101
|
Tosato M, Ciciarello F, Zazzara MB, Pais C, Savera G, Picca A, Galluzzo V, Coelho-Júnior HJ, Calvani R, Marzetti E, Landi F. Nutraceuticals and Dietary Supplements for Older Adults with Long COVID. Clin Geriatr Med 2022; 38:565-591. [PMID: 35868674 PMCID: PMC9212635 DOI: 10.1016/j.cger.2022.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Francesca Ciciarello
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Maria Beatrice Zazzara
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Cristina Pais
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Giulia Savera
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Vincenzo Galluzzo
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, Rome 00168, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, L.go F. Vito 8, Rome 00168, Italy
| |
Collapse
|
102
|
Nichols F, Ozoemena KI, Chen S. Electrocatalytic generation of reactive species and implications in microbial inactivation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63941-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
103
|
Ding G, Gai F, Gou Z, Zuo Y. A fluorescent probe based on POSS for facilitating the visualization of HClO and NO in living cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2035-2042. [PMID: 35548909 DOI: 10.1039/d2ay00482h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The main production area of HClO and NO is the mitochondria and has modulatory effects on multiple human diseases. Simultaneous detection of signaling molecules such as HClO and NO is an important approach for exploring the complex relationship between HClO and NO in mitochondria. However, most probes can detect only one species or are unable to complete the monitoring of HClO and NO in the NIR channel. There are only few reports on reasonable tools that can simultaneously monitor the presence of HClO and NO in the NIR channel. In this work, to solve this difficulty, a POSS-assisted NIR fluorescent probe with dual-response was rationally devised and developed. The probe Mito-Cy possessed high specificity and responsiveness to HClO and NO in spectral experiments. Notably, the probe exhibited excellent responsiveness and sensitivity to HClO and NO in living cells and the zebrafish model.
Collapse
Affiliation(s)
- Guowei Ding
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Fengqing Gai
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
104
|
Silva KVC, Costa BD, Gomes AC, Saunders B, Mota JF. Factors that Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv Nutr 2022; 13:1866-1881. [PMID: 35580578 PMCID: PMC9526841 DOI: 10.1093/advances/nmac054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
To identify how variables such as exercise condition, supplementation strategy, participant characteristics and demographics, and practices that control oral microbiota diversity could modify the effect of inorganic nitrate ingestion (as nitrate salt supplements, beetroot juice, and nitrate-rich vegetables) on exercise performance, we conducted a systematic review with meta-analysis. Studies were identified in PubMed, Embase, and Cochrane databases. Eligibility criteria included randomized controlled trials assessing the effect of inorganic nitrate on exercise performance in healthy adults. To assess the variation in effect size, we used meta-regression models for continuous variables and subgroup analysis for categorical variables. A total of 123 studies were included in this meta-analysis, comprising 1705 participants. Nitrate was effective for improving exercise performance (standardized mean difference [SMD]: 0.101; 95% CI: 0.051, 0.151, P <0.001, I2 = 0%), although nitrate salts supplementation was not as effective (P = 0.629) as ingestion via beetroot juice (P <0.001) or a high-nitrate diet (P = 0.005). Practices that control oral microbiota diversity influenced the nitrate effect, with practices harmful to oral bacteria decreasing the ergogenic effect of nitrate. The ingestion of nitrate was most effective for exercise lasting between 2 and 10 min (P <0.001). An inverse dose-response relation between the fraction of inspired oxygen and the effect size (coefficient: -0.045, 95% CI: -0.085, -0.005, P = 0.028) suggests that nitrate was more effective in increasingly hypoxic conditions. There was a dose-response relation for acute administration (P = 0.049). The most effective acute dose was between 5 and 14.9 mmol provided ≥150 min prior to exercise (P <0.001). An inverse dose-response for protocols ≥2 d was observed (P = 0.025), with the optimal dose between 5 and 9.9 mmol·d-1 (P <0.001). Nitrate, via beetroot juice or a high-nitrate diet, improved exercise performance, in particular, in sessions lasting between 2 and 10 min. Ingestion of 5-14.9 mmol⋅d-1 taken ≥150 min prior to exercise appears optimal for performance gains and athletes should be aware that practices controlling oral microbiota diversity may decrease the effect of nitrate.
Collapse
Affiliation(s)
| | - Breno Duarte Costa
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline Corado Gomes
- Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil
| | - Bryan Saunders
- Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
105
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
106
|
Foley EL, Hvitved AN, Eich RF, Olson JS. Mechanisms of nitric oxide reactions with Globins using mammalian myoglobin as a model system. J Inorg Biochem 2022; 233:111839. [DOI: 10.1016/j.jinorgbio.2022.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
|
107
|
Synergistic Effect of L-Carnosine and Hyaluronic Acid in Their Covalent Conjugates on the Antioxidant Abilities and the Mutual Defense against Enzymatic Degradation. Antioxidants (Basel) 2022; 11:antiox11040664. [PMID: 35453350 PMCID: PMC9030210 DOI: 10.3390/antiox11040664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (Hy) is a natural linear polymer that is widely distributed in different organisms, especially in the articular cartilage and the synovial fluid. During tissue injury due to oxidative stress, Hy plays an important protective role. All the beneficial properties of Hy make the polymer attractive for many biomedical uses; however, the low stability and short biological half-life limit Hy application. To overcome these problems, the addition of small antioxidant molecules to Hy solution has been employed to protect the molecular integrity of Hy or delay its degradation. Carnosine (β-alanyl-L-histidine, Car) protects cells from the damage due to the reactive species derived from oxygen (ROS), nitrogen (RNS) or carbonyl groups (RCS). Car inhibits the degradation of hyaluronan induced by free radical processes in vitro but, like Hy, the potential protective action of Car is drastically hampered by the enzymatic hydrolysis in vivo. Recently, we conjugated Hy to Car and the derivatives (HyCar) showed protective effects in experimental models of osteoarthritis and rheumatoid arthritis in vivo. Here we report the antioxidant activity exerted by HyCar against ROS, RNS and RCS. Moreover, we tested if the covalent conjugation between Hy and Car inhibits the enzymatic hydrolysis of the polymer and the dipeptide backbone. We found that the antioxidant properties and the resistance to the enzymatic hydrolysis of Hy and Car are greatly improved by the conjugation.
Collapse
|
108
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
109
|
Beneficial Effects of Dietary Nitrite on a Model of Nonalcoholic Steatohepatitis Induced by High-Fat/High-Cholesterol Diets in SHRSP5/Dmcr Rats: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23062931. [PMID: 35328352 PMCID: PMC8951310 DOI: 10.3390/ijms23062931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/10/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that leads to liver cirrhosis and hepatocellular carcinoma. Endothelial dysfunction caused by hepatic lipotoxicity is an underlying NASH pathology observed in the liver and the cardiovascular system. Here, we evaluated the effect of dietary nitrite on a rat NASH model. Stroke-prone, spontaneously hypertensive 5/Dmcr rats were fed a high-fat/high-cholesterol diet to develop the NASH model, with nitrite or captopril (100 mg/L, each) supplementation in drinking water for 8 weeks. The effects of nitrite and captopril were evaluated using immunohistochemical analyses of the liver and heart tissues. Dietary nitrite suppressed liver fibrosis in the rats by reducing oxidative stress, as measured using the protein levels of nicotinamide adenine dinucleotide phosphate oxidase components and inflammatory cell accumulation in the liver. Nitrite lowered the blood pressure in hypertensive NASH rats and suppressed left ventricular chamber enlargement. Similar therapeutic effects were observed in a captopril-treated rat NASH model, suggesting the possibility of a common signaling pathway through which nitrite and captopril improve NASH pathology. In conclusion, dietary nitrite attenuates the development of NASH with cardiovascular involvement in rats and provides an alternative NASH therapeutic strategy.
Collapse
|
110
|
Sasiprapha T, Pussadhamma B, Sibmooh N, Sriwantana T, Pienvichit P, Chuncharunee S, Yingchoncharoen T. Efficacy and safety of inhaled nitrite in addition to sildenafil in thalassemia patients with pulmonary hypertension: A 12-week randomized, double-blind placebo-controlled clinical trial. Nitric Oxide 2022; 120:38-43. [PMID: 35026396 DOI: 10.1016/j.niox.2021.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/30/2021] [Indexed: 01/19/2023]
Abstract
Pulmonary hypertension is a significant complication in thalassemia patients. Recent studies showed that inhaled nebulized nitrite could rapidly decrease pulmonary artery pressure. We conducted a multicenter, randomized, double-blind, placebo-controlled trial in thalassemia patients with symptomatic pulmonary hypertension diagnosed by right heart catheterization. Eleven patients were recruited; five were assigned to the nitrite group and six to the placebo group. Patients were treated with the optimal doses of sildenafil for pulmonary hypertension and randomly assigned into the placebo or nitrite groups. Patients in the nitrite group were given inhaled nebulized 30 mg sodium nitrite twice a day for 12 weeks. The clinical outcomes measured at week 12 were the changes in 6-min walk distance (6MWD), mean pulmonary artery pressure (MPAP), and N-terminal pro B-type natriuretic peptide. The MPAP estimated by echocardiography was significantly reduced from 33.6 ± 7.5 mmHg to 25.8 ± 6.0 mmHg (mean difference = 7.76 ± 3.69 mmHg, p = 0.009 by paired t-test). Furthermore, 6MWD was slightly increased from 382.0 ± 54.0 m to 432 ± 53.9 m (mean difference = 50.0 ± 42.8 m, p = 0.059 by paired t-test) in the nitrite group. At week 12, the nitrite group had lower MPAP than the placebo group (25.8 ± 6.0 vs. 45.7 ± 18.5 mmHg, p = 0.048 by unpaired t-test). No significant difference in 6MWD and N-terminal pro B-type natriuretic peptide between the two groups was observed at week 12. There was no hypotension or other significant adverse effects in the nitrite group.
Collapse
Affiliation(s)
- Thinnakrit Sasiprapha
- Cardiology Unit, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Burabha Pussadhamma
- Cardiology Unit, Department of Internal Medicine, Faculty of Medicine Srinagarind Hospital, Khonkaen University, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111, Bang Pla, Bang Phli, Samut Prakan, Thailand
| | - Thanaporn Sriwantana
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111, Bang Pla, Bang Phli, Samut Prakan, Thailand
| | - Pavit Pienvichit
- Cardiology Unit, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Suporn Chuncharunee
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Teerapat Yingchoncharoen
- Cardiology Unit, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand.
| |
Collapse
|
111
|
Morou-Bermúdez E, Torres-Colón JE, Bermúdez NS, Patel RP, Joshipura KJ. Pathways Linking Oral Bacteria, Nitric Oxide Metabolism, and Health. J Dent Res 2022; 101:623-631. [PMID: 35081826 DOI: 10.1177/00220345211064571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nitrate-reducing oral bacteria have gained a lot of interest due to their involvement in nitric oxide (NO) synthesis and its important cardiometabolic outcomes. Consortia of nitrate-metabolizing oral bacteria associated with cardiometabolic health and cognitive function have been recently identified. Longitudinal studies and clinical trials have shown that chronic mouthwash use is associated with increased blood pressure and increased risk for prediabetes/diabetes and hypertension. Concurrently, recent studies are beginning to shed some light on the complexity of nitrate reduction pathways of oral bacteria, such as dissimilatory nitrate reduction to ammonium (DNRA), which converts nitrite into ammonium, and denitrification, which converts nitrite to NO, nitrous oxide, and dinitrogen. These pathways can affect the composition and metabolism of the oral microbiome; consequently, salivary nitrate and nitrite metabolism have been proposed as targets for probiotics and oral health. These pathways could also affect systemic NO levels because NO generated through denitrification can be oxidized back to nitrite in the saliva, thus facilitating flux along the NO3--NO2--NO pathway, while DNRA converts nitrite to ammonium, leading to reduced NO. It is, therefore, important to understand which pathway predominates under different oral environmental conditions, since the clinical consequences could be different for oral and systemic health. Recent studies show that oral hygiene measures such as tongue cleaning and dietary nitrate are likely to favor denitrifying bacteria such as Neisseria, which are linked with better cardiometabolic health. A vast body of literature demonstrates that redox potential, carbon-to-nitrate ratio, and nitrate-to-nitrite ratio are key environmental drivers of the competing denitrification and DNRA pathways in various natural and artificial ecosystems. Based on this information, a novel behavioral and microbial model for nitric oxide metabolism and health is proposed, which links lifestyle factors with oral and systemic health through NO metabolism.
Collapse
Affiliation(s)
- E Morou-Bermúdez
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
| | - J E Torres-Colón
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico
| | - N S Bermúdez
- Department of Linguistics, Harvard University, Cambridge, MA, USA
| | - R P Patel
- Department of Pathology, University of Alabama at Birmingham and Center for Free Radical Biology, AL, USA
| | - K J Joshipura
- University of Puerto Rico Medical Sciences Campus, School of Dental Medicine, San Juan, Puerto Rico.,T. H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| |
Collapse
|
112
|
Lee SS, McGrattan A, Soh YC, Alawad M, Su TT, Palanisamy UD, Hussin AM, Kassim ZB, Mohd Ghazali ANB, Christa Maree Stephan B, Allotey P, Reidpath DD, Robinson L, Mohan D, Siervo M. Feasibility and Acceptability of a Dietary Intervention to Reduce Salt Intake and Increase High-Nitrate Vegetable Consumption in Malaysian Middle-Aged and Older Adults with Elevated Blood Pressure: Findings from the DePEC-Nutrition Trial. Nutrients 2022; 14:nu14030430. [PMID: 35276789 PMCID: PMC8839221 DOI: 10.3390/nu14030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The DePEC-Nutrition trial is a complex dietary and behavioural intervention of salt intake reduction combined with increased high-nitrate vegetable consumption among Malaysian middle-aged and older adults with elevated blood pressure. This study aimed to assess the feasibility and acceptability of the trial. Participants were recruited from the South East Asia Community Observatory (SEACO) database and randomised into one of four groups: (1) low salt; (2) high-nitrate vegetable; (3) combined high-nitrate vegetable and low salt; and (4) control. The intervention included a combination of group counselling sessions, information booklets, reinforcement videos and text messages to modify dietary behaviour. The primary outcomes evaluated were the measures of feasibility and acceptability of (1) recruitment, follow-up attendance and retention; (2) data collection procedures and clinical outcome measures; and (3) individual and combined multi-modal dietary interventions. A total of 74 participants were recruited, and the 10-month retention rate was 73%. Data collection procedures were acceptable with minimal missing data. All intervention strategies were feasible and acceptable, with group counselling being the most acceptable strategy. This study provides important insights into improving the screening process of participants, facilitating their access to the research facilities and refining the measurement protocols and dietary recommendations, which are instrumental in formulating the design of a full-scale definitive DePEC-Nutrition trial.
Collapse
Affiliation(s)
- Siew Siew Lee
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
| | - Andrea McGrattan
- School of Biomedical, Nutritional and Sports Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Yee Chang Soh
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 45700, Malaysia;
| | - Mawada Alawad
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 45700, Malaysia;
| | - Tin Tin Su
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 45700, Malaysia;
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Azizah Mat Hussin
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang 43000, Malaysia;
| | - Zaid bin Kassim
- District Health Office, Pejabat Kesihatan Daerah (PKD) Segamat, Segamat 85000, Malaysia; (Z.b.K.); (A.N.b.M.G.)
| | | | | | - Pascale Allotey
- International Institute for Global Health, United Nations University, Kuala Lumpur 56000, Malaysia;
| | - Daniel D. Reidpath
- South East Asia Community Observatory (SEACO), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 45700, Malaysia;
- International Centre for Diarrhoeal Disease Research, ICDDR, B, Dhaka 1212, Bangladesh
| | - Louise Robinson
- Population Health Science Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Devi Mohan
- Global Public Health, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.L.); (Y.C.S.); (M.A.); (T.T.S.)
- Correspondence: ; Tel.: +60-3-5515-9658
| | - Mario Siervo
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK;
| |
Collapse
|
113
|
Jeddi S, Yousefzadeh N, Kashfi K, Ghasemi A. Role of nitric oxide in type 1 diabetes-induced osteoporosis. Biochem Pharmacol 2021; 197:114888. [PMID: 34968494 DOI: 10.1016/j.bcp.2021.114888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D)-induced osteoporosis is characterized by decreased bone mineral density, bone quality, rate of bone healing, bone formation, and increased bone resorption. Patients with T1D have a 2-7-fold higher risk of osteoporotic fracture. The mechanisms leading to increased risk of osteoporotic fracture in T1D include insulin deficiency, hyperglycemia, insulin resistance, lower insulin-like growth factor-1, hyperglycemia-induced oxidative stress, and inflammation. In addition, a higher probability of falling, kidney dysfunction, weakened vision, and neuropathy indirectly increase the risk of osteoporotic fracture in T1D patients. Decreased nitric oxide (NO) bioavailability contributes to the pathophysiology of T1D-induced osteoporotic fracture. This review discusses the role of NO in osteoblast-mediated bone formation and osteoclast-mediated bone resorption in T1D. In addition, the mechanisms involved in reduced NO bioavailability and activity in type 1 diabetic bones as well as NO-based therapy for T1D-induced osteoporosis are summarized. Available data indicates that lower NO bioavailability in diabetic bones is due to disruption of phosphatidylinositol 3‑kinase/protein kinase B/endothelial NO synthases and NO/cyclic guanosine monophosphate/protein kinase G signaling pathways. Thus, NO bioavailability may be boosted directly or indirectly by NO donors. As NO donors with NO-like effects in the bone, inorganic nitrate and nitrite can potentially be used as novel therapeutic agents for T1D-induced osteoporosis. Inorganic nitrites and nitrates can decrease the risk for osteoporotic fracture probably directly by decreasing osteoclast activity, decreasing fat accumulation in the marrow cavity, increasing osteoblast activity, and increasing bone perfusion or indirectly, by improving hyperglycemia, insulin resistance, and reducing body weight.
Collapse
Affiliation(s)
- Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
114
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
115
|
Malard E, Valable S, Bernaudin M, Pérès E, Chatre L. The Reactive Species Interactome in the Brain. Antioxid Redox Signal 2021; 35:1176-1206. [PMID: 34498917 DOI: 10.1089/ars.2020.8238] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Redox pioneer Helmut Sies attempted to explain reactive species' challenges faced by organelles, cells, tissues, and organs via three complementary definitions: (i) oxidative stress, that is, the disturbance in the prooxidant-antioxidant defense balance in favor of the prooxidants; (ii) oxidative eustress, the low physiological exposure to prooxidants; and (iii) oxidative distress, the supraphysiological exposure to prooxidants. Recent Advances: Identification, concentration, and interactions are the most important elements to improve our understanding of reactive species in physiology and pathology. In this context, the reactive species interactome (RSI) is a new multilevel redox regulatory system that identifies reactive species families, reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species, and it integrates their interactions with their downstream biological targets. Critical Issues: We propose a united view to fully combine reactive species identification, oxidative eustress and distress, and the RSI system. In this view, we also propose including the forgotten reactive carbonyl species, an increasingly rediscovered reactive species family related to the other reactive families, and key enzymes within the RSI. We focus on brain physiology and pathology to demonstrate why this united view should be considered. Future Directions: More studies are needed for an improved understanding of the contributions of reactive species through their identification, concentration, and interactions, including in the brain. Appreciating the RSI in its entirety should unveil new molecular players and mechanisms in physiology and pathology in the brain and elsewhere.
Collapse
Affiliation(s)
- Elise Malard
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Elodie Pérès
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Laurent Chatre
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| |
Collapse
|
116
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
117
|
Bahadoran Z, Mirmiran P, Carlström M, Ghasemi A. Inorganic nitrate: A potential prebiotic for oral microbiota dysbiosis associated with type 2 diabetes. Nitric Oxide 2021; 116:38-46. [PMID: 34506950 DOI: 10.1016/j.niox.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 09/05/2021] [Indexed: 11/29/2022]
Abstract
Oral microbiota dysbiosis, concomitant with decreased abundance of nitrate (NO3-)-reducing bacteria, oral net nitrite (NO2-) production, and reduced nitric oxide (·NO) bioactivity, is associated with the development of cardiometabolic disorders. Therefore, restoring the oral microbiome to a health-associated state is suggested as a therapeutic approach to potentiate the NO3--NO2--·NO pathway and provide a backup resource for insufficient NO production in conditions including cardiovascular disease and type 2 diabetes mellitus (T2DM). The current review discusses how inorganic NO3- can improve the oral microbial community in patients with T2DM and act as a prebiotic. Both animal and human experiments indicated that inorganic NO3- modulates the oral microbiome by increasing the abundance of health-associated NO3--reducing bacteria (e.g., Neisseria and Rothia) and decreasing the plenty of species Prevotella and Veillonella, leading to oral NO2- accumulation and improved systemic ·NO availability. Supplementation with NO3- reduces caries- and periodontitis-associated bacteria and the pathogenic genus related to insulin resistance and glucose intolerance. In addition, inorganic NO3- may provide a more optimal environment for NO3- reductase activity in the oral cavity, as it increases salivary flow rate and prevents decreased pH by inhibiting acid-producing bacteria.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum 5B, Stockholm, SE-171 76, Sweden
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
118
|
Kobayashi J. Effects of inhaled nitric oxide in COVID-19-induced ARDS-Is it worthwhile? Acta Anaesthesiol Scand 2021; 65:1522-1523. [PMID: 34309854 PMCID: PMC8441881 DOI: 10.1111/aas.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/28/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Kobayashi
- Department of Clinical Dietetics and Human Nutrition Faculty of Pharmaceutical Science Josai University Sakado Japan
| |
Collapse
|
119
|
Miller L, Hébert CD, Grimes SD, Toomey JS, Oh JY, Rose JJ, Patel RP. Safety and toxicology assessment of sodium nitrite administered by intramuscular injection. Toxicol Appl Pharmacol 2021; 429:115702. [PMID: 34464673 PMCID: PMC8459319 DOI: 10.1016/j.taap.2021.115702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Intramuscular (IM) injection of nitrite (1-10 mg/kg) confers survival benefit and protects against lung injury after exposure to chlorine gas in preclinical models. Herein, we evaluated safety/toxicity parameters after single, and repeated (once daily for 7 days) IM injection of nitrite in male and female Sprague Dawley rats and Beagle dogs. The repeat dose studies were performed in compliance with the Federal Drug Administration's (FDA) Good Laboratory Practices Code of Federal Regulations (21 CFR Part 58). Parameters evaluated consisted of survival, clinical observations, body weights, clinical pathology, plasma drug levels, methemoglobin and macroscopic and microscopic pathology. In rats and dogs, single doses of ≥100 mg/kg and 60 mg/kg resulted in death and moribundity, while repeated administration of ≤30 or ≤ 10 mg/kg/day, respectively, was well tolerated. Therefore, the maximum tolerated dose following repeated administration in rats and dogs were determined to be 30 mg/kg/day and 10 mg/kg/day, respectively. Effects at doses below the maximum tolerated dose (MTD) were limited to emesis (in dogs only) and methemoglobinemia (in both species) with clinical signs (e.g. blue discoloration of lips) being dose-dependent, transient and reversible. These signs were not considered adverse, therefore the No Observed Adverse Effect Level (NOAEL) for both rats and dogs was 10 mg/kg/day in males (highest dose tested for dogs), and 3 mg/kg/day in females. Toxicokinetic assessment of plasma nitrite showed no difference between male and females, with Cmax occurring between 5 mins and 0.5 h (rats) or 0.25 h (dogs). In summary, IM nitrite was well tolerated in rats and dogs at doses previously shown to confer protection against chlorine gas toxicity.
Collapse
Affiliation(s)
- Lutfiya Miller
- Intertek Health Sciences, Inc., Pharmaceuticals & Healthcare, Mississauga, ON, Canada
| | | | | | - James S Toomey
- Southern Research, Birmingham, AL, United States of America
| | - Joo-Yeun Oh
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason J Rose
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rakesh P Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
120
|
Titov VY, Dolgorukova AM, Osipov AN, Kochish II. Putative Role of Ligands of DNIC in the Physiological Action of the Complex. Bull Exp Biol Med 2021; 171:606-610. [PMID: 34617179 DOI: 10.1007/s10517-021-05278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 10/20/2022]
Abstract
In a relatively isolated system of avian embryo, the metabolism of NO, a component of the dinitrosyl iron complexes (DNIC), the main NO donor in most tissues, depends on the ligands that make up the complex. This fact corroborates the earlier hypothesis that these ligands perform a regulatory function in NO metabolism. It is also shown that nitrite injected into the embryo is not oxidized to nitrate like NO in DNIC, but is accumulated outside the amniotic sac. Normally, nitrite is present in an embryo in trace amounts. These facts suggest that NO in the embryo is transferred from the donor molecule to a target in the embryo tissues further transformed with minimum oxidation to nitrite.
Collapse
Affiliation(s)
- V Yu Titov
- All-Russian Research and Technological Institute of Poultry, Russian Academy of Sciences, Sergiev Posad, Moscow region, Russia. .,N. I. Pirogov Russian National Research Medical University, Ministry of the Health of the Russian Federation, Moscow, Russia. .,K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia.
| | - A M Dolgorukova
- All-Russian Research and Technological Institute of Poultry, Russian Academy of Sciences, Sergiev Posad, Moscow region, Russia
| | - A N Osipov
- N. I. Pirogov Russian National Research Medical University, Ministry of the Health of the Russian Federation, Moscow, Russia
| | - I I Kochish
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| |
Collapse
|
121
|
Luettich A, Franko E, Spronk DB, Lamb C, Corkill R, Patel J, Ezra M, Pattinson KTS. Beneficial Effect of Sodium Nitrite on EEG Ischaemic Markers in Patients with Subarachnoid Haemorrhage. Transl Stroke Res 2021; 13:265-275. [PMID: 34491543 PMCID: PMC8918451 DOI: 10.1007/s12975-021-00939-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/03/2022]
Abstract
Subarachnoid haemorrhage (SAH) is associated with long-term disability, serious reduction in quality of life and significant mortality. Early brain injury (EBI) refers to the pathological changes in cerebral metabolism and blood flow that happen in the first few days after ictus and may lead on to delayed cerebral ischaemia (DCI). A disruption of the nitric oxide (NO) pathway is hypothesised as a key mechanism underlying EBI. A decrease in the alpha-delta power ratio (ADR) of the electroencephalogram has been related to cerebral ischaemia. In an experimental medicine study, we tested the hypothesis that intravenous sodium nitrite, an NO donor, would lead to increases in ADR. We studied 33 patients with acute aneurysmal SAH in the EBI phase. Participants were randomised to either sodium nitrite or saline infusion for 1 h. EEG measurements were taken before the start of and during the infusion. Twenty-eight patients did not develop DCI and five patients developed DCI. In the patients who did not develop DCI, we found an increase in ADR during sodium nitrite versus saline infusion. In the five patients who developed DCI, we did not observe a consistent pattern of ADR changes. We suggest that ADR power changes in response to nitrite infusion reflect a NO-mediated reduction in cerebral ischaemia and increase in perfusion, adding further evidence to the role of the NO pathway in EBI after SAH. Our findings provide the basis for future clinical trials employing NO donors after SAH.
Collapse
Affiliation(s)
- Alexander Luettich
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK.
| | - Edit Franko
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK
| | - Desiree B Spronk
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK
| | - Catherine Lamb
- Neuro Intensive Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rufus Corkill
- Department of Neuroradiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jash Patel
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Martyn Ezra
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK
| | - Kyle T S Pattinson
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK
| |
Collapse
|
122
|
Lumbikananda S, Sriwantana T, Rattanawonsakul K, Parakaw T, Phruksaniyom C, Rattanasuwan K, Vivithanaporn P, Thonabulsombat C, Sibmooh N, Srihirun S. Nitrite in paraffin-stimulated saliva correlates with blood nitrite. Nitric Oxide 2021; 116:1-6. [PMID: 34371196 DOI: 10.1016/j.niox.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Nitrite anion (NO2-) is a circulating nitric oxide (NO) metabolite considered an endothelial function marker. Nitrite can be produced from nitrate (NO3-) secreted from plasma into saliva. The nitrate reductase of oral bacteria converts salivary nitrate to nitrite, which is swallowed and absorbed into circulation. In this study, we aimed to examine the relevance between these species' salivary and blood levels. We collected three whole saliva samples (unstimulated, paraffin-stimulated, and post-chlorhexidine mouthwash stimulated saliva) and blood from 75 healthy volunteers. We measured the nitrite and nitrate by the chemiluminescence method. The nitrite levels in stimulated saliva and post-mouthwash stimulated saliva exhibited weak correlations with blood nitrite. There was no correlation between nitrite in unstimulated saliva with blood nitrite. The baseline platelet activity, determined as P-selectin expression, negatively correlated with nitrite in plasma and post-mouthwash stimulated saliva. The salivary nitrate in all saliva samples showed correlations with its plasma levels. We conclude that nitrite in stimulated saliva correlates with blood nitrite.
Collapse
Affiliation(s)
- Supanat Lumbikananda
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanaporn Sriwantana
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Krit Rattanawonsakul
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Tipparat Parakaw
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Kanyawat Rattanasuwan
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | | | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Sirada Srihirun
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
123
|
Kobayashi J. Lifestyle-mediated nitric oxide boost to prevent SARS-CoV-2 infection: A perspective. Nitric Oxide 2021; 115:55-61. [PMID: 34364972 PMCID: PMC8340570 DOI: 10.1016/j.niox.2021.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide and has seriously threatened public health by causing significant morbidity and mortality. Patients with coronavirus disease (COVID-19) with preexisting endothelial dysfunction caused by aging, diabetes, hypertension, and obesity are at high risk for life-threatening thromboembolic complications. This suggests a possibility that reduced endothelial nitric oxide (NO) production and NO bioavailability could be a common underlying pathology for the progression of COVID-19. Increasingly, evidence from experimental and clinical studies of SARS-CoV-2 infection shows that NO inhibits the pathogenesis of COVID-19, including virus entry into host cells, viral replication, host immune response, and subsequent thromboembolic complications. Restoring NO bioavailability may have the potential to be a preventive or early-treatment option for COVID-19. This review aims to provide in-depth discussion of NO bioavailability to prevent SARS-CoV-2 infection, particularly by focusing on lifestyle factors such as nitrate-rich diets, physical exercise, and nasal breathing, which could be easily performed on a daily basis to boost NO bioavailability.
Collapse
Affiliation(s)
- Jun Kobayashi
- Faculty of Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
124
|
Gee LC, Massimo G, Lau C, Primus C, Fernandes D, Chen J, Rathod KS, Hamers AJP, Filomena F, Nuredini G, Ibrahim AS, Khambata RS, Gupta AK, Moon JC, Kapil V, Ahluwalia A. Inorganic nitrate attenuates cardiac dysfunction: role for xanthine oxidoreductase and nitric oxide. Br J Pharmacol 2021; 179:4757-4777. [PMID: 34309015 DOI: 10.1111/bph.15636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide (NO) is a vasodilator and independent modulator of cardiac remodelling. Commonly, in cardiac disease (e.g. heart failure) endothelial dysfunction (synonymous with NO-deficiency) has been implicated in increased blood pressure (BP), cardiac hypertrophy and fibrosis. Currently no effective therapies replacing NO have succeeded in the clinic. Inorganic nitrate (NO3 - ), through chemical reduction to nitrite and then NO, exerts potent BP-lowering but whether it might be useful in treating undesirable cardiac remodelling is unknown. In a nested age- and sex-matched case-control study of hypertensive patients +/- left ventricular hypertrophy (NCT03088514) we show that lower plasma nitrite concentration and vascular dysfunction accompany cardiac hypertrophy and fibrosis in patients. In mouse models of cardiac remodelling, we also show that restoration of circulating nitrite levels using dietary nitrate improves endothelial dysfunction through targeting of xanthine oxidoreductase (XOR)-driven H2 O2 and superoxide, and reduces cardiac fibrosis through NO-mediated block of SMAD-phosphorylation leading to improvements in cardiac structure and function. We show that via these mechanisms dietary nitrate offers easily translatable therapeutic options for treatment of cardiac dysfunction.
Collapse
Affiliation(s)
- Lorna C Gee
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gianmichele Massimo
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Clement Lau
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Christopher Primus
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Daniel Fernandes
- Departamento de Farmacologia, Federal University of Santa Catarina, Florianópolis, Santa Catarina,, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Krishnaraj S Rathod
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Alexander Jozua Pedro Hamers
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Federica Filomena
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Gani Nuredini
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Abdiwahab Shidane Ibrahim
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Rayomand S Khambata
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ajay K Gupta
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Vikas Kapil
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
125
|
Beirne AM, Mitchelmore O, Palma S, Andiapen M, Rathod KS, Hammond V, Bellin A, Cooper J, Wright P, Antoniou S, Yaqoob MM, Naci H, Mathur A, Ahluwalia A, Jones DA. NITRATE-CIN Study: Protocol of a Randomized (1:1) Single-Center, UK, Double-Blind Placebo-Controlled Trial Testing the Effect of Inorganic Nitrate on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography for Acute Coronary Syndromes. J Cardiovasc Pharmacol Ther 2021; 26:303-309. [PMID: 33764198 PMCID: PMC8132002 DOI: 10.1177/1074248421000520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Contrast-induced nephropathy (CIN), an acute kidney injury resulting from the administration of intravascular iodinated contrast media, is a significant cause of morbidity/mortality following coronary angiographic procedures in high-risk patients. Despite preventative measures intended to mitigate the risk of CIN, there remains a need for novel effective treatments. Evidence suggests that delivery of nitric oxide (NO) through chemical reduction of inorganic nitrate to NO may offer a novel therapeutic strategy to reduce CIN and thus preserve long term renal function. DESIGN The NITRATE-CIN trial is a single-center, randomized, double-blind placebo-controlled trial, which plans to recruit 640 patients presenting with acute coronary syndromes (ACS) who are at risk of CIN. Patients will be randomized to either inorganic nitrate therapy (capsules containing 12 mmol KNO3) or placebo capsules containing potassium chloride (KCl) daily for 5 days. The primary endpoint is development of CIN using the Kidney Disease Improving Global Outcomes (KDIGO) criteria. A key secondary endpoint is renal function over a 3-month follow-up period. Additional secondary endpoints include serum renal biomarkers (e.g. neutrophil gelatinase-associated lipocalin) at 6 h, 48 h and 3 months following administration of contrast. Cost-effectiveness of inorganic nitrate therapy will also be evaluated. SUMMARY This study is designed to investigate the hypothesis that inorganic nitrate treatment decreases the rate of CIN as part of semi-emergent coronary angiography for ACS. Inorganic nitrate is a simple and easy to administer intervention that may prove useful in prevention of CIN in at-risk patients undergoing coronary angiographic procedures.
Collapse
Affiliation(s)
- Anne-Marie Beirne
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Oliver Mitchelmore
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Susana Palma
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Mervyn Andiapen
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Krishnaraj S. Rathod
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Victoria Hammond
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| | - Anna Bellin
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| | - Jackie Cooper
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| | - Paul Wright
- Department of Pharmacy, Barts Heart Centre, London, United Kingdom
| | - Sotiris Antoniou
- Department of Pharmacy, Barts Heart Centre, London, United Kingdom
| | | | - Huseyin Naci
- Department of Health Policy, London School of Economics, London, United Kingdom
| | - Anthony Mathur
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Amrita Ahluwalia
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| | - Daniel A. Jones
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, United Kingdom
- Barts Interventional Group, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Barts Cardiovascular Clinical Trials Unit, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
126
|
Shannon OM, Easton C, Shepherd AI, Siervo M, Bailey SJ, Clifford T. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil 2021; 13:65. [PMID: 34099037 PMCID: PMC8186051 DOI: 10.1186/s13102-021-00292-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dietary inorganic nitrate (NO3-) is a polyatomic ion, which is present in large quantities in green leafy vegetables and beetroot, and has attracted considerable attention in recent years as a potential health-promoting dietary compound. Numerous small, well-controlled laboratory studies have reported beneficial health effects of inorganic NO3- consumption on blood pressure, endothelial function, cerebrovascular blood flow, cognitive function, and exercise performance. Translating the findings from small laboratory studies into 'real-world' applications requires careful consideration. MAIN BODY This article provides a brief overview of the existing empirical evidence basis for the purported health-promoting effects of dietary NO3- consumption. Key areas for future research are then proposed to evaluate whether promising findings observed in small animal and human laboratory studies can effectively translate into clinically relevant improvements in population health. These proposals include: 1) conducting large-scale, longer duration trials with hard clinical endpoints (e.g. cardiovascular disease incidence); 2) exploring the feasibility and acceptability of different strategies to facilitate a prolonged increase in dietary NO3- intake; 3) exploitation of existing cohort studies to explore associations between NO3- intake and health outcomes, a research approach allowing larger samples sizes and longer duration follow up than is feasible in randomised controlled trials; 4) identifying factors which might account for individual differences in the response to inorganic NO3- (e.g. sex, genetics, habitual diet) and could assist with targeted/personalised nutritional interventions; 5) exploring the influence of oral health and medication on the therapeutic potential of NO3- supplementation; and 6) examining potential risk of adverse events with long term high- NO3- diets. CONCLUSION The salutary effects of dietary NO3- are well established in small, well-controlled laboratory studies. Much less is known about the feasibility and efficacy of long-term dietary NO3- enrichment for promoting health, and the factors which might explain the variable responsiveness to dietary NO3- supplementation between individuals. Future research focussing on the translation of laboratory data will provide valuable insight into the potential applications of dietary NO3- supplementation to improve population health.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, Blantyre, Scotland, UK
| | - Anthony I Shepherd
- School of Sport, Health & Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
127
|
Park JW, Thomas SM, Schechter AN, Piknova B. Control of rat muscle nitrate levels after perturbation of steady state dietary nitrate intake. Nitric Oxide 2021; 109-110:42-49. [PMID: 33713800 PMCID: PMC8020733 DOI: 10.1016/j.niox.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
The roles of nitrate and nitrite ions as nitric oxide (NO) sources in mammals, complementing NOS enzymes, have recently been the focus of much research. We previously reported that rat skeletal muscle serves as a nitrate reservoir, with the amount of stored nitrate being highly dependent on dietary nitrate availability, as well as its synthesis by NOS1 enzymes and its subsequent utilization. We showed that at conditions of increased NO need, this nitrate reservoir is used in situ to generate nitrite and NO, at least in part via the nitrate reductase activity of xanthine oxidoreductase (XOR). We now further investigate the dynamics of nitrate/nitrite fluxes in rat skeletal muscle after first increasing nitrate levels in drinking water and then returning to the original intake level. Nitrate/nitrite levels were analyzed in liver, blood and several skeletal muscle samples, and expression of proteins involved in nitrate metabolism and transport were also measured. Increased nitrate supply elevated nitrate and nitrite levels in all measured tissues. Surprisingly, after high nitrate diet termination, levels of both ions in liver and all muscle samples first declined to lower levels than the original baseline. During the course of the overall experiment there was a gradual increase of XOR expression in muscle tissue, which likely led to enhanced nitrate to nitrite reduction. We also noted differences in basal levels of nitrate in the different types of muscles. These findings suggest complex control of muscle nitrate levels, perhaps with multiple processes to preserve its intracellular levels.
Collapse
Affiliation(s)
- Ji Won Park
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samantha M Thomas
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan N Schechter
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
128
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Lost-in-Translation of Metabolic Effects of Inorganic Nitrate in Type 2 Diabetes: Is Ascorbic Acid the Answer? Int J Mol Sci 2021; 22:4735. [PMID: 33947005 PMCID: PMC8124635 DOI: 10.3390/ijms22094735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Beneficial metabolic effects of inorganic nitrate (NO3-) and nitrite (NO2-) in type 2 diabetes mellitus (T2DM) have been documented in animal experiments; however, this is not the case for humans. Although it has remained an open question, the redox environment affecting the conversion of NO3- to NO2- and then to NO is suggested as a potential reason for this lost-in-translation. Ascorbic acid (AA) has a critical role in the gastric conversion of NO2- to NO following ingestion of NO3-. In contrast to AA-synthesizing species like rats, the lack of ability to synthesize AA and a lower AA body pool and plasma concentrations may partly explain why humans with T2DM do not benefit from NO3-/NO2- supplementation. Rats also have higher AA concentrations in their stomach tissue and gastric juice that can significantly potentiate gastric NO2--to-NO conversion. Here, we hypothesized that the lack of beneficial metabolic effects of inorganic NO3- in patients with T2DM may be at least in part attributed to species differences in AA metabolism and also abnormal metabolism of AA in patients with T2DM. If this hypothesis is proved to be correct, then patients with T2DM may need supplementation of AA to attain the beneficial metabolic effects of inorganic NO3- therapy.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (Z.B.); (P.M.)
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (Z.B.); (P.M.)
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19395-4763, Iran
| |
Collapse
|
129
|
Zhang JQJ, Saravanabavan S, Cheng KM, Raghubanshi A, Chandra AN, Munt A, Rayner B, Zhang Y, Chau K, Wong ATY, Rangan GK. Long-term dietary nitrate supplementation does not reduce renal cyst growth in experimental autosomal dominant polycystic kidney disease. PLoS One 2021; 16:e0248400. [PMID: 33886581 PMCID: PMC8061912 DOI: 10.1371/journal.pone.0248400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Augmentation of endogenous nitric oxide (NO) synthesis, either by the classical L-arginine-NO synthase pathway, or the recently discovered entero-salivary nitrate-nitrite-NO system, may slow the progression of autosomal dominant polycystic kidney disease (ADPKD). To test this hypothesis, the expression of NO in human ADPKD cell lines (WT 9–7, WT 9–12), and the effect of L-arginine on an in vitro model of three-dimensional cyst growth using MDCK cells, was examined. In addition, groups of homozygous Pkd1RC/RC mice (a hypomorphic genetic ortholog of ADPKD) received either low, moderate or high dose sodium nitrate (0.1, 1 or 10 mmol/kg/day), or sodium chloride (vehicle; 10 mmol/kg/day), supplemented drinking water from postnatal month 1 to 9 (n = 12 per group). In vitro, intracellular NO, as assessed by DAF-2/DA fluorescence, was reduced by >70% in human ADPKD cell lines, and L-arginine and the NO donor, sodium nitroprusside, both attenuated in vitro cyst growth by up to 18%. In contrast, in Pkd1RC/RC mice, sodium nitrate supplementation increased serum nitrate/nitrite levels by ~25-fold in the high dose group (P<0.001), but kidney enlargement and percentage cyst area was not altered, regardless of dose. In conclusion, L-arginine has mild direct efficacy on reducing renal cyst growth in vitro, whereas long-term sodium nitrate supplementation was ineffective in vivo. These data suggest that the bioconversion of dietary nitrate to NO by the entero-salivary pathway may not be sufficient to influence the progression of renal cyst growth in ADPKD.
Collapse
Affiliation(s)
- Jennifer Q. J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Kai Man Cheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Benjamin Rayner
- Heart Research Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Yunjia Zhang
- Heart Research Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Katrina Chau
- Department of Renal Medicine and School of Medicine, Western Sydney University at Blacktown Hospital, Sydney, New South Wales, Australia
| | - Annette T. Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
130
|
Ghasemi A, Afzali H, Jeddi S. Effect of oral nitrite administration on gene expression of SNARE proteins involved in insulin secretion from pancreatic islets of male type 2 diabetic rats. Biomed J 2021; 45:387-395. [PMID: 34326021 PMCID: PMC9250122 DOI: 10.1016/j.bj.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background Nitrite stimulates insulin secretion from pancreatic β-cells; however, the underlying mechanisms have not been completely addressed. The aim of this study is to determine effect of nitrite on gene expression of SNARE proteins involved in insulin secretion from isolated pancreatic islets in Type 2 diabetic Wistar rats. Methods Three groups of rats were studied (n = 10/group): Control, diabetes, and diabetes + nitrite, which treated with sodium nitrite (50 mg/L) for 8 weeks. Type 2 diabetes was induced using a low-dose of streptozotocin (25 mg/kg) combined with high-fat diet. At the end of the study, pancreatic islets were isolated and mRNA expressions of interested genes were measured; in addition, protein expression of proinsulin and C-peptide in pancreatic tissue was assessed using immunofluorescence staining. Results Compared with controls, in the isolated pancreatic islets of Type 2 diabetic rats, mRNA expression of glucokinase (59%), syntaxin1A (49%), SNAP25 (70%), Munc18b (48%), insulin1 (56%), and insulin2 (52%) as well as protein expression of proinsulin and C-peptide were lower. In diabetic rats, nitrite administration significantly increased gene expression of glucokinase, synaptotagmin III, syntaxin1A, SNAP25, Munc18b, and insulin genes as well as increased protein expression of proinsulin and C-peptide. Conclusion Stimulatory effect of nitrite on insulin secretion in Type 2 diabetic rats is at least in part due to increased gene expression of molecules involved in glucose sensing (glucokinase), calcium sensing (synaptotagmin III), and exocytosis of insulin vesicles (syntaxin1A, SNAP25, and Munc18b) as well as increased expression of insulin genes.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
131
|
Yousefzadeh N, Jeddi S, Kashfi K, Ghasemi A. Diabetoporosis: Role of nitric oxide. EXCLI JOURNAL 2021; 20:764-780. [PMID: 34121973 PMCID: PMC8192884 DOI: 10.17179/excli2021-3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Diabetoporosis, diabetic-related decreased bone quality and quantity, is one of the leading causes of osteoporotic fractures in subjects with type 2 diabetes (T2D). This is associated with lower trabecular and cortical bone quality, lower bone turnover rates, lower rates of bone healing, and abnormal posttranslational modifications of collagen. Decreased nitric oxide (NO) bioavailability has been reported within the bones of T2D patients and can be considered as one of the primary mechanisms by which diabetoporosis is manifested. NO donors increase trabecular and cortical bone quality, increase the rate of bone formation, accelerate the bone healing process, delay osteoporosis, and decrease osteoporotic fractures in T2D patients, suggesting the potential therapeutic implication of NO-based interventions. NO is produced in the osteoblast and osteoclast cells by three isoforms of NO synthase (NOS) enzymes. In this review, the roles of NO in bone remodeling in the normal and diabetic states are discussed. Also, the favorable effects of low physiological levels of NO produced by endothelial NOS (eNOS) versus detrimental effects of high pathological levels of NO produced by inducible NOS (iNOS) in diabetoporosis are summarized. Available data indicates decreased bone NO bioavailability in T2D and decreased expression of eNOS, and increased expression and activity of iNOS. NO donors can be considered novel therapeutic agents in diabetoporosis.
Collapse
Affiliation(s)
- Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
- PhD Program in Biology, City University of New York Graduate Center, New York,NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
132
|
Tawa M, Nagata R, Sumi Y, Nakagawa K, Sawano T, Ohkita M, Matsumura Y. Preventive effects of nitrate-rich beetroot juice supplementation on monocrotaline-induced pulmonary hypertension in rats. PLoS One 2021; 16:e0249816. [PMID: 33831045 PMCID: PMC8031446 DOI: 10.1371/journal.pone.0249816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
Beetroot (Beta vulgaris L.) has a high level of nitrate; therefore, its dietary intake could increase nitric oxide (NO) level in the body, possibly preventing the development of pulmonary hypertension (PH). In this study, we examined the effects of beetroot juice (BJ) supplementation on PH and the contribution of nitrate to such effects using a rat model of monocrotaline (MCT, 60 mg/kg s.c.)-induced PH. Rats were injected subcutaneously with saline or 60 mg/kg MCT and were sacrificed 28 days after the injection. In some rats injected with MCT, BJ was supplemented from the day of MCT injection to the day of sacrifice. First, MCT-induced right ventricular systolic pressure elevation, pulmonary arterial medial thickening and muscularization, and right ventricular hypertrophy were suppressed by supplementation with low-dose BJ (nitrate: 1.3 mmol/L) but not high-dose BJ (nitrate: 4.3 mmol/L). Of the plasma nitrite, nitrate, and their sum (NOx) levels, only the nitrate levels were found to be increased by the high-dose BJ supplementation. Second, in order to clarify the possible involvement of nitrate in the preventive effects of BJ on PH symptoms, the effects of nitrate-rich BJ (nitrate: 0.9 mmol/L) supplementation were compared with those of the nitrate-depleted BJ. While the former exerted preventive effects on PH symptoms, such effects were not observed in rats supplemented with nitrate-depleted BJ. Neither supplementation with nitrate-rich nor nitrate-depleted BJ affected plasma nitrite, nitrate, and NOx levels. These findings suggest that a suitable amount of BJ ingestion, which does not affect systemic NO levels, can prevent the development of PH in a nitrate-dependent manner. Therefore, BJ could be highly useful as a therapy in patients with PH.
Collapse
Affiliation(s)
- Masashi Tawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- Department of Pharmacology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
- * E-mail: ,
| | - Rikako Nagata
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yuiko Sumi
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Keisuke Nakagawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Tatsuya Sawano
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
- Division of Molecular Pharmacology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Yasuo Matsumura
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| |
Collapse
|
133
|
Afzali H, Khaksari M, Jeddi S, Kashfi K, Abdollahifar MA, Ghasemi A. Acidified Nitrite Accelerates Wound Healing in Type 2 Diabetic Male Rats: A Histological and Stereological Evaluation. Molecules 2021; 26:1872. [PMID: 33810327 PMCID: PMC8037216 DOI: 10.3390/molecules26071872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023] Open
Abstract
Impaired skin nitric oxide production contributes to delayed wound healing in type 2 diabetes (T2D). This study aims to determine improved wound healing mechanisms by acidified nitrite (AN) in rats with T2D. Wistar rats were assigned to four subgroups: Untreated control, AN-treated control, untreated diabetes, and AN-treated diabetes. AN was applied daily from day 3 to day 28 after wounding. On days 3, 7, 14, 21, and 28, the wound levels of vascular endothelial growth factor (VEGF) were measured, and histological and stereological evaluations were performed. AN in diabetic rats increased the numerical density of basal cells (1070 ± 15.2 vs. 936.6 ± 37.5/mm3) and epidermal thickness (58.5 ± 3.5 vs. 44.3 ± 3.4 μm) (all p < 0.05); The dermis total volume and numerical density of fibroblasts at days 14, 21, and 28 were also higher (all p < 0.05). The VEGF levels were increased in the treated diabetic wounds at days 7 and 14, as was the total volume of fibrous tissue and hydroxyproline content at days 14 and 21 (all p < 0.05). AN improved diabetic wound healing by accelerating the dermis reconstruction, neovascularization, and collagen deposition.
Collapse
Affiliation(s)
- Hamideh Afzali
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (H.A.); (M.K.)
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research, and Physiology Research Centers, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (H.A.); (M.K.)
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran;
| |
Collapse
|
134
|
Borisov AV, Syrkina AG, Kuzmin DA, Ryabov VV, Boyko AA, Zaharova O, Zasedatel VS, Kistenev YV. Application of machine learning and laser optical-acoustic spectroscopy to study the profile of exhaled air volatile markers of acute myocardial infarction. J Breath Res 2021; 15. [PMID: 33657535 DOI: 10.1088/1752-7163/abebd4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 11/12/2022]
Abstract
Conventional acute myocardial infarction (AMI) diagnosis is quite accurate and has proved its effectiveness. However, despite this, discovering more operative methods of this disease detection is underway. From this point of view, the application of exhaled air analysis for a similar diagnosis is valuable. The aim of the paper is to research effective machine learning algorithms for the predictive model for AMI diagnosis constructing, using exhaled air spectral data. The target group included 30 patients with primary myocardial infarction. The control group included 42 healthy volunteers. The 'LaserBreeze' laser gas analyzer (Special Technologies Ltd, Russia), based on the dual-channel resonant photoacoustic detector cell and optical parametric oscillator as the laser source, had been used. The pattern recognition approach was applied in the same manner for the set of extracted concentrations of AMI volatile markers and the set of absorption coefficients in a most informative spectral range 2.900 ± 0.125µm. The created predictive model based on the set of absorption coefficients provided 0.86 of the mean values of both the sensitivity and specificity when linear support vector machine (SVM) combined with principal component analysis was used. The created predictive model based on using six volatile AMI markers (C5H12, N2O, NO2, C2H4, CO, CO2) provided 0.82 and 0.93 of the mean values of the sensitivity and specificity, respectively, when linear SVM was used.
Collapse
Affiliation(s)
- Alexey V Borisov
- Biophotonics Laboratory, National Research Tomsk State University, Tomsk, Russia
| | - Anna G Syrkina
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Dmitry A Kuzmin
- Biophysics and Functional Diagnostics Division, Siberian State Medical University, Tomsk,Russia
| | - Vyacheslav V Ryabov
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Cardiology Division, Siberian State Medical University, Tomsk, Russia.,Laboratory for Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Andrey A Boyko
- Biophotonics Laboratory, National Research Tomsk State University, Tomsk, Russia
| | - Olga Zaharova
- Biophotonics Laboratory, National Research Tomsk State University, Tomsk, Russia
| | | | - Yury V Kistenev
- Biophotonics Laboratory, National Research Tomsk State University, Tomsk, Russia.,Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
135
|
La Padula PH, Czerniczyniec A, Bonazzola P, Piotrkowski B, Vanasco V, Lores-Arnaiz S, Costa LE. Acute hypobaric hypoxia and cardiac energetic response in prepubertal rats: Role of nitric oxide. Exp Physiol 2021; 106:1235-1248. [PMID: 33724589 DOI: 10.1113/ep089064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
NEW FINDINGS What is the central question of this study? In adult rat hearts, exposure to hypobaric hypoxia increases tolerance to hypoxia-reoxygenation, termed endogenous cardioprotection. The mechanism involves the nitric oxide system and modulation of mitochondrial oxygen consumption. What is the cardiac energetic response in prepubertal rats exposed to hypobaric hypoxia? What is the main finding and its importance? Prepubertal rats, unlike adult rats, did not increase tolerance to hypoxia-reoxygenation in response acute exposure to hypobaric hypoxia, which impaired cardiac contractile economy. This finding could be related to a failure to increase nitric oxide synthase expression, hence modulation of mitochondrial oxygen consumption and ATP production. ABSTRACT Studies in our laboratory showed that exposure of rats to hypobaric hypoxia (HH) increased the tolerance of the heart to hypoxia-reoxygenation (H/R), involving mitochondrial and cytosolic nitric oxide synthase (NOS) systems. The objective of the present study was to evaluate how the degree of somatic maturation could alter this healthy response. Prepubertal male rats were exposed for 48 h to a simulated altitude of 4400 m in a hypobaric chamber. The mechanical energetic activity in perfused hearts and the contractile functional capacity of NOS in isolated left ventricular papillary muscles were evaluated during H/R. Cytosolic nitric oxide (NO), production of nitrites/nitrates (Nx), expression of NOS isoforms, mitochondrial O2 consumption and ATP production were also evaluated. The left ventricular pressure during H/R was not improved by HH. However, the energetic activity was increased. Thus, the contractile economy (left ventricular pressure/energetic activity) decreased in HH. Nitric oxide did not modify papillary muscle contractility after H/R. Cytosolic p-eNOS-Ser1177 and inducible NOS expression were decreased by HH, but no changes were observed in NO production. Interestingly, HH increased Nx levels, but O2 consumption and ATP production in mitochondria were not affected by HH. Prepubertal rats exposed to HH preserved cardiac contractile function, but with a high energetic cost, modifying contractile economy. Although this could be related to the decreased NOS expression detected, cytosolic NO production was preserved, maybe through the Nx metabolic pathway, without modification of mitochondrial ATP production and O2 consumption. In this scenario, the treatment was unable to increase tolerance to H/R as observed in adult animals.
Collapse
Affiliation(s)
- Pablo H La Padula
- Facultad de Medicina, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Analia Czerniczyniec
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia Bonazzola
- Facultad de Medicina, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Bárbara Piotrkowski
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Vanasco
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lidia E Costa
- Facultad de Medicina, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
136
|
Adedara IA, Awogbindin IO, Mohammed KA, Da-Silva OF, Farombi EO. Abatement of the dysfunctional hypothalamic-pituitary-gonadal axis due to ciprofloxacin administration by selenium in male rats. J Biochem Mol Toxicol 2021; 35:e22741. [PMID: 33592137 DOI: 10.1002/jbt.22741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
The present study examined the influence of selenium on ciprofloxacin-mediated reproductive dysfunction in rats. The research design consisted of five groups of eight animals each. The rats were administered 135 mg/kg body weight of ciprofloxacin per se or simultaneously with selenium at 0.25 and 0.5 mg/kg for 15 uninterrupted days. Antioxidant and inflammatory indices were assayed using the testes, epididymis, and hypothalamus of the animals after sacrifice. Results revealed that ciprofloxacin treatment per se interfered with the reproductive axis as demonstrated by diminished serum hormonal levels, sperm quality, and enzymatic indices of testicular function, which were, however, abrogated following selenium co-treatment. Besides this, administration of selenium attenuated the depletion of glutathione level, inhibition of catalase, superoxide dismutase, glutathione-S-transferase and glutathione peroxidase activities with a concomitant reduction in reactive oxygen and nitrogen species, and lipid peroxidation in ciprofloxacin-treated in rats. Selenium treatment also mitigated ciprofloxacin-mediated elevation in nitric oxide level and of myeloperoxidase activity as well as histological lesions in the animals. Overall, selenium attenuated impairment in the male reproductive axis due to ciprofloxacin treatment through abatement of inflammation and oxidative stress in rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Khadija A Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatobiloba F Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
137
|
Chollier T, Richard L, Romanini D, Brouta A, Martin JL, Moro C, Briot R, Ventrillard I. Monitoring of endogenous nitric oxide exhaled by pig lungs during ex-vivo lung perfusion. J Breath Res 2021; 15. [PMID: 33477122 DOI: 10.1088/1752-7163/abde95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/21/2021] [Indexed: 11/11/2022]
Abstract
In the context of organ shortage for transplantation, new criteria for better organ evaluation should be investigated. Ex-Vivo Lung Perfusion (EVLP) allows extra-corporal lung re-conditioning and evaluation, under controlled parameters of the organ reperfusion and mechanical ventilation. This work reports on the interest of exhaled gas analysis during the EVLP procedure. After a one-hour cold ischemia, the endogenous gas production by an isolated lung of nitric oxide and carbon monoxide is simultaneously monitored in real time. The exhaled gas is analysed with two very sensitive and selective laser spectrometers developed upon the technique of optical-feedback cavity-enhanced absorption spectroscopy. Exhaled gas concentration measured for an ex-vivo lung is compared to the corresponding production by the whole living pig, measured before euthanasia. On-line measurements of the fraction of nitric oxide in exhaled gas (FENO) in isolated lungs are reported here for the first time, allowing to resolve the respiratory cycles. In this study, performed on 9 animals, FENO by isolated lungs range from 3.3 to 10.6 ppb with a median value of 4.4 ppb. Pairing ex-vivo lung and pig measurements allows to demonstrate a systematic increase of FENO in the ex-vivo lung as compared to the living animal, by a factor of 3 ± 1.2. Measurements of the fraction of carbon monoxide in exhaled gas (FECO) confirm levels recorded during previous studies driven to evaluate FECO as a potential marker of ischemia reperfusion injuries. FECO production by ex-vivo lungs ranges from 0.31 to 2.3 ppm with a median value of 0.8 ppm. As expected, these FECO values are lower than the production by the corresponding whole pig body, by a factor of 6.9 ± 2.7.
Collapse
Affiliation(s)
- Thibault Chollier
- CNRS, TIMC-IMAG, University Grenoble Alpes, Grenoble, Rhône-Alpes , FRANCE
| | - Lucile Richard
- CNRS, LIPhy, University Grenoble Alpes, Grenoble, Rhône-Alpes , FRANCE
| | - Daniele Romanini
- CNRS, LIPhy, University Grenoble Alpes, Grenoble, Rhône-Alpes , FRANCE
| | - Angélique Brouta
- TIMC-IMAG, University Grenoble Alpes, Grenoble, Rhône-Alpes , FRANCE
| | - Jean-Luc Martin
- CNRS, LIPhy, University Grenoble Alpes, Grenoble, Rhône-Alpes , FRANCE
| | - Cécile Moro
- CEA, LETI, University Grenoble Alpes, Grenoble, Rhône-Alpes , FRANCE
| | - Raphael Briot
- CNRS, TIMC-IMAG, University Grenoble Alpes, Grenoble, Rhône-Alpes , FRANCE
| | | |
Collapse
|
138
|
Goh CE, Bohn B, Demmer RT. Assessing the Relationship Between Nitrate-Reducing Capacity of the Oral Microbiome and Systemic Outcomes. Methods Mol Biol 2021; 2327:139-160. [PMID: 34410644 PMCID: PMC9277710 DOI: 10.1007/978-1-0716-1518-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The significance of the oral microbiome in the generation of the nitric oxide (NO) via the enterosalivary nitrate-nitrite-nitric oxide pathway is increasingly recognized, directly linking the oral microbiome to cardiometabolic outcomes influenced by NO. The objective of this chapter is to outline a strategy of identifying pathway-specific bacterial taxa or predicted genes of interest from 16S rRNA data, specifically in the enterosalivary pathway of nitrate reduction, and analyzing their relationship with cardiometabolic outcomes using multivariable regression models.
Collapse
Affiliation(s)
- Charlene E Goh
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
| | - Bruno Bohn
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
139
|
Sysel AM, Dunphy MJ, Bauer JA. Antimicrobial properties of diethylamine NONOate, a nitric oxide donor, against Escherichia coli: a pilot study. J Antibiot (Tokyo) 2021; 74:260-265. [PMID: 33361779 PMCID: PMC7767638 DOI: 10.1038/s41429-020-00397-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
The emergence of SARS-CoV-2, the causative agent of COVID-19, highlights the increasing need for new and effective antiviral and antimicrobial agents. The FDA has recently banned several active ingredients used in hand sanitizers, including triclosan and benzethonium chloride. Nitric oxide (NO) is involved in the innate immune response and is a major component of macrophage-mediated attack on foreign viruses and bacteria. The specific aim of this study was to assess the antibacterial effects of 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA-NONOate) against Escherichia coli (E. coli). A bacterial growth assay was compared to an adenosine triphosphate (ATP) activity assay at various time points to assess effects of DEA-NONOate on E. coli growth. A UV/Vis spectrophotometer was used to determine concentration of E. coli by measuring optical density (OD) at 630 nm. A luminescent assay was used to measure ATP activity correlating to viable cells. DEA-NONOate at a concentration of 65 mM was able to inhibit the growth of E. coli with the same efficacy as 1 μg ml-1 concentration of ciprofloxacin. Both the OD and ATP assays demonstrated a 99.9% reduction in E. coli. Both a 1 μg ml-1 concentration of ciprofloxacin and a 65 mM concentration of DEA-NONOate achieved 99.9% inhibition of E. coli, verified using both optical density measurement of bacterial cultures in 96 well plates and a luminescent ATP activity assay. The bactericidal effects of DEA-NONOate against E. coli is proof-of-concept to pursue evaluation of nitric oxide-based formulations as antimicrobial and antiviral agents as hand sanitizers.
Collapse
Affiliation(s)
- Annette M. Sysel
- grid.427858.4Bauer Research Foundation, Inc, North Canton, OH USA ,Nitric Oxide Services, LLC, North Canton, OH USA
| | - Michael J. Dunphy
- Nitric Oxide Services, LLC, North Canton, OH USA ,grid.412869.0Walsh University, North Canton, OH USA
| | - Joseph A. Bauer
- grid.427858.4Bauer Research Foundation, Inc, North Canton, OH USA ,Nitric Oxide Services, LLC, North Canton, OH USA
| |
Collapse
|
140
|
Sun T, Yu H, Fu J. Respiratory Tract Microecology and Bronchopulmonary Dysplasia in Preterm Infants. Front Pediatr 2021; 9:762545. [PMID: 34966701 PMCID: PMC8711720 DOI: 10.3389/fped.2021.762545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe respiratory complication in preterm infants. Although the etiology and pathogenesis of BPD are complex and remain to be clarified, recent studies have reported a certain correlation between the microecological environment of the respiratory tract and BPD. Changes in respiratory tract microecology, such as abnormal microbial diversity and altered evolutional patterns, are observed prior to the development of BPD in premature infants. Therefore, research on the colonization and evolution of neonatal respiratory tract microecology and its relationship with BPD is expected to provide new ideas for its prevention and treatment. In this paper, we review microecological changes in the respiratory tract and the mechanisms by which they can lead to BPD in preterm infants.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
141
|
Gentle SJ, Ahmed KA, Yi N, Morrow CD, Ambalavanan N, Lal CV, Patel RP. Bronchopulmonary dysplasia is associated with reduced oral nitrate reductase activity in extremely preterm infants. Redox Biol 2021; 38:101782. [PMID: 33166868 PMCID: PMC7658701 DOI: 10.1016/j.redox.2020.101782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Oral microbiome mediated nitrate reductase (NR) activity regulates nitric oxide (NO) bioavailability and signaling. While deficits in NO-bioavailability impact several morbidities of extreme prematurity including bronchopulmonary dysplasia (BPD), whether oral NR activity is associated with morbidities of prematurity is not known. We characterized NR activity in extremely preterm infants from birth until 34 weeks' post menstrual age (PMA), determined whether changes in the oral microbiome contribute to changes in NR activity, and determined whether changes in NR activity correlated with disease. In this single center prospective cohort study (n = 28), we observed two surprising findings: (1) NR activity unexpectedly peaked at 29 weeks' PMA (p < 0.05) and (2) when infants were stratified for BPD status, infants who developed BPD had significantly less NR activity at 29 weeks' PMA compared to infants who did not develop BPD. Oral microbiota and NR activity may play a role in BPD development in extremely preterm infants, indicating potential for disease prediction and therapeutic targeting.
Collapse
Affiliation(s)
- Samuel J Gentle
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Khandaker A Ahmed
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nengjun Yi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Charitharth V Lal
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
142
|
Bahadoran Z, Norouzirad R, Mirmiran P, Gaeini Z, Jeddi S, Shokri M, Azizi F, Ghasemi A. Effect of inorganic nitrate on metabolic parameters in patients with type 2 diabetes: A 24-week randomized double-blind placebo-controlled clinical trial. Nitric Oxide 2020; 107:58-65. [PMID: 33340674 DOI: 10.1016/j.niox.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
AIM In this randomized placebo-controlled clinical trial, effect of oral inorganic nitrate (NO3-) on metabolic parameters was assessed in patients with type 2 diabetes mellitus (T2DM). METHODS Seventy-four eligible patients with T2DM were randomly assigned to NO3--rich beetroot powder (5 g/d contains ~250 mg NO3-) and placebo groups to complete intervention over a 24-week period. Blood HbA1c, fasting serum glucose, insulin, C-peptide, as well as lipid profile were assessed at baseline and again at weeks 4, 12, and 24; indices of insulin resistance were also calculated. To assess safety of long-term oral NO3-, liver and renal function tests were measured. An intention-to-treat approach was used for data analysis. To compare effect of intervention over time between the groups (time×group), repeated measures generalized estimating equation (GEE) linear regression models were used. RESULTS Mean age of the participants was 54.0 ± 8.5 (47.9% were male) and mean duration of diabetes was 8.5 ± 6.1 years. A total of 64 patients (n = 35 in beetroot group and n = 29 in placebo group) completed at least two visits and were included in the analyses. No significant difference was observed between the groups for glycemic and lipid parameters over time. Liver and renal function tests, as safety outcome measures, showed no undesirable changes during the study follow-up. CONCLUSION Supplementation with inorganic NO3- had no effect on metabolic parameters in patients with T2DM.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Norouzirad
- Department of Biochemistry, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Gaeini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Shokri
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
143
|
Timpani CA, Mamchaoui K, Butler-Browne G, Rybalka E. Nitric Oxide (NO) and Duchenne Muscular Dystrophy: NO Way to Go? Antioxidants (Basel) 2020; 9:antiox9121268. [PMID: 33322149 PMCID: PMC7764682 DOI: 10.3390/antiox9121268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023] Open
Abstract
The discordance between pre-clinical success and clinical failure of treatment options for Duchenne Muscular Dystrophy (DMD) is significant. The termination of clinical trials investigating the phosphodiesterase inhibitors, sildenafil and tadalafil (which prolong the second messenger molecule of nitric oxide (NO) signaling), are prime examples of this. Both attenuated key dystrophic features in the mdx mouse model of DMD yet failed to modulate primary outcomes in clinical settings. We have previously attempted to modulate NO signaling via chronic nitrate supplementation of the mdx mouse but failed to demonstrate beneficial modulation of key dystrophic features (i.e., metabolism). Instead, we observed increased muscle damage and nitrosative stress which exacerbated MD. Here, we highlight that acute nitrite treatment of human DMD myoblasts is also detrimental and suggest strategies for moving forward with NO replacement therapy in DMD.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne 8001, Victoria, Australia;
- Australian Institute for Musculoskeletal Science, St Albans 3021, Victoria, Australia
- Correspondence: ; Tel.: +61-3-8395-8206
| | - Kamel Mamchaoui
- Institut de Myologie, Sorbonne University, INSERM UMRS974 Paris, France; (K.M.); (G.B.-B.)
| | - Gillian Butler-Browne
- Institut de Myologie, Sorbonne University, INSERM UMRS974 Paris, France; (K.M.); (G.B.-B.)
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne 8001, Victoria, Australia;
- Australian Institute for Musculoskeletal Science, St Albans 3021, Victoria, Australia
| |
Collapse
|
144
|
Flohé L. Looking Back at the Early Stages of Redox Biology. Antioxidants (Basel) 2020; 9:E1254. [PMID: 33317108 PMCID: PMC7763103 DOI: 10.3390/antiox9121254] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
The beginnings of redox biology are recalled with special emphasis on formation, metabolism and function of reactive oxygen and nitrogen species in mammalian systems. The review covers the early history of heme peroxidases and the metabolism of hydrogen peroxide, the discovery of selenium as integral part of glutathione peroxidases, which expanded the scope of the field to other hydroperoxides including lipid hydroperoxides, the discovery of superoxide dismutases and superoxide radicals in biological systems and their role in host defense, tissue damage, metabolic regulation and signaling, the identification of the endothelial-derived relaxing factor as the nitrogen monoxide radical (more commonly named nitric oxide) and its physiological and pathological implications. The article highlights the perception of hydrogen peroxide and other hydroperoxides as signaling molecules, which marks the beginning of the flourishing fields of redox regulation and redox signaling. Final comments describe the development of the redox language. In the 18th and 19th century, it was highly individualized and hard to translate into modern terminology. In the 20th century, the redox language co-developed with the chemical terminology and became clearer. More recently, the introduction and inflationary use of poorly defined terms has unfortunately impaired the understanding of redox events in biological systems.
Collapse
Affiliation(s)
- Leopold Flohé
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, v.le G. Colombo 3, 35121 Padova, Italy;
- Departamento de Bioquímica, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
145
|
Ricciardolo FLM, Bertolini F, Carriero V, Högman M. Nitric oxide's physiologic effects and potential as a therapeutic agent against COVID-19. J Breath Res 2020; 15:014001. [PMID: 33080582 DOI: 10.1088/1752-7163/abc302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for COVID-19 pneumonia, a pandemic that precipitates huge pressures on the world's social and economic systems. Disease severity varies among individuals. SARS-CoV-2 infection can be associated with e.g. flu-like symptoms, dyspnoea, severe interstitial pneumonia, acute respiratory distress syndrome, multiorgan dysfunction, and generalized coagulopathy. Nitric oxide (NO), is a small signal molecule that impacts pleiotropic functions in human physiology, which can be involved in the significant effects of COVID-19 infection. NO is a neurotransmitter involved in the neural olfactory processes in the central nervous system, and some infected patients have reported anosmia as a symptom. Additionally, NO is a well-known vasodilator, important coagulation mediator, anti-microbial effector and inhibitor of SARS-CoV replication. Exhaled NO is strongly related to the type-2 inflammatory response found in asthma, which has been suggested to be protective against SARS-CoV-2 infection. Several reports indicate that the use of inhaled NO has been an effective therapy during this pandemic since the ventilation-perfusion ratio in COVID-19 patients improved afterwards and they did not require mechanical ventilation. The aim of this mini-review is to summarize relevant actions of NO that could be beneficial in the treatment of COVID-19.
Collapse
Affiliation(s)
- Fabio Luigi Massimo Ricciardolo
- Department of Clinical and Biological Sciences, University of Turin, Rare Lung Disease Unit and Severe Asthma Centre, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | | | | | | |
Collapse
|
146
|
Lechón T, Sanz L, Sánchez-Vicente I, Lorenzo O. Nitric Oxide Overproduction by cue1 Mutants Differs on Developmental Stages and Growth Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1484. [PMID: 33158046 PMCID: PMC7692804 DOI: 10.3390/plants9111484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 01/26/2023]
Abstract
The cue1 nitric oxide (NO) overproducer mutants are impaired in a plastid phosphoenolpyruvate/phosphate translocator, mainly expressed in Arabidopsis thaliana roots. cue1 mutants present an increased content of arginine, a precursor of NO in oxidative synthesis processes. However, the pathways of plant NO biosynthesis and signaling have not yet been fully characterized, and the role of CUE1 in these processes is not clear. Here, in an attempt to advance our knowledge regarding NO homeostasis, we performed a deep characterization of the NO production of four different cue1 alleles (cue1-1, cue1-5, cue1-6 and nox1) during seed germination, primary root elongation, and salt stress resistance. Furthermore, we analyzed the production of NO in different carbon sources to improve our understanding of the interplay between carbon metabolism and NO homeostasis. After in vivo NO imaging and spectrofluorometric quantification of the endogenous NO levels of cue1 mutants, we demonstrate that CUE1 does not directly contribute to the rapid NO synthesis during seed imbibition. Although cue1 mutants do not overproduce NO during germination and early plant development, they are able to accumulate NO after the seedling is completely established. Thus, CUE1 regulates NO homeostasis during post-germinative growth to modulate root development in response to carbon metabolism, as different sugars modify root elongation and meristem organization in cue1 mutants. Therefore, cue1 mutants are a useful tool to study the physiological effects of NO in post-germinative growth.
Collapse
Affiliation(s)
| | | | | | - Oscar Lorenzo
- Department of Botany and Plant Physiology, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain; (T.L.); (L.S.); (I.S.-V.)
| |
Collapse
|
147
|
Simultaneous Pharmacokinetic Analysis of Nitrate and its Reduced Metabolite, Nitrite, Following Ingestion of Inorganic Nitrate in a Mixed Patient Population. Pharm Res 2020; 37:235. [PMID: 33140122 DOI: 10.1007/s11095-020-02959-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE The pharmacokinetic properties of plasma NO3- and its reduced metabolite, NO2-, have been separately described, but there has been no reported attempt to simultaneously model their pharmacokinetics following NO3- ingestion. This report describes development of such a model from retrospective analyses of concentrations largely obtained from primary endpoint efficacy trials. METHODS Linear and non-linear mixed effects analyses were used to statistically define concentration dependency on time, dose, as well as patient and study variables, and to integrate NO3- and NO2- concentrations from studies conducted at different times, locations, patient groups, and several studies in which sample range was limited to a few hours. Published pharmacokinetic studies for both substances were used to supplement model development. RESULTS A population pharmacokinetic model relating NO3- and NO2- concentrations was developed. The model incorporated endogenous levels of the two entities, and determined these were not influenced by exogenous NO3- delivery. Covariate analysis revealed intersubject variability in NO3- exposure was partially described by body weight differences influencing volume of distribution. The model was applied to visualize exposure versus response (muscle contraction performance) in individual patients. CONCLUSIONS Extension of the present first-generation model, to ultimately optimize NO3- dose versus pharmacological effects, is warranted.
Collapse
|