101
|
Zhang S, Han B, Wu F, Huang H. Quantitative proteomic analysis provides insights into the algicidal mechanism of Halobacillus sp. P1 against the marine diatom Skeletonema costatum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137048. [PMID: 32070889 DOI: 10.1016/j.scitotenv.2020.137048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Algicidal behavior is a common interaction between marine microalgae and bacteria, especially in the dissipation phase of algal blooms. The marine bacterium Halobacillus sp. P1 was previously isolated and exhibits high algicidal activity against the diatom Skeletonema costatum. However, little is known about the mechanism underlying this algicidal process. Here, a tandem mass tag (TMT)-based proteomic approach was coupled with physiological analysis to investigate the cellular responses of S. costatum when treated with P1 culture supernatant. Among the 4582 proteins identified, 82 and 437 proteins were differentially expressed after treatment for 12 and 24 h, respectively. The proteomic results were in accordance with the results of verification by parallel reaction monitoring (PRM) assays. Proteins involved in reactive oxygen species scavenging, protein degradation and transport were upregulated, while proteins participating in nitrogen metabolism, protein translation, photosynthetic pigment biosynthesis and cell cycle regulation were significantly downregulated (p-value ≤0.05), corresponding to the increasing malondialdehyde content and the decreasing nitrogen, protein and chlorophyll a contents. A nutrient competitive relationship might exist between the bacterium P1 and S. costatum, and the inhibition of nitrogen metabolism by the P1 culture supernatant might be the key lethal factor that results in the dysfunction of S. costatum metabolism. Our study sheds light on the algicidal mechanism of P1 at the molecular level and provides new insights into algae-bacteria interactions.
Collapse
Affiliation(s)
- Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Beibei Han
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Fengxia Wu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
102
|
Jin M, Wang H, Liu H, Xia Y, Ruan S, Huang Y, Qiu J, Du S, Xu L. Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114013. [PMID: 32000025 DOI: 10.1016/j.envpol.2020.114013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/29/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Ionic liquids (ILs) are extensively used in various fields, posing a potential threat in the ecosystem because of their high stability, excellent solubility, and biological toxicity. In this study, the toxicity mechanism of three ILs, 1-octyl-3-methylimidazolium chloride ([C8MIM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-dodecyl-3-methylimidazolium chloride ([C12MIM]Cl) on Arabidopsis thaliana were revealed. Reactive oxygen species (ROS) level increased with higher concentration and longer carbon chain length of ILs, which led to the increase of malondialdehyde (MDA) content and antioxidase activity, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxidase (POD) activities. SOD, CAT, and GPX activities decreased in high ILs concentration due to the excessive ROS. Differentially expressed protein was analyzed based on Gene ontology (GO) and KEGG pathways analysis. 70, 45, 84 up-regulated proteins, and 72, 104, 79 down-regulated proteins were identified in [C8MIM]Cl, [C10MIM]Cl, and [C12MIM]Cl treatment, respectively (fold change ≥ 1.5 with ≥95% confidence). Cellular aldehyde metabolic process, mitochondrial and mitochondrial respiratory chains, glutathione transferase and oxidoreductase activity were enriched as up-regulated proteins as the defense mechanism of A. thaliana to resist external stresses. Chloroplast, photosynthetic membrane and thylakoid, structural constituent of ribosome, and transmembrane transport were enriched as the down-regulated protein. Compared with the control, 8 and 14 KEGG pathways were identified forup-regulated and down-regulated proteins, respectively, in three IL treatments. Metabolic pathways, carbon metabolism, biosynthesis of amino acids, porphyrin and chlorophyll metabolism were significantly down-regulated. The GO terms annotation demonstrated the oxidative stress response and effects on photosynthesis of A. thaliana in ILs treatment from biological process, cellular component, and molecular function categories.
Collapse
Affiliation(s)
- Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| | - Yilu Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Yuqing Huang
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Jieren Qiu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Linglin Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| |
Collapse
|
103
|
Shen T, Wang Q, Li C, Zhou B, Li Y, Liu Y. Transcriptome sequencing analysis reveals silver nanoparticles antifungal molecular mechanism of the soil fungi Fusarium solani species complex. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122063. [PMID: 31972432 DOI: 10.1016/j.jhazmat.2020.122063] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) have been widely used in various fields due to their antimicrobial activities. However, the antimicrobial mechanisms of AgNPs against fungi, especially on transcriptional level, are still unclear. In this study, the inhibitory property of AgNPs against Fusarium solani species complex was investigated. Transmission electron microscopes were used to observe the alterations in morphology and cellular structure of fungal hyphae treated with AgNPs. Disturbances in the cell walls and membranes, as well as empty space in the cytoplasm were observed. The transcriptome sequencing of F. solani species complex mycelia was performed using the Illumina NextSeq 500 ribonucleic acid sequencing (RNA-Seq) platform. In the RNA-Seq study, AgNPs treatment resulted in 2503 differentially expressed genes (DEGs). Gene Ontology (GO) analysis revealed that the DEGs were mainly involved in 6 different terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis also revealed that energy and substance metabolism, signal transduction and genetic information processing were the most highly enriched pathways for these DEGs. In addition, RNA-seq results were validated by quantitative polymerase chain reactions (qPCRs). Our findings enhanced the understanding of the antifungal activities of AgNPs and the underlying molecular mechanisms, and provided a new perspective for investigating this novel antifungal agent.
Collapse
Affiliation(s)
- Tianlin Shen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qiushuang Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chengliang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Bo Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhuan Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanli Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
104
|
Wong SWY, Zhou GJ, Kwok KWH, Djurišić AB, Han J, Lee JS, Leung KMY. In vivo toxicities of nine engineered nano metal oxides to the marine diatom Skeletonema costatum and rotifer Brachionus koreanus. MARINE POLLUTION BULLETIN 2020; 153:110973. [PMID: 32275530 DOI: 10.1016/j.marpolbul.2020.110973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
This study compared in vivo acute toxicities of nine engineered nano metal oxides to the marine diatom Skeletonema costatum and rotifer Brachionus koreanus. The sequence of their toxicities to S. costatum, based on growth inhibition, was: nano zinc oxide (nZnO) > nTiO2 (rutile) > nMgO > Annealed nMgO > nTiO2 (anatase) > γ-nAl2O3 > nIn2O3 > α-nAl2O3 > nSnO2. Similarly, nZnO was also the most toxic to B. koreanus, but the other nano metal oxides were non-lethal. nMgO and nZnO were confirmed to trigger reactive oxygen species (ROS) mediated toxicity to the two marine organisms, while nTiO2 (both anatase and rutile forms) likely induced oxidative stress as shown by their acellular ROS production. nZnO may also cause damage in the endocrine system of B. koreanus, as indicated by the increased transcription of retinoid X receptor. Annealed nMgO reduces its toxicity via removal of O2- and impurities from its surface.
Collapse
Affiliation(s)
- Stella W Y Wong
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kevin W H Kwok
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | | | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution (City University of Hong Kong), Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
105
|
Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134749. [PMID: 32000322 DOI: 10.1016/j.scitotenv.2019.134749] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 05/09/2023]
Abstract
Environmental contamination by a non-essential and non-beneficial, although potentially toxic mercury (Hg), is becoming a great threat to the living organisms at a global scale. Owing to its various uses in numerous industrial processes, high amount of Hg is released into different environmental compartments. Environmental Hg contamination can result in food chain contamination, especially due to its accumulation in edible plant parts. Consumption of Hg-rich food is a key source of Hg exposure to humans. Since Hg does not possess any identified biological role and has genotoxic and carcinogenic potential, it is critical to monitor its biogeochemical behavior in the soil-plant system and its influence in terms of possible food chain contamination and human exposure. This review traces a plausible link among Hg levels, its chemical speciation and phytoavailability in soil, accumulation in plants, phytotoxicity and detoxification of Hg inside the plant. The role of different enzymatic (peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase) and non-enzymatic (glutathione, phytochelatins, proline and ascorbic acid) antioxidants has also been elucidated with respect to enhanced generation of reactive radicles and resulting oxidative stress. The review also outlines Hg build-up in edible plant tissues and associated health risks. The biogeochemical role of Hg in the soil-plant system and associated health risks have been described with well summarized and up-to-date data in 12 tables and 4 figures. We believe that this comprehensive review article and meta-analysis of Hg data can be greatly valuable for scientists, researchers, policymakers and graduate-level students.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058 Toulouse, cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France; Association Réseau-Agriville (http://reseau-agriville.com/), France
| |
Collapse
|
106
|
Luo Z, Cui R, Chavarro C, Tseng YC, Zhou H, Peng Z, Chu Y, Yang X, Lopez Y, Tillman B, Dufault N, Brenneman T, Isleib TG, Holbrook C, Ozias-Akins P, Wang J. Mapping quantitative trait loci (QTLs) and estimating the epistasis controlling stem rot resistance in cultivated peanut (Arachis hypogaea). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1201-1212. [PMID: 31974667 DOI: 10.1007/s00122-020-03542-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
A total of 33 additive stem rot QTLs were identified in peanut genome with nine of them consistently detected in multiple years or locations. And 12 pairs of epistatic QTLs were firstly reported for peanut stem rot disease. Stem rot in peanut (Arachis hypogaea) is caused by the Sclerotium rolfsii and can result in great economic loss during production. In this study, a recombinant inbred line population from the cross between NC 3033 (stem rot resistant) and Tifrunner (stem rot susceptible) that consists of 156 lines was genotyped by using 58 K peanut single nucleotide polymorphism (SNP) array and phenotyped for stem rot resistance at multiple locations and in multiple years. A linkage map consisting of 1451 SNPs and 73 simple sequence repeat (SSR) markers was constructed. A total of 33 additive quantitative trait loci (QTLs) for stem rot resistance were detected, and six of them with phenotypic variance explained of over 10% (qSR.A01-2, qSR.A01-5, qSR.A05/B05-1, qSR.A05/B05-2, qSR.A07/B07-1 and qSR.B05-1) can be consistently detected in multiple years or locations. Besides, 12 pairs of QTLs with epistatic (additive × additive) interaction were identified. An additive QTL qSR.A01-2 also with an epistatic effect interacted with a novel locus qSR.B07_1-1 to affect the percentage of asymptomatic plants in a row. A total of 193 candidate genes within 38 stem rot QTLs intervals were annotated with functions of biotic stress resistance such as chitinase, ethylene-responsive transcription factors and pathogenesis-related proteins. The identified stem rot resistance QTLs, candidate genes, along with the associated SNP markers in this study, will benefit peanut molecular breeding programs for improving stem rot resistance.
Collapse
Affiliation(s)
- Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Renjie Cui
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, Institute of Plant Breeding, Genetics and Genomics, The University of Georgia, Athens, GA, USA
| | - Yu-Chien Tseng
- Agronomy Department, University of Florida, Gainesville, FL, USA
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
| | - Hai Zhou
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Ye Chu
- Department of Horticulture, Institute for Plant Breeding, Genetics and Genomics, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Yolanda Lopez
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Barry Tillman
- Agronomy Department, University of Florida, Gainesville, FL, USA
- North Florida Research and Education Center, Marianna, FL, USA
| | - Nicholas Dufault
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Timothy Brenneman
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Thomas G Isleib
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Corley Holbrook
- Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA, USA
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute for Plant Breeding, Genetics and Genomics, University of Georgia Tifton Campus, Tifton, GA, USA
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
107
|
|
108
|
Castillejo MÁ, Fondevilla-Aparicio S, Fuentes-Almagro C, Rubiales D. Quantitative Analysis of Target Peptides Related to Resistance Against Ascochyta Blight ( Peyronellaea pinodes) in Pea. J Proteome Res 2020; 19:1000-1012. [PMID: 32040328 DOI: 10.1021/acs.jproteome.9b00365] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peyronellaea pinodes causes Ascochyta blight, one of the major diseases in pea worldwide. Cultivated pea plants have a low resistance to this disease. Although quantitative trait loci (QTLs) involved in the resistance to Ascochyta blight have been identified, the specific genes associated with these QTLs remain unknown, which makes marker-assisted selection difficult. Complex traits alter proteins and their abundance. Quantitative estimation of proteins in pea might therefore be useful in selecting potential markers for breeding. In this work, we developed a strategy using a combination of shotgun proteomics (viz., high performance liquid chromatography-mass spectrometry data-dependent acquisition) and data-independent acquisition (DIA) analysis, to identify putative protein markers associated with resistance to Ascochyta blight and explored its use for breeding selection. For this purpose, an initial list of target peptides based on proteins closely related to resistance to P. pinodes was compiled by using two genotypes with contrasting responses to the disease. Then, targeted data analysis (viz., shotgun proteomics-DIA) was used for constitutive quantification of the target peptides in a representative number of the recombinant inbred line population segregated for resistance as derived from a cross between the two genotypes. Finally, a peptide panel of potential markers for resistance to P. pinodes was built. The results thus obtained are discussed and compared with those of previous gene expression studies using the same parental pea genotypes responding to the pathogen. Also, a molecular defense mechanism against Ascochyta blight in pea is proposed. To the authors' knowledge, this is the first time a targeted proteomics approach based on data analysis has been used to identify peptides associated with resistance to this disease.
Collapse
Affiliation(s)
| | | | | | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| |
Collapse
|
109
|
Ostria-Gallardo E, Larama G, Berríos G, Fallard A, Gutiérrez-Moraga A, Ensminger I, Bravo LA. A comparative gene co-expression analysis using self-organizing maps on two congener filmy ferns identifies specific desiccation tolerance mechanisms associated to their microhabitat preference. BMC PLANT BIOLOGY 2020; 20:56. [PMID: 32019526 PMCID: PMC7001327 DOI: 10.1186/s12870-019-2182-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Filmy-ferns (Hymenophyllaceae) are poikilohydric, homoiochlorophyllous desiccation-tolerant (DT) epiphytes. They can colonize lower and upper canopy environments of humid forest. Filmy-ferns desiccate rapidly (hours), contrasting with DT angiosperms (days/weeks). It has been proposed that desiccation tolerance in filmy-ferns would be associated mainly with constitutive features rather than induced responses during dehydration. However, we hypothesize that the inter-specific differences in vertical distribution would be associated with different dynamics of gene expression within the dehydration or rehydration phases. A comparative transcriptomic analysis with an artificial neural network was done on Hymenophyllum caudiculatum (restricted to lower canopy) and Hymenophyllum dentatum (reach upper canopy) during a desiccation/rehydration cycle. RESULTS Raw reads were assembled into 69,599 transcripts for H. dentatum and 34,726 transcripts for H. caudiculatum. Few transcripts showed significant changes in differential expression (DE). H. caudiculatum had ca. twice DE genes than H. dentatum and higher proportion of increased-and-decreased abundance of genes occurs during dehydration. In contrast, the abundance of genes in H. dentatum decreased significantly when transitioning from dehydration to rehydration. According to the artificial neural network results, H. caudiculatum enhanced osmotic responses and phenylpropanoid related pathways, whilst H. dentatum enhanced its defense system responses and protection against high light stress. CONCLUSIONS Our findings provide a deeper understanding of the mechanisms underlying the desiccation tolerance responses of two filmy ferns and the relationship between the species-specific response and the microhabitats these ferns occupy in nature.
Collapse
Affiliation(s)
- Enrique Ostria-Gallardo
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas CEAZA, La Serena, Chile.
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
| | - Giovanni Larama
- Centro de Excelencia de Modelación y Computación Científica, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Graciela Berríos
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ana Fallard
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | | | - Ingo Ensminger
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - León A Bravo
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
110
|
Mwando E, Angessa TT, Han Y, Li C. Salinity tolerance in barley during germination- homologs and potential genes. J Zhejiang Univ Sci B 2020; 21:93-121. [PMID: 32115909 PMCID: PMC7076347 DOI: 10.1631/jzus.b1900400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
111
|
Vyse K, Penzlin J, Sergeant K, Hincha DK, Arora R, Zuther E. Repair of sub-lethal freezing damage in leaves of Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:35. [PMID: 31959104 PMCID: PMC6971927 DOI: 10.1186/s12870-020-2247-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The detrimental effects of global climate change direct more attention to the survival and productivity of plants during periods of highly fluctuating temperatures. In particular in temperate climates in spring, temperatures can vary between above-zero and freezing temperatures, even during a single day. Freeze-thaw cycles cause cell membrane lesions that can lead to tissue damage and plant death. Whereas the processes of cold acclimation and freeze-thaw injury are well documented, not much is known about the recovery of plants after a freezing event. We therefore addressed the following questions: i. how does the severity of freezing damage influence repair; ii. how are respiration and content of selected metabolites influenced during the repair process; and iii. how do transcript levels of selected genes respond during repair? RESULTS We have investigated the recovery from freezing to sub-lethal temperatures in leaves of non-acclimated and cold acclimated Arabidopsis thaliana plants over a period of 6 days. Fast membrane repair and recovery of photosynthesis were observed 1 day after recovery (1D-REC) and continued until 6D-REC. A substantial increase in respiration accompanied the repair process. In parallel, concentrations of sugars and proline, acting as compatible solutes during freezing, remained unchanged or declined, implicating these compounds as carbon and nitrogen sources during recovery. Similarly, cold-responsive genes were mainly down regulated during recovery of cold acclimated leaves. In contrast, genes involved in cell wall remodeling and ROS scavenging were induced during recovery. Interestingly, also the expression of genes encoding regulatory proteins, such as 14-3-3 proteins, was increased suggesting their role as regulators of repair processes. CONCLUSIONS Recovery from sub-lethal freezing comprised membrane repair, restored photosynthesis and increased respiration rates. The process was accompanied by transcriptional changes including genes encoding regulatory proteins redirecting the previous cold response to repair processes, e.g. to cell wall remodeling, maintenance of the cellular proteome and to ROS scavenging. Understanding of processes involved in repair of freeze-thaw injury increases our knowledge on plant survival in changing climates with highly fluctuating temperatures.
Collapse
Affiliation(s)
- Kora Vyse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Johanna Penzlin
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, Iowa, 50010, USA
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
112
|
Nguyen PN, Tossounian MA, Kovacs DS, Thu TT, Stijlemans B, Vertommen D, Pauwels J, Gevaert K, Angenon G, Messens J, Tompa P. Dehydrin ERD14 activates glutathione transferase Phi9 in Arabidopsis thaliana under osmotic stress. Biochim Biophys Acta Gen Subj 2019; 1864:129506. [PMID: 31870857 DOI: 10.1016/j.bbagen.2019.129506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Fully intrinsically disordered plant dehydrin ERD14 can protect enzymes via its chaperone-like activity, but it was not formally linked with enzymes of the plant redox system yet. This is of particular interest, as the level of H2O2 in Arabidopsis plants increases during osmotic stress, which can be counteracted by overexpression of ERD14. METHODS The proteomic mass-spectrometry analysis of stressed plants was performed to find the candidates affected by ERD14. With cross-linking, microscale thermophoresis, and active-site titration kinetics, the interaction and influence of ERD14 on the function of two target proteins: glutathione transferase Phi9 and catalase was examined. RESULTS Under osmotic stress, redox enzymes, specifically the glutathione transferase Phi enzymes, are upregulated. Using microscale thermophoresis, we showed that ERD14 directly interacts with GSTF9 with a KD of ~25 μM. ERD14 activates the inactive GSTF9 molecules, protects GSTF9 from oxidation, and can also increases the activity of the enzyme. Aside from GSTF9, we found that ERD14 can also interact with catalase, an important cellular H2O2 scavenging enzyme, with a KD of ~0.13 μM, and protects it from dehydration-induced loss of activity. CONCLUSIONS We propose that fully intrinsically disordered dehydrin ERD14 might protect and even activate redox enzymes, helping plants to survive oxidative stress under dehydration conditions. GENERAL SIGNIFICANCE ERD14 has a direct effect on the activity of redox enzymes.
Collapse
Affiliation(s)
- Phuong N Nguyen
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Department of Biology, College of Natural Sciences, Cantho University, Viet Nam; Laboratory of Plant Genetics (PLAN), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Maria-Armineh Tossounian
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium
| | - Denes S Kovacs
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Tran T Thu
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Benoit Stijlemans
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, University of Ghent, B9000 Ghent, Belgium; Department of Biomolecular Medicine, University of Ghent, B9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, University of Ghent, B9000 Ghent, Belgium; Department of Biomolecular Medicine, University of Ghent, B9000 Ghent, Belgium
| | - Geert Angenon
- Laboratory of Plant Genetics (PLAN), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium.
| | - Peter Tompa
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
113
|
Larskaya I, Gorshkov O, Mokshina N, Trofimova O, Mikshina P, Klepikova A, Gogoleva N, Gorshkova T. Stimulation of adventitious root formation by the oligosaccharin OSRG at the transcriptome level. PLANT SIGNALING & BEHAVIOR 2019; 15:1703503. [PMID: 31851577 PMCID: PMC7012187 DOI: 10.1080/15592324.2019.1703503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 05/26/2023]
Abstract
Oligosaccharins, which are biologically active oligosaccharide fragments of cell wall polysaccharides, may regulate the processes of growth and development as well as the response to stress factors. We characterized the effect of the oligosaccharin that stimulates rhizogenesis (OSRG) on the gene expression profile in the course of IAA-induced formation of adventitious roots in hypocotyl explants of buckwheat (Fagopyrum esculentum Moench.). The transcriptomes at two stages of IAA-induced root primordium formation (6 h and 24 h after induction) were compared after either treatment with auxin alone or joint treatment with auxin and OSRG. The set of differentially expressed genes indicated the special importance of oligosaccharin at the early stage of auxin-induced adventitious root formation. The list of genes with altered mRNA abundance in the presence of oligosaccharin included those, which Arabidopsis homologs encode proteins directly involved in the response to auxin as well as proteins that contribute to redox regulation, detoxification of various compounds, vesicle trafficking, and cell wall modification. The obtained results contribute to understanding the mechanism of adventitious root formation and demonstrate that OSRG is involved in fine-tuning of ROS and auxin regulatory modes involved in root development.
Collapse
Affiliation(s)
- Irina Larskaya
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Oksana Trofimova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Anna Klepikova
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
114
|
Genome-wide identification and expression profiling of glutathione transferase gene family under multiple stresses and hormone treatments in wheat (Triticum aestivum L.). BMC Genomics 2019; 20:986. [PMID: 31842737 PMCID: PMC6916456 DOI: 10.1186/s12864-019-6374-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glutathione transferases (GSTs), the ancient, ubiquitous and multi-functional proteins, play significant roles in development, metabolism as well as abiotic and biotic stress responses in plants. Wheat is one of the most important crops, but the functions of GST genes in wheat were less studied. RESULTS A total of 330 TaGST genes were identified from the wheat genome and named according to the nomenclature of rice and Arabidopsis GST genes. They were classified into eight classes based on the phylogenetic relationship among wheat, rice, and Arabidopsis, and their gene structure and conserved motif were similar in the same phylogenetic class. The 43 and 171 gene pairs were identified as tandem and segmental duplication genes respectively, and the Ka/Ks ratios of tandem and segmental duplication TaGST genes were less than 1 except segmental duplication gene pair TaGSTU24/TaGSTU154. The 59 TaGST genes were identified to have syntenic relationships with 28 OsGST genes. The expression profiling involved in 15 tissues and biotic and abiotic stresses suggested the different expression and response patterns of the TaGST genes. Furthermore, the qRT-PCR data showed that GST could response to abiotic stresses and hormones extensively in wheat. CONCLUSIONS In this study, a large GST family with 330 members was identified from the wheat genome. Duplication events containing tandem and segmental duplication contributed to the expansion of TaGST family, and duplication genes might undergo extensive purifying selection. The expression profiling and cis-elements in promoter region of 330 TaGST genes implied their roles in growth and development as well as adaption to stressful environments. The qRT-PCR data of 14 TaGST genes revealed that they could respond to different abiotic stresses and hormones, especially salt stress and abscisic acid. In conclusion, this study contributed to the further functional analysis of GST genes family in wheat.
Collapse
|
115
|
Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
116
|
Wu Z, Huang Y, Li Y, Dong J, Liu X, Li C. Biocontrol of Rhizoctonia solani via Induction of the Defense Mechanism and Antimicrobial Compounds Produced by Bacillus subtilis SL-44 on Pepper ( Capsicum annuum L.). Front Microbiol 2019; 10:2676. [PMID: 31849858 PMCID: PMC6892779 DOI: 10.3389/fmicb.2019.02676] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022] Open
Abstract
Pepper seedling wilt disease is the main cause of crop yield reduction. Biocontrol agents are widely used to control plant diseases caused by pathogenic fungi and activate plant defense systems. Our preliminary work showed that Bacillus subtilis SL-44 played a significant role in the reduction of wilt disease severity on pepper plants. To evaluate biological control mechanism of B. subtilis SL-44 on wilt disease caused by Rhizoctonia solani, the activities of the related enzymes were detected in the pepper seedling with different treatment in this study. Fluorescence microscopy combined with different dyes showed that B. subtilis SL-44 induced a large amount of active oxygen and callose accumulation in pepper leaves. The defense-related enzyme activities in pepper were improved significantly when treated with B. subtilis SL-44, including peroxidase, catalase, superoxide dismutase, polyphenol oxidase, and phenylalanine ammonia lyase. The activity of chitinase and β-1,3-glucanase in B. subtilis SL-44-treated pepper was also enhanced. Furthermore, the expression level of pepper-resistance gene CaPIN II was significantly increased in B. subtilis SL-44 treatment. Besides, B. subtilis SL-44 filtrate led to the death of the pathogenic fungus by fracturing the mycelia and leaking of the cell contents. Surfactin, iturin, and fengycin were found in B. subtilis SL-44 crude extracts, which could be effective antifungal compounds against R. solani. The results suggest that B. subtilis SL-44 could not only activate induced systemic resistance of pepper seedling against wilt disease caused by R. solani by jasmonic acid-dependent signaling pathway but also produce antifungal compounds to inhibit or even damage the mycelium growth of R. solani. The findings of this study provide novel guidance in plant protection development.
Collapse
Affiliation(s)
- Zhansheng Wu
- Department of Bioengineering, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, China.,Department of Environmental and Biological Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yuanyuan Huang
- Department of Environmental and Biological Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yan Li
- Department of Environmental and Biological Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jiawei Dong
- Department of Environmental and Biological Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xiaochen Liu
- Department of Bioengineering, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, China
| | - Chun Li
- Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
117
|
Cloning, characterization and expression analysis of glutathione S-transferase from the Antarctic yeast Rhodotorula mucilaginosa AN5. Protein Expr Purif 2019; 167:105518. [PMID: 31669543 DOI: 10.1016/j.pep.2019.105518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
The gene for glutathione S-transferase (GST) in Antarctic sea-ice yeast Rhodotorula mucilaginosa AN5 was cloned and expressed in Escherichia coli and named RmGST. Sequence analysis showed that the RmGST gene contained a 843 bp open reading frame, which encoded 280 amino acid residues with a calculated molecular mass of 30.4 kDa and isoelectric point of 5.40. RmGST has the typical C- and N-terminal double domains of glutathione S-transferase. Recombinant RmGST (rRmGST) was expressed in E. coli to produce heterologous protein that had a high specific activity of 60.2 U/mg after purification. The apparent Km values of rRmGST for glutathione and 1-chloro-2,4-dinitrobenzene were 0.35 mM and 0.40 mM, respectively. Optimum enzyme activity was measured at 35 °C and at pH 7.0 and complete inactivation was observed after incubation at 55 °C for 60 min rRmGST tolerated high salt concentrations (1.0 M NaCl) and was stable at pH 3.0. Additionally, the recombinant protein nearly kept whole activity in Hg2+ and Mn2+, and could tolerate Ca2+, Cu2+, Mg2+, Cd2+, EDTA, thiourea, urea, Tween-80, H2O2 and Triton X-100. Real-time quantitative PCR showed that relative expression of the GST gene was significantly increased under Cu2+ and low temperature stress. These results indicate that rRmGST is a typical low thermostable enzyme, while its other characteristics, heavy metal and low temperature tolerance, might be related to its Antarctic home environment.
Collapse
|
118
|
Drinkwater N, Malcolm TR, McGowan S. M17 aminopeptidases diversify function by moderating their macromolecular assemblies and active site environment. Biochimie 2019; 166:38-51. [DOI: 10.1016/j.biochi.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
|
119
|
Du B, Kruse J, Winkler JB, Alfarray S, Schnitzler JP, Ache P, Hedrich R, Rennenberg H. Climate and development modulate the metabolome and antioxidative system of date palm leaves. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5959-5969. [PMID: 31375818 PMCID: PMC6812712 DOI: 10.1093/jxb/erz361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Date palms are remarkably tolerant to environmental stresses, but the mechanisms involved remain poorly characterized. Leaf metabolome profiling was therefore performed on mature (ML) and young (YL) leaves of 2-year-old date palm seedlings that had been grown in climate chambers that simulate summer and winter conditions in eastern Saudi Arabia. Cultivation under high temperature (summer climate) resulted in higher YL H2O2 leaf levels despite increases in dehydroascorbate reductase (DHAR) activities. The levels of raffinose and galactinol, tricarboxylic acid cycle intermediates, and total amino acids were higher under these conditions, particularly in YL. The accumulation of unsaturated fatty acids, 9,12-octadecadienoic acid and 9,12,15-octadecatrienoic acid, was lower in ML. In contrast, the amounts of saturated tetradecanoic acid and heptadecanoic acid were increased in YL under summer climate conditions. The accumulation of phenolic compounds was favored under summer conditions, while flavonoids accumulated under lower temperature (winter climate) conditions. YL displayed stronger hydration, lower H2O2 levels, and more negative δ 13C values, indicating effective reactive oxygen species scavenging. These findings, which demonstrate the substantial metabolic adjustments that facilitate tolerance to the high temperatures in YL and ML, suggest that YL may be more responsive to climate change.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
| | - Joerg Kruse
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | | | - Joerg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universitat Freiburg, Freiburg, Germany
- King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
120
|
Filipović A, Mrdaković M, Ilijin L, Vlahović M, Todorović D, Grčić A, Perić-Mataruga V. Effect of fluoranthene on antioxidative defense in different tissues of Lymantria dispar and Euproctis chrysorrhoea larvae. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108565. [PMID: 31276812 DOI: 10.1016/j.cbpc.2019.108565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Abstract
This study examined the effect of long-term exposure to environmentally relevant concentrations of dietary fluoranthene (6.7 and 67 ng / g dry food weight) on defense mechanisms of the polyphagous forest insects Lymantria dispar L. and Euproctis chrysorrhoea L. The activities and expression of isoforms of superoxide dismutase (SOD) and catalase (CAT), the activities of glutathione S-transferase (GST) and glutathione reductase (GR), and total glutathione content (GSH) were determined in the whole midgut and midgut tissue, while SOD and CAT activities were assessed in hemolymph of the larvae. The results showed significant changes of enzyme activities, with more pronounced responses in larval midgut tissues, and between-species differences in patterns of response. Significantly increased activity of SOD was recorded in the whole midgut and midgut tissue of L. dispar larvae, as well as in midgut tissue of E. chrysorrhoea larvae. Fluoranthene increased CAT activity in midgut tissue of L. dispar larvae, and in the whole midgut and midgut tissue of E. chrysorrhoea larvae. Different expression patterns were detected for enzyme isoforms in tissues of larvae exposed to dietary fluoranthene. Total GSH content and GST activity increased in E. chrysorrhoea larval midgut tissue. Significantly decreased SOD activity in hemolymph of L. dispar larvae, and opposite changes in CAT activity were recorded in the hemolymph of larvae of two insect species. The tissue-specific responses of enzymes to dietary fluoranthene, recorded in each species, enabled the larvae to overcome the pollutant induced oxidative stress, and suggest further assessment of their possible use as early-warning signals of environmental pollution.
Collapse
Affiliation(s)
- Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
121
|
Cui Q, Li Y, He X, Li S, Zhong X, Liu B, Zhang D, Li Q. Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO 2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:142-153. [PMID: 31493674 DOI: 10.1016/j.plaphy.2019.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Carbon dioxide is one of the most important anthropogenic greenhouse gases. We previously confirmed that elevated [CO2] alleviated the negative consequences of drought stress to cucumber seedlings, but the physiological mechanism remains unknown. We investigated the morphological and physiological characteristics as well as iTRAQ-based proteomics analyses in this study under different combinations [CO2] (400 and (800 ± 20) μmol·mol-1) and water conditions (no, moderate and severe drought stress simulated by polyethylene glycol 6000). The results showed: (1) elevated [CO2] significantly increased plant height, stem diameter, leaf area and relative water content (RWC) under drought stress; (2) drought stress significantly increased J and K peaks of the chlorophyll a fluorescence transient, indicating the damage of photosynthetic electron transport chain, while elevated [CO2] decreased them especially under moderate drought condition; (3) iTRAQ-based proteomics analyses indicated that elevated [CO2] increased the abundance of psbJ and the PSI reaction center subunit VI-2 in seedlings exposed to moderate drought stress; (4) the abundance of uroporphyrinogen decarboxylase 2 and tetrapyrrole-binding protein decreased in response to elevated [CO2] under severe drought condition; (5) elevated [CO2] regulated the expression of chloroplast proteins such as those related to stress and defense response, redox homeostasis, metabolic pathways. In conclusion, elevated [CO2] enhanced the efficiency of photosynthetic electron transport, limited the absorption of excess light energy, enhanced the ability of antioxidant and osmotic adjustment, and alleviated the accumulation of toxic substances under drought stress. These findings provide new clues for understanding the molecular basis of elevated [CO2] alleviated plant drought stress.
Collapse
Affiliation(s)
- Qingqing Cui
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Bei'jing, 100081, China
| | - Yiman Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinrui He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuhao Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Zhong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Binbin Liu
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Dalong Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| | - Qingming Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
122
|
Alkimin GD, Daniel D, Dionísio R, Soares AMVM, Barata C, Nunes B. Effects of diclofenac and salicylic acid exposure on Lemna minor: Is time a factor? ENVIRONMENTAL RESEARCH 2019; 177:108609. [PMID: 31376628 DOI: 10.1016/j.envres.2019.108609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The global occurrence of pharmaceuticals in the aquatic environment has been considered a particularly concerning problem with unknown consequences. Non-steroidal anti-inflammatory drugs (NSAIDs) including diclofenac (DCF) and salicylic acid (SA), are among the most frequently prescribed drugs in the world, being consequently commonly found in the aquatic environment. Prolonged experiments (with duration of exposure that surpass those recommended by already established testing guidelines) are important to obtain ecologically relevant data to address the issue of NSAIDs ecotoxicity, because by being more realistically (namely in terms of levels and durations of exposure), such tests may indicate realistic challenges posed to aquatic organisms. Among the most common test species that are used for assessing environmental quality, plants play a leading role. Lemna species are among the most important plants used for ecotoxicity testing. Therefore, the aim of this study was to evaluate the temporal effect of a prolonged exposure of DCF and SA on Lemna minor. To attain this purpose, L. minor plants were chronically exposed to 0, 4, 20, and 100 μg/L of both pharmaceuticals, and samplings were performed at 6, 10 and 14 days of exposure. The analyzed endpoints were: levels of chlorophyll a, b and total, carotenoids; and enzymatic biomarkers, such as catalase, ascorbate peroxidase and glutathione-S-transferases. Diclofenac was responsible for alterations in all analyzed parameters in different intervals of exposure. Salicylic acid exposure was not capable of causing alterations on pigment contents of L. minor, however, enzymatic biomarkers were altered at all sampling intervals. Thus, it is possible to conclude that both pharmaceuticals can cause damage on the tested macrophyte species, biochemical parameters being more sensitive than physiological ones. Additional prolonged experiments are required to understand the chronic effects of different pharmaceuticals in the aquatic environment, especially in plants.
Collapse
Affiliation(s)
- G D Alkimin
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - D Daniel
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - R Dionísio
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - C Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - B Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
123
|
Pheomphun P, Treesubsuntorn C, Thiravetyan P. Effect of exogenous catechin on alleviating O 3 stress: The role of catechin-quinone in lipid peroxidation, salicylic acid, chlorophyll content, and antioxidant enzymes of Zamioculcas zamiifolia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:374-383. [PMID: 31102845 DOI: 10.1016/j.ecoenv.2019.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 05/20/2023]
Abstract
Ozone (O3) can cause oxidative stress in plants and humans. Catechin is an antioxidant that enriches tea and can probably increase O3 tolerance in plants. To investigate the mechanism of catechin to alleviate O3 stress in plants, Zamiocalcus zamiifolia (an efficient plant for O3 phytoremediation) was sprayed with 5 mM catechin and was used to expose O3 (150-250) under long-term operation (10 cycles). We investigated whether exogenous catechin could enhance O3 removal and alleviate O3 stress through a balanced redox state in plants. Z. zamiifolia sprayed with catechin exhibited higher O3 removal (80.27±3.12%), than Z. zamiifolia without catechin (50.03±2.68%). O3 in the range of 150-250 ppb led to stress in plants, as shown by an increased malondialdehyde content (MDA) and salicylic acid (SA). Whereas under the presence of O3, exogenous catechin could maintain the MDA content and inhibit SA accumulation. Under Z. zamiifolia+catechin+O3 conditions, catechin reacted with O3, which led to the formation of catechin-quinone. The formation of catechin-quinone was confirmed by the depletion of reduced glutathione content (GSH). This catechin-quinone could induce GST and APX genes that are up-regulated approximately 35- and 5-fold, respectively. Hence, Z. zamiifolia+catechin+O3 conditions had higher performance for coping with oxidative stress than did Z. zamiifolia+O3 conditions. This evidence demonstrates that catechin could enhance O3 removal through a balanced redox state in plant cells. Finally, the application of tea extract for enhanced O3 removal is also shown in this study.
Collapse
Affiliation(s)
- Piyatida Pheomphun
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
124
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
125
|
Díaz-Tielas C, Graña E, Sánchez-Moreiras AM, Reigosa MJ, Vaughn JN, Pan Z, Bajsa-Hirschel J, Duke MV, Duke SO. Transcriptome responses to the natural phytotoxin t-chalcone in Arabidopsis thaliana L. PEST MANAGEMENT SCIENCE 2019; 75:2490-2504. [PMID: 30868714 DOI: 10.1002/ps.5405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND New modes of action are needed for herbicides. The flavonoid synthesis intermediate t-chalcone causes apoptosis-like symptoms in roots and bleaching of shoots of Arabidospsis, suggesting a unique mode of action as a phytotoxin. RESULTS Using RNA-Seq, transcriptome changes were monitored in Arabidopsis seedlings during the first 24 h of exposure (at 1, 3, 6, 12 and 24 h) to 21 μm t-chalcone (I50 dose), examining effects on roots and shoots separately. Expression of 892 and 1000 genes was affected in roots and shoots, respectively. According to biological classification, many of the affected genes were transcription factors and genes associated with oxidative stress, heat shock proteins, xenobiotic detoxification, ABA and auxin biosynthesis, and primary metabolic processess. These are secondary effects found with most phytotoxins. Potent phytotoxins usually act by inhibiting enzymes of primary metabolism. KEGG pathway analysis of transcriptome results from the first 3 h of t-chalcone exposure indicated several potential primary metabolism target sites for t-chalcone. Of these, p-hydroxyphenylpyruvate dioxygenase (HPPD) and tyrosine amino transferase were consistent with the bleaching effect of the phytotoxin. Supplementation studies with Lemna paucicostata and Arabidiopsis supported HPPD as the target, although in vitro enzyme inhibition was not found. CONCLUSIONS t-Chalcone is possibly a protoxin that is converted to a HPPD inhibitor in vivo. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carla Díaz-Tielas
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - Elisa Graña
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | | | - Manuel J Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - Justin N Vaughn
- Genomics and Bioinformatics Research Unit, USDA, ARS, Athens, GA, USA
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, USDA, ARS, Oxford, MS, USA
| | | | - Mary V Duke
- Genomics and Bioinformatics Research, USDA, ARS, Stoneville, MS, USA
| | - Stephen O Duke
- Natural Products Utilization Research Unit, USDA, ARS, Oxford, MS, USA
| |
Collapse
|
126
|
Freitas R, Silvestro S, Coppola F, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C. Biochemical and physiological responses induced in Mytilus galloprovincialis after a chronic exposure to salicylic acid. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105258. [PMID: 31374405 DOI: 10.1016/j.aquatox.2019.105258] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 05/20/2023]
Abstract
A vast variety of substances currently reaches the aquatic environment, including newly developed chemicals and products. Lack of appropriate analytical methods for trace determinations in aquatic ecosystem compartments and lack of information regarding their toxicity explains existing regulation gaps. However, suspicion of their toxicity assigned them as Contaminants of Emerging Concern (CECs). Among CECs are Pharmaceuticals including Salicylic Acid (SA), which is the active metabolite of acetylsalicylic acid (ASA; aspirin). The aim of the present study was to evaluate the potential effects of SA on the mussel Mytilus galloprovincialis. For this, organisms were exposed for 28 days to different concentrations of SA (0.005; 0.05; 0.5 and 5 mg/L), resembling low to highly polluted sites, after which different physiological and biochemical parameters were evaluated to assess organism's respiration rate, neurotoxic, metabolic and oxidative stress status. Our results clearly showed that SA strongly reduced the respiration capacity of mussels. Also, SA inhibited the activity of superoxide dismutase (SOD) and catalase (CAT) enzymes, but increased the activity of glutathione peroxidase (GPx) and glutathione-S-transferases (GSTs), which prevented the occurrence of lipid peroxidation (LPO). Nevertheless, oxidative stress was confirmed by the strong decrease of the ratio between reduce glutathione (GSH) and oxidized (GSSG) glutathione in contaminated mussels. Moreover, neurotoxicity was observed in mussels exposed to SA. Overall, this study demonstrates the metabolic, neurotoxic and oxidative stress impacts of SA in M. galloprovincialis, which may result in negative consequences at the population level.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Serena Silvestro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Italy
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Italy
| |
Collapse
|
127
|
Dionisio G, Gautam M, Fomsgaard IS. Identification of Azoxystrobin Glutathione Conjugate Metabolites in Maize Roots by LC-MS. Molecules 2019; 24:molecules24132473. [PMID: 31284429 PMCID: PMC6651014 DOI: 10.3390/molecules24132473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Xenobiotic detoxification in plant as well as in animals has mostly been studied in relationship to the deactivation of the toxic residues of the compound that, surely for azoxystrobin, is represented by its β-methoxyacrylate portion. In maize roots treated for 96 h with azoxystrobin, the fungicide accumulated over time and detoxification compounds or conjugates appeared timewise. The main detoxified compound was the methyl ester hydrolysis product (azoxystrobin free acid, 390.14 m/z) thought to be inactive followed by the glutathione conjugated compounds identified as glutathione conjugate (711.21 m/z) and its derivative lacking the glycine residue from the GSH (654.19 m/z). The glycosylated form of azoxystrobin was also found (552.19 m/z) in a minor amount. The identification of these analytes was done by differential untargeted metabolomics analysis using Progenesis QI for label free spectral counting quantification and MS/MS confirmation of the compounds was carried out by either Data Independent Acquisition (DIA) and Data Dependent Acquisition (DDA) using high resolution LC-MS methods. Neutral loss scanning and comparison with MS/MS spectra of azoxystrobin by DDA and MSe confirmed the structures of these new azoxystrobin GSH conjugates.
Collapse
Affiliation(s)
- Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark.
| | - Maheswor Gautam
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark.
| | - Inge Sindbjerg Fomsgaard
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark.
| |
Collapse
|
128
|
Islam S, Sajib SD, Jui ZS, Arabia S, Islam T, Ghosh A. Genome-wide identification of glutathione S-transferase gene family in pepper, its classification, and expression profiling under different anatomical and environmental conditions. Sci Rep 2019; 9:9101. [PMID: 31235811 PMCID: PMC6591324 DOI: 10.1038/s41598-019-45320-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/05/2019] [Indexed: 01/18/2023] Open
Abstract
Glutathione S-transferases (GSTs) compose a family of multifunctional enzymes involved in the numerous aspects of regulating plant growth, development, and stress response. An in silico genome-wide analysis of pepper (Capsicum annuum L.) was performed to identify eighty-five GST genes that were annotated according to their chromosomal location. Segmental duplication contributed more than tandem duplication for the expansion of GST gene family in pepper. All the identified members belong to ten different classes which are highly conserved among Arabidopsis, rice, tomato and potato counterparts indicating the pre-dicot-monocot split diversification of GST classes. Gene structure, protein domain, and motif organization were found to be notably conserved over the distinct phylogenetic groups, which demonstrated the evolutionary significant role of each class. Expression of most of the CaGST transcripts as well as the total pepper GST activity was found to be significantly up-regulated in response to cold, heat, drought, salinity and osmotic stress conditions. Presence of various hormone and stress-responsive cis-elements on most of the putative CaGST promoter regions could be directly correlated with the alteration of their transcripts. All these findings might provide opportunities for future functional validation of this important gene family in pepper.
Collapse
Affiliation(s)
- Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Saikat Das Sajib
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Zakya Sultana Jui
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shatil Arabia
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh. .,Max-Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829, Cologne, Germany.
| |
Collapse
|
129
|
Lee KW, Hong S, Rahman MA, Ji HC, Cha JY, Jones CS, Son D, Lee SH. Ectopic Overexpression of Teff Grass (Eragrostis tef) Phi-class Glutathione S-transferase 1 (EtGSTF1) Enhances Prokaryotic Cell Survivability against Diverse Abiotic Stresses. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0495-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
130
|
Horváth E, Bela K, Holinka B, Riyazuddin R, Gallé Á, Hajnal Á, Hurton Á, Fehér A, Csiszár J. The Arabidopsis glutathione transferases, AtGSTF8 and AtGSTU19 are involved in the maintenance of root redox homeostasis affecting meristem size and salt stress sensitivity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:366-374. [PMID: 31128707 DOI: 10.1016/j.plantsci.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 05/28/2023]
Abstract
The tau (U) and phi (F) classes of glutathione transferase (GST) enzymes reduce the glutathione (GSH) pool using GSH as a co-substrate, thus influence numerous redox-dependent processes including hormonal and stress responses. We performed detailed analysis of the redox potential and reactive oxygen species levels in longitudinal zones of 7-day-old roots of Arabidopsis thaliana L. Col-0 wild type and Atsgtf8 and Atgstu19 insertional mutants. Using redox-sensitive cytosolic green fluorescent protein (roGFP2) the redox status of the meristematic, transition, and elongation zones was determined under control and salt stress (3-hour of 75 or 150 mM NaCl treatment) conditions. The Atgstu19 mutant had the most oxidized redox status in all root zones throughout the experiments. Using fluorescent dyes significantly higher superoxide radical (O2-) levels was detected in both Atgst mutants than in the Col-0 control. Salt treatment resulted in the highest O2- increase in the Atgstf8 root, while the amount of H2O2 elevated most in the case of Atgstu19. Moreover, vitality decreased in Atgstu19 roots more than in wild type under salt stress. Our results indicate that AtGSTF8 and especially the AtGSTU19 proteins function in the root fine-tuning the redox homeostasis both under control and salt stress conditions.
Collapse
Affiliation(s)
- Edit Horváth
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726, Szeged, Hungary.
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Botond Holinka
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary; Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Ádám Hajnal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Ágnes Hurton
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726, Szeged, Hungary; Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726, Szeged, Hungary
| |
Collapse
|
131
|
Zhao J, Xia B, Meng Y, Yang Z, Pan L, Zhou M, Zhang X. Transcriptome Analysis to Shed Light on the Molecular Mechanisms of Early Responses to Cadmium in Roots and Leaves of King Grass ( Pennisetum americanum × P. purpureum). Int J Mol Sci 2019; 20:E2532. [PMID: 31126029 PMCID: PMC6567004 DOI: 10.3390/ijms20102532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/28/2022] Open
Abstract
King grass, a hybrid grass between pearl millet and elephant grass, has many excellent characteristics such as high biomass yield, great stress tolerance, and enormous economic and ecological value, which makes it ideal for development of phytoremediation. At present, the physiological and molecular response of king grass to cadmium (Cd) stress is poorly understood. Transcriptome analysis of early response (3 h and 24 h) of king grass leaves and roots to high level Cd (100 µM) has been investigated and has shed light on the molecular mechanism underlying Cd stress response in this hybrid grass. Our comparative transcriptome analysis demonstrated that in combat with Cd stress, king grass roots have activated the glutathione metabolism pathway by up-regulating glutathione S-transferases (GSTs) which are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damages. In roots, early inductions of phenylpropanoid biosynthesis and phenylalanine metabolism pathways were observed to be enriched in differentially expressed genes (DEGs). Meanwhile, oxidoreductase activities were significantly enriched in the first 3 h to bestow the plant cells with resistance to oxidative stress. We also found that transporter activities and jasmonic acid (JA)-signaling might be activated by Cd in king grass. Our study provided the first-hand information on genome-wide transcriptome profiling of king grass and novel insights on phytoremediation.
Collapse
Affiliation(s)
- Junming Zhao
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bo Xia
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634-0318, USA.
| | - Yu Meng
- College of Natural, Applied and Health Sciences, Wenzhou Kean University, Wenzhou 325060, China.
| | - Zhongfu Yang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ling Pan
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Man Zhou
- College of Natural, Applied and Health Sciences, Wenzhou Kean University, Wenzhou 325060, China.
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
132
|
De Bona GS, Adrian M, Negrel J, Chiltz A, Klinguer A, Poinssot B, Héloir MC, Angelini E, Vincenzi S, Bertazzon N. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5512-5520. [PMID: 31008600 DOI: 10.1021/acs.jafc.8b07098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crude extracts of Vitis vinifera canes represent a natural source of stilbene compounds with well characterized antifungals properties. In our trials, exogenous application of a stilbene extract (SE) obtained from grape canes on grapevine leaves reduces the necrotic lesions caused by Botrytis cinerea. The SE showed to possess a direct antifungal activity by inhibiting the mycelium growth. The activation of some grapevine defense mechanism was also investigated. H2O2 production and activation of mitogen-activated protein kinase (MAPK) phosphorylation cascades as well as accumulation of stilbenoid phytoalexins were explored on grapevine cell suspension. Moreover, the transcription of genes encoding for proteins affecting defense responses was analyzed on grapevine plants. The SE induced some grapevine defense mechanisms including MAPK activation, and the expression of pathogenesis-related (PR) genes and of a gene encoding the glutathione-S-transferase 1 ( GST1) . By contrast, treatment of grapevine leaves with SE negatively regulates de novo stilbene production.
Collapse
Affiliation(s)
| | - Marielle Adrian
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Jonathan Negrel
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Annick Chiltz
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Agnès Klinguer
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Benoît Poinssot
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Marie-Claire Héloir
- Agroécologie, AgroSup Dijon , CNRS, INRA, Université de Bourgogne , Franche-Comte , F-21000 Dijon , France
| | - Elisa Angelini
- CREA Research Centre for Viticulture and Enology, Via XXVIII Aprile 26 , Conegliano , Treviso 31015 , Italy
| | | | - Nadia Bertazzon
- CREA Research Centre for Viticulture and Enology, Via XXVIII Aprile 26 , Conegliano , Treviso 31015 , Italy
| |
Collapse
|
133
|
Zhang Y, Wei M, Liu A, Zhou R, Li D, Dossa K, Wang L, Zhang Y, Gong H, Zhang X, You J. Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress. J Proteomics 2019; 201:73-83. [PMID: 31009803 DOI: 10.1016/j.jprot.2019.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
Abstract
Sesame is one of the most important oilseed crops and has high nutritional value. The yield and quality of sesame are severely affected by high salinity in coastal and semi-arid/arid regions. In this study, the phenotypic, physiological, and proteomic changes induced by salt treatment were analyzed in salt-tolerant (G441) and salt-sensitive (G358) seedlings. Phenotypic and physiological results indicated that G441 had an enhanced capacity to withstand salinity stress compared to G358. Proteomic analysis revealed a strong induction of salt-responsive protein species in sesame, mainly related to catalytic, hydrolase, oxidoreductase, and binding activities. Pathway enrichment analysis showed that more salt-responsive proteins in G441 were involved in tyrosine metabolism, carbon fixation in photosynthetic organisms, carbon metabolism, alpha-linolenic acid metabolism, biosynthesis of amino acids, photosynthesis, and glutathione metabolism. Furthermore, G441 displayed unique differentially accumulated proteins in seedlings functioning as heat shock proteins, abscisic acid receptor PYL2-like, calcium-dependent protein kinases, serine/threonine-protein phosphatases, nucleoredoxin, and antioxidant enzymes. Quantitative real-time PCR analysis revealed that some of the proteins were also regulated by salinity stress at the transcript level. Our findings provide important information on salinity responses in plants and may constitute useful resources for enhancing salinity tolerance in sesame. SIGNIFICANCE: Our study identified potential biological pathways and salt-responsive protein species related to transducing stress signals and scavenging reactive oxygen species under salt stress. These findings will provide possible participants/pathways/proteins that contribute to salt tolerance and may serve as the basis for improving salinity tolerance in sesame and other plants.
Collapse
Affiliation(s)
- Yujuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Mengyuan Wei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Aili Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Route de Khombole, Thiès, BP 3320, Senegal
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Huihui Gong
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
134
|
Wu LM, Fang Y, Yang HN, Bai LY. Effects of drought-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crusgalli. PLoS One 2019; 14:e0214480. [PMID: 30947307 PMCID: PMC6448836 DOI: 10.1371/journal.pone.0214480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Echinochloa crusgalli (L.) Beauv. (barnyard grass) is considered a noxious weed worldwide, and is the most pernicious weed decreasing rice yields in China. Recently, E. crusgalli has evolved quinclorac resistance, making it among the most serious herbicide resistant weeds in China. The present study explored differences in germination and growth between quinclorac-resistant and -susceptible E. crusgalli collected in Hunan Province. The order of the seven E. crusgalli biotypes assessed, from high to low quinclorac-resistance, was: quinclorac-resistant, Chunhua, Hanshou, Shimen, Hekou, Dingcheng, and quinclorac-susceptible. With an increased in the level of quinclorac-resistance, the germination rate, length of young shoots and roots, and fresh weight of E. crusgalli were all decreased compared with that in more susceptible biotypes. However, there were no significant differences between quinclorac-resistant and susceptible E. crusgalli biotypes without polyethylene glycol 6000 treatment. Drought had a more obvious effect on glutathione S-transferases (GST) activity, determined by spectrophotometric method, in quinclorac-resistant E. crusgalli. Higher resistance level biotypes showed greater activity, and when treated with polyethylene glycol 6000 for 3 days, all E. crusgalli biotypes showed the highest GST activity. This study demonstrated that as the level of quinclorac-resistance increased, the rate of seed germination decreased, while the growth of young buds, young roots, and fresh weight decreased. Increased quinclorac-resistance may be related to the increased metabolic activity of GST in E. crusgalli.
Collapse
Affiliation(s)
- La-Mei Wu
- Long Ping Branch of Graduate School, Central South University, Changsha, Hunan, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Hao-Na Yang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Lian-Yang Bai
- Long Ping Branch of Graduate School, Central South University, Changsha, Hunan, China
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
135
|
Preiner J, Wienkoop S, Weckwerth W, Oburger E. Molecular Mechanisms of Tungsten Toxicity Differ for Glycine max Depending on Nitrogen Regime. FRONTIERS IN PLANT SCIENCE 2019; 10:367. [PMID: 31001297 PMCID: PMC6454624 DOI: 10.3389/fpls.2019.00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/08/2019] [Indexed: 05/06/2023]
Abstract
Tungsten (W) finds increasing application in military, aviation and household appliance industry, opening new paths into the environment. Since W shares certain chemical properties with the essential plant micronutrient molybdenum (Mo), it is proposed to inhibit enzymatic activity of molybdoenzymes [e.g., nitrate reductase (NR)] by replacing the Mo-ion bound to the co-factor. Recent studies suggest that W, much like other heavy metals, also exerts toxicity on its own. To create a comprehensive picture of tungsten stress, this study investigated the effects of W on growth and metabolism of soybean (Glycine max), depending on plant nitrogen regime [nitrate fed (N fed) vs. symbiotic N2 fixation (N fix)] by combining plant physiological data (biomass production, starch and nutrient content, N2 fixation, nitrate reductase activity) with root and nodule proteome data. Irrespective of N regime, NR activity and total N decreased with increasing W concentrations. Nodulation and therefore also N2 fixation strongly declined at high W concentrations, particularly in N fix plants. However, N2 fixation rate (g N fixed g-1 nodule dwt) remained unaffected by increasing W concentrations. Proteomic analysis revealed a strong decline in leghemoglobin and nitrogenase precursor levels (NifD), as well as an increase in abundance of proteins involved in secondary metabolism in N fix nodules. Taken together this indicates that, in contrast to the reported direct inhibition of NR, N2 fixation appears to be indirectly inhibited by a decrease in nitrogenase synthesis due to W induced changes in nodule oxygen levels of N fix plants. Besides N metabolism, plants exhibited a strong reduction of shoot (both N regimes) and root (N fed only) biomass, an imbalance in nutrient levels and a failure of carbon metabolic pathways accompanied by an accumulation of starch at high tungsten concentrations, independent of N-regime. Proteomic data (available via ProteomeXchange with identifier PXD010877) demonstrated that the response to high W concentrations was independent of nodule functionality and dominated by several peroxidases and other general stress related proteins. Based on an evaluation of several W responsive proteotypic peptides, we identified a set of protein markers of W stress and possible targets for improved stress tolerance.
Collapse
Affiliation(s)
- Julian Preiner
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Eva Oburger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
136
|
Das PP, Chua GM, Lin Q, Wong SM. iTRAQ-based analysis of leaf proteome identifies important proteins in secondary metabolite biosynthesis and defence pathways crucial to cross-protection against TMV. J Proteomics 2019; 196:42-56. [PMID: 30726703 DOI: 10.1016/j.jprot.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Cross-protection is a phenomenon in which infection with a mild virus strain protects host plants against subsequent infection with a closely related severe virus strain. This study showed that a mild strain mutant virus, Tobacco mosaic virus (TMV)-43A could cross protect Nicotiana benthamiana plants against wild-type TMV. Furthermore, we investigated the host responses at the proteome level to identify important host proteins involved in cross-protection. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyze the proteome profiles of TMV, TMV-43A and cross-protected plants at different time-points. Our results showed that TMV-43A can cross-protect N. benthamiana plants from TMV. In cross-protected plants, photosynthetic activities were augmented, as supported by the increased accumulation of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) enzymes, which are crucial for chlorophyll biosynthesis. The increased abundance of ROS scavenging enzymes like thioredoxins and L-ascorbate peroxidase would prevent oxidative damage in cross-protected plants. Interestingly, the abundance of defence-related proteins (14-3-3 and NbSGT1) decreased, along with a reduction in virus accumulation during cross-protection. In conclusion, we have identified several important host proteins that are crucial in cross-protection to counter TMV infection in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: TMV is the most studied model for host-virus interaction in plants. It can infect wide varieties of plant species, causing significant economic losses. Cross protection is one of the methods to combat virus infection. A few cross-protection mechanisms have been proposed, including replicase/coat protein-mediated resistance, RNA silencing, and exclusion/spatial separation between virus strains. However, knowledge on host responses at the proteome level during cross protection is limited. To address this knowledge gap, we have leveraged on a global proteomics analysis approach to study cross protection. We discovered that TMV-43A (protector) protects N. benthamiana plants from TMV (challenger) infection through multiple host pathways: secondary metabolite biosynthesis, photosynthesis, defence, carbon metabolism, protein translation and processing and amino acid biosynthesis. In the secondary metabolite biosynthesis pathway, enzymes 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) play crucial roles in chlorophyll biosynthesis during cross protection. In addition, accumulation of ROS scavenging enzymes was also found in cross-protected plants, providing rescues from excessive oxidative damage. Reduced abundance of plant defence proteins is correlated to reduced virus accumulation in host plants. These findings have increased our knowledge in host responses during cross-protection.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Gao Ming Chua
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
137
|
Xie J, Chu M, Zhao L, Liu K, Liu W. Enantiomeric impacts of two amide chiral herbicides on Echinochloa crus-galli physiology and gene transcription. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1365-1372. [PMID: 30625665 DOI: 10.1016/j.scitotenv.2018.11.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Echinochloa crus-galli is one of the most noxious weeds in the world and causes yield losses in a variety of different field crops. Napropamide and acetochlor are herbicides commonly employed to control this weed. Both compounds are chiral, with enantiomers displaying different activities. However, it is unclear how the enantiomers of these two chiral herbicides act on different tissues of E. crus-galli. The objective of this paper is to investigate the action mechanism of napropamide and acetochlor in the roots and shoots of E. crus-galli. R‑enantiomers were found to be more active than either the racemates or S-enantiomers on the weed. The content of chlorophyll was not significantly affected by treatment with either enantiomer. The impacts on the activity for the oxidative stress enzymes, except catalase (CAT), showed that both napropamide and acetochlor enantiomers could induce oxidative stress. Furthermore, R‑enantiomers caused greater oxidative damage. Enhanced glutathione-S-transferase (GST) activity and expression of GST genes suggested both EcGSTF1 and EcGSTZ1 were present in the roots and shoots, and this will be helpful for detoxification. The changes in both the roots and shoots revealed the two herbicides displayed tissue selectivity in E. crus-galli. These results enable a better understanding on the mechanism of action for napropamide and acetochlor enantiomers on different tissues, including the shoots and roots in E. crus-galli.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Liu
- Division of Engineering and Applied Science, W. M. Keck Laboratories, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
138
|
Nunes B. Acute ecotoxicological effects of salicylic acid on the Polychaeta species Hediste diversicolor: evidences of low to moderate pro-oxidative effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7873-7882. [PMID: 30684172 DOI: 10.1007/s11356-018-04085-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Contamination of the aquatic environment by pharmaceutical drugs is an emerging issue in ecotoxicology. Aquatic organisms, in the presence of xenobiotics, tend to activate defensive mechanisms against toxic effects in order to mitigate and/or compensate for the toxic damages that frequently result from these interactions. Salicylic acid (SA) is a common drug, widely used in human medicine due to its analgesic, anti-inflammatory, and antipyretic properties, as well as its activity in terms of preventing platelet aggregation, among other clinical and cosmetic uses. It is commonly found in levels of the nanograms per liter to the micrograms per liter range in receiving waters, and its presence has been related to toxic effects in aquatic organisms, including oxidative stress. However, the number of studies that characterize the ecotoxicological profile of salicylates is still scarce and no studies have been published about the putative toxic effects of SA, especially in marine polychaetes. In order to determine the potential ecotoxicological effects caused by SA, individuals of the marine Polychaeta species Hediste diversicolor were exposed for 96 h to ecologically relevant concentrations of this compound, and several biochemical endpoints were evaluated, namely the activity of the antioxidant enzymes glutathione peroxidase (GPx) and catalase (CAT), the phase II biotransformation isoenzymes glutathione S-transferases (GSTs), the cholinergic enzyme acetylcholinesterase (AChE), and the determination of lipoperoxidative damage (thiobarbituric acid-reactive substances (TBARS) assay). The obtained results demonstrated that despite the pro-oxidative effects elicited by SA, exposure to realistic levels of this compound was not able to generate a state of oxidative stress, and the adaptive protective responses elicited by exposed individuals were effective enough to minimize and/or inhibit the damage potentially caused by overproduced reactive oxygen species.
Collapse
Affiliation(s)
- Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
139
|
|
140
|
Transcriptional profiling of wheat (Triticum aestivum L.) during a compatible interaction with the cereal cyst nematode Heterodera avenae. Sci Rep 2019; 9:2184. [PMID: 30778126 PMCID: PMC6379437 DOI: 10.1038/s41598-018-37824-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
Cereal cyst nematode (CCN, Heterodera avenae) presents severe challenges to wheat (Triticum aestivum L.) production worldwide. An investigation of the interaction between wheat and CCN can greatly improve our understanding of how nematodes alter wheat root metabolic pathways for their development and could contribute to new control strategies against CCN. In this study, we conducted transcriptome analyses of wheat cv. Wen 19 (Wen19) by using RNA-Seq during the compatible interaction with CCN at 1, 3 and 8 days past inoculation (dpi). In total, 71,569 transcripts were identified, and 10,929 of them were examined as differentially expressed genes (DEGs) in response to CCN infection. Based on the functional annotation and orthologous findings, the protein phosphorylation, oxidation-reduction process, regulation of transcription, metabolic process, transport, and response process as well as many other pathways previously reported were enriched at the transcriptional level. Plant cell wall hydrolysis and modifying proteins, auxin biosynthesis, signalling and transporter genes were up-regulated by CCN infection to facilitate penetration, migration and syncytium establishment. Genes responding to wounding and jasmonic acid stimuli were enriched at 1 dpi. We found 16 NBS-LRR genes, 12 of which were down-regulated, indicating the repression of resistance. The expression of genes encoding antioxidant enzymes, glutathione S-transferases and UDP-glucosyltransferase was significantly up-regulated during CCN infection, indicating that they may play key roles in the compatible interaction of wheat with CCN. Taken together, the results obtained from the transcriptome analyses indicate that the genes involved in oxidation-reduction processes, induction and suppression of resistance, metabolism, transport and syncytium establishment may be involved in the compatible interaction of Wen 19 with CCN. This study provides new insights into the responses of wheat to CCN infection. These insights could facilitate the elucidation of the potential mechanisms of wheat responses to CCN.
Collapse
|
141
|
Mei X, Liu Y, Huang H, Du F, Huang L, Wu J, Li Y, Zhu S, Yang M. Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:7-16. [PMID: 30765059 DOI: 10.1016/j.pestbp.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/21/2018] [Accepted: 12/10/2018] [Indexed: 05/22/2023]
Abstract
Benzothiazole (BZO) is an antimicrobial secondary metabolite volatilized by many plants and microbes. However, the mechanism of BZO against phytopathogens is still unclear. Here, we found that BZO has antimicrobial activity against the oomycete pathogen Phytophthora capsici. Transcriptome and proteome analyses demonstrated that BZO significantly suppressed the expression of genes and proteins involved in morphology, abiotic stress defense and detoxification, but induced the activity of apoptosis. Annexin V-FITC/PI staining confirmed that the process of apoptosis was significantly induced by BZO at concentration of 150 mg L-1. FITC-phalloidin actin-cytoskeleton staining combined with hyphal cell wall staining and hyphal ultrastructure studies further confirmed that BZO disrupted the cell membrane and hyphal morphology through disrupting the cytoskeleton, eventually inhibiting the growth of hyphae. These data demonstrated that BZO has multiple modes of action and may act as potential leading compound for the development of new oomycete fungicides. These results also showed that the combination of transcriptomic and proteomic approaches was a useful method for exploring the novel antifungal mechanisms of natural compounds.
Collapse
Affiliation(s)
- Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lanlin Huang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Jiaqing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yiwen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Min Yang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
142
|
Sun C, Dudley S, McGinnis M, Trumble J, Gan J. Acetaminophen detoxification in cucumber plants via induction of glutathione S-transferases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:431-439. [PMID: 30176456 DOI: 10.1016/j.scitotenv.2018.08.346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Many pharmaceutical and personal care products (PPCPs) enter agroecosystems during reuse of treated wastewater and biosolids, presenting potential impacts on plant development. Here, acetaminophen, one of the most-used pharmaceuticals, was used to explore roles of glutathione (GSH) conjugation in its biotransformation in crop plants. Acetaminophen was taken up by plants, and conjugated quickly with GSH. After exposure to 5 mg L-1 acetaminophen for 144 h, GSH-acetaminophen conjugates were 15.2 ± 1.3 nmol g-1 and 1.2 ± 0.1 nmol g-1 in cucumber roots and leaves, respectively. Glutathione-acetaminophen was also observed in common bean, alfalfa, tomato, and wheat. Inhibition of cytochrome P450 decreased GSH conjugation. Moreover, the GSH conjugate was found to further convert to cysteine and N-acetylcysteine conjugates. Glutathione S-transferase activity was significantly elevated after exposure to acetaminophen, while levels of GSH decreased by 55.4% in roots after 48 h, followed by a gradual recovery thereafter. Enzymes involved in GSH synthesis, regeneration and transport were consistently induced to maintain the GSH homeostasis. Therefore, GST-mediated conjugation likely played a crucial role in minimizing phytotoxicity of acetaminophen and other PPCPs in plants.
Collapse
Affiliation(s)
- Chengliang Sun
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Stacia Dudley
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Michelle McGinnis
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - John Trumble
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
143
|
Kou M, Liu YJ, Li ZY, Zhang YG, Tang W, Yan H, Wang X, Chen XG, Su ZX, Arisha MH, Li Q, Ma DF. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:395-403. [PMID: 30634134 DOI: 10.1016/j.plaphy.2018.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 05/11/2023]
Abstract
Anthocyanins are synthesized by multi-enzyme complexes localized at the cytoplasmic surface of the endoplasmic reticulum (synthesis site), and transported to the destination site, the vacuole. Three mechanisms for the vacuolar accumulation of anthocyanin in plant species have been proposed. Previous studies have indicated that glutathione S-transferase (GST) genes from model and ornamental plants are involved in anthocyanin transportation. In the present study, an anthocyanin-related GST, IbGSTF4, was identified and characterized based on transcriptome results. Phylogenetic analysis revealed that IbGSTF4 was most closely correlated to PhAN9 and CkmGST3, the anthocyanin-related GST of Petunia hybrida and Cyclamen. Furthermore, the expression analysis revealed that IbGSTF4 is strongly expressed in pigmented tissues, when compared to green organs, which is in agreement to the ability to correlate with anthocyanin accumulation. A GST activity assay uncovered that the IbGST4 protein owned similar activities with the GST family. Furthermore, the molecular functional complementation of Arabidopsis thaliana mutant tt19 demonstrated that IbGSTF4 might play a vital role in the vacuole sequestration of anthocyanin in sweetpotato. Moreover, the dual luciferase assay revealed that the LUC driven by the promoter of IbGSTF4 could not be directly activated by IbMYB1, suggesting that the regulatory mechanism of anthocyanin accumulation and sequestration in sweetpotato was intricate.
Collapse
Affiliation(s)
- Meng Kou
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China
| | - Ya-Ju Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China
| | - Zong-Yun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Yun-Gang Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China
| | - Wei Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China
| | - Hui Yan
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China
| | - Xin Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China
| | - Xiao-Guang Chen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China
| | - Zai-Xing Su
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China
| | | | - Qiang Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China.
| | - Dai-Fu Ma
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture, Xuzhou 221131, PR China.
| |
Collapse
|
144
|
Garanzini DS, Medici S, Moreyra LD, Menone ML. Acute exposure to a commercial formulation of Azoxystrobin alters antioxidant enzymes and elicit damage in the aquatic macrophyte Myriophyllum quitense. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:135-143. [PMID: 30804636 PMCID: PMC6352532 DOI: 10.1007/s12298-018-0603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
Azoxystrobin is a strobilurin of growing concern in aquatic environments because it is the most sold fungicide worldwide, however, the information available about its effect on aquatic non-target organisms is scarce. The objective of the present study was to evaluate potential physiological, biochemical, and genetic effects at environmentally relevant (1-10 μg/L) and elevated (100-500 μg/L) concentrations in the aquatic macrophyte Myriophyllum quitense exposed to the commercial formulation AMISTAR®. Following an acute 24-h exposure, there were no effects of AMISTAR® on photosynthetic pigments at any of the concentrations evaluated. Glutathione-S-transferase activity was significantly elevated at 1 and 10 μg/L AZX. Significant decrease of catalase and guaiacol peroxidase activities in plants exposed to 500 μg/L, and to 100 and 500 μg/L, respectively, and an increase in glycolate oxidase activity at 500 μg/L was observed. DNA damage at 100 and 500 μg/L was observed. These data indicate that although environmentally relevant levels of AMISTAR® did not result cytotoxic, this fungicide was genotoxic, affecting the physiological process of photorespiration and caused oxidative damage at high concentrations. In this sense, it is necessary to explore sub-lethal responses in non-target organisms because some effects could promote further potential long-term biological consequences in a context of repeated pulses of exposure.
Collapse
Affiliation(s)
- Daniela S. Garanzini
- Lab. Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC)-UNMDP/CONICET, Funes 3350, 7600 Mar del Plata, Buenos Aires Argentina
| | - Sandra Medici
- Fares Taie Instituto de Análisis, Magallanes 3019, 7600 Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Capital Federal, Argentina
| | - Lucía D. Moreyra
- Facultad de Ciencias Exactas y Naturales- UNMDP, Funes 3350, 7600 Mar del Plata, Argentina
| | - Mirta L. Menone
- Lab. Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC)-UNMDP/CONICET, Funes 3350, 7600 Mar del Plata, Buenos Aires Argentina
| |
Collapse
|
145
|
GABA mediates phenolic compounds accumulation and the antioxidant system enhancement in germinated hulless barley under NaCl stress. Food Chem 2019; 270:593-601. [DOI: 10.1016/j.foodchem.2018.07.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022]
|
146
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|
147
|
le Roux ML, Kunert KJ, van der Vyver C, Cullis CA, Botha AM. Expression of a Small Ubiquitin-Like Modifier Protease Increases Drought Tolerance in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2019; 10:266. [PMID: 30906307 PMCID: PMC6418343 DOI: 10.3389/fpls.2019.00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/19/2019] [Indexed: 05/05/2023]
Abstract
Post-translation modification of proteins plays a critical role in cellular signaling processes. In recent years, the SUMO (Small Ubiquitin-Like Modifier) class of molecules has emerged as an influential mechanism for target protein management. SUMO proteases play a vital role in regulating pathway flux and are therefore ideal targets for manipulating stress-responses. In the present study, the expression of an Arabidopsis thaliana cysteine protease (OVERLY TOLERANT TO SALT-1, OTS1) in wheat (Triticum aestivum L.) has led to improved plant growth under water stress conditions. Transformed wheat (pUBI-OTS1) displayed enhanced growth and delayed senescence under water deficit when compared with untransformed Gamtoos-R genotype or plants carrying an empty vector. Transformed pUBI-OTS1 plants also maintained a high relative moisture content (RMC), had a higher photosynthesis rate, and also had a higher total chlorophyll content when compared to untransformed plants or plants carrying an empty vector. SUMOylation of total protein also increased in untransformed plants but not in the AtOTS1 transformed plants. Our results suggest that SUMO-proteases may influence an array of mechanisms in wheat to the advantage of the crop to be more tolerant to water stress caused by drought. This is the first report to elucidate SUMOylation effects in the hexaploid crop wheat (T. aestivum L.).
Collapse
Affiliation(s)
- Marlon L. le Roux
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Karl J. Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | - Christopher A. Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Anna-Maria Botha,
| |
Collapse
|
148
|
Gullner G, Komives T, Király L, Schröder P. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1836. [PMID: 30622544 PMCID: PMC6308375 DOI: 10.3389/fpls.2018.01836] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
Plant glutathione S-transferases (GSTs) are ubiquitous and multifunctional enzymes encoded by large gene families. A characteristic feature of GST genes is their high inducibility by a wide range of stress conditions including biotic stress. Early studies on the role of GSTs in plant biotic stress showed that certain GST genes are specifically up-regulated by microbial infections. Later numerous transcriptome-wide investigations proved that distinct groups of GSTs are markedly induced in the early phase of bacterial, fungal and viral infections. Proteomic investigations also confirmed the accumulation of multiple GST proteins in infected plants. Furthermore, functional studies revealed that overexpression or silencing of specific GSTs can markedly modify disease symptoms and also pathogen multiplication rates. However, very limited information is available about the exact metabolic functions of disease-induced GST isoenzymes and about their endogenous substrates. The already recognized roles of GSTs are the detoxification of toxic substances by their conjugation with glutathione, the attenuation of oxidative stress and the participation in hormone transport. Some GSTs display glutathione peroxidase activity and these GSTs can detoxify toxic lipid hydroperoxides that accumulate during infections. GSTs can also possess ligandin functions and participate in the intracellular transport of auxins. Notably, the expression of multiple GSTs is massively activated by salicylic acid and some GST enzymes were demonstrated to be receptor proteins of salicylic acid. Furthermore, induction of GST genes or elevated GST activities have often been observed in plants treated with beneficial microbes (bacteria and fungi) that induce a systemic resistance response (ISR) to subsequent pathogen infections. Further research is needed to reveal the exact metabolic functions of GST isoenzymes in infected plants and to understand their contribution to disease resistance.
Collapse
Affiliation(s)
- Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamas Komives
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analyses, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
149
|
Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine ( Vitis vinifera L.) in Response to Salt Stress. Int J Mol Sci 2018; 19:ijms19124019. [PMID: 30545146 PMCID: PMC6321183 DOI: 10.3390/ijms19124019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Salinity is ubiquitous abiotic stress factor limiting viticulture productivity worldwide. However, the grapevine is vulnerable to salt stress, which severely affects growth and development of the vine. Hence, it is crucial to delve into the salt resistance mechanism and screen out salt-resistance prediction marker genes; we implicated RNA-sequence (RNA-seq) technology to compare the grapevine transcriptome profile to salt stress. Results showed 2472 differentially-expressed genes (DEGs) in total in salt-responsive grapevine leaves, including 1067 up-regulated and 1405 down-regulated DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations suggested that many DEGs were involved in various defense-related biological pathways, including ROS scavenging, ion transportation, heat shock proteins (HSPs), pathogenesis-related proteins (PRs) and hormone signaling. Furthermore, many DEGs were encoded transcription factors (TFs) and essential regulatory proteins involved in signal transduction by regulating the salt resistance-related genes in grapevine. The antioxidant enzyme analysis showed that salt stress significantly affected the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and glutathione S-transferase (GST) activities in grapevine leaves. Moreover, the uptake and distribution of sodium (Na+), potassium (K+) and chlorine (Cl−) in source and sink tissues of grapevine was significantly affected by salt stress. Finally, the qRT-PCR analysis of DE validated the data and findings were significantly consistent with RNA-seq data, which further assisted in the selection of salt stress-responsive candidate genes in grapevine. This study contributes in new perspicacity into the underlying molecular mechanism of grapevine salt stress-tolerance at the transcriptome level and explore new approaches to applying the gene information in genetic engineering and breeding purposes.
Collapse
|
150
|
van den Berg N, Mahomed W, Olivier NA, Swart V, Crampton BG. Transcriptome analysis of an incompatible Persea americana-Phytophthora cinnamomi interaction reveals the involvement of SA- and JA-pathways in a successful defense response. PLoS One 2018; 13:e0205705. [PMID: 30332458 PMCID: PMC6192619 DOI: 10.1371/journal.pone.0205705] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022] Open
Abstract
Phytophthora cinnamomi Rands (Pc) is a hemibiotrophic oomycete and the causal agent of Phytophthora root rot (PRR) of the commercially important fruit crop avocado (Persea americana Mill.). Plant defense against pathogens is modulated by phytohormone signaling pathways such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET), auxin and abscisic acid. The role of specific signaling pathways induced and regulated during hemibiotroph-plant interactions has been widely debated. Some studies report SA mediated defense while others hypothesize that JA responses restrict the spread of pathogens. This study aimed to identify the role of SA- and JA- associated genes in the defense strategy of a resistant avocado rootstock, Dusa in response to Pc infection. Transcripts associated with SA-mediated defense pathways and lignin biosynthesis were upregulated at 6 hours post-inoculation (hpi). Results suggest that auxin, reactive oxygen species (ROS) and Ca2+ signaling was also important during this early time point, while JA signaling was absent. Both SA and JA defense responses were shown to play a role during defense at 18 hpi. Induction of genes associated with ROS detoxification and cell wall digestion (β-1-3-glucanase) was also observed. Most genes induced at 24 hpi were linked to JA responses. Other processes at play in avocado at 24 hpi include cell wall strengthening, the formation of phenolics and induction of arabinogalactan, a gene linked to Pc zoospore immobility. This study represents the first transcriptome wide analysis of a resistant avocado rootstock treated with SA and JA compared to Pc infection. The results provide evidence of a biphasic defense response against the hemibiotroph, which initially involves SA-mediated gene expression followed by the enrichment of JA-mediated defense from 18 to 24 hpi. Genes and molecular pathways linked to Pc resistance are highlighted and may serve as future targets for manipulation in the development of PRR resistant avocado rootstocks.
Collapse
Affiliation(s)
- Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Waheed Mahomed
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nicholas A. Olivier
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
- African Centre for Gene Technologies Microarray Facility, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Bridget G. Crampton
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|