| | - Shao-Bo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
117
|
Xiong H, Yu J, Miao J, Li J, Zhang H, Wang X, Liu P, Zhao Y, Jiang C, Yin Z, Li Y, Guo Y, Fu B, Wang W, Li Z, Ali J, Li Z. Natural Variation in OsLG3 Increases Drought Tolerance in Rice by Inducing ROS Scavenging. PLANT PHYSIOLOGY 2018; 178:451-467. [PMID: 30068540 PMCID: PMC6130013 DOI: 10.1104/pp.17.01492] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/21/2018] [Indexed: 05/18/2023]
Abstract
Improving the performance of rice (Oryza sativa) under drought stress has the potential to significantly affect rice productivity. Here, we report that the ERF family transcription factor OsLG3 positively regulates drought tolerance in rice. In our previous work, we found that OsLG3 has a positive effect on rice grain length without affecting grain quality. In this study, we found that OsLG3 was more strongly expressed in upland rice than in lowland rice under drought stress conditions. By performing candidate gene association analysis, we found that natural variation in the promoter of OsLG3 is associated with tolerance to osmotic stress in germinating rice seeds. Overexpression of OsLG3 significantly improved the tolerance of rice plants to simulated drought, whereas suppression of OsLG3 resulted in greater susceptibility. Phylogenetic analysis indicated that the tolerant allele of OsLG3 may improve drought tolerance in cultivated japonica rice. Introgression lines and complementation transgenic lines containing the elite allele of OsLG3IRAT109 showed increased drought tolerance, demonstrating that natural variation in OsLG3 contributes to drought tolerance in rice. Further investigation suggested that OsLG3 plays a positive role in drought stress tolerance in rice by inducing reactive oxygen species scavenging. Collectively, our findings reveal that natural variation in OsLG3 contributes to rice drought tolerance and that the elite allele of OsLG3 is a promising genetic resource for the development of drought-tolerant rice varieties.
Collapse
Affiliation(s)
- Haiyan Xiong
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jianping Yu
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinli Miao
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xin Wang
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pengli Liu
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yan Zhao
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chonghui Jiang
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhigang Yin
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yang Li
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Binying Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jauhar Ali
- International Rice Research Institute, Metro Manila 1301, Philippines
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization of the Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
118
|
He F, Wang H, Li H, Su Y, Li S, Yang Y, Feng C, Yin W, Xia X. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1514-1528. [PMID: 29406575 PMCID: PMC6041450 DOI: 10.1111/pbi.12893] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/28/2017] [Accepted: 01/28/2018] [Indexed: 05/11/2023]
Abstract
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2 O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild-type) controls. Moreover, up-regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA-induced stomatal closure caused by hydrogen peroxide (H2 O2 ) production in transgenic poplar plants.
Collapse
Affiliation(s)
- Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Hui‐Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Shuang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Cong‐Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignNational Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
119
|
Yu C, Song L, Song J, Ouyang B, Guo L, Shang L, Wang T, Li H, Zhang J, Ye Z. ShCIGT, a Trihelix family gene, mediates cold and drought tolerance by interacting with SnRK1 in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:140-149. [PMID: 29576067 DOI: 10.1016/j.plantsci.2018.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 12/09/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Abiotic stress, such as drought and cold stress, have a major impact on plant growth and development. The trihelix transcription factor family plays important roles in plant morphological development and adaptation to abiotic stresses. In this study, we isolated a cold-induced gene named ShCIGT from the wild tomato species Solanum habrochaites and found that it contributes to abiotic stress tolerance. ShCIGT belongs to the GT-1 subfamily of the trihelix transcription factors. It was constitutively expressed in various tissues. Its expression was induced by multiple abiotic stresses and abscisic acid (ABA). Overexpression of ShCIGT in cultivated tomato enhanced cold and drought stress tolerance. In addition, the transgenic plants displayed a reduced sensitivity to ABA during post-germination growth. We found that ShCIGT interacts with SnRK1, an energy sensor in the metabolic signaling network, which controls plant metabolism, growth and development, and stress tolerance. Based on these data, we conclude ShCIGT may improve abiotic-stress tolerance in tomato by interacting with SnRK1.
Collapse
Affiliation(s)
- Chuying Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lulu Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianwen Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijie Guo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lele Shang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
120
|
Li J, Guo X, Zhang M, Wang X, Zhao Y, Yin Z, Zhang Z, Wang Y, Xiong H, Zhang H, Todorovska E, Li Z. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:131-139. [PMID: 29576066 DOI: 10.1016/j.plantsci.2018.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 05/05/2023]
Abstract
Plants have evolved multiple protective strategies to adapt to adverse environmental conditions. Upland rice (UR) has evolved as a "drought-resistant type". However, little is known about genes or mechanisms in UR that underlying drought tolerance at the molecular level. Here we report isolation and functional characterization of the ERF gene, OsERF71, from the UR variety, IRAT109. The expression of OsERF71 was induced by abscisic acid (ABA) and various abiotic stresses preferentially in IRAT109 under ABA, dehydration, and polyethyleneglycol (PEG) treatments. OsERF71 was verified as a nuclear-localized protein and had transcriptional activity in yeast cells. Overexpression of the OsERF71 in Nipponbare demonstrated a significant increase in tolerance to drought stress and a reduced rate of water loss. In contrast, OsERF71 interference lines were sensitive to drought stress and exhibited a higher rate of water loss. OsERF71-overexpressing lines also showed enhanced tolerance to high salinity. Moreover, OsERF71 regulated the expression of several ABA- responsive and proline biosynthesis genes under drought stress, resulting in enhanced sensitivity to exogenous ABA treatment and proline accumulation. Accordingly, we suggest that OsERF71 plays a positive role in drought stress tolerance by increasing the expression of genes associated with ABA signaling and proline biosynthesis under stress.
Collapse
Affiliation(s)
- Jinjie Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Xiao Guo
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xin Wang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Yan Zhao
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Zhigang Yin
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Zhanying Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Yanming Wang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Haiyan Xiong
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China
| | | | - Zichao Li
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
121
|
Geng J, Liu JH. The transcription factor CsbHLH18 of sweet orange functions in modulation of cold tolerance and homeostasis of reactive oxygen species by regulating the antioxidant gene. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2677-2692. [PMID: 29474667 PMCID: PMC5920331 DOI: 10.1093/jxb/ery065] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/13/2018] [Indexed: 05/04/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) comprise one of the largest gene families in plants, and participate in various physiological processes, but the physiological role and regulatory function of the majority of bHLHs remain poorly understood. Here, a total of 56 putative CsbHLH genes were identified in sweet orange (Citrus sinensis) based on a genome-wide analysis. The CsbHLH genes, except four members, were distributed throughout nine chromosomes and divided into 19 subgroups. Most of the CsbHLH genes were responsive to cold stress, with the greatest up-regulation being observed in CsbHLH18. CsbHLH18 is localized in the nuclei and has transcriptional activation activity. Overexpression of CsbHLH18 conferred enhanced cold tolerance in transgenic tobacco. The transgenic plants accumulated significantly less reactive oxygen species (ROS), concurrent with increased activities and transcript levels of antioxidant enzymes. In contrast, knockdown of bHLH18 by RNAi in trifoliate orange promoted cold susceptibility, accompanied by down-regulation of antioxidant genes and accumulation of more ROS. Protein-DNA interaction assays demonstrate that CsbHLH18 directly and specifically binds to and activates the promoter of CsPOD. Taken together, these findings indicate that CsbHLH18 plays a positive role in cold tolerance through, at least partly, modulation of ROS homeostasis by directly regulating the antioxidant gene.
Collapse
Affiliation(s)
- Jingjing Geng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
122
|
Kanojia A, Dijkwel PP. Abiotic Stress Responses are Governed by Reactive Oxygen Species and Age. ANNUAL PLANT REVIEWS ONLINE 2018:295-326. [PMID: 0 DOI: 10.1002/9781119312994.apr0611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
123
|
Alavilli H, Lee H, Park M, Yun DJ, Lee BH. Enhanced multiple stress tolerance in Arabidopsis by overexpression of the polar moss peptidyl prolyl isomerase FKBP12 gene. PLANT CELL REPORTS 2018; 37:453-465. [PMID: 29247292 DOI: 10.1007/s00299-017-2242-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
PaFKBP12 overexpression in Arabidopsis resulted in stress tolerance to heat, ABA, drought, and salt stress, in addition to growth promotion under normal conditions. Polytrichastrum alpinum (alpine haircap moss) is one of polar organisms that can withstand the severe conditions of the Antarctic. In this study, we report the isolation of a peptidyl prolyl isomerase FKBP12 gene (PaFKBP12) from P. alpinum collected in the Antarctic and its functional implications in development and stress responses in plants. In P. alpinum, PaFKBP12 expression was induced by heat and ABA. Overexpression of PaFKBP12 in Arabidopsis increased the plant size, which appeared to result from increased rates of cell cycle. Under heat stress conditions, PaFKBP12-overexpressing lines (PaFKBP12-OE) showed better growth and survival than the wild type. PaFKBP12-OE also showed higher root elongation rates, better shoot growth and enhanced survival at higher concentrations of ABA in comparison to the wild type. In addition, PaFKBP12-OE were more tolerant to drought and salt stress than the wild type. All these phenotypes were accompanied with higher induction of the stress responsive genes in PaFKBP12-OE than in the wild type. Taken together, our findings revealed important functions of PaFKBP12 in plant development and abiotic stress responses.
Collapse
Affiliation(s)
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Mira Park
- Department of Life Science, Sogang University, Seoul, 04107, South Korea
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul, 04107, South Korea.
| |
Collapse
|
124
|
Li N, Wei S, Chen J, Yang F, Kong L, Chen C, Ding X, Chu Z. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:771-783. [PMID: 28869785 PMCID: PMC5814579 DOI: 10.1111/pbi.12827] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/23/2017] [Indexed: 05/11/2023]
Abstract
The GT-1 cis-element widely exists in many plant gene promoters. However, the molecular mechanism that underlies the response of the GT-1 cis-element to abiotic and biotic stresses remains elusive in rice. We previously isolated a rice short-chain peptide-encoding gene, Os2H16, and demonstrated that it plays important roles in both disease resistance and drought tolerance. Here, we conducted a promoter assay of Os2H16 and identified GT-1 as an important cis-element that mediates Os2H16 expression in response to pathogen attack and osmotic stress. Using the repeated GT-1 as bait, we characterized an abscisic acid, stress and ripening 2 (ASR2) protein from yeast-one hybridization screening. Sequence alignments showed that the carboxy-terminal domain of OsASR2 containing residues 80-138 was the DNA-binding domain. Furthermore, we identified that OsASR2 was specifically bound to GT-1 and activated the expression of the target gene Os2H16, as well as GFP driven by the chimeric promoter of 2 × GT-1-35S mini construct. Additionally, the expression of OsASR2 was elevated by pathogens and osmotic stress challenges. Overexpression of OsASR2 enhanced the resistance against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani, and tolerance to drought in rice. These results suggest that the interaction between OsASR2 and GT-1 plays an important role in the crosstalk of the response of rice to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Shutong Wei
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Jing Chen
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Fangfang Yang
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Lingguang Kong
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Cuixia Chen
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Xinhua Ding
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Zhaohui Chu
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| |
Collapse
|
125
|
|
126
|
Zhao Y, Tian X, Wang F, Zhang L, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H. Characterization of wheat MYB genes responsive to high temperatures. BMC PLANT BIOLOGY 2017; 17:208. [PMID: 29157199 PMCID: PMC5696766 DOI: 10.1186/s12870-017-1158-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/08/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Heat stress is one of the most crucial environmental factors, which reduces crop yield worldwide. In plants, the MYB family is one of the largest families of transcription factors (TFs). Although some wheat stress-related MYB TFs have been characterized, their involvement in response to high-temperature stress has not been properly studied. RESULTS Six novel heat-induced MYB genes were identified by comparison with previously established de novo transcriptome sequencing data obtained from wheat plants subjected to heat treatment; genomic and complete coding sequences of these genes were isolated. All six TaMYBs were localized in the nucleus of wheat protoplasts. Transactivation assays in yeast revealed that all six proteins acted as transcriptional activators, and the activation domains were attributed to the C-termini of the six wheat MYB proteins. Phylogenetic analysis of the six TaMYBs and R2R3-MYBs from Arabidopsis revealed that all six proteins were in clades that contained stress-related MYB TFs. The expression profiles of TaMYB genes were different in wheat tissues and in response to various abiotic stresses and exogenous abscisic acid treatment. In transgenic Arabidopsis plants carrying TaMYB80 driven by the CaMV 35S promoter, tolerance to heat and drought stresses increased, which could be attributed to the increased levels of cellular abscisic acid. CONCLUSIONS We identified six heat-induced MYB genes in wheat. We performed comprehensive analyses of the cloned MYB genes and their gene products, including gene structures, subcellular localization, transcriptional activation, phylogenetic relationships, and expression patterns in different wheat tissues and under various abiotic stresses. In particular, we showed that TaMYB80 conferred heat and drought tolerance in transgenic Arabidopsis. These results contribute to our understanding of the functions of heat-induced MYB genes and provide the basis for selecting the best candidates for in-depth functional studies of heat-responsive MYB genes in wheat.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Xuejun Tian
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Fei Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Liyuan Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
127
|
Landi S, Hausman JF, Guerriero G, Esposito S. Poaceae vs. Abiotic Stress: Focus on Drought and Salt Stress, Recent Insights and Perspectives. FRONTIERS IN PLANT SCIENCE 2017; 8:1214. [PMID: 28744298 PMCID: PMC5504180 DOI: 10.3389/fpls.2017.01214] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/27/2017] [Indexed: 05/03/2023]
Abstract
Poaceae represent the most important group of crops susceptible to abiotic stress. This large family of monocotyledonous plants, commonly known as grasses, counts several important cultivated species, namely wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), and barley (Hordeum vulgare). These crops, notably, show different behaviors under abiotic stress conditions: wheat and rice are considered sensitive, showing serious yield reduction upon water scarcity and soil salinity, while barley presents a natural drought and salt tolerance. During the green revolution (1940-1960), cereal breeding was very successful in developing high-yield crops varieties; however, these cultivars were maximized for highest yield under optimal conditions, and did not present suitable traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise novel approaches and decipher the key components of agricultural production systems. Approaches to improve food production combining both enhanced water use efficiency (WUE) and acceptable yields are critical to create a sustainable agriculture in the future. This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular, the focus will be directed toward various aspects of water deprivation and salinity response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered, given the importance of the plant cell wall in sensing environmental constraints and in mediating a response; the role of silicon (Si), an important element for monocots' normal growth and development, will also be discussed, since it activates a broad-spectrum response to different exogenous stresses. Perspectives valorizing studies on landraces conclude the survey, as they help identify key traits for breeding purposes.
Collapse
Affiliation(s)
- Simone Landi
- Dipartimento di Biologia, Università di Napoli “Federico II”Napoli, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | - Sergio Esposito
- Dipartimento di Biologia, Università di Napoli “Federico II”Napoli, Italy
| |
Collapse
|
128
|
Xia H, Huang W, Xiong J, Yan S, Tao T, Li J, Wu J, Luo L. Differentially Methylated Epiloci Generated from Numerous Genotypes of Contrasting Tolerances Are Associated with Osmotic-Tolerance in Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:11. [PMID: 28154573 PMCID: PMC5243842 DOI: 10.3389/fpls.2017.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/03/2017] [Indexed: 05/20/2023]
Abstract
DNA methylation plays an essential role in plant responses to environmental stress. Since drought develops into a rising problem in rice cultivation, investigations on genome-wide DNA methylation in responses to drought stress and in-depth explorations of its association with drought-tolerance are required. For this study, 68 rice accessions were used for an evaluation of their osmotic-tolerance related to 20% PEG6000 simulated physiological traits. The tolerant group revealed significantly higher levels of total antioxidant capacity and higher contents of H2O2 in both normal and osmotic-stressed treatments, as well as higher survival ratios. We furthermore investigated the DNA methylation status in normal, osmotic-stressed, and re-watering treatments via the methylation-sensitive amplification polymorphism (MSAP). The averaged similarity between two rice accessions from tolerant and susceptible groups was approximately 50%, similar with that between two accessions within the tolerant/susceptible group. However, the proportion of overall tolerance-associated epiloci was only 5.2% of total epiloci. The drought-tolerant accessions revealed lower DNA methylation levels in the stressed condition and more de-methylation events when they encountered osmotic stress, compared to the susceptible group. During the recovery process, the drought-tolerant accessions possessed more re-methylation events. Fourteen differentially methylated epiloci (DME) were, respectively, generated in normal, osmotic-stressed, and re-watering treatments. Approximately, 35.7% DME were determined as tolerance-associated epiloci. Additionally, rice accessions with lower methylation degrees on DME in the stressed conditions had a higher survival ratio compared to these with higher methylation degrees. This result is consistent with the lower DNA methylation levels of tolerant accessions observed in the stressed treatment. Methylation degrees on a differentially methylated epilocus may further influence gene regulation in the rice seedling in response to the osmotic stress. All these results indicate that DME generated from a number of genotypes could have higher probabilityies for association with stress-tolerance, rather than DME generated from two genotypes of contrasting tolerance. The DME found in this study are suspected to be good epigenetic markers for the application in drought-tolerant rice breeding. They could also be a valuable tool to study the epigenetic differentiation in the drought-tolerance between upland and lowland rice ecotypes.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Weixia Huang
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jie Xiong
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Shuaigang Yan
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Tao
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jiajia Li
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jinhong Wu
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene CenterShanghai, China
- *Correspondence: Lijun Luo
| |
Collapse
|
129
|
Yoo YH, Nalini Chandran AK, Park JC, Gho YS, Lee SW, An G, Jung KH. OsPhyB-Mediating Novel Regulatory Pathway for Drought Tolerance in Rice Root Identified by a Global RNA-Seq Transcriptome Analysis of Rice Genes in Response to Water Deficiencies. FRONTIERS IN PLANT SCIENCE 2017; 8:580. [PMID: 28491065 PMCID: PMC5405136 DOI: 10.3389/fpls.2017.00580] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/30/2017] [Indexed: 05/18/2023]
Abstract
Water deficiencies are one of the most serious challenges to crop productivity. To improve our understanding of soil moisture stress, we performed RNA-Seq analysis using roots from 4-week-old rice seedlings grown in soil that had been subjected to drought conditions for 2-3 d. In all, 1,098 genes were up-regulated in response to soil moisture stress for 3 d, which causes severe damage in root development after recovery, unlikely that of 2 d. Comparison with previous transcriptome data produced in drought condition indicated that more than 68% of our candidate genes were not previously identified, emphasizing the novelty of our transcriptome analysis for drought response in soil condition. We then validated the expression patterns of two candidate genes using a promoter-GUS reporter system in planta and monitored the stress response with novel molecular markers. An integrating omics tool, MapMan analysis, indicated that RING box E3 ligases in the ubiquitin-proteasome pathways are significantly stimulated by induced drought. We also analyzed the functions of 66 candidate genes that have been functionally investigated previously, suggesting the primary roles of our candidate genes in resistance or tolerance relating traits including drought tolerance (29 genes) through literature searches besides diverse regulatory roles of our candidate genes for morphological traits (15 genes) or physiological traits (22 genes). Of these, we used a T-DNA insertional mutant of rice phytochrome B (OsPhyB) that negatively regulates a plant's degree of tolerance to water deficiencies through the control of total leaf area and stomatal density based on previous finding. Unlike previous result, we found that OsPhyB represses the activity of ascorbate peroxidase and catalase mediating reactive oxygen species (ROS) processing machinery required for drought tolerance of roots in soil condition, suggesting the potential significance of remaining uncharacterized candidate genes for manipulating drought tolerance in rice.
Collapse
|
130
|
Ge K, Liu X, Li X, Hu B, Li L. Isolation of an ABA Transporter-Like 1 Gene from Arachis hypogaea That Affects ABA Import and Reduces ABA Sensitivity in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1150. [PMID: 28713410 PMCID: PMC5492558 DOI: 10.3389/fpls.2017.01150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/15/2017] [Indexed: 05/02/2023]
Abstract
Abscisic acid (ABA) transporters are essential for the transport of ABA from its sites of synthesis to its multiple sites of action within plants and are key players in plant stress responses. Despite their importance, there is limited information on ABA transporters in crop plants. In this study, we isolated and characterized an ABA transporter-like 1 (AhATL1) gene from peanut (Arachis hypogaea L.) whose cognate protein, AhATL1, is a member of the ATP-binding cassette transporter G subfamily and localizes to the plasma membrane. The expression of both the AhATL1 transcript and the corresponding protein were upregulated by water stress and treatment with exogenous ABA. Overexpression of AhATL1 in ecotype Columbia (Col) Arabidopsis (AhATL1-OX) plants reduced ABA sensitivity. When AhATL1-OX and Arabidopsis Col plants were subjected to dehydration stress, the expression of 9-cis-epoxycarotenoid dioxygenase 3 (AtNCED3) and responsive to desiccation 29 A (AtRD29A) accumulated rapidly in rosette leaves of both lines. In contrast, while expression of ATP-binding cassette G 40 (AtABCG40) was increased in Col rosette leaves, there was no change in expression of AtABCG40 in AhATL1-OX leaves. Similarly, water loss from detached leaves of AhATL1-OX plants was more rapid than from Col leaves. Therefore, we suggest that the function of AhATL1 is probably to modulate ABA sensitivity by specifically influencing ABA import into cells.
Collapse
Affiliation(s)
| | | | | | - Bo Hu
- *Correspondence: Bo Hu, Ling Li,
| | - Ling Li
- *Correspondence: Bo Hu, Ling Li,
| |
Collapse
|