101
|
Abstract
Oxytocin, a hypothalamic hormone that is secreted directly into the brain and enters the peripheral circulation through the posterior pituitary gland, regulates a range of physiologic processes, including eating behaviour and metabolism. In rodents and nonhuman primates, chronic oxytocin administration leads to sustained weight reduction by reducing food intake, increasing energy expenditure and inducing lipolysis. Oxytocin might improve glucose homeostasis, independently of its effects on weight. Clinical studies are beginning to translate these important preclinical findings to humans. This Review describes key data linking oxytocin to eating behaviour and metabolism in humans. For example, a single intranasal dose of oxytocin can reduce caloric intake, increase fat oxidation and improve insulin sensitivity in men. Furthermore, a pilot study of 8 weeks of oxytocin treatment in adults with obesity or overweight led to substantial weight loss. Together, these data support further investigation of interventions that target pathways involving oxytocin as potential therapeutics in metabolic disorders, including obesity and diabetes mellitus. Therapeutic considerations and areas for further research are also discussed.
Collapse
Affiliation(s)
- Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 457 D, Boston, Massachusetts 02114, USA
| |
Collapse
|
102
|
Abstract
INTRODUCTION Anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorder (BED) are the primary eating disorders (EDs). The only psychopharmacological treatment options for EDs with approval in some countries include fluoxetine for BN and lisdexamfetamine for BED. Given the high comorbidity and genetic correlations with other psychiatric disorders, it seems possible that novel medications for these conditions might also be effective in EDs. Areas covered: The current scientific literature has increased our understanding of how medication could be beneficial for patients with EDs on a molecular, functional and behavioral level. On the basis of theoretical considerations about neurotransmitters, hormones and neural circuits, possible drug targets for the treatment of EDs may include signal molecules and receptors of the self-regulatory system such as serotonin, norepinephrine and glutamate, the hedonic system including opioids, cannabinoids and dopamine and the hypothalamic homeostatic system including histamine, ghrelin, leptin, insulin, and glucagon-like peptide-1. Expert commentary: The latest research points to an involvement of both the immune and the metabolic systems in the pathophysiology of EDs and highlights the importance of the microbiome. Therefore, the next few years may unveil drug targets for EDs not just inside and outside of the brain, but possibly even outside of the human body.
Collapse
Affiliation(s)
- Hubertus Himmerich
- a Department of Psychological Medicine , King's College London , London , UK
| | - Janet Treasure
- a Department of Psychological Medicine , King's College London , London , UK
| |
Collapse
|
103
|
Abstract
The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.
Collapse
|
104
|
Ong ZY, Bongiorno DM, Hernando MA, Grill HJ. Effects of Endogenous Oxytocin Receptor Signaling in Nucleus Tractus Solitarius on Satiation-Mediated Feeding and Thermogenic Control in Male Rats. Endocrinology 2017; 158:2826-2836. [PMID: 28575174 PMCID: PMC5659667 DOI: 10.1210/en.2017-00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022]
Abstract
Central oxytocin receptor (OT-R) signaling reduces food intake and increases energy expenditure, but the central sites and mechanisms mediating these effects are unresolved. We showed previously that pharmacological activation of OT-R in hindbrain/nucleus tractus solitarius (NTS) amplifies the intake-inhibitory effects of gastrointestinal (GI) satiation signals. Unexplored were the energetic effects of hindbrain OT-R agonism and the physiological relevance of NTS OT-R signaling on food intake and energy expenditure control. Using a virally mediated OT-R knockdown (KD) strategy and a range of behavioral paradigms, this study examined the role of endogenous NTS OT-R signaling on satiation-mediated food intake inhibition and thermogenic control. Results showed that, compared with controls, NTS OT-R KD rats consumed larger meals, were less responsive to the intake-inhibitory effects of a self-ingested preload, and consumed more chow following a 24-hour fast. These data indicate that NTS OT-R signaling is necessary for normal satiation control. Whereas both control and NTS OT-R KD rats increased core temperature following high-fat diet maintenance (relative to chow maintenance), the percent increase in core temperature was greater in control compared with NTS OT-R KD rats during the light cycle. Hindbrain oxytocin agonist delivery increased core temperature in both control and NTS OT-R KD rats and the percent increase relative to vehicle treatment was not significantly different between groups. Together, data reveal a critical role for endogenous NTS OT-R signaling in mediating the intake-inhibitory effects of endogenous GI satiation signals and in diet-induced thermogenesis.
Collapse
Affiliation(s)
- Zhi Yi Ong
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Diana M. Bongiorno
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mary Ann Hernando
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harvey J. Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
105
|
Maejima Y, Aoyama M, Sakamoto K, Jojima T, Aso Y, Takasu K, Takenosihita S, Shimomura K. Impact of sex, fat distribution and initial body weight on oxytocin's body weight regulation. Sci Rep 2017; 7:8599. [PMID: 28819236 PMCID: PMC5561196 DOI: 10.1038/s41598-017-09318-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is considered as a worldwide problem in both males and females. Although many studies have demonstrated the efficiency of oxytocin (Oxt) as an anti-obesity peptide, there is no comparative study of its effect in males and females. This study aims to determine factors (sex, initial body weight, and fat distribution) that may affect the ability of Oxt to regulate body weight (BW). With regard to sex, Oxt reduced BW similarly in males and females under both high fat diet (HFD) and standard chow-fed condition. The BW reduction induced by Oxt correlated with initial BW in male and female mice under HFD conditions. Oxt showed an equal efficacy in fat degradation in both the visceral and subcutaneous fat mass in both males and females fed with HFD. The effect of Oxt on BW reduction was attenuated in standard chow-fed male and female mice. Therefore, our results suggest that administration of Oxt is more effective in reducing BW in subjects with a high initial BW with increased fat accumulation. The present data contains important information for the possible clinical application of Oxt for the treatment of obesity.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan.
| | - Masato Aoyama
- Department of Animal Science, Faculty of Agriculture, Utsunomiya University, Utsunomiya-Shi, 321-8505, Japan
| | - Kazuho Sakamoto
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu-Machi, 321-0293, Japan
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Mibu-Machi, 321-0293, Japan
| | | | - Seiichi Takenosihita
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima-shi, 960-1295, Japan
| | - Kenju Shimomura
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima-shi, 960-1295, Japan
| |
Collapse
|
106
|
Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet 2017; 31:266-287. [PMID: 28762842 DOI: 10.1080/01677063.2017.1353092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eating-disorders (EDs) consequences to human health are devastating, involving social, mental, emotional, physical and life-threatening aspects, concluding on impairment and death in cases of extreme anorexia nervosa. It also implies that people suffering an ED need to find psychiatric and psychological help as soon as possible to achieve a fully physical and emotional recovery. Unfortunately, to date, there is a crucial lack of efficient clinical treatment to these disorders. In this review, we present an overview concerning the actual pharmacological and psychological treatments, the knowledge of cells, circuits, neuropeptides, neuromodulators and hormones in the human brain- and other organs- underlying these disorders, the studies in animal models and, finally, the genetic approaches devoted to face this challenge. We will also discuss the need for new perspectives, avenues and strategies to be developed in order to pave the way to novel and more efficient therapeutics.
Collapse
Affiliation(s)
- Germán Cuesto
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| | - Claude Everaerts
- b Centre des Sciences du Goût et de l'Alimentation , UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne Franche-Comté , Dijon , France
| | - Leticia G León
- c Cancer Pharmacology Lab , AIRC Start Up Unit, University of Pisa , Pisa , Italy
| | - Angel Acebes
- a Centre for Biomedical Research of the Canary Islands , Institute of Biomedical Technologies, University of La Laguna , Tenerife , Spain
| |
Collapse
|
107
|
Roberts ZS, Wolden-Hanson T, Matsen ME, Ryu V, Vaughan CH, Graham JL, Havel PJ, Chukri DW, Schwartz MW, Morton GJ, Blevins JE. Chronic hindbrain administration of oxytocin is sufficient to elicit weight loss in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R357-R371. [PMID: 28747407 DOI: 10.1152/ajpregu.00169.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Oxytocin (OT) administration elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans by reducing energy intake and increasing energy expenditure. Although the neurocircuitry underlying these effects remains uncertain, OT neurons in the paraventricular nucleus are positioned to control both energy intake and sympathetic nervous system outflow to interscapular brown adipose tissue (BAT) through projections to the hindbrain nucleus of the solitary tract and spinal cord. The current work was undertaken to examine whether central OT increases BAT thermogenesis, whether this effect involves hindbrain OT receptors (OTRs), and whether such effects are associated with sustained weight loss following chronic administration. To assess OT-elicited changes in BAT thermogenesis, we measured the effects of intracerebroventricular administration of OT on interscapular BAT temperature in rats and mice. Because fourth ventricular (4V) infusion targets hindbrain OTRs, whereas third ventricular (3V) administration targets both forebrain and hindbrain OTRs, we compared responses to OT following chronic 3V infusion in DIO rats and mice and chronic 4V infusion in DIO rats. We report that chronic 4V infusion of OT into two distinct rat models recapitulates the effects of 3V OT to ameliorate DIO by reducing fat mass. While reduced food intake contributes to this effect, our finding that 4V OT also increases BAT thermogenesis suggests that increased energy expenditure may contribute as well. Collectively, these findings support the hypothesis that, in DIO rats, OT action in the hindbrain evokes sustained weight loss by reducing energy intake and increasing BAT thermogenesis.
Collapse
Affiliation(s)
- Zachary S Roberts
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Tami Wolden-Hanson
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Miles E Matsen
- University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Department of Biology, Georgia State University, Atlanta, Georgia; and.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Cheryl H Vaughan
- Department of Biology, Georgia State University, Atlanta, Georgia; and.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - James L Graham
- Departments of Nutrition and Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Peter J Havel
- Departments of Nutrition and Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Daniel W Chukri
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Michael W Schwartz
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington.,University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Gregory J Morton
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington.,University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - James E Blevins
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington; .,Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
108
|
Miller GD. Appetite Regulation: Hormones, Peptides, and Neurotransmitters and Their Role in Obesity. Am J Lifestyle Med 2017; 13:586-601. [PMID: 31662725 DOI: 10.1177/1559827617716376] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
Understanding body weight regulation will aid in the development of new strategies to combat obesity. This review examines energy homeostasis and food intake behaviors, specifically with regards to hormones, peptides, and neurotransmitters in the periphery and central nervous system, and their potential role in obesity. Dysfunction in feeding signals by the brain is a factor in obesity. The hypothalamic (arcuate nucleus) and brainstem (nucleus tractus solitaris) areas integrate behavioral, endocrine, and autonomic responses via afferent and efferent pathways from and to the brainstem and peripheral organs. Neurons present in the arcuate nucleus express pro-opiomelanocortin, Neuropeptide Y, and Agouti Related Peptide, with the former involved in lowering food intake, and the latter two acutely increasing feeding behaviors. Action of peripheral hormones from the gut, pancreas, adipose, and liver are also involved in energy homeostasis. Vagal afferent neurons are also important in regulating energy homeostasis. Peripheral signals respond to the level of stored and currently available fuel. By studying their actions, new agents maybe developed that disable orexigenic responses and enhance anorexigenic signals. Although there are relatively few medications currently available for obesity treatment, a number of agents are in development that work through these pathways.
Collapse
Affiliation(s)
- Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
109
|
Kim YJ, Schroeder M, Liang NC, Moran TH, Weller A, Bi S. Effects of early postnatal environment on hypothalamic gene expression in OLETF rats. PLoS One 2017; 12:e0178428. [PMID: 28575002 PMCID: PMC5456065 DOI: 10.1371/journal.pone.0178428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/12/2017] [Indexed: 11/22/2022] Open
Abstract
Previous reports have shown that the early postnatal environment has the ability to modify the obesity phenotype of Otsuka Long-Evans Tokushima Fatty (OLETF) rats. To determine whether this early postnatal environment affects hypothalamic signaling systems involved in energy balance, OLETF pups and lean Long-Evans Tokushima Otsuka (LETO) pups were cross-fostered to same or opposite strain Dams (designated as LdLp: LETO pups with LETO dams; LdOp: OLETF pups with LETO dams; OdLp: LETO pups with OLETF dams; and OdOp: OLETF pups with OLETF dams). Hypothalamic gene expression was examined at postnatal day 23 (PND 23) and PND 90 as OdOp rats started to gain more body weight at PND 23 and developed obesity at PND 90 relative to lean control LdLp rats. On PND 23, neuropeptide Y (Npy) gene expression was significantly increased in the dorsomedial hypothalamus (DMH) in both LdOp and OdOp pups compared to LdLp pups. Maternal environment did not affect DMH Npy expression in LETO weanlings. On PND 90, maternal environment during the cross-fostering period had a major effect on DMH Npy expression. Levels were significantly increased in both OdOp and OdLp rats relative to those in LdOp rats and LdLp controls. Reduced expression of Npy in the DMH of LdOp rats was consistent with their reduction of body weight compared to OdOp rats. In contrast to DMH Npy, gene expression for Npy and proopiomelanocortin in the arcuate nucleus appeared to appropriately respond to alterations in body weight and plasma leptin levels. Levels of oxytocin gene expression in the paraventricular nucleus were lower in offspring raised by LETO dams apparently responding to the higher DMH NPY levels. Together, our results demonstrate effects of both genotype and early postnatal environment on obesity of OLETF rats and further suggest an important role of DMH NPY in the development of obesity of OLETF rats.
Collapse
Affiliation(s)
- Yonwook J. Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mariana Schroeder
- Psychology Department and Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Nu-Chu Liang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
110
|
Binay Ç, Paketçi C, Güzel S, Samancı N. Serum Irisin and Oxytocin Levels as Predictors of Metabolic Parameters in Obese Children. J Clin Res Pediatr Endocrinol 2017; 9:124-131. [PMID: 28077341 PMCID: PMC5463284 DOI: 10.4274/jcrpe.3963] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Irisin and oxytocin can affect energy homeostasis and it has been suggested that they may play an important role in reducing obesity and diabetes. In this study, we aimed to determine the relationship between metabolic parameters (including irisin and oxytocin levels) and anthropometric parameters in obese children. METHODS Ninety obese children (mean age, 13.85±1.63 years) and 30 healthy controls (mean age, 14.32±1.58 years) were enrolled in this study. Anthropometric and laboratory parameters (glucose, insulin, lipid, oxytocin, and irisin levels) were analyzed. The serum irisin and oxytocin levels were measured by enzyme-linked immunosorbent assay. Bioelectrical impedance was used to determine body composition. RESULTS Irisin level was higher in the patients than in the controls (p=0.018), and this higher irisin level was correlated with increased systolic blood pressure, body mass index, waist/hip ratio, fat percentage, fat mass, glucose level, insulin level, and homeostasis model assessment of insulin resistance. Serum oxytocin level was significantly decreased in obese children compared to the controls (p=0.049). Also, among the 60 obese patients, oxytocin level was significantly lower in patients with than in those without metabolic syndrome (8.65±2.69 vs. 10.87±5.93 ng/L, respectively), while irisin levels were comparable (p=0.049 and p=0.104, respectively). There were no statistically significant relationships between oxytocin or irisin levels and lipid levels (p>0.05). CONCLUSION Obese children had significantly higher irisin levels than the healthy controls. Additionally, this study shows for the first time that oxytocin level is significantly lower in obese compared with non-obese children and also lower in obese children with metabolic syndrome compared to those without.
Collapse
Affiliation(s)
- Çiğdem Binay
- Tekirdağ Çorlu State Hospital, Clinic of Pediatric Endocrinology, Tekirdağ, Turkey, Phone: +90 532 377 14 96 E-mail:
| | - Cem Paketçi
- Namık Kemal University Faculty of Medicine, Department of Pediatrics, Tekirdağ, Turkey
| | - Savaş Güzel
- Namık Kemal University Faculty of Medicine, Department of Medical Biochemistry, Tekirdağ, Turkey
| | - Nedim Samancı
- Namık Kemal University Faculty of Medicine, Department of Pediatrics, Tekirdağ, Turkey
| |
Collapse
|
111
|
|
112
|
Leng G, Sabatier N. Oxytocin - The Sweet Hormone? Trends Endocrinol Metab 2017; 28:365-376. [PMID: 28283319 DOI: 10.1016/j.tem.2017.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Mammalian neurons that produce oxytocin and vasopressin apparently evolved from an ancient cell type with both sensory and neurosecretory properties that probably linked reproductive functions to energy status and feeding behavior. Oxytocin in modern mammals is an autocrine/paracrine regulator of cell function, a systemic hormone, a neuromodulator released from axon terminals within the brain, and a 'neurohormone' that acts at receptors distant from its site of release. In the periphery oxytocin is involved in electrolyte homeostasis, gastric motility, glucose homeostasis, adipogenesis, and osteogenesis, and within the brain it is involved in food reward, food choice, and satiety. Oxytocin preferentially suppresses intake of sweet-tasting carbohydrates while improving glucose tolerance and supporting bone remodeling, making it an enticing translational target.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK.
| | - Nancy Sabatier
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh UK
| |
Collapse
|
113
|
Maejima Y, Takahashi S, Takasu K, Takenoshita S, Ueta Y, Shimomura K. Orexin action on oxytocin neurons in the paraventricular nucleus of the hypothalamus. Neuroreport 2017; 28:360-366. [PMID: 28338525 DOI: 10.1097/wnr.0000000000000773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxytocin neurons in the paraventricular nucleus (PVN) of the hypothalamus play an important role in food intake regulation. It has been shown that the secretion of oxytocin from the hypothalamus shows a diurnal circadian rhythmic pattern and disturbance of this pattern leads to the development of obesity. However, whether oxytocin secretion from the PVN has a diurnal pattern remains unknown. Here, we show that oxytocin secretion from the PVN does have a diurnal pattern and that the terminals of orexin neurons, the neuropeptide responsible for regulating the sleep-wake rhythm, are synapsed with PVN oxytocin neurons. Using transgenic rats selectively expressing monomeric red fluorescent protein 1 in oxytocin neurons, we found that orexin-A inhibits the activities of PVN oxytocin neurons by inhibiting glutamatergic excitatory synaptic input. These data suggest that orexin is a possible candidate to regulate the circadian rhythm of PVN oxytocin neurons. The circadian rhythmic secretion of oxytocin is considered to play an important role in maintaining homeostasis, including body weight regulation. Our present data indicate a possible contribution of orexin toward the development of circadian rhythm in PVN oxytocin neurons.
Collapse
Affiliation(s)
- Yuko Maejima
- Departments of aMedical Electrophysiology bOrgan Regulatory Surgery, Fukushima Medical University School of Medicine, Fukushima cTakasu Clinic, Nagoya dDepartment of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
114
|
Quintana DS, Dieset I, Elvsåshagen T, Westlye LT, Andreassen OA. Oxytocin system dysfunction as a common mechanism underlying metabolic syndrome and psychiatric symptoms in schizophrenia and bipolar disorders. Front Neuroendocrinol 2017; 45:1-10. [PMID: 28049009 DOI: 10.1016/j.yfrne.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/14/2016] [Accepted: 12/29/2016] [Indexed: 12/24/2022]
Abstract
There is growing interest in using intranasal oxytocin (OT) to treat social dysfunction in schizophrenia and bipolar disorders (i.e., psychotic disorders). While OT treatment results have been mixed, emerging evidence suggests that OT system dysfunction may also play a role in the etiology of metabolic syndrome (MetS), which appears in one-third of individuals with psychotic disorders and associated with increased mortality. Here we examine the evidence for a potential role of the OT system in the shared risk for MetS and psychotic disorders, and its prospects for ameliorating MetS. Using several studies to demonstrate the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, we show that OT system dysfunction may be one common mechanism underlying MetS and psychotic disorders. Given the critical need to better understand metabolic dysregulation in these disorders, future OT trials assessing behavioural and cognitive outcomes should additionally include metabolic risk factor parameters.
Collapse
Affiliation(s)
- Daniel S Quintana
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway.
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
115
|
Klement J, Ott V, Rapp K, Brede S, Piccinini F, Cobelli C, Lehnert H, Hallschmid M. Oxytocin Improves β-Cell Responsivity and Glucose Tolerance in Healthy Men. Diabetes 2017; 66:264-271. [PMID: 27554476 DOI: 10.2337/db16-0569] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/18/2016] [Indexed: 11/13/2022]
Abstract
In addition to its pivotal role in psychosocial behavior, the hypothalamic neuropeptide oxytocin contributes to metabolic control by suppressing eating behavior. Its involvement in glucose homeostasis is less clear, although pilot experiments suggest that oxytocin improves glucose homeostasis. We assessed the effect of intranasal oxytocin (24 IU) administered to 29 healthy, fasted male subjects on glucose homeostasis measured by means of an oral glucose tolerance test. Parameters of glucose metabolism were analyzed according to the oral minimal model. Oxytocin attenuated the peak excursion of plasma glucose and augmented the early increases in insulin and C-peptide concentrations in response to the glucose challenge, while slightly blunting insulin and C-peptide peaks. Oral minimal model analyses revealed that oxytocin compared with placebo induced a pronounced increase in β-cell responsivity (PHItotal) that was largely due to an enhanced dynamic response (PHId), and a more than twofold improvement in glucose tolerance (disposition index). Adrenocorticotropic hormone (ACTH), cortisol, glucagon, and nonesterified fatty acid (NEFA) concentrations were not or were only marginally affected. These results indicate that oxytocin plays a significant role in the acute regulation of glucose metabolism in healthy humans and render the oxytocin system a potential target of antidiabetic treatment.
Collapse
Affiliation(s)
- Johanna Klement
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Volker Ott
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Kristina Rapp
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Swantje Brede
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | | | - Claudio Cobelli
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Hendrik Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany
| |
Collapse
|
116
|
Burnett LC, LeDuc CA, Sulsona CR, Paull D, Rausch R, Eddiry S, Carli JFM, Morabito MV, Skowronski AA, Hubner G, Zimmer M, Wang L, Day R, Levy B, Fennoy I, Dubern B, Poitou C, Clement K, Butler MG, Rosenbaum M, Salles JP, Tauber M, Driscoll DJ, Egli D, Leibel RL. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest 2017; 127:293-305. [PMID: 27941249 PMCID: PMC5199710 DOI: 10.1172/jci88648] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell-derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p-/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p-/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p-/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH-releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.
Collapse
Affiliation(s)
- Lisa C. Burnett
- Institute of Human Nutrition
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Charles A. LeDuc
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- New York Obesity Research Center, New York, New York, USA
| | - Carlos R. Sulsona
- Department of Pediatrics, Division of Genetics and Metabolism, University of Florida College of Medicine Gainesville, Florida, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Richard Rausch
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Sanaa Eddiry
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
| | - Jayne F. Martin Carli
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | - Michael V. Morabito
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Alicja A. Skowronski
- Institute of Human Nutrition
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | | | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Liheng Wang
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Robert Day
- Institut de pharmacologie de Sherbrooke, Department of Surgery, Division of Urology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Ilene Fennoy
- Department of Pediatrics, Division of Pediatric Diabetes, Endocrinology and Metabolism, Columbia University, New York, New York, USA
| | - Beatrice Dubern
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Christine Poitou
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Karine Clement
- Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie-Curie, INSERM UMRS 1166, Paris, France
| | - Merlin G. Butler
- Department of Psychiatry and Behavioral Sciences, Division of Research and Genetics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Michael Rosenbaum
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Jean Pierre Salles
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
- Unité d’Endocrinologie, Hôpital des Enfants, and
| | - Maithe Tauber
- Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France
- Unité d’Endocrinologie, Hôpital des Enfants, and
- Centre de Référence du Syndrome de Prader-Willi, CHU Toulouse, Toulouse, France
| | - Daniel J. Driscoll
- Department of Pediatrics, Division of Genetics and Metabolism, University of Florida College of Medicine Gainesville, Florida, USA
- Center for Epigenetics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Dieter Egli
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Rudolph L. Leibel
- Department of Pediatrics, Division of Molecular Genetics, and
- Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
- New York Obesity Research Center, New York, New York, USA
| |
Collapse
|
117
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
118
|
Szulc P, Amri EZ, Varennes A, Panaia-Ferrari P, Fontas E, Goudable J, Chapurlat R, Breuil V. High serum oxytocin is associated with metabolic syndrome in older men - The MINOS study. Diabetes Res Clin Pract 2016; 122:17-27. [PMID: 27764720 DOI: 10.1016/j.diabres.2016.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/05/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
AIM Oxytocin regulates food intake, carbohydrate and lipid metabolism, and urinary sodium excretion. We assessed the association between serum oxytocin levels and presence of metabolic syndrome (MetS) in older men. METHODS Cross-sectional study was performed in 540 volunteer men aged 50-85yrs from the MINOS cohort. Oxytocin was measured in fasting serum by radioimmunoassay (Oxytocin RIA, Phoenix Pharmaceuticals). MetS was diagnosed using the harmonized definition. RESULTS Serum oxytocin was higher in 166 men with MetS vs. controls (p<0.005). After adjustment for confounders including leptin, higher oxytocin was associated with higher odds of MetS (OR=1.38 per SD, 95%CI: 1.10-1.71, p<0.005). Men with serum oxytocin >0.74pg/mL (median) had higher odds of MetS vs. men with oxytocin ⩽0.74pg/mL (OR=2.06, 95%CI: 1.33-3.18, p<0.005). Higher oxytocin levels and low testosterone levels (total or free) were significantly associated with higher odds of MetS jointly and independently of each other. Men having oxytocin >0.74pg/mL and total testosterone <300ng/dL (<10.4nmol/L) had higher odds of MetS vs. men without these characteristics (OR=3.95, 95%CI: 1.65-9.46, p<0.005). Men having 25-hydroxycholecalciferol levels <30ng/mL and oxytocin >0.74pg/mL had higher odds of MetS vs. men without these characteristics (OR=2.86, 95%CI: 1.47-5.58, p<0.01). Men having oxytocin >0.74pg/mL and osteocalcin levels <14.6ng/mL (lowest quartile) had higher odds of MetS vs. men without these characteristics (OR=4.12, 95%CI: 2.07-8.20, p<0.001). CONCLUSION In older men, higher serum oxytocin levels are associated with higher odds of MetS regardless of potential confounders.
Collapse
Affiliation(s)
- Pawel Szulc
- INSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, Lyon, France.
| | - Ez Zoubir Amri
- CNRS, iBV UMR 7277, Université Nice Sophia Antipolis, Parc Valrose Nice, France; INSERM, iBV, U1091, Nice, France
| | - Annie Varennes
- Department of Biochemistry and Molecular Biology, Laboratory of Medical Biology, Hospices Civils de Lyon, Lyon, France
| | | | - Eric Fontas
- Nice University Hospital, Cimiez Hospital, Department of Clinical Research, Nice, France
| | - Joëlle Goudable
- Dept. of Public Health, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Roland Chapurlat
- INSERM UMR 1033, University of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Véronique Breuil
- Nice University Hospital, Pasteur Hospital, Department of Rheumatology, Nice, France; UMR E-4320 MATOs CEA/iBEB/SBTN, Université Nice Sophia Antipolis, Faculté de Médecine, Nice, France
| |
Collapse
|
119
|
A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nat Neurosci 2016; 20:42-51. [PMID: 27869800 PMCID: PMC5191921 DOI: 10.1038/nn.4442] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Arcuate nucleus (ARC) neurons sense the fed/fasted state and regulate hunger. Agouti-related protein (ARCAgRP) neurons are stimulated by fasting, and once activated, they rapidly (within minutes) drive hunger. Pro-opiomelanocortin (ARCPOMC) neurons are viewed as the counterpoint to ARCAgRP neurons. They are regulated in an opposite fashion and decrease hunger. However, unlike ARCAgRP neurons, ARCPOMC neurons are extremely slow in affecting hunger (many hours). Thus, a temporally analogous, rapid ARC satiety pathway does not exist or is presently unidentified. Here, we show that glutamate-releasing ARC neurons expressing oxytocin receptor, unlike ARCPOMC neurons, rapidly cause satiety when chemo- or optogenetically manipulated. These glutamatergic ARC projections synaptically converge with GABAergic ARCAgRP projections on melanocortin-4 receptor (MC4R)-expressing satiety neurons in the paraventricular hypothalamus (PVHMC4R neurons). Importantly, transmission across the ARCGlutamatergic→PVHMC4R synapse is potentiated by the ARCPOMC neuron-derived MC4R agonist, α-MSH. This excitatory ARC→PVH satiety circuit, and its modulation by α-MSH, provides new insight into regulation of hunger/satiety.
Collapse
|
120
|
Afinogenova Y, Schmelkin C, Plessow F, Thomas JJ, Pulumo R, Micali N, Miller KK, Eddy KT, Lawson EA. Low Fasting Oxytocin Levels Are Associated With Psychopathology in Anorexia Nervosa in Partial Recovery. J Clin Psychiatry 2016; 77:e1483-e1490. [PMID: 28076675 PMCID: PMC6124659 DOI: 10.4088/jcp.15m10217] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/18/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Anorexia nervosa (AN), a psychiatric disorder characterized by restriction of food intake despite severe weight loss, is associated with increased comorbid anxiety and depression. Secretion of oxytocin, an appetite-regulating neurohormone with anxiolytic and antidepressant properties, is abnormal in AN. The link between oxytocin levels and psychopathology in AN has not been well explored. METHODS We performed a cross-sectional study of 79 women aged 18-45 years (19 AN, 26 AN in partial recovery [ANPR], and 34 healthy controls [HC]) investigating the relationship between basal oxytocin levels and disordered eating psychopathology, anxiety, and depressive symptoms. AN diagnoses were based on DSM-5 criteria. Data acquisition took place between December 2008 and March 2014. Fasting serum oxytocin levels were obtained, and the following self-report measures were used to assess psychopathology: Eating Disorder Examination Questionnaire, State-Trait Anxiety Inventory, and Beck Depression Inventory-II. RESULTS Fasting oxytocin levels were low in ANPR compared to HC (P = .0004). In ANPR but not AN, oxytocin was negatively associated with disordered eating psychopathology (r = -0.39, P = .0496) and anxiety symptoms (state anxiety: r = -0.53, P = .006; trait anxiety: r = -0.49, P = .01). Furthermore, ANPR with significant disordered eating psychopathology, anxiety symptoms, or depressive symptoms had lower oxytocin levels compared to those with minimal or no symptoms (P = .04, .02, and .007, respectively). CONCLUSIONS We speculate that a dysregulation of oxytocin pathways may contribute to persistent psychopathology after partial weight recovery from anorexia nervosa.
Collapse
Affiliation(s)
- Yuliya Afinogenova
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School Boston, MA 02114, USA
| | - Cindy Schmelkin
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School Boston, MA 02114, USA
| | - Franziska Plessow
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School Boston, MA 02114, USA
| | - Jennifer J. Thomas
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School Boston, MA 02114, USA
| | - Reitumetse Pulumo
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School Boston, MA 02114, USA
| | - Nadia Micali
- Department of Psychiatry, Icahn Medical School at Mount Sinai, New York, NY 10029, USA,Behavioural and Brain Sciences Unit, UCL Institute of Child Health London, UK
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School Boston, MA 02114, USA
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School Boston, MA 02114, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School Boston, MA 02114, USA
| |
Collapse
|
121
|
Samson WK. Oxytocin redux. Am J Physiol Regul Integr Comp Physiol 2016; 311:R710-R713. [PMID: 27511282 DOI: 10.1152/ajpregu.00307.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
122
|
Erdman SE, Poutahidis T. Microbes and Oxytocin: Benefits for Host Physiology and Behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:91-126. [PMID: 27793228 DOI: 10.1016/bs.irn.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now understood that gut bacteria exert effects beyond the local boundaries of the gastrointestinal tract to include distant tissues and overall health. Prototype probiotic bacterium Lactobacillus reuteri has been found to upregulate hormone oxytocin and systemic immune responses to achieve a wide array of health benefits involving wound healing, mental health, metabolism, and myoskeletal maintenance. Together these display that the gut microbiome and host animal interact via immune-endocrine-brain signaling networks. Such findings provide novel therapeutic strategies to stimulate powerful homeostatic pathways and genetic programs, stemming from the coevolution of mammals and their microbiome.
Collapse
Affiliation(s)
- S E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - T Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
123
|
Thienel M, Fritsche A, Heinrichs M, Peter A, Ewers M, Lehnert H, Born J, Hallschmid M. Oxytocin's inhibitory effect on food intake is stronger in obese than normal-weight men. Int J Obes (Lond) 2016; 40:1707-1714. [PMID: 27553712 PMCID: PMC5116063 DOI: 10.1038/ijo.2016.149] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/29/2016] [Accepted: 07/10/2016] [Indexed: 12/18/2022]
Abstract
Background/Objectives: Animal studies and pilot experiments in men indicate that the hypothalamic neuropeptide oxytocin limits food intake, and raise the question of its potential to improve metabolic control in obesity. Subjects/Methods: We compared the effect of central nervous oxytocin administration (24 IU) via the intranasal route on ingestive behaviour and metabolic function in 18 young obese men with the results in a group of 20 normal-weight men. In double-blind, placebo-controlled experiments, ad libitum food intake from a test buffet was examined in fasted subjects 45 min after oxytocin administration, followed by the assessment of postprandial, reward-driven snack intake. Energy expenditure was repeatedly assessed by indirect calorimetry and blood was sampled to determine concentrations of blood glucose and hormones. Results: Oxytocin markedly reduced hunger-driven food intake in the fasted state in obese but not in normal-weight men, and led to a reduction in snack consumption in both groups, whereas energy expenditure remained generally unaffected. Hypothalamic–pituitary–adrenal axis secretion and the postprandial rise in plasma glucose were blunted by oxytocin in both groups. Conclusions: Oxytocin exerts an acutely inhibitory impact on food intake that is enhanced rather than decreased in obese compared with normal-weight men. This pattern puts it in contrast to other metabolically active neuropeptides and bodes well for clinical applications of oxytocin in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- M Thienel
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - A Fritsche
- German Center for Diabetes Research (DZD), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital of Tübingen, Tübingen, Germany
| | - M Heinrichs
- Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - A Peter
- German Center for Diabetes Research (DZD), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University Hospital of Tübingen, Tübingen, Germany
| | - M Ewers
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - H Lehnert
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - J Born
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - M Hallschmid
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| |
Collapse
|
124
|
Yuan G, Qian W, Pan R, Jia J, Jiang D, Yang Q, Wang S, Liu Y, Yu S, Hu H, Sun W, Ye J, Mao C, Zhuang R, Zhou L. Reduced circulating oxytocin and High-Molecular-Weight adiponectin are risk factors for metabolic syndrome. Endocr J 2016; 63:655-62. [PMID: 27237400 DOI: 10.1507/endocrj.ej16-0078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The neurohypophysial hormone, oxytocin, is involved in the regulation of energy metabolism. Adiponectin (APN) is an adipose tissue-specific serum protein that inversely associates with metabolic syndrome (MetS). High-molecular-weight adiponectin (HMW APN) is considered the active form. In the present study, we aimed to determine the relationships of oxytocin and HMW APN to MetS and investigate whether or not the combination of oxytocin and HMW APN is associated with further metabolic abnormalities compared to each of them alone. A total of 170 subjects (75 with MetS and 95 non-MetS) were enrolled. Anthropometric parameters, oral glucose tolerance test (OGTT), blood lipids, hs-CRP, oxytocin and HMW APN levels were measured. Compared with non-MetS subjects, serum oxytocin and HMW APN levels were significantly lower in subjects with MetS (P<0.01). We then classified the subjects into three groups: high oxytocin and high HMW APN levels (high score group), low oxytocin and low HMW APN levels (low score group) and others. Participants in low score group showed the worst metabolic profiles and were more likely to have MetS compared to the other two group. In Spearman rank correlation coefficient, the classification by the combination of oxytocin and HMW APN was significantly correlated with a larger number of metabolic risk factors compared with classification by each of them alone. Individuals with low circulating oxytocin levels coupled with low HMW APN levels were at significantly increased risk of MetS. The combination of both markers would be useful for identifying MetS high risk patients.
Collapse
Affiliation(s)
- Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Jankowski M, Broderick TL, Gutkowska J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr Disord 2016; 16:34. [PMID: 27268060 PMCID: PMC4895973 DOI: 10.1186/s12902-016-0110-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) emerges as a drug for the treatment of diabetes and obesity. The entire OT system is synthesized in the rat and human heart. The direct myocardial infusion with OT into an ischemic or failing heart has the potential to elicit a variety of cardioprotective effects. OT treatment attenuates cardiomyocyte (CMs) death induced by ischemia-reperfusion by activating pro-survival pathways within injured CMs in vivo and in isolated cells. OT treatment reduces cardiac apoptosis, fibrosis, and hypertrophy. The OT/OT receptor (OTR) system is downregulated in the db/db mouse model of type 2 diabetes which develops genetic diabetic cardiomyopathy (DC) similar to human disease. We have shown that chronic OT treatment prevents the development of DC in the db/db mouse. In addition, OT stimulates glucose uptake in both cardiac stem cells and CMs, and increases cell resistance to diabetic conditions. OT may help replace lost CMs by stimulating the in situ differentiation of cardiac stem cells into functional mature CMs. Lastly, adult stem cells amenable for transplantation such as MSCs could be preconditioned with OT ex vivo and implanted into the injured heart to aid in tissue regeneration through direct differentiation, secretion of protective and cardiomyogenic factors and/or their fusion with injured CMs.
Collapse
Affiliation(s)
- Marek Jankowski
- Cardiovascular Biochemistry Laboratory, CRCHUM (7-134), Tour Viger, 900 St-Denis St., Montreal, Quebec, H2X 0A9, Canada.
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada.
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Agave Hall, office 217-B, 19555 North 59th Avenue, Glendale, AZ, 85308, USA.
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, CRCHUM (7-134), Tour Viger, 900 St-Denis St., Montreal, Quebec, H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
126
|
Zhao C, Castonguay TW. Effects of free access to sugar solutions on the control of energy intake. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1149863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Changhui Zhao
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Thomas W. Castonguay
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
127
|
Watson IPB, Brüne M, Bradley AJ. The evolution of the molecular response to stress and its relevance to trauma and stressor-related disorders. Neurosci Biobehav Rev 2016; 68:134-147. [PMID: 27216210 DOI: 10.1016/j.neubiorev.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
The experience of "stress", in its broadest meaning, is an inevitable part of life. All living creatures have evolved multiple mechanisms to deal with such threats and challenges and to avoid damage to the organism that may be incurred from these stress responses. Trauma and stressor-related disorders are psychiatric conditions that are caused specifically by the experience of stress, though depression, anxiety and some other disorders may also be unleashed by stress. Stress, however, is not a mandatory criterion of these diagnoses. This article focuses on the evolution of the neurochemicals involved in the response to stress and the systems in which they function. This includes the skin and gut, and the immune system. Evidence suggests that responses to stress are evolutionarily highly conserved, have wider involvement than the hypothalamic pituitary adrenal stress axis alone, and that excessive stress responses can produce stressor-related disorders in both humans and animals.
Collapse
Affiliation(s)
- Ian P Burges Watson
- University of Tasmania, Department of Psychiatry, Hobart, Tasmania 7005, Australia
| | - Martin Brüne
- LWL University Hospital, Department of Psychiatry, Division of Cognitive Neuropsychiatry, Ruhr-University Bochum, Germany.
| | - Adrian J Bradley
- School of Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
128
|
Olszewski PK, Klockars A, Levine AS. Oxytocin: A Conditional Anorexigen whose Effects on Appetite Depend on the Physiological, Behavioural and Social Contexts. J Neuroendocrinol 2016; 28. [PMID: 26918919 DOI: 10.1111/jne.12376] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 01/17/2023]
Abstract
Central oxytocin suppresses appetite. Neuronal activity and the release of oxytocin coincide with satiation, as well as with adverse events (e.g. hyperosmolality, toxicity or excessive stomach distension) that necessitate an immediate termination of eating behaviour. Oxytocin also decreases consumption driven by reward, especially as derived from ingesting carbohydrates and sweet tastants. This review summarises current knowledge of the role of oxytocin in food intake regulation and highlights a growing body of evidence showing that oxytocin is a conditional anorexigen [i.e. its effects on appetite differ significantly with respect to certain (patho)physiological, behavioural and social contexts].
Collapse
Affiliation(s)
- P K Olszewski
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - A Klockars
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - A S Levine
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
129
|
Blevins JE, Thompson BW, Anekonda VT, Ho JM, Graham JL, Roberts ZS, Hwang BH, Ogimoto K, Wolden-Hanson T, Nelson J, Kaiyala KJ, Havel PJ, Bales KL, Morton GJ, Schwartz MW, Baskin DG. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization. Am J Physiol Regul Integr Comp Physiol 2016; 310:R640-58. [PMID: 26791828 DOI: 10.1152/ajpregu.00220.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/14/2016] [Indexed: 12/30/2022]
Abstract
Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.
Collapse
Affiliation(s)
- James E Blevins
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington;
| | - Benjamin W Thompson
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Vishwanath T Anekonda
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Jacqueline M Ho
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - James L Graham
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; and
| | - Zachary S Roberts
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Bang H Hwang
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Kayoko Ogimoto
- Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, Washington
| | - Tami Wolden-Hanson
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Jarrell Nelson
- Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, Washington
| | - Karl J Kaiyala
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington
| | - Peter J Havel
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; and
| | - Karen L Bales
- Department of Psychology, University of California, Davis, California
| | - Gregory J Morton
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, Washington
| | - Michael W Schwartz
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington; Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, Washington
| | - Denis G Baskin
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
130
|
Romano A, Tempesta B, Micioni Di Bonaventura MV, Gaetani S. From Autism to Eating Disorders and More: The Role of Oxytocin in Neuropsychiatric Disorders. Front Neurosci 2016; 9:497. [PMID: 26793046 PMCID: PMC4709851 DOI: 10.3389/fnins.2015.00497] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (oxy) is a pituitary neuropeptide hormone synthesized from the paraventricular and supraoptic nuclei within the hypothalamus. Like other neuropeptides, oxy can modulate a wide range of neurotransmitter and neuromodulator activities. Additionally, through the neurohypophysis, oxy is secreted into the systemic circulation to act as a hormone, thereby influencing several body functions. Oxy plays a pivotal role in parturition, milk let-down and maternal behavior and has been demonstrated to be important in the formation of pair bonding between mother and infants as well as in mating pairs. Furthermore, oxy has been proven to play a key role in the regulation of several behaviors associated with neuropsychiatric disorders, including social interactions, social memory response to social stimuli, decision-making in the context of social interactions, feeding behavior, emotional reactivity, etc. An increasing body of evidence suggests that deregulations of the oxytocinergic system might be involved in the pathophysiology of certain neuropsychiatric disorders such as autism, eating disorders, schizophrenia, mood, and anxiety disorders. The potential use of oxy in these mental health disorders is attracting growing interest since numerous beneficial properties are ascribed to this neuropeptide. The present manuscript will review the existing findings on the role played by oxy in a variety of distinct physiological and behavioral functions (Figure 1) and on its role and impact in different psychiatric disorders. The aim of this review is to highlight the need of further investigations on this target that might contribute to the development of novel more efficacious therapies.
Oxytocin regulatory control of different and complex processes. ![]()
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | - Bianca Tempesta
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| |
Collapse
|
131
|
Sladek CD, Stevens W, Song Z, Johnson GC, MacLean PS. The "metabolic sensor" function of rat supraoptic oxytocin and vasopressin neurons is attenuated during lactation but not in diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2015; 310:R337-45. [PMID: 26661099 DOI: 10.1152/ajpregu.00422.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
The oxytocin (OT) and vasopressin (VP) neurons of the supraoptic nucleus (SON) demonstrate characteristics of "metabolic sensors". They express insulin receptors and glucokinase (GK). They respond to an increase in glucose and insulin with an increase in intracellular [Ca(2+)] and increased OT and VP release that is GK dependent. Although this is consistent with the established role of OT as an anorectic agent, how these molecules function relative to the important role of OT during lactation and whether deficits in this metabolic sensor function contribute to obesity remain to be examined. Thus, we evaluated whether insulin and glucose-induced OT and VP secretion from perifused explants of the hypothalamo-neurohypophyseal system are altered during lactation and by diet-induced obesity (DIO). In explants from female day 8 lactating rats, increasing glucose (Glu, 5 mM) did not alter OT or VP release. However, insulin (Ins; 3 ng/ml) increased OT release, and increasing the glucose concentration in the presence of insulin (Ins+Glu) resulted in a sustained elevation in both OT and VP release that was not prevented by alloxan, a GK inhibitor. Explants from male DIO rats also responded to Ins+Glu with an increase in OT and VP regardless of whether obesity had been induced by feeding a high-fat diet (HFD). The HFD-DIO rats had elevated body weight, plasma Ins, Glu, leptin, and triglycerides. These findings suggest that the role of SON neurons as metabolic sensors is diminished during lactation, but not in this animal model of obesity.
Collapse
Affiliation(s)
- Celia D Sladek
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Wanida Stevens
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Zhilin Song
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Ginger C Johnson
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul S MacLean
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
132
|
Blevins JE, Baskin DG. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans. Physiol Behav 2015; 152:438-49. [PMID: 26013577 DOI: 10.1016/j.physbeh.2015.05.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The fact that more than 78 million adults in the US are considered overweight or obese highlights the need to develop new, effective strategies to treat obesity and its associated complications, including type 2 diabetes, kidney disease and cardiovascular disease. While the neurohypophyseal peptide oxytocin (OT) is well recognized for its peripheral effects to stimulate uterine contraction during parturition and milk ejection during lactation, release of OT within the brain is implicated in prosocial behaviors and in the regulation of energy balance. Previous findings indicate that chronic administration of OT decreases food intake and weight gain or elicits weight loss in diet-induced obese (DIO) mice and rats. Furthermore, chronic systemic treatment with OT largely reproduces the effects of central administration to reduce weight gain in DIO and genetically obese rodents at doses that do not appear to result in tolerance. These findings have now been recently extended to more translational models of obesity showing that chronic subcutaneous or intranasal OT treatment is sufficient to elicit body weight loss in DIO nonhuman primates and pre-diabetic obese humans. This review assesses the potential use of OT as a therapeutic strategy for treatment of obesity in rodents, nonhuman primates, and humans, and identifies potential mechanisms that mediate this effect.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Denis G Baskin
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
133
|
Mustoe AC, Cavanaugh J, Harnisch AM, Thompson BE, French JA. Do marmosets care to share? Oxytocin treatment reduces prosocial behavior toward strangers. Horm Behav 2015; 71:83-90. [PMID: 25934057 PMCID: PMC4439329 DOI: 10.1016/j.yhbeh.2015.04.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023]
Abstract
Cooperatively-breeding and socially-monogamous primates, like marmosets and humans, exhibit high levels of social tolerance and prosociality toward others. Oxytocin (OXT) generally facilitates prosocial behavior, but there is growing recognition that OXT modulation of prosocial behavior is shaped by the context of social interactions and by other motivational states such as arousal or anxiety. To determine whether prosociality varies based on social context, we evaluated whether marmoset donors (Callithrix penicillata) preferentially rewarded pairmates versus opposite-sex strangers in a prosocial food-sharing task. To examine potential links among OXT, stress systems, and prosociality, we evaluated whether pretrial cortisol levels in marmosets altered the impact of OXT on prosocial responses. Marmosets exhibited spontaneous prosociality toward others, but they did so preferentially toward strangers compared to their pairmates. When donor marmosets were treated with marmoset-specific Pro(8)-OXT, they exhibited reduced prosociality toward strangers compared to marmosets treated with saline or consensus-mammalian Leu(8)-OXT. When pretrial cortisol levels were lower, marmosets exhibited higher prosociality toward strangers. These findings demonstrate that while marmosets show spontaneous prosocial responses toward others, they do so preferentially toward opposite-sex strangers. Cooperative breeding may be associated with the expression of prosociality, but the existence of a pair-bond between marmoset partners appears to be neither necessary nor sufficient for the expression of spontaneous prosocial responses. Furthermore, high prosociality toward strangers is significantly reduced in marmosets treated with Pro(8)-OXT, suggesting that OXT does not universally enhance prosociality, but, rather OXT modulation of prosocial behavior varies depending on social context.
Collapse
Affiliation(s)
- Aaryn C Mustoe
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA; Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Jon Cavanaugh
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA; Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA
| | - April M Harnisch
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Breanna E Thompson
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jeffrey A French
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA; Department of Psychology, University of Nebraska at Omaha, Omaha, NE, USA; Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
134
|
Lawson EA, Marengi DA, DeSanti RL, Holmes TM, Schoenfeld DA, Tolley CJ. Oxytocin reduces caloric intake in men. Obesity (Silver Spring) 2015; 23:950-6. [PMID: 25865294 PMCID: PMC4414748 DOI: 10.1002/oby.21069] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/24/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Preclinical studies indicate that oxytocin is anorexigenic and has beneficial metabolic effects. Oxytocin effects on nutrition and metabolism in humans are not well defined. It was hypothesized that oxytocin would reduce caloric intake and appetite and alter levels of appetite-regulating hormones. Metabolic effects of oxytocin were also explored. METHODS A randomized, placebo-controlled crossover study of single-dose intranasal oxytocin (24 IU) in 25 fasting healthy men was performed. After oxytocin/placebo, subjects selected breakfast from a menu and were given double portions. Caloric content of food consumed was measured. Visual analog scales were used to assess appetite, and blood was drawn for appetite-regulating hormones, insulin, and glucose before and after oxytocin/placebo. Indirect calorimetry assessed resting energy expenditure (REE) and substrate utilization. RESULTS Oxytocin reduced caloric intake with a preferential effect on fat intake and increased levels of the anorexigenic hormone cholecystokinin without affecting appetite or other appetite-regulating hormones. There was no effect of oxytocin on REE. Oxytocin resulted in a shift from carbohydrate to fat utilization and improved insulin sensitivity. CONCLUSIONS Intranasal oxytocin reduces caloric intake and has beneficial metabolic effects in men without concerning side effects. The efficacy and safety of sustained oxytocin administration in the treatment of obesity warrants investigation.
Collapse
Affiliation(s)
- Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Dean A. Marengi
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Rebecca L. DeSanti
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Tara M. Holmes
- Harvard Catalyst Clinical Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - David A. Schoenfeld
- Department of Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Christiane J. Tolley
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
135
|
Ong ZY, Alhadeff AL, Grill HJ. Medial nucleus tractus solitarius oxytocin receptor signaling and food intake control: the role of gastrointestinal satiation signal processing. Am J Physiol Regul Integr Comp Physiol 2015; 308:R800-6. [PMID: 25740340 DOI: 10.1152/ajpregu.00534.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/24/2015] [Indexed: 12/23/2022]
Abstract
Central oxytocin (OT) administration reduces food intake and its effects are mediated, in part, by hindbrain oxytocin receptor (OT-R) signaling. The neural substrate and mechanisms mediating the intake inhibitory effects of hindbrain OT-R signaling are undefined. We examined the hypothesis that hindbrain OT-R-mediated feeding inhibition results from an interaction between medial nucleus tractus solitarius (mNTS) OT-R signaling and the processing of gastrointestinal (GI) satiation signals by neurons of the mNTS. Here, we demonstrated that mNTS or fourth ventricle (4V) microinjections of OT in rats reduced chow intake in a dose-dependent manner. To examine whether the intake suppressive effects of mNTS OT-R signaling is mediated by GI signal processing, rats were injected with OT to the 4V (1 μg) or mNTS (0.3 μg), followed by self-ingestion of a nutrient preload, where either treatment was designed to be without effect on chow intake. Results showed that the combination of mNTS OT-R signaling and GI signaling processing by preload ingestion reduced chow intake significantly and to a greater extent than either stimulus alone. Using enzyme immunoassay, endogenous OT content in mNTS-enriched dorsal vagal complex (DVC) in response to ingestion of nutrient preload was measured. Results revealed that preload ingestion significantly elevated endogenous DVC OT content. Taken together, these findings provide evidence that mNTS neurons are a site of action for hindbrain OT-R signaling in food intake control and that the intake inhibitory effects of hindbrain mNTS OT-R signaling are mediated by interactions with GI satiation signal processing by mNTS neurons.
Collapse
Affiliation(s)
- Zhi Yi Ong
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amber L Alhadeff
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
136
|
Altirriba J, Poher AL, Rohner-Jeanrenaud F. Chronic Oxytocin Administration as a Treatment Against Impaired Leptin Signaling or Leptin Resistance in Obesity. Front Endocrinol (Lausanne) 2015; 6:119. [PMID: 26300847 PMCID: PMC4525065 DOI: 10.3389/fendo.2015.00119] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
This review summarizes the existing literature on the effects of oxytocin administration in the treatment of obesity in different animal models and in humans, focusing on the central control of food intake, the oxytocin effects on adipose tissue, and the relationships between oxytocin and leptin. Oxytocin is a hypothalamic nonapeptide synthesized mainly in the paraventricular and supraoptic nuclei projecting to the pituitary, where it reaches the peripheral circulation, as well as to other brain regions. Moreover, leptin modulates oxytocin levels and activates oxytocin neurons in the hypothalamic paraventricular nucleus, which innervates the nucleus of the solitary tract, partly responsible for the brain-elicited oxytocin effects. Taking into account that oxytocin is located downstream leptin, it was hypothesized that oxytocin treatment would be effective in decreasing body weight in leptin-resistant DIO animals, as well as in those with leptin or with leptin receptor deficiency. Several groups have demonstrated that in such animal models (rats, mice, and rhesus monkeys), central or peripheral oxytocin administration decreases body weight, mainly due to a decrease in fat mass, demonstrating that an oxytocin treatment is able to partly overcome leptin deficiency or resistance. Moreover, a pilot clinical study demonstrated the efficiency of oxytocin in the treatment of obesity in human subjects, confirming the results obtained in the different animal models. Larger multicenter studies are now needed to determine whether the beneficial effects of oxytocin treatment can apply not only to obese but also to type 2 diabetic patients. These studies should also shed some light on the molecular mechanisms of oxytocin action in humans.
Collapse
Affiliation(s)
- Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Jordi Altirriba, Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, 1, rue Michel-Servet, Geneva CH-1211, Switzerland,
| | - Anne-Laure Poher
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Françoise Rohner-Jeanrenaud
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|