101
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
102
|
Li Z, Beesetty P, Gerges G, Kleinhenz M, Moore-Clingenpeel M, Yang C, Ahmed LB, Hensley J, Steele L, Chong AS, Montgomery CP. Impaired T lymphocyte responses during childhood Staphylococcus aureus infection. J Infect Dis 2021; 225:177-185. [PMID: 34145461 DOI: 10.1093/infdis/jiab326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Staphylococcus aureus infections are common throughout the lifespan, with recurrent infections occuring in nearly half of infected children. There is no licensed vaccine, underscoring the need to better understand how S. aureus evades protective immunity. Despite much study, the relative contributions of antibodies and T cells to protection against S. aureus infections in humans are not fully understood. METHODS We prospectively quantified S. aureus-specific antibody levels by ELISA and T cell responses by ELISpot in S. aureus-infected and healthy children. RESULTS S. aureus-specific antibody levels and T cell responses increased with age in healthy children, suggesting a coordinated development of anti-staphylococcal immunity. Antibody levels against leukotoxin E (LukE) and Panton-Valentine leukocidin (LukS-PV), but not α-hemolysin (Hla), were higher in younger infected children, compared with healthy children; these differences disappeared in older children. We observed a striking impairment of global and S. aureus-specific T cell function in children with invasive and non-invasive infection, suggesting that S. aureus-specific immune responses are dysregulated during childhood infection regardless of the infection phenotype. CONCLUSIONS These findings identify a potential mechanism by which S. aureus infection actively evades adaptive immune responses, thereby preventing the development of protective immunty and maintaining susceptibility to recurrent infection.
Collapse
Affiliation(s)
- Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Pavani Beesetty
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - George Gerges
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maureen Kleinhenz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Ching Yang
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Luul B Ahmed
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Josey Hensley
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Lisa Steele
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Anita S Chong
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Christopher P Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
103
|
Interleukin-17A Contributes to Bacterial Clearance in a Mouse Model of Streptococcal Toxic Shock-Like Syndrome. Pathogens 2021; 10:pathogens10060766. [PMID: 34204511 PMCID: PMC8235343 DOI: 10.3390/pathogens10060766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis (S. suis), an emerging zoonotic pathogen, can cause streptococcal toxic shock-like syndrome (STSLS) in humans with high mortality. STSLS is characterized by high bacterial burden, an inflammatory cytokine storm, multi-organ dysfunction, and ultimately acute host death. Although it has been found that a significantly high level of IL-17A was induced in an NLRP3-dependent manner during STSLS development, the role of IL-17A on S. suis STSLS remains to be elucidated. In this study, we found that the epidemic strain SC 19 caused a significantly higher level of IL-17A than the non-epidemic strain P1/7. In addition, higher bacterial burden was observed from SC 19-infected il17a−/− mice than il17a+/+ mice, although acute death, tissue injury and inflammatory cytokines storm were observed in both types of mice. Furthermore, compared with il17a+/+ mice, the level of neutrophils recruitment was lower in il17a−/− mice, and the levels of induced antimicrobial proteins, such as CRAMP, S100A8 and lipocalin-2, were also decreased in il17a−/− mice. In conclusion, this study demonstrated that IL-17A does not contribute to the severe inflammation, although it may play a minor role for bacterial clearance by inducing antimicrobial proteins and promoting neutrophil recruitment during STSLS.
Collapse
|
104
|
Lakshmaiah Narayana J, Golla R, Mishra B, Wang X, Lushnikova T, Zhang Y, Verma A, Kumar V, Xie J, Wang G. Short and Robust Anti-Infective Lipopeptides Engineered Based on the Minimal Antimicrobial Peptide KR12 of Human LL-37. ACS Infect Dis 2021; 7:1795-1808. [PMID: 33890759 DOI: 10.1021/acsinfecdis.1c00101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study aims to push the frontier of the engineering of human cathelicidin LL-37, a critical antimicrobial innate immune peptide that wards off invading pathogens. By sequential truncation of the smallest antibacterial peptide (KR12) of LL-37 and conjugation with fatty acids, with varying chain lengths, a library of lipopeptides is generated. These peptides are subjected to antibacterial activity and hemolytic assays. Candidates (including both forms made of l- and d-amino acids) with the optimal cell selectivity are subsequently fed to the second layer of in vitro filters, including salts, pH, serum, and media. These practices lead to the identification of a miniature LL-37 like peptide (d-form) with selectivity, stability, and robust antimicrobial activity in vitro against both Gram-positive and negative bacteria. Proteomic studies reveal far fewer serum proteins that bind to the d-form than the l-form peptide. C10-KR8d targets bacterial membranes to become helical, making it difficult for bacteria to develop resistance in a multiple passage experiment. In vivo, C10-KR8d is able to reduce bacterial burden of methicillin-resistant Staphylococcus aureus (MRSA) USA300 LAC in neutropenic mice. In addition, this designer peptide prevents bacterial biofilm formation in a catheter-associated mouse model. Meanwhile, C10-KR8d also recruits cytokines to the vicinity of catheters to clear infection. Thus, based on the antimicrobial region of LL-37, this study succeeds in identifying the smallest anti-infective peptide C10-KR8d with both robust antimicrobial, antibiofilm, and immune modulation activities.
Collapse
Affiliation(s)
- Jayaram Lakshmaiah Narayana
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Radha Golla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Xiuqing Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Yingxia Zhang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Atul Verma
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68130, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
105
|
Chen Z, Gou Q, Xiong Q, Duan L, Yuan Y, Zhu J, Zou J, Chen L, Jing H, Zhang X, Luo P, Zeng H, Zou Q, Zhao Z, Zhang J. Immunodominance of Epitopes and Protective Efficacy of HI Antigen Are Differentially Altered Using Different Adjuvants in a Mouse Model of Staphylococcus aureus Bacteremia. Front Immunol 2021; 12:684823. [PMID: 34122448 PMCID: PMC8190387 DOI: 10.3389/fimmu.2021.684823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
HI, a fusion protein that consists of the alpha-toxin (Hla) and the N2 domain of iron surface determinant B (IsdB), is one of the antigens in the previously reported S. aureus vaccine rFSAV and has already entered phase II clinical trials. Previous studies revealed that HI is highly immunogenic in both mice and healthy volunteers, and the humoral immune response plays key roles in HI-mediated protection. In this study, we further investigated the protective efficacy of immunization with HI plus four different adjuvants in a mouse bacteremia model. Results showed that HI-mediated protection was altered in response to different adjuvants. Using antisera from immunized mice, we identified seven B-cell immunodominant epitopes on Hla and IsdB, including 6 novel epitopes (Hla1-18, Hla84-101, Hla186-203, IsdB342-359, IsdB366-383, and IsdB384-401). The immunodominance of B-cell epitopes, total IgG titers and the levels of IFN-γ and IL-17A from mice immunized with HI plus different adjuvants were different from each other, which may explain the difference in protective immunity observed in each immunized group. Thus, our results indicate that adjuvants largely affected the immunodominance of epitopes and the protective efficacy of HI, which may guide further adjuvant screening for vaccine development and optimization.
Collapse
Affiliation(s)
- Zhifu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qiang Gou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qingshan Xiong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lianli Duan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Zhu
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jintao Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Longlong Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Haiming Jing
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Clinical Hematology, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
106
|
Millar EV, Bennett JW, Barin B, Carey PM, Law NN, English CE, Schwartz MM, Cochrane T, Ellis MW, Tribble DR, Timothy Cooke M, Hennessey JP. Safety, immunogenicity, and efficacy of NDV-3A against Staphylococcus aureus colonization: A phase 2 vaccine trial among US Army Infantry trainees. Vaccine 2021; 39:3179-3188. [PMID: 33962841 PMCID: PMC10430023 DOI: 10.1016/j.vaccine.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Military trainees are at increased risk for Staphylococcus aureus colonization and infection. Disease prevention strategies are needed, but a S. aureus vaccine does not currently exist. METHODS We enrolled US Army Infantry trainees (Fort Benning, GA) in a phase 2, randomized, double-blind, placebo-controlled trial of NDV-3A, a vaccine containing a recombinant adhesin/invasion protein of Candida albicans that has structural similarity to the S. aureus protein clumping factor A. Study participants received one intramuscular dose of NDV-3A or placebo (adjuvant alone) within 72 h of arrival on base. Longitudinal nasal and oral (throat) swabs were collected throughout the 14-week Infantry training cycle. Safety, immunogenicity, and efficacy of NDV-3A against S. aureus nasal / oral acquisition were the endpoints. RESULTS The NDV-3A candidate had minimal reactogenicity and elicited robust antigen-specific B- and T-cell responses. During the 56-day post-vaccination period, there was no difference in the incidence of S. aureus nasal acquisition between those who were randomized to receive NDV-3A vs. placebo (25.6% vs. 29.1%; vaccine efficacy [VE]: 12.1%; p = 0.31). In time-to-event analysis, there was no difference between study groups with respect to the S. aureus colonization-free interval (VE: 13%; p = 0.29). Similarly, the efficacy of NDV-3A against S. aureus oral acquisition was poor (VE: 2.4%; p = 0.52). CONCLUSIONS A single dose of NDV-3A did not prevent nasal nor oral acquisition of S. aureus in a population of military trainees at high risk for colonization.
Collapse
Affiliation(s)
- Eugene V Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.
| | - Jason W Bennett
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Burc Barin
- The Emmes Company, Rockville, MD, United States
| | - Patrick M Carey
- Benning Martin Army Community Hospital, Fort Benning, GA, United States
| | - Natasha N Law
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States; Benning Martin Army Community Hospital, Fort Benning, GA, United States
| | - Caroline E English
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | | | - Michael W Ellis
- University of Toledo Medical Center, Toledo, OH, United States
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | | |
Collapse
|
107
|
Borges PA, Waclawiak I, Georgii JL, Fraga-Junior VDS, Barros JF, Lemos FS, Russo-Abrahão T, Saraiva EM, Takiya CM, Coutinho-Silva R, Penido C, Mermelstein C, Meyer-Fernandes JR, Canto FB, Neves JS, Melo PA, Canetti C, Benjamim CF. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y 12 Receptor Activation. Front Immunol 2021; 12:651740. [PMID: 33828561 PMCID: PMC8019717 DOI: 10.3389/fimmu.2021.651740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic wounds are a public health problem worldwide, especially those related to diabetes. Besides being an enormous burden to patients, it challenges wound care professionals and causes a great financial cost to health system. Considering the absence of effective treatments for chronic wounds, our aim was to better understand the pathophysiology of tissue repair in diabetes in order to find alternative strategies to accelerate wound healing. Nucleotides have been described as extracellular signaling molecules in different inflammatory processes, including tissue repair. Adenosine-5'-diphosphate (ADP) plays important roles in vascular and cellular response and is immediately released after tissue injury, mainly from platelets. However, despite the well described effect on platelet aggregation during inflammation and injury, little is known about the role of ADP on the multiple steps of tissue repair, particularly in skin wounds. Therefore, we used the full-thickness excisional wound model to evaluate the effect of local ADP application in wounds of diabetic mice. ADP accelerated cutaneous wound healing, improved new tissue formation, and increased both collagen deposition and transforming growth factor-β (TGF-β) production in the wound. These effects were mediated by P2Y12 receptor activation since they were inhibited by Clopidogrel (Clop) treatment, a P2Y12 receptor antagonist. Furthermore, P2Y1 receptor antagonist also blocked ADP-induced wound closure until day 7, suggesting its involvement early in repair process. Interestingly, ADP treatment increased the expression of P2Y12 and P2Y1 receptors in the wound. In parallel, ADP reduced reactive oxygen species (ROS) formation and tumor necrosis factor-α (TNF-α) levels, while increased IL-13 levels in the skin. Also, ADP increased the counts of neutrophils, eosinophils, mast cells, and gamma delta (γδ) T cells (Vγ4+ and Vγ5+ cells subtypes of γδ+ T cells), although reduced regulatory T (Tregs) cells in the lesion. In accordance, ADP increased fibroblast proliferation and migration, myofibroblast differentiation, and keratinocyte proliferation. In conclusion, we provide strong evidence that ADP acts as a pro-resolution mediator in diabetes-associated skin wounds and is a promising intervention target for this worldwide problem.
Collapse
Affiliation(s)
- Paula Alvarenga Borges
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Fluminense Federal Institute (IFF), Rio de Janeiro, Brazil
| | - Ingrid Waclawiak
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Janaína Lima Georgii
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Janaína Figueiredo Barros
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Felipe Simões Lemos
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thaís Russo-Abrahão
- Institute of Medical Biochemistry Leopoldo de Meis, Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Institute of Microbiology Paulo de Góes, Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Carmen Penido
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Applied Pharmacology, Institute of Drug Technology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Fábio B. Canto
- Department of Immunobiology, Institute of Biology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Josiane Sabbadini Neves
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paulo A. Melo
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudio Canetti
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| | - Claudia Farias Benjamim
- Institute of Biomedical Sciences, Center of Health Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Center of Health Sciences, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
108
|
Wei X, Li C, Zhang Y, Li K, Li J, Ai K, Li K, Zhang J, Yang J. Fish NF‐κB couples TCR and IL‐17 signals to regulate ancestral T‐cell immune response against bacterial infection. FASEB J 2021; 35:e21457. [DOI: 10.1096/fj.202002393rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Cheng Li
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research School of Life Sciences East China Normal University Shanghai China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
109
|
Eld HMS, Nielsen EM, Johnsen PR, Marengo M, Kamper IW, Frederiksen L, Bonomi F, Frees D, Iametti S, Frøkiær H. Cefoxitin treatment of MRSA leads to a shift in the IL-12/IL-23 production pattern in dendritic cells by a mechanism involving changes in the MAPK signaling. Mol Immunol 2021; 134:1-12. [PMID: 33676343 DOI: 10.1016/j.molimm.2021.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) constitute a serious health care problem worldwide. This study addresses the effect of β-lactam treatment on the ability of clinically relevant MRSA strains to induce IL-12 and IL-23. MRSA strains induced a dose-dependent IL-12 response in murine bone-marrow-derived dendritic cells that was dependent on endocytosis and acidic degradation. Facilitated induction of IL-12 (but not of IL-23) called for activation of the MAP kinase JNK, and was suppressed by p38. Compromised peptidoglycan structure in cefoxitin-treated bacteria - as denoted by increased sensitivity to mutanolysin -caused a shift from IL-12 towards IL-23. Moreover, cefoxitin treatment of MRSA led to a p38 MAPK-dependent early up-regulation of Dual Specificity Phosphatase (DUSP)-1. Compared to common MRSA, characteristics associated with a persister phenotype increased intracellular survival and upon cefoxitin treatment, the peptidoglycan was not equally compromised and the cytokine induction still required phagosomal acidification. Together, these data demonstrate that β-lactam treatment changes the MRSA-induced IL-12/IL-23 pattern determined by the activation of JNK and p38. We suggest that accelerated endosomal degradation of the peptidoglycan in cefoxitin-treated MRSA leads to an early expression of DUSP-1 and accordingly, a reduction in the IL-12/IL-23 ratio in dendritic cells. This may influence the clearance of S. aureus.
Collapse
Affiliation(s)
- Helene M S Eld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie M Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter R Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mauro Marengo
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Ida W Kamper
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Frederiksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Bonomi
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
110
|
Tam K, Lacey KA, Devlin JC, Coffre M, Sommerfield A, Chan R, O'Malley A, Koralov SB, Loke P, Torres VJ. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. J Exp Med 2021; 217:151907. [PMID: 32602902 PMCID: PMC7478724 DOI: 10.1084/jem.20190541] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is responsible for various diseases in humans, and recurrent infections are commonly observed. S. aureus produces an array of bicomponent pore-forming toxins that target and kill leukocytes, known collectively as the leukocidins. The contribution of these leukocidins to impair the development of anti–S. aureus adaptive immunity and facilitate reinfection is unclear. Using a murine model of recurrent bacteremia, we demonstrate that infection with a leukocidin mutant results in increased levels of anti–S. aureus antibodies compared with mice infected with the WT parental strain, indicating that leukocidins negatively impact the generation of anti–S. aureus antibodies in vivo. We hypothesized that neutralizing leukocidin-mediated immune subversion by vaccination may shift this host-pathogen interaction in favor of the host. Leukocidin-immunized mice produce potent leukocidin-neutralizing antibodies and robust Th1 and Th17 responses, which collectively protect against bloodstream infections. Altogether, these results demonstrate that blocking leukocidin-mediated immune evasion can promote host protection against S. aureus bloodstream infection.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Joseph C Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Maryaline Coffre
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alexis Sommerfield
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - P'ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
111
|
Teymournejad O, Montgomery CP. Evasion of Immunological Memory by S. aureus Infection: Implications for Vaccine Design. Front Immunol 2021; 12:633672. [PMID: 33692805 PMCID: PMC7937817 DOI: 10.3389/fimmu.2021.633672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Recurrent S. aureus infections are common, suggesting that natural immune responses are not protective. All candidate vaccines tested thus far have failed to protect against S. aureus infections, highlighting an urgent need to better understand the mechanisms by which the bacterium interacts with the host immune system to evade or prevent protective immunity. Although there is evidence in murine models that both cellular and humoral immune responses are important for protection against S. aureus, human studies suggest that T cells are critical in determining susceptibility to infection. This review will use an “anatomic” approach to systematically outline the steps necessary in generating a T cell-mediated immune response against S. aureus. Through the processes of bacterial uptake by antigen presenting cells, processing and presentation of antigens to T cells, and differentiation and proliferation of memory and effector T cell subsets, the ability of S. aureus to evade or inhibit each step of the T-cell mediated response will be reviewed. We hypothesize that these interactions result in the redirection of immune responses away from protective antigens, thereby precluding the establishment of “natural” memory and potentially inhibiting the efficacy of vaccination. It is anticipated that this approach will reveal important implications for future design of vaccines to prevent these infections.
Collapse
Affiliation(s)
- Omid Teymournejad
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher P Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
112
|
Abstract
The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A through IL-17F). IL-17 family cytokines signal through heterodimeric receptors that include the shared IL-17RA subunit, which is widely expressed throughout the body on both hematopoietic and nonhematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 and has received the most attention for proinflammatory roles in autoimmune diseases like psoriasis. However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable pathologies. This review focuses on recent advances in the roles of IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse disease processes it is useful to first consider the physiological functions that IL-17 contributes to health. We then discuss how these beneficial functions can be diverted toward pathogenic amplification of deleterious pathways driving chronic disease.
Collapse
Affiliation(s)
- Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pennsylvania 15261, USA; ,
| |
Collapse
|
113
|
Bacteria and Host Interplay in Staphylococcus aureus Septic Arthritis and Sepsis. Pathogens 2021; 10:pathogens10020158. [PMID: 33546401 PMCID: PMC7913561 DOI: 10.3390/pathogens10020158] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus (S. aureus) infections are a major healthcare challenge and new treatment alternatives are needed. S. aureus septic arthritis, a debilitating joint disease, causes permanent joint dysfunction in almost 50% of the patients. S. aureus bacteremia is associated with higher mortalities than bacteremia caused by most other microbes and can develop to severe sepsis and death. The key to new therapies is understanding the interplay between bacterial virulence factors and host immune response, which decides the disease outcome. S. aureus produces numerous virulence factors that facilitate bacterial dissemination, invasion into joint cavity, and cause septic arthritis. Monocytes, activated by several components of S. aureus such as lipoproteins, are responsible for bone destructions. In S. aureus sepsis, cytokine storm induced by S. aureus components leads to the hyperinflammatory status, DIC, multiple organ failure, and later death. The immune suppressive therapies at the very early time point might be protective. However, the timing of treatment is crucial, as late treatment may aggravate the immune paralysis and lead to uncontrolled infection and death.
Collapse
|
114
|
Zhang J, Conly J, McClure J, Wu K, Petri B, Barber D, Elsayed S, Armstrong G, Zhang K. A Murine Skin Infection Model Capable of Differentiating the Dermatopathology of Community-Associated MRSA Strain USA300 from Other MRSA Strains. Microorganisms 2021; 9:microorganisms9020287. [PMID: 33573328 PMCID: PMC7912111 DOI: 10.3390/microorganisms9020287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
USA300 is a predominant and highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain that is a leading cause of skin and soft tissue infections. We established a murine intradermal infection model capable of demonstrating dermatopathological differences between USA300 and other MRSA strains. In this model, USA300 induced dermonecrosis, uniformly presenting as extensive open lesions with a histologically documented profound inflammatory cell infiltrate extending below the subcutis. In contrast, USA400 and a colonizing control strain M92 caused only localized non-ulcerated skin infections associated with a mild focal inflammatory infiltrate. It was also determined that the dermonecrosis induced by USA300 was associated with significantly increased neutrophil recruitment, inhibition of an antibacterial response, and increased production of cytokines/chemokines associated with disease severity. These results suggest that induction of severe skin lesions by USA300 is related to over-activation of neutrophils, inhibition of host antibacterial responses, and selective alteration of host cytokine/chemokine profiles.
Collapse
Affiliation(s)
- Jack Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - John Conly
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
| | - JoAnn McClure
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Kaiyu Wu
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - Bjӧrn Petri
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Duane Barber
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
| | - Sameer Elsayed
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Western Ontario, London, ON N6A5C1, Canada
| | - Glen Armstrong
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - Kunyan Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
- Correspondence: ; Tel.: +1-403-210-8484
| |
Collapse
|
115
|
Groen SS, Sinkeviciute D, Bay-Jensen AC, Thudium CS, Karsdal MA, Thomsen SF, Schett G, Nielsen SH. Exploring IL-17 in spondyloarthritis for development of novel treatments and biomarkers. Autoimmun Rev 2021; 20:102760. [PMID: 33485992 DOI: 10.1016/j.autrev.2021.102760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022]
Abstract
Spondyloarthritis (SpA) is an umbrella term describing a family of chronic inflammatory rheumatic diseases. These diseases are characterised by inflammation of the axial skeleton, peripheral joints, and entheseal insertion sites throughout the body which can lead to structural joint damage including formation of axial syndesmophytes and peripheral osteophytes. Genetic evidence, preclinical and clinical studies indicate a clear role of interleukin (IL)- 23 and IL-17 as mediators in SpA pathogenesis. Targeting the IL-23/-17 pathways seems an efficient strategy for treatment of SpA patients, and despite the remaining challenges the pathway holds great promise for further advances and improved therapeutic opportunities. Much research is focusing on serological markers and imaging strategies to correctly diagnose patients in the early stages of SpA. Biomarkers may facilitate personalised medicine tailored to each patient's specific disease to optimise treatment efficacy and to monitor therapeutic response. This narrative review focuses on the IL-17 pathway in SpA-related diseases with emphasis on its role in pathogenesis, current approved IL-17 inhibitors, and the need for biomarkers reflecting core disease pathways for early diagnosis and measurement of disease activity, prognosis, and response to therapy.
Collapse
Affiliation(s)
- Solveig Skovlund Groen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Dovile Sinkeviciute
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Department of Clinical Sciences Lund, University of Lund, Lund, Sweden
| | | | | | | | - Simon Francis Thomsen
- Biomecial Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Signe Holm Nielsen
- Immunoscience, Nordic Bioscience, Herlev, Denmark; Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
116
|
Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021; 148:40-52. [PMID: 33485651 DOI: 10.1016/j.jaci.2020.12.628] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
IL-25, also known as IL-17E, is a unique cytokine of the IL-17 family. Indeed, IL-25 exclusively was shown to strongly induce expression of the cytokines associated with type 2 immunity. Although produced by several types of immune cells, such as T cells, dendritic cells, or group 2 innate lymphoid cells, a vast amount of IL-25 derives from epithelial cells. The functions of IL-25 have been actively studied in the context of physiology and pathology of various organs including skin, airways and lungs, gastrointestinal tract, and thymus. Accumulating evidence suggests that IL-25 is a "barrier surface" cytokine whose expression depends on extrinsic environmental factors and when upregulated may lead to inflammatory disorders such as atopic dermatitis, psoriasis, or asthma. This review summarizes the progress of the recent years regarding the effects of IL-25 on the regulation of immune response and the balance between its homeostatic and pathogenic role in various epithelia. We revisit IL-25's general and tissue-specific mechanisms of action, mediated signaling pathways, and transcription factors activated in immune and resident cells. Finally, we discuss perspectives of the IL-25-based therapies for inflammatory disorders and compare them with the mainstream ones that target IL-17A.
Collapse
Affiliation(s)
- Julia Borowczyk
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Shutova
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
117
|
Yamana T, Okamoto T, Ishizuka M, Hanzawa S, Ejima M, Shibata S, Miyazaki Y. IL-17A-Secreting Memory γδ T Cells Play a Pivotal Role in Sensitization and Development of Hypersensitivity Pneumonitis. THE JOURNAL OF IMMUNOLOGY 2021; 206:355-365. [PMID: 33310873 DOI: 10.4049/jimmunol.2000198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023]
Abstract
Hypersensitivity pneumonitis (HP) typically presents with interstitial inflammation and granulomas induced by an aberrant immune response to inhaled Ags in sensitized individuals. Although IL-17A is involved in the development of HP, the cellular sources of IL-17A and the mechanisms by which IL-17A contributes to granuloma formation remain unclear. Recent studies report that γδ T cells produce IL-17A and exhibit memory properties in various diseases. Therefore, we focused on IL-17A-secreting memory γδ T cells in the sensitization phase and aimed to elucidate the mechanisms by which IL-17A contributes to granuloma formation in HP. We induced a mouse model of HP using pigeon dropping extract (PDE) in wild-type and IL-17A knockout (IL-17A-/-) mice. IL-17A-/- mice exhibited reduced granulomatous areas, attenuated aggregation of CD11b+ alveolar macrophages, and reduced levels of CCL2, CCL4, and CCL5 in the bronchoalveolar lavage fluid. Among IL-17A+ cells, more γδ T cells than CD4+ cells were detected after intranasal PDE administration. Interestingly, the expansion of IL-17A-secreting Vγ4+ or Vγ1-Vγ4- cells of convalescent mice was enhanced in response to the sensitizing Ag. Additionally, coculture of macrophages with PDE and Vγ4+ cells purified from PDE-exposed convalescent mice produced significantly more IL-17A than coculture with Vγ4+ cells from naive mice. Our findings demonstrate that in the sensitization phase of HP, IL-17A-secreting memory γδ T cells play a pivotal role. Furthermore, we characterized the IL-17A/CCL2, CCL4, CCL5/CD11b+ alveolar macrophage axis, which underlies granuloma formation in HP. These findings may lead to new clinical examinations or therapeutic targets for HP.
Collapse
Affiliation(s)
- Takashi Yamana
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tsukasa Okamoto
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masahiro Ishizuka
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Satoshi Hanzawa
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaru Ejima
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sho Shibata
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
118
|
Break TJ, Oikonomou V, Dutzan N, Desai JV, Swidergall M, Freiwald T, Chauss D, Harrison OJ, Alejo J, Williams DW, Pittaluga S, Lee CCR, Bouladoux N, Swamydas M, Hoffman KW, Greenwell-Wild T, Bruno VM, Rosen LB, Lwin W, Renteria A, Pontejo SM, Shannon JP, Myles IA, Olbrich P, Ferré EMN, Schmitt M, Martin D, Barber DL, Solis NV, Notarangelo LD, Serreze DV, Matsumoto M, Hickman HD, Murphy PM, Anderson MS, Lim JK, Holland SM, Filler SG, Afzali B, Belkaid Y, Moutsopoulos NM, Lionakis MS. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 2021; 371:eaay5731. [PMID: 33446526 PMCID: PMC8326743 DOI: 10.1126/science.aay5731] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/05/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Human monogenic disorders have revealed the critical contribution of type 17 responses in mucosal fungal surveillance. We unexpectedly found that in certain settings, enhanced type 1 immunity rather than defective type 17 responses can promote mucosal fungal infection susceptibility. Notably, in mice and humans with AIRE deficiency, an autoimmune disease characterized by selective susceptibility to mucosal but not systemic fungal infection, mucosal type 17 responses are intact while type 1 responses are exacerbated. These responses promote aberrant interferon-γ (IFN-γ)- and signal transducer and activator of transcription 1 (STAT1)-dependent epithelial barrier defects as well as mucosal fungal infection susceptibility. Concordantly, genetic and pharmacologic inhibition of IFN-γ or Janus kinase (JAK)-STAT signaling ameliorates mucosal fungal disease. Thus, we identify aberrant T cell-dependent, type 1 mucosal inflammation as a critical tissue-specific pathogenic mechanism that promotes mucosal fungal infection susceptibility in mice and humans.
Collapse
Affiliation(s)
- Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Nicolas Dutzan
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Marc Swidergall
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | - Oliver J Harrison
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, Bethesda, MD, USA
| | - Julie Alejo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Drake W Williams
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Chyi-Chia R Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, Bethesda, MD, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Kevin W Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Wint Lwin
- Diabetes Center, University of California, San Francisco, CA, USA
| | - Andy Renteria
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Sergio M Pontejo
- Molecular Signaling Section, Laboratory of Molecular Immunology, NIAID, Bethesda, MD, USA
| | - John P Shannon
- Viral Immunity and Pathogenesis Unit, LCIM, NIAID, Bethesda, MD, USA
| | - Ian A Myles
- Epithelial Therapeutics Unit, LCIM, NIAID, Bethesda, MD, USA
| | - Peter Olbrich
- Immunopathogenesis Section, LCIM, NIAID, Bethesda, MD, USA
| | - Elise M N Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Monica Schmitt
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, NIDCR, Bethesda, MD, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, Bethesda, MD, USA
| | - Norma V Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, LCIM, NIAID, Bethesda, MD, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, NIAID, Bethesda, MD, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, CA, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Scott G Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, NIAID, Bethesda, MD, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA.
| |
Collapse
|
119
|
Xu Y, Dimitrion P, Cvetkovski S, Zhou L, Mi QS. Epidermal resident γδ T cell development and function in skin. Cell Mol Life Sci 2021; 78:573-580. [PMID: 32803399 PMCID: PMC11073445 DOI: 10.1007/s00018-020-03613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022]
Abstract
Epidermal resident γδ T cells, or dendritic epidermal T cells (DETCs) in mice, are a unique and conserved population of γδ T cells enriched in the epidermis, where they serve as the regulators of immune responses and sense skin injury. Despite the great advances in the understanding of the development, homeostasis, and function of DETCs in the past decades, the origin and the underlying molecular mechanisms remain elusive. Here, we reviewed the recent research progress on DETCs, including their origin and homeostasis in the skin, especially at transcriptional and epigenetic levels, and discuss the involvement of DETCs in skin diseases.
Collapse
Affiliation(s)
- Yingping Xu
- Experimental Research Center, Dermatology Hospital of Southern Medical University, and Guangdong Provincial Dermatology Hospital, Guangzhou, China
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA
| | - Steven Cvetkovski
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA.
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School Medicine University, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
120
|
Hassanen EI, Ragab E. In Vivo and In Vitro Assessments of the Antibacterial Potential of Chitosan-Silver Nanocomposite Against Methicillin-Resistant Staphylococcus aureus-Induced Infection in Rats. Biol Trace Elem Res 2021; 199:244-257. [PMID: 32306284 DOI: 10.1007/s12011-020-02143-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most threatening multidrug-resistant bacteria worldwide. Owing to their efficient antimicrobial properties, nanoparticles have been widely used as an alternative approach for combating the antibiotic-resistant bacteria. Consequently, this study was designed to compare in between the bactericidal effect of low doses (5 mg/kg bwt) of nanoparticles of chitosan (Ch-NPs), silver (Ag-NPs), and chitosan-silver nanocomposites (Ch-Ag NCs) both in vitro and in vivo against experimentally chronic infection induced by methicillin-resistant Staphylococcus aureus (MRSA). The three forms of nanoparticles were tested for their in vitro antimicrobial potential against MRSA by detection of MICs and MBCs using microdilution method. In vivo, thirty-five male albino Wistar rats were used and divided into five groups (n = 7). Group l (negative control), group 2 (MRSA infected and untreated), groups 3, 4, and 5 (MRSA infected then treated with Ch-NPs, Ag-NPs, and Ch-Ag NCs respectively for 7 days). After 6 weeks, blood samples were collected then rats were euthanized to collect different organs (liver, spleen, lungs, and kidneys). Some of them were kept in 10% formalin for histopathological investigations while others used for bacterial re-isolation. Ch-Ag NCs showed the lowest MIC and MBC among the tested nanoparticles. Moreover, the highest histopathological scoring was observed in the infected and untreated group while the lowest scoring was detected in groups treated with Ch-Ag NCs in comparison with the negative control group. The highest bacterial count was noticed in the infected and untreated group followed by those treated with Ch-NPs while the lowest count was observed in group treated with Ch-Ag NCs. Depending on these results, it can be concluded that Ch-Ag NCs have a strong bactericidal effect against MRSA and may be used as alternative option to antibiotics.
Collapse
Affiliation(s)
- Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Eman Ragab
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| |
Collapse
|
121
|
Clegg J, Soldaini E, Bagnoli F, McLoughlin RM. Targeting Skin-Resident Memory T Cells via Vaccination to Combat Staphylococcus aureus Infections. Trends Immunol 2020; 42:6-17. [PMID: 33309137 DOI: 10.1016/j.it.2020.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Tissue-resident memory T cells are important in adaptive immunity against many infections, rendering these cells attractive potential targets in vaccine development. Genetic and experimental evidence highlights the importance of cellular immunity in protection from Staphylococcus aureus skin infections, yet skin-resident memory T cells are, thus far, an untested component of immunity during such infections. Novel methods of generating and sampling vaccine-induced skin memory T cells are paralleled by discoveries of global, skin-wide immunosurveillance. We propose skin-resident memory CD4+ T cells as a potential missing link in the search for correlates of protection during S. aureus infections. A better appreciation of their phenotypes and functions could accelerate the development of preventive vaccines against this highly virulent and antibiotic-resistant pathogen.
Collapse
Affiliation(s)
- Jonah Clegg
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; GlaxoSmithKline, Siena, Italy
| | | | | | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
122
|
Armentrout EI, Liu GY, Martins GA. T Cell Immunity and the Quest for Protective Vaccines against Staphylococcus aureus Infection. Microorganisms 2020; 8:microorganisms8121936. [PMID: 33291260 PMCID: PMC7762175 DOI: 10.3390/microorganisms8121936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is a wide-spread human pathogen, and one of the top causative agents of nosocomial infections. The prevalence of antibiotic-resistant S. aureus strains, which are associated with higher mortality and morbidity rates than antibiotic-susceptible strains, is increasing around the world. Vaccination would be an effective preventive measure against S. aureus infection, but to date, every vaccine developed has failed in clinical trials, despite inducing robust antibody responses. These results suggest that induction of humoral immunity does not suffice to confer protection against the infection. Evidence from studies in murine models and in patients with immune defects support a role of T cell-mediated immunity in protective responses against S. aureus. Here, we review the current understanding of the mechanisms underlying adaptive immunity to S. aureus infections and discuss these findings in light of the recent S. aureus vaccine trial failures. We make the case for the need to develop anti-S. aureus vaccines that can specifically elicit robust and durable protective memory T cell subsets.
Collapse
Affiliation(s)
- Erin I. Armentrout
- Lung Institute, Cedars-Sinai Medical Center (CSMC), Los Angeles, CA 90048, USA;
- Division of Pulmonary and Critical Care Medicine, CSMC, Los Angeles, CA 90048, USA
| | - George Y. Liu
- Collaborative to Halt Antibiotic-Resistant Microbes, University of California, San Diego, La Jolla, CA 92161, USA;
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gislâine A. Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute (IBIRI), CSMC, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Research Division of Immunology, CSMC, Los Angeles, CA 90048, USA
- Department of Medicine, Division of Gastroenterology, CSMC, Los Angeles, CA 90048, USA
- Correspondence:
| |
Collapse
|
123
|
Castillo-González R, Cibrian D, Sánchez-Madrid F. Dissecting the complexity of γδ T-cell subsets in skin homeostasis, inflammation, and malignancy. J Allergy Clin Immunol 2020; 147:2030-2042. [PMID: 33259837 DOI: 10.1016/j.jaci.2020.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
γδ T cells are much less common than αβ T cells, accounting for 0.5% to 5% of all T lymphocytes in the peripheral blood and lymphoid tissues in mice and humans. However, they are the most abundant T-lymphocyte subset in some epithelial barriers such as mouse skin. γδ T cells are considered innate lymphocytes because of their non-MHC restricted antigen recognition, as well as because of their rapid response to cytokines, invading pathogens, and malignant cells. Exacerbated expansion and activation of γδ T cells in the skin is a common feature of acute and chronic skin inflammation such as psoriasis and contact or atopic dermatitis. Different γδ T-cell subsets showing differential developmental and functional features are found in mouse and human skin. This review discusses the state of the art of research and future perspectives about the role of the different subsets of γδ T-cells detected in the skin in steady-state, psoriasis, dermatitis, infection, and malignant skin diseases. Also, we highlight the differences between human and mouse γδ T cells in skin homeostasis and inflammation, as understanding the differential role of each subtype of skin γδ T cells will improve the discovery of new therapies.
Collapse
Affiliation(s)
- Raquel Castillo-González
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Danay Cibrian
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
124
|
Genardi S, Visvabharathy L, Cao L, Morgun E, Cui Y, Qi C, Chen YH, Gapin L, Berdyshev E, Wang CR. Type II Natural Killer T Cells Contribute to Protection Against Systemic Methicillin-Resistant Staphylococcus aureus Infection. Front Immunol 2020; 11:610010. [PMID: 33312179 PMCID: PMC7708336 DOI: 10.3389/fimmu.2020.610010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (SA) bacteremia is responsible for over 10,000 deaths in the hospital setting each year. Both conventional CD4+ T cells and γδ T cells play protective roles in SA infection through secretion of IFN-γ and IL-17. However, the role of other unconventional T cells in SA infection is largely unknown. Natural killer T (NKT) cells, a subset of innate-like T cells, are activated rapidly in response to a wide range of self and microbial lipid antigens presented by MHC I-like molecule CD1d. NKT cells are divided into two groups, invariant NKT (iNKT) and type II NKT cells, based on TCR usage. Using mice lacking either iNKT cells or both types of NKT cells, we show that both NKT cell subsets are activated after systemic SA infection and produce IFN-γ in response to SA antigen, however type II NKT cells are sufficient to control bacterial burden and inflammatory infiltrate in infected organs. This protective capacity was specific for NKT cells, as mice lacking mucosal associated invariant T (MAIT) cells, another innate-like T cell subset, had no increased susceptibility to SA systemic infection. We identify polar lipid species from SA that induce IFN-γ production from type II NKT cells, which requires both CD1d-TCR engagement and IL-12 production by antigen presenting cells. We also demonstrate that a population of T cells enriched for type II NKT cells are increased in PBMC of SA bacteremic patients compared to healthy controls. Therefore, type II NKT cells perform effector functions that enhance control of SA infection prior to conventional T cell activation and recognize SA-derived lipid antigens. As CD1d is highly conserved in humans, these CD1d-restricted SA lipid antigens could be used in the design of next generation SA vaccines targeting cell-mediated immunity.
Collapse
Affiliation(s)
- Samantha Genardi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lavanya Visvabharathy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Liang Cao
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Eva Morgun
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yongyong Cui
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
125
|
Egawa G, Roediger B, Tay SS, L Cavanagh L, V Guy T, Fazekas de B, Brzoska AJ, Firth N, Weninger W. Bacterial antigen is directly delivered to the draining lymph nodes and activates CD8 + T cells during Staphylococcus aureus skin infection. Immunol Cell Biol 2020; 99:299-308. [PMID: 33002241 DOI: 10.1111/imcb.12410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is one of the most common causes of community- and hospital-acquired bacterial infection worldwide. While neutrophils play an important role in anti-S. aureus immune defense, the role of adaptive immunity is less clear. In this study, we generated a model antigen-expressing S. aureus strain to investigate the dynamics and magnitude of T cell immune responses against this pathogen. We demonstrate that S. aureus is delivered to the draining lymph nodes (LNs) by lymphatic flow immediately after intradermal inoculation. There, the bacterium initiates CD8+ cytotoxic T lymphocyte (CTL) proliferation via activating LN-resident dendritic cells. Large numbers of neutrophils are recruited to the draining LNs to engulf bacteria; however, neutrophil depletion did not impact on CTL proliferation, despite increasing bacterial burden. Tissue-resident memory T cells were formed in the skin at bacteria-inoculated sites. Yet, blood and tissue-resident memory T cells failed to prevent secondary cutaneous S. aureus infection. Our study defines the delivery kinetics of S. aureus from the skin and suggests that CTLs are dispensable for protection against skin infections.
Collapse
Affiliation(s)
- Gyohei Egawa
- Immune Imaging Program, The Centenary Institute and the University of Sydney, New South Wales, Australia
| | - Ben Roediger
- Immune Imaging Program, The Centenary Institute and the University of Sydney, New South Wales, Australia.,Autoimmunity, Transplantation and Inflammation (ATI) Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Szun S Tay
- Immune Imaging Program, The Centenary Institute and the University of Sydney, New South Wales, Australia.,EMBL Australia, Single Molecule Science node, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Lois L Cavanagh
- Immune Imaging Program, The Centenary Institute and the University of Sydney, New South Wales, Australia
| | - Thomas V Guy
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Barbara Fazekas de
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Anthony J Brzoska
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute and the University of Sydney, New South Wales, Australia.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
126
|
Lee B, Olaniyi R, Kwiecinski JM, Wardenburg JB. Staphylococcus aureus toxin suppresses antigen-specific T cell responses. J Clin Invest 2020; 130:1122-1127. [PMID: 31873074 DOI: 10.1172/jci130728] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus remains a leading cause of human infection. These infections frequently recur when the skin is a primary site of infection, especially in infants and children. In contrast, invasive staphylococcal disease is less commonly associated with reinfection, suggesting that tissue-specific mechanisms govern the development of immunity. Knowledge of how S. aureus manipulates protective immunity has been hampered by a lack of antigen-specific models to interrogate the T cell response. Using a chicken egg OVA-expressing S. aureus strain to analyze OVA-specific T cell responses, we demonstrated that primary skin infection was associated with impaired development of T cell memory. Conversely, invasive infection induced antigen-specific memory and protected against reinfection. This defect in adaptive immunity following skin infection was associated with a loss of DCs, attributable to S. aureus α-toxin (Hla) expression. Gene- and immunization-based approaches to protect against Hla during skin infection restored the T cell response. Within the human population, exposure to α-toxin through skin infection may modulate the establishment of T cell-mediated immunity, adversely affecting long-term protection. These studies prompt consideration that vaccination targeting S. aureus may be most effective if delivered prior to initial contact with the organism.
Collapse
Affiliation(s)
- Brandon Lee
- Committee on Immunology, UChicago Biosciences, University of Chicago, Chicago, Illinois, USA
| | - Reuben Olaniyi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
127
|
Fischer MA, Golovchenko NB, Edelblum KL. γδ T cell migration: Separating trafficking from surveillance behaviors at barrier surfaces. Immunol Rev 2020; 298:165-180. [PMID: 32845516 PMCID: PMC7968450 DOI: 10.1111/imr.12915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
γδ T cells are found in highest numbers at barrier surfaces throughout the body, including the skin, intestine, lung, gingiva, and uterus. Under homeostatic conditions, γδ T cells provide immune surveillance of the epidermis, intestinal, and oral mucosa, whereas the presence of pathogenic microorganisms in the dermis or lungs elicits a robust γδ17 response to clear the infection. Although T cell migration is most frequently defined in the context of trafficking, analysis of specific migratory behaviors of lymphocytes within the tissue microenvironment can provide valuable insight into their function. Intravital imaging and computational analyses have been used to define "search" behavior associated with conventional αβ T cells; however, based on the known role of γδ T cells as immune sentinels at barrier surfaces and their TCR-independent functions, we put forth the need to classify distinct migratory patterns that reflect the surveillance capacity of these unconventional lymphocytes. This review will focus on how γδ T cells traffic to various barrier surfaces and how recent investigation into their migratory behavior has provided unique insight into the contribution of γδ T cells to barrier immunity.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
128
|
Yang M, Wang Y, Zhang Y, Li Y, Li Q, Tan J. Role of Interleukin-33 in Staphylococcus epidermidis-Induced Septicemia. Front Immunol 2020; 11:534099. [PMID: 33178181 PMCID: PMC7593707 DOI: 10.3389/fimmu.2020.534099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family, which plays an important role in inflammatory response. In this study, we evaluated the effect of IL-33 on septicemia and the underlying mechanisms by establishing a Staphylococcus epidermidis (S. epidermidis)-induced septicemic mouse model. The expression of IL-33, IL-1α, IL-1β, IL-6, IL-17A, IL-22, and PGE2 were measured by double antibody sandwich enzyme-linked immunosorbent assay, and bacterial colony formation in peripheral blood and kidneys were counted postinfection. The percentages of neutrophils, eosinophils, and inflammatory monocytes were evaluated by flow cytometry, and tissue damage was assessed by hematoxylin and eosin (H&E) staining. The survival of septicemic mice was monitored daily. IL-33 expression was significantly augmented following S. epidermidis infection. High IL-33 expression significantly decreased the survival of model mice, and aggravated the damage of lung, liver, and kidney tissues. However, administration of ST2 (receptor for IL-33) to the S. epidermidis-infected mice blocked the IL-33 signaling pathway, which elevated PGE2, IL-17A, and IL-22, and promoted healing of organ damage. In addition, ST2 suppressed the mobilization of inflammatory monocytes, but promoted the accumulation of neutrophils and eosinophils in S. epidermidis-infected mice. Inhibition of PGE2, IL-17A, and IL-22 facilitated the development of septicemia and organ damage in S. epidermidis-infected mice, as well as reducing their survival. Our findings reveal that IL-33 aggravates organ damage in septicemic mice by inhibiting PGE2, IL-17A, and IL-22 production.
Collapse
Affiliation(s)
- Min Yang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wang
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghong Zhang
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjun Li
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qifeng Li
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jintong Tan
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
129
|
Abstract
γδ T cells are a unique T cell subpopulation that are rare in secondary lymphoid organs but enriched in many peripheral tissues, such as the skin, intestines and lungs. By rapidly producing large amounts of cytokines, γδ T cells make key contributions to immune responses in these tissues. In addition to their immune surveillance activities, recent reports have unravelled exciting new roles for γδ T cells in steady-state tissue physiology, with functions ranging from the regulation of thermogenesis in adipose tissue to the control of neuronal synaptic plasticity in the central nervous system. Here, we review the roles of γδ T cells in tissue homeostasis and in surveillance of infection, aiming to illustrate their major impact on tissue integrity, tissue repair and immune protection.
Collapse
|
130
|
Nairz M, Weiss G. Iron in infection and immunity. Mol Aspects Med 2020; 75:100864. [PMID: 32461004 DOI: 10.1016/j.mam.2020.100864] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Iron is an essential micronutrient for virtually all living cells. In infectious diseases, both invading pathogens and mammalian cells including those of the immune system require iron to sustain their function, metabolism and proliferation. On the one hand, microbial iron uptake is linked to the virulence of most human pathogens. On the other hand, the sequestration of iron from bacteria and other microorganisms is an efficient strategy of host defense in line with the principles of 'nutritional immunity'. In an acute infection, host-driven iron withdrawal inhibits the growth of pathogens. Chronic immune activation due to persistent infection, autoimmune disease or malignancy however, sequesters iron not only from infectious agents, autoreactive lymphocytes and neoplastic cells but also from erythroid progenitors. This is one of the key mechanisms which collectively result in the anemia of chronic inflammation. In this review, we highlight the most important interconnections between iron metabolism and immunity, focusing on host defense against relevant infections and on the clinical consequences of anemia of inflammation.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
131
|
Schulz A, Jiang L, de Vor L, Ehrström M, Wermeling F, Eidsmo L, Melican K. Neutrophil Recruitment to Noninvasive MRSA at the Stratum Corneum of Human Skin Mediates Transient Colonization. Cell Rep 2020; 29:1074-1081.e5. [PMID: 31665625 DOI: 10.1016/j.celrep.2019.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/16/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a leading cause of skin and soft issue infection, but paradoxically, it also transiently, and often harmlessly, colonizes human skin. An obstacle to understanding this contradiction has been a shortage of in vivo models reproducing the unique structure and immunology of human skin. In this work, we developed a humanized model to study how healthy adult human skin responds to colonizing methicillin-resistant S. aureus (MRSA). We demonstrate the importance of the outer stratum corneum as the major site of bacterial colonization and how noninvasive MRSA adhesion to corneocytes induces a local inflammatory response in underlying skin layers. This signaling recruits neutrophils to the skin, where they control bacterial numbers, mediating transiency in colonization. This work highlights the spatiotemporal aspects of human skin colonization and demonstrates a subclinical inflammatory response to noninvasive MRSA that allows human skin to regulate the bacterial population at its outer surface.
Collapse
Affiliation(s)
- Anette Schulz
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Long Jiang
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Lisanne de Vor
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 77, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, Stockholm 171 77, Sweden.
| |
Collapse
|
132
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
133
|
Pastar I, O'Neill K, Padula L, Head CR, Burgess JL, Chen V, Garcia D, Stojadinovic O, Hower S, Plano GV, Thaller SR, Tomic-Canic M, Strbo N. Staphylococcus epidermidis Boosts Innate Immune Response by Activation of Gamma Delta T Cells and Induction of Perforin-2 in Human Skin. Front Immunol 2020; 11:550946. [PMID: 33042139 PMCID: PMC7525037 DOI: 10.3389/fimmu.2020.550946] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
Perforin-2 (P-2) is an antimicrobial protein with unique properties to kill intracellular bacteria. Gamma delta (GD) T cells, as the major T cell population in epithelial tissues, play a central role in protective and pathogenic immune responses in the skin. However, the tissue-specific mechanisms that control the innate immune response and the effector functions of GD T cells, especially the cross-talk with commensal organisms, are not very well understood. We hypothesized that the most prevalent skin commensal microorganism, Staphylococcus epidermidis, may play a role in regulating GD T cell-mediated cutaneous responses. We analyzed antimicrobial protein P-2 expression in human skin at a single cell resolution using an amplified fluorescence in situ hybridization approach to detect P-2 mRNA in combination with immunophenotyping. We show that S. epidermidis activates GD T cells and upregulates P-2 in human skin ex vivo in a cell-specific manner. Furthermore, P-2 upregulation following S. epidermidis stimulation correlates with increased ability of skin cells to kill intracellular Staphylococcus aureus. Our findings are the first to reveal that skin commensal bacteria induce P-2 expression, which may be utilized beneficially to modulate host innate immune responses and protect from skin infections.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Katelyn O'Neill
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Seth R Thaller
- Division of Plastic Surgery Dewitt Daughtry, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
134
|
Uluçkan Ö, Jiménez M, Roediger B, Schnabl J, Díez-Córdova LT, Troulé K, Weninger W, Wagner EF. Cutaneous Immune Cell-Microbiota Interactions Are Controlled by Epidermal JunB/AP-1. Cell Rep 2020; 29:844-859.e3. [PMID: 31644908 PMCID: PMC6856727 DOI: 10.1016/j.celrep.2019.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is a multi-factorial skin disease with a complex inflammatory signature including type 2 and type 17 activation. Although colonization by S. aureus is common in AD, the mechanisms rendering an organism prone to dysbiosis, and the role of IL-17A in the control of S. aureus-induced skin inflammation, are not well understood. Here, we show several pathological aspects of AD, including type 2/type 17 immune responses, elevated IgE, barrier dysfunction, pruritus, and importantly, spontaneous S. aureus colonization in JunBΔep mice, with a large transcriptomic overlap with AD. Additionally, using Rag1−/− mice, we demonstrate that adaptive immune cells are necessary for protection against S. aureus colonization. Prophylactic antibiotics, but not antibiotics after established dysbiosis, reduce IL-17A expression and skin inflammation, examined using Il17a-eGFP reporter mice. Mechanistically, keratinocytes lacking JunB exhibit higher MyD88 levels in vitro and in vivo, previously shown to regulate S. aureus colonization. In conclusion, our data identify JunB as an upstream regulator of microbiota-immune cell interactions and characterize the IL-17A response upon spontaneous dysbiosis. JunBΔep mice display several defining features of atopic dermatitis Skin of JunBΔep mice are colonized by human-derived S. aureus Adaptive immune system is necessary for protection against S. aureus JunB is an upstream regulator of the microbiota-immune cell interactions
Collapse
Affiliation(s)
- Özge Uluçkan
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - Maria Jiménez
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Ben Roediger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Jakob Schnabl
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Lucía T Díez-Córdova
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Kevin Troulé
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Wolfgang Weninger
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Erwin F Wagner
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Department of Dermatology and Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria.
| |
Collapse
|
135
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
136
|
Lee K, Zhang I, Kyman S, Kask O, Cope EK. Co-infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model. Front Cell Infect Microbiol 2020; 10:472. [PMID: 33014894 PMCID: PMC7498577 DOI: 10.3389/fcimb.2020.00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Host-associated bacteria and fungi, comprising the microbiota, are critical to host health. In the airways, the composition and diversity of the mucosal microbiota of patients are associated with airway health status. However, the relationship between airway microbiota and respiratory inflammation is not well-understood. Chronic rhinosinusitis (CRS) is a complex disease that affects up to 14% of the US population. Previous studies have shown decreased microbial diversity in CRS patients and enrichment of either Staphylococcus aureus or Pseudomonas aeruginosa. Although bacterial community composition is variable across CRS patients, Malassezia is a dominant fungal genus in the upper airways of the majority of healthy and CRS subjects. We hypothesize that distinct bacterial-fungal interactions differentially influence host mucosal immune response. Thus, we investigated in vitro and in vivo interactions between Malassezia sympodialis, P. aeruginosa, and S. aureus. The in vitro interactions were evaluated using the modified Kirby-Bauer Assay, Crystal Violet assay for biofilm, and FISH. A pilot murine model of acute sinusitis was used to investigate relationships with the host immune response. S. aureus and P. aeruginosa were intranasally instilled in the presence or absence of M. sympodialis (n = 66 total mice; 3–5/group). Changes in the microbiota were determined using 16S rRNA gene sequencing and host immune response was measured using quantitative real-time PCR (qRT-PCR). In vitro, only late stage planktonic P. aeruginosa and its biofilms inhibited M. sympodialis. Co-infection of mice with M. sympodialis and P. aeruginosa or S. aureus differently influenced the immune response. In co-infected mice, we demonstrate different expression of fungal sensing (Dectin-1), allergic responses (IL-5, and IL-13) and inflammation (IL-10, and IL-17) in murine sinus depending on the bacterial species that co-infected with M. sympodialis (p < 0.05). The pilot results suggest that species-specific interactions in airway-associated microbiota may be implicated driving immune responses. The understanding of the role of bacterial-fungal interactions in CRS will contribute to development of novel therapies toward manipulation of the airway microbiota.
Collapse
Affiliation(s)
- Keehoon Lee
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Irene Zhang
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Shari Kyman
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Oliver Kask
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Emily Kathryn Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
137
|
Lee K, Zhang I, Kyman S, Kask O, Cope EK. Co-infection of Malassezia sympodialis With Bacterial Pathobionts Pseudomonas aeruginosa or Staphylococcus aureus Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model. Front Cell Infect Microbiol 2020. [DOI: 10.10.3389/fcimb.2020.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
138
|
Draberova H, Janusova S, Knizkova D, Semberova T, Pribikova M, Ujevic A, Harant K, Knapkova S, Hrdinka M, Fanfani V, Stracquadanio G, Drobek A, Ruppova K, Stepanek O, Draber P. Systematic analysis of the IL-17 receptor signalosome reveals a robust regulatory feedback loop. EMBO J 2020; 39:e104202. [PMID: 32696476 PMCID: PMC7459424 DOI: 10.15252/embj.2019104202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.
Collapse
Affiliation(s)
- Helena Draberova
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Sarka Janusova
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Daniela Knizkova
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Semberova
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Michaela Pribikova
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Andrea Ujevic
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Karel Harant
- Laboratory of Mass SpectrometryBIOCEVFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Sofija Knapkova
- Department of HaematooncologyUniversity Hospital OstravaOstravaCzech Republic
- Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Matous Hrdinka
- Department of HaematooncologyUniversity Hospital OstravaOstravaCzech Republic
- Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Viola Fanfani
- Institute of Quantitative Biology, Biochemistry, and BiotechnologySynthSysSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Giovanni Stracquadanio
- Institute of Quantitative Biology, Biochemistry, and BiotechnologySynthSysSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Ales Drobek
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Klara Ruppova
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Peter Draber
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
139
|
Jee MH, Mraz V, Geisler C, Bonefeld CM. γδ T cells and inflammatory skin diseases. Immunol Rev 2020; 298:61-73. [DOI: 10.1111/imr.12913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mia Hamilton Jee
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Veronika Mraz
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Charlotte Menné Bonefeld
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
140
|
Natural Self-Ligand Gamma Delta T Cell Receptors (γδTCRs) Insight: The Potential of Induced IgG. Vaccines (Basel) 2020; 8:vaccines8030436. [PMID: 32759782 PMCID: PMC7564284 DOI: 10.3390/vaccines8030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A γδ T cell acquires functional properties in response to the gamma delta T cell receptor γδTCR signal strength during its development in the thymus. The elucidation of the potential ligands of γδ T cell receptors are of extreme importance; however, they are still not understood. Here we revise the actual state of the art of candidates to exert the function of γδTCR ligands, and propose a theoretical contribution about new potential ligands of γδTCRs, based on biological and hypothetical pieces of evidence in the literature. In conclusion, we hypothetically suggest a possible role of induced antibodies according to the individual’s immune status, mainly of the IgG subclass, acting as γδTCR ligands. Considering that IgG production is involved in some essential immunotherapy protocols, and almost all vaccination protocols, our discussion opens a new and broad field to further exploration.
Collapse
|
141
|
Ge Y, Huang M, Yao YM. Biology of Interleukin-17 and Its Pathophysiological Significance in Sepsis. Front Immunol 2020; 11:1558. [PMID: 32849528 PMCID: PMC7399097 DOI: 10.3389/fimmu.2020.01558] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
The interleukin (IL)-17 family includes six structure-related cytokines (A-F). To date, majority of studies have focused on IL-17A. IL-17A plays a pivotal role in various infectious diseases, inflammatory and autoimmune disorders, and cancer. Several recent studies have indicated that IL-17A is a biomarker as well as a therapeutic target in sepsis. In the current review, we summarize the biological functions of IL-17, including IL-17-mediated responses and signal transduction pathways, with particular emphasis on clinical relevance to sepsis.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ming Yao
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Trauma Research Center, Fourth Medical Center and Medical Innovation Research Department of the Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
142
|
O’Brien RL, Born WK. Two functionally distinct subsets of IL‐17 producing γδ T cells. Immunol Rev 2020; 298:10-24. [DOI: 10.1111/imr.12905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Rebecca L. O’Brien
- Department of Biomedical Research National Jewish Health Denver CO USA
- Department of Immunology and Microbiology University of Colorado Denver School of Medicine Aurora CO USA
| | - Willi K. Born
- Department of Biomedical Research National Jewish Health Denver CO USA
- Department of Immunology and Microbiology University of Colorado Denver School of Medicine Aurora CO USA
| |
Collapse
|
143
|
Staphylococcus aureus Fatty Acid Kinase FakA Modulates Pathogenesis during Skin Infection via Proteases. Infect Immun 2020; 88:IAI.00163-20. [PMID: 32513856 DOI: 10.1128/iai.00163-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus fatty acid kinase FakA is necessary for the incorporation of exogenous fatty acids into the lipid membrane. We previously demonstrated that the inactivation of fakA leads to decreased α-hemolysin (Hla) production but increased expression of the proteases SspAB and aureolysin in vitro, and that the ΔfakA mutant causes larger lesions than the wild type (WT) during murine skin infection. As expected, necrosis is Hla dependent in the presence or absence of FakA, as both hla and hla ΔfakA mutants are unable to cause necrosis of the skin. At day 4 postinfection, while the ΔfakA mutant maintains larger and more necrotic abscesses, bacterial numbers are similar to those of the WT, indicating the enhanced tissue damage of mice infected with the ΔfakA mutant is not due to an increase in bacterial burden. At this early stage of infection, skin infected with the ΔfakA mutant has decreased levels of proinflammatory cytokines, such as interleukin-17A (IL-17A) and IL-1α, compared to those of WT-infected skin. At a later stage of infection (day 7), abscess resolution and bacterial clearance are hindered in ΔfakA mutant-infected mice. The paradoxical findings of decreased Hla in vitro but increased necrosis in vivo led us to investigate the role of the proteases regulated by FakA. Utilizing Δaur and ΔsspAB mutants in both the WT and fakA mutant backgrounds, we found that the absence of these proteases in a fakA mutant reduced dermonecrosis to levels similar to those of the WT strain. These studies suggest that the overproduction of proteases is one factor contributing to the enhanced pathogenesis of the ΔfakA mutant during skin infection.
Collapse
|
144
|
Prinz I, Sandrock I, Mrowietz U. Interleukin-17 cytokines: Effectors and targets in psoriasis-A breakthrough in understanding and treatment. J Exp Med 2020; 217:jem.20191397. [PMID: 31727784 PMCID: PMC7037256 DOI: 10.1084/jem.20191397] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
This review summarizes the steps from basic research on IL-17 family cytokines to understanding their role in psoriasis pathogenesis to the approval of a number of monoclonal antibodies targeting IL-17 pathways as first line treatment of psoriasis and psoriatic arthritis. The IL-17 cytokine family comprising IL-17A to IL-17F and receptor subunits IL-17RA to IL-17RE represents a genetically ancient intercellular network regulating local tissue homeostasis. Its pivotal role in antifungal defense and its central position in the pathogenesis of inflammatory diseases including psoriasis were discovered only relatively late in the early 2000s. Since the connection of dysregulated IL-17 and psoriasis pathogenesis turned out to be particularly evident, a number of monoclonal antibodies targeting IL-17 pathways have been approved and are used as first line treatment of moderate-to-severe plaque psoriasis and psoriatic arthritis, and further agents are currently in clinical development.
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Centre for Individualized Infection Medicine, Hannover, Germany.,Cluster of Excellence RESIST - Resolving Infection Susceptibility (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ulrich Mrowietz
- Psoriasis Center at the Department of Dermatology and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
145
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:jem.20190297. [PMID: 31727782 PMCID: PMC7037244 DOI: 10.1084/jem.20190297] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
146
|
Allergic skin inflammation and S. aureus skin colonization are mutually reinforcing. Clin Immunol 2020; 218:108511. [PMID: 32569845 DOI: 10.1016/j.clim.2020.108511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/20/2023]
Abstract
Atopic dermatitis (AD) lesional skin is often colonized with S. aureus, and the load of S. aureus correlates with disease severity. However, a causative and mechanistic link between S. aureus skin colonization and severity of AD is not well established. We made use of well-established mouse model of AD elicited by epicutaneous sensitization of tape stripped skin with ovalbumin to investigate the relationship between allergic skin inflammation and cutaneous S. aureus colonization. Topical application of S aureus exacerbated allergic skin inflammation induced by epicutaneous sensitization with ovalbumin, whereas allergic skin inflammation generated a permissive environment for S. aureus persistence. Our results establish a mutually reinforcing role of allergic skin inflammation and S. aureus skin colonization.
Collapse
|
147
|
Ahn D, Prince A. Participation of the IL-10RB Related Cytokines, IL-22 and IFN-λ in Defense of the Airway Mucosal Barrier. Front Cell Infect Microbiol 2020; 10:300. [PMID: 32637365 PMCID: PMC7318800 DOI: 10.3389/fcimb.2020.00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The airway epithelial barrier is a major barrier protecting against clinically significant infections of the lung. Its integrity is often compromised due to mechanical, chemical, or infectious causes. Opportunistic bacterial pathogens are poised to cause parenchymal infection and become difficult to eradicate due to adaptive metabolic changes, biofilm formation, and the acquisition of antimicrobial resistance and fitness genes. Enhancing mucosal defenses by modulating the cytokines that regulate barrier functions, such as interleukin-22 (IL-22) and interferon-λ (IFN-λ), members of the IL-10 family of cytokines, is an attractive approach to prevent these infections that are associated with high morbidity and mortality. These cytokines both signal through the cognate receptor IL-10RB, have related protein structures and common downstream signaling suggesting shared roles in host respiratory defense. They are typically co-expressed in multiple models of infections, but with differing kinetics. IL-22 has an important role in the producing antimicrobial peptides, upregulating expression of junctional proteins in the airway epithelium and working in concert with other inflammatory cytokines such as IL-17. Conversely, IFN-λ, a potent antiviral in influenza infection with pro-inflammatory properties, appears to decrease junctional integrity allowing for bacterial and immune cell translocation. The effects of these cytokines are pleotropic, with pathogen and tissue specific consequences. Understanding how these cytokines work in the mucosal defenses of the respiratory system may suggest potential targets to prevent invasive infections of the damaged lung.
Collapse
Affiliation(s)
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
148
|
Tsuji R, Fujii T, Nakamura Y, Yazawa K, Kanauchi O. Staphylococcus aureus Epicutaneous Infection Is Suppressed by Lactococcus lactis Strain Plasma via Interleukin 17A Elicitation. J Infect Dis 2020; 220:892-901. [PMID: 31107940 DOI: 10.1093/infdis/jiz204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Lactococcus lactis strain Plasma (LC-Plasma) was revealed to stimulate plasmacytoid dendritic cells and induce antiviral immunity in vitro and in vivo. In this study, we assessed the effects of LC-Plasma on skin immunity. METHODS To evaluate the effect of LC-Plasma on skin immunity and Staphylococcus aureus epicutaneous infection, lymphocyte activities in skin-draining lymph nodes (SLNs) and gene expression in skin were analyzed after 2 weeks of oral administration of LC-Plasma. To evaluate the mechanisms of interleukin 17A production, SLN lymphocytes were cultured with or without LC-Plasma, and the interleukin 17A concentrations in supernatants were measured. RESULTS Oral administration of LC-Plasma activated plasma dendritic cells in SLNs, augmented skin homeostasis, and elicited suppression of Staphylococcus aureus, Staphylococcus epidermidis, and Propionibacterium acnes proliferation. In addition, significant suppression of the S. aureus burden and reduced skin inflammation were observed following oral administration of LC-Plasma. Furthermore, a subsequent in vitro study revealed that LC-Plasma could elicit interleukin 17A production from CD8+ T cells and that its induction mechanism depended on the Toll-like receptor 9 signaling pathway, with type I interferon partially involved. CONCLUSIONS Our results suggest that LC-Plasma oral administration enhances skin homeostasis via plasma dendritic cell activation in SLNs, resulting in suppression of S. aureus epicutaneous infection and skin inflammation.
Collapse
Affiliation(s)
- Ryohei Tsuji
- Research Laboratories for Health Science and Food Technologies, Kirin, Kanagawa
| | - Toshio Fujii
- Research Laboratories for Health Science and Food Technologies, Kirin, Kanagawa
| | - Yuumi Nakamura
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kamiyu Yazawa
- Research Laboratories for Health Science and Food Technologies, Kirin, Kanagawa
| | - Osamu Kanauchi
- Research Laboratories for Health Science and Food Technologies, Kirin, Kanagawa
| |
Collapse
|
149
|
Research Techniques Made Simple: Mouse Bacterial Skin Infection Models for Immunity Research. J Invest Dermatol 2020; 140:1488-1497.e1. [PMID: 32407714 DOI: 10.1016/j.jid.2020.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023]
Abstract
Bacterial skin infections are a major societal health burden and are increasingly difficult to treat owing to the emergence of antibiotic-resistant strains such as community-acquired methicillin-resistant Staphylococcus aureus. Understanding the immunologic mechanisms that provide durable protection against skin infections has the potential to guide the development of immunotherapies and vaccines to engage the host immune response to combat these antibiotic-resistant strains. To this end, mouse skin infection models allow researchers to examine host immunity by investigating the timing, inoculum, route of infection and the causative bacterial species in different wild-type mouse backgrounds as well as in knockout, transgenic, and other types of genetically engineered mouse strains. To recapitulate the various types of human skin infections, many different mouse models have been developed. For example, four models frequently used in dermatological research are based on the route of infection, including (i) subcutaneous infection models, (ii) intradermal infection models, (iii) wound infection models, and (iv) epicutaneous infection models. In this article, we will describe these skin infection models in detail along with their advantages and limitations. In addition, we will discuss how humanized mouse models such as the human skin xenograft on immunocompromised mice might be used in bacterial skin infection research.
Collapse
|
150
|
Chen YS, Chen IB, Pham G, Shao TY, Bangar H, Way SS, Haslam DB. IL-17-producing γδ T cells protect against Clostridium difficile infection. J Clin Invest 2020; 130:2377-2390. [PMID: 31990686 PMCID: PMC7190913 DOI: 10.1172/jci127242] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
Colitis caused by Clostridium difficile infection is a growing cause of human morbidity and mortality, especially after antibiotic use in health care settings. The natural immunity of newborn infants and protective host immune mediators against C. difficile infection are not fully understood, with data suggesting that inflammation can be either protective or pathogenic. Here, we show an essential role for IL-17A produced by γδ T cells in host defense against C. difficile infection. Fecal extracts from children with C. difficile infection showed increased IL-17A and T cell receptor γ chain expression, and IL-17 production by intestinal γδ T cells was efficiently induced after infection in mice. C. difficile-induced tissue inflammation and mortality were markedly increased in mice deficient in IL-17A or γδ T cells. Neonatal mice, with naturally expanded RORγt+ γδ T cells poised for IL-17 production were resistant to C. difficile infection, whereas elimination of γδ T cells or IL-17A each efficiently overturned neonatal resistance against infection. These results reveal an expanded role for IL-17-producing γδ T cells in neonatal host defense against infection and provide a mechanistic explanation for the clinically observed resistance of infants to C. difficile colitis.
Collapse
MESH Headings
- Animals
- Clostridioides difficile/immunology
- Enterocolitis, Pseudomembranous/genetics
- Enterocolitis, Pseudomembranous/immunology
- Enterocolitis, Pseudomembranous/pathology
- Enterocolitis, Pseudomembranous/prevention & control
- Female
- Humans
- Interleukin-17/genetics
- Interleukin-17/immunology
- Male
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Yee-Shiuan Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Iuan-Bor Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Giang Pham
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tzu-Yu Shao
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hansraj Bangar
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sing Sing Way
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - David B. Haslam
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|