101
|
Batra R, Arnold M, Wörheide MA, Allen M, Wang X, Blach C, Levey AI, Seyfried NT, Ertekin-Taner N, Bennett DA, Kastenmüller G, Kaddurah-Daouk RF, Krumsiek J. The landscape of metabolic brain alterations in Alzheimer's disease. Alzheimers Dement 2023; 19:980-998. [PMID: 35829654 PMCID: PMC9837312 DOI: 10.1002/alz.12714] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is accompanied by metabolic alterations both in the periphery and the central nervous system. However, so far, a global view of AD-associated metabolic changes in the brain has been missing. METHODS We metabolically profiled 500 samples from the dorsolateral prefrontal cortex. Metabolite levels were correlated with eight clinical parameters, covering both late-life cognitive performance and AD neuropathology measures. RESULTS We observed widespread metabolic dysregulation associated with AD, spanning 298 metabolites from various AD-relevant pathways. These included alterations to bioenergetics, cholesterol metabolism, neuroinflammation, and metabolic consequences of neurotransmitter ratio imbalances. Our findings further suggest impaired osmoregulation as a potential pathomechanism in AD. Finally, inspecting the interplay of proteinopathies provided evidence that metabolic associations were largely driven by tau pathology rather than amyloid beta pathology. DISCUSSION This work provides a comprehensive reference map of metabolic brain changes in AD that lays the foundation for future mechanistic follow-up studies.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for
Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell
Medicine, New York, NY 10021, USA
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke
University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum
München—German Research Center for Environmental Health, 85764
Neuherberg, Germany
| | - Maria A. Wörheide
- Institute of Computational Biology, Helmholtz Zentrum
München—German Research Center for Environmental Health, 85764
Neuherberg, Germany
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida,
Jacksonville, FL, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic
Florida, Jacksonville, FL, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke
University, Durham, NC, USA
| | - Allan I. Levey
- Goizueta Alzheimer’s Disease Research Center, Emory
University, Atlanta, GA, USA
| | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida,
Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville,
FL, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University
Medical Center, Chicago, IL, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum
München—German Research Center for Environmental Health, 85764
Neuherberg, Germany
| | - Rima F. Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke
Institute for Brain Sciences and Department of Medicine, Duke University, Durham,
NC, 27708, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for
Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell
Medicine, New York, NY 10021, USA
| |
Collapse
|
102
|
Richter E, Geetha T, Burnett D, Broderick TL, Babu JR. The Effects of Momordica charantia on Type 2 Diabetes Mellitus and Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054643. [PMID: 36902074 PMCID: PMC10002567 DOI: 10.3390/ijms24054643] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
T2DM is a complex metabolic disorder characterized by hyperglycemia and glucose intolerance. It is recognized as one of the most common metabolic disorders and its prevalence continues to raise major concerns in healthcare globally. Alzheimer's disease (AD) is a gradual neurodegenerative brain disorder characterized by the chronic loss of cognitive and behavioral function. Recent research suggests a link between the two diseases. Considering the shared characteristics of both diseases, common therapeutic and preventive agents are effective. Certain bioactive compounds such as polyphenols, vitamins, and minerals found in vegetables and fruits can have antioxidant and anti-inflammatory effects that allow for preventative or potential treatment options for T2DM and AD. Recently, it has been estimated that up to one-third of patients with diabetes use some form of complementary and alternative medicine. Increasing evidence from cell or animal models suggests that bioactive compounds may have a direct effect on reducing hyperglycemia, amplifying insulin secretion, and blocking the formation of amyloid plaques. One plant that has received substantial recognition for its numerous bioactive properties is Momordica charantia (M. charantia), otherwise known as bitter melon, bitter gourd, karela, and balsam pear. M. charantia is utilized for its glucose-lowering effects and is often used as a treatment for diabetes and related metabolic conditions amongst the indigenous populations of Asia, South America, India, and East Africa. Several pre-clinical studies have documented the beneficial effects of M. charantia through various postulated mechanisms. Throughout this review, the underlying molecular mechanisms of the bioactive components of M. charantia will be highlighted. More studies will be necessary to establish the clinical efficacy of the bioactive compounds within M. charantia to effectively determine its pertinence in the treatment of metabolic disorders and neurodegenerative diseases, such as T2DM and AD.
Collapse
Affiliation(s)
- Erika Richter
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
103
|
Loughman A, Adler CJ, Macpherson H. Unlocking Modifiable Risk Factors for Alzheimer's Disease: Does the Oral Microbiome Hold Some of the Keys? J Alzheimers Dis 2023; 92:1111-1129. [PMID: 36872775 DOI: 10.3233/jad-220760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Advancing age is recognized as the primary risk factor for Alzheimer's disease (AD); however approximately one third of dementia cases are attributable to modifiable risk factors such as hypertension, diabetes, smoking, and obesity. Recent research also implicates oral health and the oral microbiome in AD risk and pathophysiology. The oral microbiome contributes to the cerebrovascular and neurodegenerative pathology of AD via the inflammatory, vascular, neurotoxic, and oxidative stress pathways of known modifiable risk factors. This review proposes a conceptual framework that integrates the emerging evidence regarding the oral microbiome with established modifiable risk factors. There are numerous mechanisms by which the oral microbiome may interact with AD pathophysiology. Microbiota have immunomodulatory functions, including the activation of systemic pro-inflammatory cytokines. This inflammation can affect the integrity of the blood-brain barrier, which in turn modulates translocation of bacteria and their metabolites to brain parenchyma. Amyloid-β is an antimicrobial peptide, a feature which may in part explain its accumulation. There are microbial interactions with cardiovascular health, glucose tolerance, physical activity, and sleep, suggesting that these modifiable lifestyle risk factors of dementia may have microbial contributors. There is mounting evidence to suggest the relevance of oral health practices and the microbiome to AD. The conceptual framework presented here additionally demonstrates the potential for the oral microbiome to comprise a mechanistic intermediary between some lifestyle risk factors and AD pathophysiology. Future clinical studies may identify specific oral microbial targets and the optimum oral health practices to reduce dementia risk.
Collapse
Affiliation(s)
- Amy Loughman
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, Barwon Health, Geelong, Victoria, Australia
| | - Christina J Adler
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Helen Macpherson
- Deakin University, IPAN - the Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Geelong, Victoria, Australia
| |
Collapse
|
104
|
Ezkurdia A, Ramírez MJ, Solas M. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: A Focus on Insulin Resistance. Int J Mol Sci 2023; 24:ijms24054354. [PMID: 36901787 PMCID: PMC10001958 DOI: 10.3390/ijms24054354] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the main type of dementia and is a disease with a profound socioeconomic burden due to the lack of effective treatment. In addition to genetics and environmental factors, AD is highly associated with metabolic syndrome, defined as the combination of hypertension, hyperlipidemia, obesity and type 2 diabetes mellitus (T2DM). Among these risk factors, the connection between AD and T2DM has been deeply studied. It has been suggested that the mechanism linking both conditions is insulin resistance. Insulin is an important hormone that regulates not only peripheral energy homeostasis but also brain functions, such as cognition. Insulin desensitization, therefore, could impact normal brain function increasing the risk of developing neurodegenerative disorders in later life. Paradoxically, it has been demonstrated that decreased neuronal insulin signalling can also have a protective role in aging and protein-aggregation-associated diseases, as is the case in AD. This controversy is fed by studies focused on neuronal insulin signalling. However, the role of insulin action on other brain cell types, such as astrocytes, is still unexplored. Therefore, it is worthwhile exploring the involvement of the astrocytic insulin receptor in cognition, as well as in the onset and/or development of AD.
Collapse
Affiliation(s)
- Amaia Ezkurdia
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
105
|
Using Optogenetics to Model Cellular Effects of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054300. [PMID: 36901729 PMCID: PMC10001751 DOI: 10.3390/ijms24054300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Across the world a dementia case is diagnosed every three seconds. Alzheimer's disease (AD) causes 50-60% of these cases. The most prominent theory for AD correlates the deposition of amyloid beta (Aβ) with the onset of dementia. Whether Aβ is causative remains unclear due to findings such as the recently approved drug Aducanumab showing effective clearance of Aβ, but not improving cognition. New approaches for understanding Aβ function, are therefore necessary. Here we discuss the application of optogenetic techniques to gain insight into AD. Optogenetics, or genetically encoded, light-dependent on/off switches, provides precise spatiotemporal control to regulate cellular dynamics. This precise control over protein expression and oligomerization or aggregation could provide a better understanding of the etiology of AD.
Collapse
|
106
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
107
|
Hnilicova P, Kantorova E, Sutovsky S, Grofik M, Zelenak K, Kurca E, Zilka N, Parvanovova P, Kolisek M. Imaging Methods Applicable in the Diagnostics of Alzheimer's Disease, Considering the Involvement of Insulin Resistance. Int J Mol Sci 2023; 24:3325. [PMID: 36834741 PMCID: PMC9958721 DOI: 10.3390/ijms24043325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease and the most frequently diagnosed type of dementia, characterized by (1) perturbed cerebral perfusion, vasculature, and cortical metabolism; (2) induced proinflammatory processes; and (3) the aggregation of amyloid beta and hyperphosphorylated Tau proteins. Subclinical AD changes are commonly detectable by using radiological and nuclear neuroimaging methods such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Furthermore, other valuable modalities exist (in particular, structural volumetric, diffusion, perfusion, functional, and metabolic magnetic resonance methods) that can advance the diagnostic algorithm of AD and our understanding of its pathogenesis. Recently, new insights into AD pathoetiology revealed that deranged insulin homeostasis in the brain may play a role in the onset and progression of the disease. AD-related brain insulin resistance is closely linked to systemic insulin homeostasis disorders caused by pancreas and/or liver dysfunction. Indeed, in recent studies, linkages between the development and onset of AD and the liver and/or pancreas have been established. Aside from standard radiological and nuclear neuroimaging methods and clinically fewer common methods of magnetic resonance, this article also discusses the use of new suggestive non-neuronal imaging modalities to assess AD-associated structural changes in the liver and pancreas. Studying these changes might be of great clinical importance because of their possible involvement in AD pathogenesis during the prodromal phase of the disease.
Collapse
Affiliation(s)
- Petra Hnilicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Ema Kantorova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Stanislav Sutovsky
- 1st Department of Neurology, Faculty of Medicine, Comenius University in Bratislava and University Hospital, 813 67 Bratislava, Slovakia
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Petra Parvanovova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
108
|
Laiman J, Hsu YJ, Loh J, Tang WC, Chuang MC, Liu HK, Yang WS, Chen BC, Chuang LM, Chang YC, Liu YW. GSK3α phosphorylates dynamin-2 to promote GLUT4 endocytosis in muscle cells. J Cell Biol 2023; 222:e202102119. [PMID: 36445308 PMCID: PMC9712776 DOI: 10.1083/jcb.202102119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2022] Open
Abstract
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to plasma membrane of skeletal muscle is critical for postprandial glucose uptake; however, whether the internalization of GLUT4 is also regulated by insulin signaling remains unclear. Here, we discover that the activity of dynamin-2 (Dyn2) in catalyzing GLUT4 endocytosis is negatively regulated by insulin signaling in muscle cells. Mechanistically, the fission activity of Dyn2 is inhibited by binding with the SH3 domain of Bin1. In the absence of insulin, GSK3α phosphorylates Dyn2 to relieve the inhibition of Bin1 and promotes endocytosis. Conversely, insulin signaling inactivates GSK3α and leads to attenuated GLUT4 internalization. Furthermore, the isoform-specific pharmacological inhibition of GSK3α significantly improves insulin sensitivity and glucose tolerance in diet-induced insulin-resistant mice. Together, we identify a new role of GSK3α in insulin-stimulated glucose disposal by regulating Dyn2-mediated GLUT4 endocytosis in muscle cells. These results highlight the isoform-specific function of GSK3α on membrane trafficking and its potential as a therapeutic target for metabolic disorders.
Collapse
Affiliation(s)
- Jessica Laiman
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Jung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Julie Loh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chun Tang
- ResearchCenter for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Mei-Chun Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Shun Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Bi-Chang Chen
- ResearchCenter for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Lee-Ming Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
109
|
L K, Ng TKS, Wee HN, Ching J. Gut-brain axis through the lens of gut microbiota and their relationships with Alzheimer's disease pathology: Review and recommendations. Mech Ageing Dev 2023; 211:111787. [PMID: 36736919 DOI: 10.1016/j.mad.2023.111787] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Growing evidence suggests that the gut microbiome (GM) plays a pivotal role in the pathogenesis of AD through the microbiota-gut-brain axis (MGB). Alterations in GM composition and diversity have been observed in both animal models and in human patients with AD. GM dysbiosis has been implicated in increased intestinal permeability, blood-brain barrier (BBB) impairment, neuroinflammation and the development of hallmarks of AD. Further elucidation of the role of GM in AD could pave way for the development of holistic predictive methods for determining AD risk and progression of disease. Furthermore, accumulating evidence suggests that GM modulation could alleviate adverse symptoms of AD or serve as a preventive measure. In addition, increasing evidence shows that Type 2 Diabetes Mellitus (T2DM) is often comorbid with AD, with common GM alterations and inflammatory response, which could chart the development of GM-related treatment interventions for both diseases. We conclude by exploring the therapeutic potential of GM in alleviating symptoms of AD and in reducing risk. Furthermore, we also propose future directions in AD research, namely fecal microbiota transplantation (FMT) and precision medicine.
Collapse
Affiliation(s)
- Krishaa L
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Ted Kheng Siang Ng
- Arizona State University, Edson College of Nursing and Health Innovation, USA.
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore; KK Research Centre, KK Women's and Children's Hospital, Singapore.
| |
Collapse
|
110
|
de Frutos Lucas J, Sewell KR, García-Colomo A, Markovic S, Erickson KI, Brown BM. How does apolipoprotein E genotype influence the relationship between physical activity and Alzheimer's disease risk? A novel integrative model. Alzheimers Res Ther 2023; 15:22. [PMID: 36707869 PMCID: PMC9881295 DOI: 10.1186/s13195-023-01170-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/15/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Wide evidence suggests that physical activity (PA) confers protection against Alzheimer's disease (AD). On the other hand, the apolipoprotein E gene (APOE) ε4 allele represents the greatest genetic risk factor for developing AD. Extensive research has been conducted to determine whether frequent PA can mitigate the increased AD risk associated with APOE ε4. However, thus far, these attempts have produced inconclusive results. In this context, one possible explanation could be that the influence of the combined effect of PA and APOE ε4 carriage might be dependent on the specific outcome measure utilised. MAIN BODY In order to bridge these discrepancies, the aim of this theoretical article is to propose a novel model on the interactive effects of PA and APOE ε4 carriage on well-established mechanisms underlying AD. Available literature was searched to investigate how PA and APOE ε4 carriage, independently and in combination, may alter several molecular pathways involved in AD pathogenesis. The reviewed mechanisms include amyloid beta (Aβ) and tau deposition and clearance, neuronal resilience and neurogenesis, lipid function and cerebrovascular alterations, brain immune response and glucose metabolism. Finally, combining all this information, we have built an integrative model, which includes evidence-based and theoretical synergistic interactions across mechanisms. Moreover, we have identified key knowledge gaps in the literature, providing a list of testable hypotheses that future studies need to address. CONCLUSIONS We conclude that PA influences a wide array of molecular targets involved in AD neuropathology. A deeper understanding of where, when and, most importantly, how PA decreases AD risk even in the presence of the APOE ε4 allele will enable the creation of new protocols using exercise along pharmaceuticals in combined therapeutic approaches.
Collapse
Affiliation(s)
- Jaisalmer de Frutos Lucas
- Experimental Psychology, Cognitive Processes and Logopedia Department, School of Psychology, Universidad Complutense de Madrid, 28223, Pozuelo de Alarcón, Spain.
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- Departamento de PsicologíaFacultad de Ciencias de la Vida y de la Naturaleza, Universidad Antonio de Nebrija, 28015, Madrid, Spain.
| | - Kelsey R Sewell
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Alejandra García-Colomo
- Experimental Psychology, Cognitive Processes and Logopedia Department, School of Psychology, Universidad Complutense de Madrid, 28223, Pozuelo de Alarcón, Spain
| | - Shaun Markovic
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
- AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Belinda M Brown
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Australian Alzheimer's Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
111
|
Lin Y, Gong Z, Ma C, Wang Z, Wang K. Relationship between glycemic control and cognitive impairment: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1126183. [PMID: 36776436 PMCID: PMC9909073 DOI: 10.3389/fnagi.2023.1126183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Background Diabetes mellitus, or hyperglycemia, is an independent risk factor for cognitive impairment. Here we systematically analyzed whether glycemic control could improve cognitive impairment in patients with diabetes mellitus (DM), hyperglycemia, or insulin resistance. Methods Three databases (PubMed, EMBASE, and Cochrane Library) and ClinicalTrials.gov were searched for randomized controlled trials analyzing the relationship between glycemic control and cognitive function assessments, published from database inception to June 2022. Patients in experimental groups were treated with antidiabetic drugs, while control groups were treated with a placebo or alternative antidiabetic drugs. Data analysis was conducted using RevMan 5.3 and StataSE-64, and standardized mean difference (SMD) and 95% confidence intervals (CIs) were calculated. Results Thirteen studies comprising 19,314 participants were included. Analysis revealed that glycemic control significantly attenuated the degree of decline in cognitive function assessment scores (SMD = 0.15; 95% CI 0.05, 0.26; p < 0.00001), and funnel plots confirmed no publication bias. Seven studies used Mini-Mental State Examination as the primary cognitive function assessment, showing that glycemic control significantly delayed the degree of decline in cognitive function assessment scores (SMD = 0.18; 95% CI 0.03, 0.34; p = 0.02). Similar results were seen in two studies using the Montreal Cognitive Assessment scale, but without significant difference (SMD = 0.05; 95% CI-0.10, 0.21; p = 0.51). One study using Auditory Word Learning Test (AVLT) showed that glycemic control significantly delayed the decline in cognitive function assessment scores (SMD = 0.52; 95% CI 0.11,0.93; p = 0.01), and another used Wechsler Memory Scale Revised, showing similar results (SMD = 1.45; 95% CI 0.86, 2.04; p < 0.00001). Likewise, a study that used Modified Mini-Mental State scale showed that glycemic control significantly delayed the decline in cognitive function assessment scores (SMD = -0.10; 95% CI-0.16, -0.03; p = 0.005). Lastly, one study used AVLT subtests to show that glycemic control delayed the decline in cognitive function assessment scores, although not statistically significant (SMD = 0.09; 95% CI-0.53, 0.71; p = 0.78). Conclusion Glycemic control through antidiabetic treatment correlates with the improvement of cognitive impairment in patients with DM, hyperglycemia or insulin resistance. However, further studies are needed to validate the results of this study. Systematic Review Registration PROSPERO, identifier CRD42022342260.
Collapse
Affiliation(s)
- Yufeng Lin
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Chunchao Ma
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China,*Correspondence: Kaiyuan Wang, ; Zhiyun Wang,
| | - Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,*Correspondence: Kaiyuan Wang, ; Zhiyun Wang,
| |
Collapse
|
112
|
Fihurka O, Wang Y, Hong Y, Lin X, Shen N, Yang H, Brown B, Mommer M, Zieneldien T, Li Y, Kim J, Li M, Cai J, Zhou Q, Cao C. Multi-Targeting Intranasal Nanoformulation as a Therapeutic for Alzheimer's Disease. Biomolecules 2023; 13:232. [PMID: 36830601 PMCID: PMC9953380 DOI: 10.3390/biom13020232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Melatonin, insulin, and Δ9-tetrahydrocannabinol (THC) have been shown to reverse cognitive deficits and attenuate neuropathologies in transgenic mouse models of Alzheimer's disease (AD) when used individually. Here, we evaluated the therapeutic properties of long-term intranasal treatment with a novel nanoformulation containing melatonin, insulin, and THC in aged APPswe/PS1ΔE9 (APP/PS1) mice, a transgenic model of AD. Transgenic mice at the age of 12 months were intranasally administered with a new nanoformulation containing melatonin, insulin, and THC at doses of 0.04, 0.008, and 0.02 mg/kg, respectively, once daily for 3 months. The spatial memory of the mice was assessed using the radial arm water maze (RAWM) test before and after drug treatment. Brain tissues were collected at the end of the treatment period for the assessment of Aβ load, tauopathy state, and markers of mitochondrial function. The RAWM test revealed that the treatment with the melatonin-insulin-THC (MIT) nasal spray improved the spatial learning memory of APP/PS1 mice significantly. Results of protein analyses of brain homogenates indicated that MIT treatment significantly decreased the tau phosphorylation implicated in tau toxicity (p < 0.05) and the expression of CKMT1 associated with mitochondrial dysfunction. Moreover, MIT significantly decreased the expression of two mitochondrial fusion-related proteins, Mfn2 and Opa1 (p < 0.01 for both), while increasing the expression of a mitophagy regulator, Parkin, suggesting a compensatory enhancement of mitophagy due to MIT-promoted mitochondrial fusion. In conclusion, this study was the first to demonstrate the ability of an MIT nanoformulation to improve spatial memory in AD mice through its multi-targeting effects on Aβ production, tau phosphorylation, and mitochondrial dynamics. Thus, MIT may be a safe and effective therapeutic for AD.
Collapse
Affiliation(s)
- Oksana Fihurka
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Yanhong Wang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yuzhu Hong
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Ning Shen
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Haiqiang Yang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Breanna Brown
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Marcus Mommer
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yitong Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Minghua Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Jianfeng Cai
- Department of Chemistry, College of Arts & Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Qingyu Zhou
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- Department of Neurology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Chemistry, College of Arts & Sciences, University of South Florida, Tampa, FL 33612, USA
- USF-health Byrd Alzheimer Institute, Tampa, FL 33612, USA
| |
Collapse
|
113
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
114
|
Grobler C, van Tongeren M, Gettemans J, Kell DB, Pretorius E. Alzheimer's Disease: A Systems View Provides a Unifying Explanation of Its Development. J Alzheimers Dis 2023; 91:43-70. [PMID: 36442193 DOI: 10.3233/jad-220720] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting 50 million people globally. It is characterized by the presence of extracellular senile plaques and intracellular neurofibrillary tangles, consisting of amyloid-β and hyperphosphorylated tau proteins, respectively. Despite global research efforts, there is currently no cure available, due in part to an incomplete understanding of the disease pathogenesis. Numerous possible mechanisms, or hypotheses, explaining the origins of sporadic or late-onset AD have been proposed, including the amyloid-β, inflammatory, vascular, and infectious hypotheses. However, despite ample evidence, the failure of multiple trial drugs at the clinical stage illuminates the possible pitfalls of these hypotheses. Systems biology is a strategy which aims to elucidate the interactions between parts of a whole. Using this approach, the current paper shows how the four previously mentioned hypotheses of AD pathogenesis can be intricately connected. This approach allows for seemingly contradictory evidence to be unified in a system-focused explanation of sporadic AD development. Within this view, it is seen that infectious agents, such as P. gingivalis, may play a central role. The data presented here shows that when present, P. gingivalis or its virulence factors, such as gingipains, may induce or exacerbate pathologies underlying sporadic AD. This evidence supports the view that infectious agents, and specifically P. gingivalis, may be suitable treatment targets in AD.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Marvi van Tongeren
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
115
|
Pang S, Li S, Cheng H, Luo Z, Qi X, Guan F, Dong W, Gao S, Liu N, Gao X, Pan S, Zhang X, Zhang L, Yang Y, Zhang L. Discovery of an evodiamine derivative for PI3K/AKT/GSK3β pathway activation and AD pathology improvement in mouse models. Front Mol Neurosci 2023; 15:1025066. [PMID: 36698780 PMCID: PMC9868638 DOI: 10.3389/fnmol.2022.1025066] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neurodegeneration and cognitive decline. Evodiamine, a main component in Chinese medicine, was found to improve cognitive impairment in AD model mice based on several intensive studies. However, evodiamine has high cytotoxicity and poor bioactivity. In this study, several evodiamine derivatives were synthesized via heterocyclic substitution and amide introduction and screened for cytotoxicity and antioxidant capacity. Under the same concentrations, compound 4c was found to exhibit lower cytotoxicity and higher activity against H2O2 and amyloid β oligomers (AβOs) than evodiamine in vitro and significantly improve the working memory and spatial memory of 3 x Tg and APP/PS1 AD mice. Subsequent RNA sequencing and pathway enrichment analysis showed that 4c affected AD-related genes and the AMPK and insulin signaling pathways. Furthermore, we confirmed that 4c recovered PI3K/AKT/GSK3β/Tau dysfunction in vivo and in vitro. In conclusion, 4c represents a potential lead compound for AD therapy based on the recovery of PI3K/AKT/GSK3β pathway dysfunction.
Collapse
Affiliation(s)
- Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Siyuan Li
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanzeng Cheng
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuohui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Pan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yajun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Yajun Yang ✉
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China,Lianfeng Zhang ✉
| |
Collapse
|
116
|
Brain O-GlcNAcylation: From Molecular Mechanisms to Clinical Phenotype. ADVANCES IN NEUROBIOLOGY 2023; 29:255-280. [DOI: 10.1007/978-3-031-12390-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
117
|
Capucho AM, Chegão A, Martins FO, Melo BF, Madeira N, Sacramento JF, Fonseca R, Vicente Miranda H, Conde SV. Carotid Body Resection Prevents Short-Term Spatial Memory Decline in Prediabetic Rats Without Changing Insulin Signaling in the Hippocampus and Prefrontal Cortex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:143-152. [PMID: 37322345 DOI: 10.1007/978-3-031-32371-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Individuals who develop type 2 diabetes (T2D) at an early age are at higher risk of developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease. A shared dysfunctional characteristic between T2D and these neurodegenerative disorders is insulin resistance. Recently, it was shown that prediabetes animals and patients exhibited increased carotid body (CB) activity. Moreover, these organs are deeply involved in the development of metabolic diseases, since upon abolishment of their activity via carotid sinus nerve (CSN) resection, several dysmetabolic features of T2D were reverted. Herein, we investigated if CSN resection may also prevent cognitive impairment associated with brain insulin resistance. We explored a diet-induced prediabetes animal model where Wistar rats are kept in a high fat-high sucrose (HFHSu) diet for 20 weeks. We evaluated CSN resection effects on behavioral parameters and on insulin signaling-related proteins levels, in the prefrontal cortex and the hippocampus. HFHSu animals exhibited impaired short-term memory evaluated by the y-maze test. Remarkably, CSN resection prevented the development of this phenotype. HFHSu diet or CSN resection did not promote significant alterations in insulin signaling-associated proteins levels. Our findings suggest that CBs modulation might have a role in preventing short-term spatial memory deficits associated with peripheral dysmetabolic states.
Collapse
Affiliation(s)
- Adriana M Capucho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Chegão
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Fátima O Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bernardete F Melo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Natália Madeira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Rosalina Fonseca
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| | - Sílvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
118
|
Vratarić M, Šenk V, Bursać B, Gligorovska L, Ignjatović D, Kovačević S, Veličković N, Djordjevic A. Fructose diet ameliorate effects of macrophage migration inhibitory factor deficiency on prefrontal cortex inflammation, neural plasticity, and behavior in male mice. Biofactors 2023; 49:90-107. [PMID: 34767656 DOI: 10.1002/biof.1802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that represents a link between diet-induced inflammation and insulin resistance. Our aim was to examine whether fructose diet affects inflammation and insulin signaling in the prefrontal cortex (PFC) of Mif knockout mice (MIF-KO), and their possible link to neural plasticity and behavior. We analyzed nuclear factor κB (NF-κB) and glucocorticoid signaling, expression of F4/80, IL-1β, TNF-α, TLR-4, MyD88, arginase 1 (Arg-1), mannose receptor (Mrc-1), and leukemia inhibitory factor (Lif) to assess inflammation in the PFC of C57/BL6J and MIF-KO mice consuming 20% fructose solution for 9 weeks. Insulin receptor (IR), IRS-1 serine phosphorylations (307 and 1101) and activity of PKCα, Akt, GSK-3β and AMPKα were used to analyze insulin signaling. Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) mRNA levels, together with synapthophysin and PSD-95 protein level and calcium calmodulin-dependent kinase 2 (CaMKII) activity, were used as plasticity markers. Behavior was examined in elevated plus maze, light dark box and novel object recognition test. The results showed concomitant increase of Tnf-α, Tlr-4, MyD88 and M2 microglia markers (Arg-1, Mrc-1, Lif) in the PFC of MIF-KO, paralleled with unchanged glucocorticoid and insulin signaling. Increase of BDNF and IGF-1 was paralleled with increased CaMKII activity, decreased PSD-95 protein level, anxiogenic behavior, and impaired memory in MIF-KO mice. Fructose feeding restored these parameters in the PFC to the control level and mitigated behavioral changes, suggesting that ameliorating effects of fructose on neuroinflammation and behavior depend on the presence of MIF.
Collapse
Affiliation(s)
- Miloš Vratarić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vladimir Šenk
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Ignjatović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
119
|
Flynn CM, Yuan Q. Probiotic supplement as a promising strategy in early tau pathology prevention: Focusing on GSK-3β? Front Neurosci 2023; 17:1159314. [PMID: 37034173 PMCID: PMC10073452 DOI: 10.3389/fnins.2023.1159314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Neurofibrillary tangles (NFT) is one of the hallmarks of Alzheimer's disease (AD). Recent research suggests that pretangle tau, the soluble precursor of NFT, is an initiator for AD pathogenesis, thus targeting pretangle tau pathology may be a promising early intervention focus. The bidirectional communications between the gut and the brain play a crucial role in health. The compromised gut-brain axis is involved in various neurodegenerative diseases including AD. However, most research on the relationship between gut microbiome and AD have focused on amyloid-β. In this mini review, we propose to target preclinical pretangle tau stages with gut microbiota interventions such as probiotic supplementation. We discuss the importance of targeting pretangle tau that starts decades before the onset of clinical symptoms, and potential intervention focusing on probiotic regulation of tau hyperphosphorylation. A particular focus is on GSK-3β, a protein kinase that is at the interface between tau phosphorylation, AD and diabetes mellitus.
Collapse
|
120
|
Onikanni SA, Lawal B, Oyinloye BE, Ajiboye BO, Ulziijargal S, Wang CH, Emran TB, Simal-Gandara J. Mitochondrial defects in pancreatic beta-cell dysfunction and neurodegenerative diseases: Pathogenesis and therapeutic applications. Life Sci 2023; 312:121247. [PMID: 36450327 DOI: 10.1016/j.lfs.2022.121247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria malfunction is linked to the development of β-cell failure and a variety of neurodegenerative disorders. Pancreatic β-cells are normally configured to detect glucose and other food secretagogues in order to adjust insulin exocytosis and maintain glucose homeostasis. As a result of the increased glucose level, mitochondria metabolites and nucleotides are produced, which operate in concert with cytosolic Ca2+ to stimulate insulin secretion. Furthermore, mitochondria are the primary generators of adenosine triphosphate (ATP), reactive oxygen species (ROS), and apoptosis regulation. Mitochondria are concentrated in synapses, and any substantial changes in synaptic mitochondria location, shape, quantity, or function might cause oxidative stress, resulting in faulty synaptic transmission, a symptom of various degenerative disorders at an early stage. However, a greater understanding of the role of mitochondria in the etiology of β-cell dysfunction and neurodegenerative disorder should pave the way for a more effective approach to addressing these health issues. This review looks at the widespread occurrence of mitochondria depletion in humans, and its significance to mitochondria biogenesis in signaling and mitophagy. Proper understanding of the processes might be extremely beneficial in ameliorating the rising worries about mitochondria biogenesis and triggering mitophagy to remove depleted mitochondria, therefore reducing disease pathogenesis.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan; Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Babatunji Emmanuel Oyinloye
- Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria; Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria; Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University of Technology, Oye-Ekiti, Ekiti State, Nigeria
| | - Sukhbat Ulziijargal
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hao Wang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
121
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
122
|
Kulminski AM, Feng F, Loiko E, Nazarian A, Loika Y, Culminskaya I. Prevailing Antagonistic Risks in Pleiotropic Associations with Alzheimer's Disease and Diabetes. J Alzheimers Dis 2023; 94:1121-1132. [PMID: 37355909 PMCID: PMC10666173 DOI: 10.3233/jad-230397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND The lack of efficient preventive interventions against Alzheimer's disease (AD) calls for identifying efficient modifiable risk factors for AD. As diabetes shares many pathological processes with AD, including accumulation of amyloid plaques and neurofibrillary tangles, insulin resistance, and impaired glucose metabolism, diabetes is thought to be a potentially modifiable risk factor for AD. Mounting evidence suggests that links between AD and diabetes may be more complex than previously believed. OBJECTIVE To examine the pleiotropic architecture of AD and diabetes mellitus (DM). METHODS Univariate and pleiotropic analyses were performed following the discovery-replication strategy using individual-level data from 10 large-scale studies. RESULTS We report a potentially novel pleiotropic NOTCH2 gene, with a minor allele of rs5025718 associated with increased risks of both AD and DM. We confirm previously identified antagonistic associations of the same variants with the risks of AD and DM in the HLA and APOE gene clusters. We show multiple antagonistic associations of the same variants with AD and DM in the HLA cluster, which were not explained by the lead SNP in this cluster. Although the ɛ2 and ɛ4 alleles played a major role in the antagonistic associations with AD and DM in the APOE cluster, we identified non-overlapping SNPs in this cluster, which were adversely and beneficially associated with AD and DM independently of the ɛ2 and ɛ4 alleles. CONCLUSION This study emphasizes differences and similarities in the heterogeneous genetic architectures of AD and DM, which may differentiate the pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Fan Feng
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
123
|
Silveira PCL, Rodrigues MS, Gelain DP, de Oliveira J. Gold nanoparticles application to the treatment of brain dysfunctions related to metabolic diseases: evidence from experimental studies. Metab Brain Dis 2023; 38:123-135. [PMID: 35922735 DOI: 10.1007/s11011-022-00929-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 02/03/2023]
Abstract
Nanotechnology is an emerging and expanding technology worldwide. The manipulation of materials on a nanometric scale generates new products with unique properties called nanomaterials. Due to its significant expansion, nanotechnology has been applied in several fields of study, including developing materials for biomedical applications, i.e., nanomedicine. The use of nanomaterials, including nanoparticles, in nanomedicine, is promising and has been associated with pharmacokinetics, bioavailability, and therapeutic advantages. In this regard, it is worth mentioning the Gold Nanoparticles (AuNPs). AuNPs' biomedical application is extensively investigated due to their high biocompatibility, simple preparation, catalytic, and redox properties. Experimental studies have pointed out critical therapeutic actions related to AuNPs in different pathophysiological contexts, mainly due to their anti-inflammatory and antioxidant effects. Thus, in this review, we will discuss the main experimental findings related to the therapeutic properties of AuNPs in metabolic, neurodegenerative diseases, and ultimately brain dysfunctions related to metabolic diseases.
Collapse
Affiliation(s)
- Paulo César Lock Silveira
- Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Matheus Scarpatto Rodrigues
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
124
|
Gu S, Zhou Z, Zhang S, Cai Y. Advances in Anti-Diabetic Cognitive Dysfunction Effect of Erigeron Breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16:ph16010050. [PMID: 36678547 PMCID: PMC9867432 DOI: 10.3390/ph16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid β hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.
Collapse
Affiliation(s)
- Shanye Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziyi Zhou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shijie Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Yefeng Cai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-136-3133-3842
| |
Collapse
|
125
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
126
|
Huang W, Qiu W, Chen K, Ye S, Wang D, Hu J, Xu H, Lin L, Li X. Research progress of fibroblast growth factor in nervous system diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:738-749. [PMID: 36915973 PMCID: PMC10262007 DOI: 10.3724/zdxbyxb-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenting Huang
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wanhua Qiu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Kun Chen
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Shasha Ye
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Dongxue Wang
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Jian Hu
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Huiqin Xu
- 1. Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li Lin
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xiaokun Li
- 2. School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
127
|
Cassano V, Tallarico M, Armentaro G, De Sarro C, Iannone M, Leo A, Citraro R, Russo E, De Sarro G, Hribal ML, Sciacqua A. Ranolazine Attenuates Brain Inflammation in a Rat Model of Type 2 Diabetes. Int J Mol Sci 2022; 23:16160. [PMID: 36555798 PMCID: PMC9782607 DOI: 10.3390/ijms232416160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Recent studies suggest a pathogenetic association between metabolic disturbances, including type 2 diabetes (T2DM), and cognitive decline and indicate that T2DM may represent a risk factor for Alzheimer's disease (AD). There are a number of experimental studies presenting evidence that ranolazine, an antianginal drug, acts as a neuroprotective drug. The aim of the present study was to evaluate the effects of ranolazine on hippocampal neurodegeneration and astrocytes activation in a T2DM rat model. Diabetes was induced by a high fat diet (HFD) and streptozotocin (STZ) injection. Animals were divided into the following groups: HFD/STZ + Ranolazine, HFD/STZ + Metformin, HFD/STZ + Vehicle, NCD + Vehicle, NCD + Ranolazine and NCD + Metformin. The presence of neurodegeneration was evaluated in the hippocampal cornus ammonis 1 (CA1) region by cresyl violet staining histological methods, while astrocyte activation was assessed by western blot analysis. Staining with cresyl violet highlighted a decrease in neuronal density and cell volume in the hippocampal CA1 area in diabetic HFD/STZ + Vehicle rats, while ranolazine and metformin both improved T2DM-induced neuronal loss and neuronal damage. Moreover, there was an increased expression of GFAP in the HFD/STZ + Vehicle group compared to the treated diabetic groups. In conclusion, in the present study, we obtained additional evidence supporting the potential use of ranolazine to counteract T2DM-associated cognitive decline.
Collapse
Affiliation(s)
- Velia Cassano
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Martina Tallarico
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy
| | - Giuseppe Armentaro
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Caterina De Sarro
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Antonio Leo
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy
| | | | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| |
Collapse
|
128
|
LLabre JE, Gil C, Amatya N, Lagalwar S, Possidente B, Vashishth D. Degradation of Bone Quality in a Transgenic Mouse Model of Alzheimer's Disease. J Bone Miner Res 2022; 37:2548-2565. [PMID: 36250342 PMCID: PMC9772191 DOI: 10.1002/jbmr.4723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) patients present with symptoms such as impairment of insulin signaling, chronic inflammation, and oxidative stress. Furthermore, there are comorbidities associated with AD progression. For example, osteoporosis is common with AD wherein patients exhibit reduced mineralization and a risk for fragility fractures. However, there is a lack of understanding on the effects of AD on bone beyond loss of bone density. To this end, we investigated the effects of AD on bone quality using the 5XFAD transgenic mouse model in which 12-month-old 5XFAD mice showed accumulation of amyloid-beta (Aβ42) compared with wild-type (WT) littermates (n = 10/group; 50% female, 50% male). Here, we observed changes in cortical bone but not in cancellous bone quality. Both bone mass and bone quality, measured in femoral samples using imaging (micro-CT, confocal Raman spectroscopy, X-ray diffraction [XRD]), mechanical (fracture tests), and chemical analyses (biochemical assays), were altered in the 5XFAD mice compared with WT. Micro-CT results showed 5XFAD mice had lower volumetric bone mineral density (BMD) and increased endocortical bone loss. XRD results showed decreased mineralization with smaller mineral crystals. Bone matrix compositional properties, from Raman, showed decreased crystallinity along with higher accumulation of glycoxidation products and glycation products, measured biochemically. 5XFAD mice also demonstrated loss of initiation and maximum toughness. We observed that carboxymethyl-lysine (CML) and mineralization correlated with initiation toughness, whereas crystal size and pentosidine (PEN) correlated with maximum toughness, suggesting bone matrix changes predominated by advanced glycation end products (AGEs) and altered/poor mineral quality explained loss of fracture toughness. Our findings highlight two pathways to skeletal fragility in AD through alteration of bone quality: (i) accumulation of AGEs; and (ii) loss of crystallinity, decreased crystal size, and loss of mineralization. We observed that the accumulation of amyloidosis in brain correlated with an increase in several AGEs, consistent with a mechanistic link between elevated Aβ42 levels in the brain and AGE accumulation in bone. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Joan E. LLabre
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Cristianel Gil
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Neha Amatya
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Sarita Lagalwar
- Neuroscience Program, Skidmore College, Saratoga Springs, NY, USA
| | | | - Deepak Vashishth
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
129
|
Taghadosi Z, Zarifkar A, Razban V, Aligholi H. The effect of chronic stress and its preconditioning on spatial memory as well as hippocampal LRP1 and RAGE expression in a streptozotocin-induced rat model of Alzheimer's disease. Metab Brain Dis 2022; 37:2699-2710. [PMID: 35930096 DOI: 10.1007/s11011-022-01044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/26/2022] [Indexed: 10/16/2022]
Abstract
According to available evidence, prolonged or chronic exposure to stress is detrimental to various brain structures, including the hippocampus. The current study examined the expression of two critical blood-brain barrier receptors required for amyloid-beta clearance to understand better the mechanism by which chronic stress impairs learning and memory in patients with Alzheimer's disease (AD). Rats were randomly assigned to one of two groups in this study: experiment 1 and experiment 2. Each main group was then divided into four subgroups. Rats were bilaterally injected with streptozotocin (STZ, 3 mg/kg, twice) using the intracerebroventricular (ICV) technique to induce the Alzheimer's model. Additionally, they were subjected to foot shock (1 mA, 1 Hz) for 10 s every 60 s (1 h/day) for ten consecutive days prior to and following STZ injection. The Morris Water Maze (MWM) test was used to assess spatial learning and memory. Real-time PCR was used to determine Low-density lipoprotein receptor-related protein-1 (LRP1) and receptor for advanced glycation end-products (RAGE) mRNA levels in the hippocampus. Moreover, the animals' body weights were determined as physiological parameters in all groups. The results indicated that 10-day chronic electric foot shock stress reduced body weight, impaired spatial learning and memory, decreased hippocampal LRP1 mRNA expression, and increased hippocampal RAGE mRNA expression in a rat AD model. It can be concluded that chronic stress in conjunction with AD alters the expression of LRP1 and RAGE in the hippocampus. The findings pave the way for scientists to develop novel treatment strategies for AD.
Collapse
Affiliation(s)
- Zohreh Taghadosi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
130
|
Kubis-Kubiak A, Wiatrak B, Piwowar A. Hyper-glycemia and insulinemia induce morphological changes and modulate secretion of S100B, S100A8, amyloid β 1–40 and amyloid β 1–42, in a model of human dopaminergic neurons. Biomed Pharmacother 2022; 156:113869. [DOI: 10.1016/j.biopha.2022.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
131
|
Malin SK, Stewart NR, Ude AA, Alderman BL. Brain insulin resistance and cognitive function: influence of exercise. J Appl Physiol (1985) 2022; 133:1368-1380. [PMID: 36269295 PMCID: PMC9744647 DOI: 10.1152/japplphysiol.00375.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Exercise has systemic health benefits in people, in part, through improving whole body insulin sensitivity. The brain is an insulin-sensitive organ that is often underdiscussed relative to skeletal muscle, liver, and adipose tissue. Although brain insulin action may have only subtle impacts on peripheral regulation of systemic glucose homeostasis, it is important for weight regulation as well as mental health. In fact, brain insulin signaling is also involved in processes that support healthy cognition. Furthermore, brain insulin resistance has been associated with age-related declines in memory and executive function as well as Alzheimer's disease pathology. Herein, we provide an overview of brain insulin sensitivity in relation to cognitive function from animal and human studies, with particular emphasis placed on the impact exercise may have on brain insulin sensitivity. Mechanisms discussed include mitochondrial function, brain growth factors, and neurogenesis, which collectively help combat obesity-related metabolic disease and Alzheimer's dementia.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, New Jersey
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Nathan R Stewart
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
| | - Andrew A Ude
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
| | - Brandon L Alderman
- Department of Kinesiology & Health, Rutgers University, New Brunswick, New Jersey
- Center of Alcohol and Substance Use Studies, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
132
|
Dyńka D, Kowalcze K, Paziewska A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022; 14:5003. [PMID: 36501033 PMCID: PMC9739023 DOI: 10.3390/nu14235003] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Over a hundred years of study on the favourable effect of ketogenic diets in the treatment of epilepsy have contributed to a long-lasting discussion on its potential influence on other neurological diseases. A significant increase in the number of scientific studies in that field has been currently observed. The aim of this paper is a widespread, thorough analysis of the available scientific evidence in respect of the role of the ketogenic diet in the therapy of neurological diseases such as: epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A wide range of the mechanisms of action of the ketogenic diet has been demonstrated in neurological diseases, including, among other effects, its influence on the reduction in inflammatory conditions and the amount of reactive oxygen species (ROS), the restoration of the myelin sheath of the neurons, the formation and regeneration of mitochondria, neuronal metabolism, the provision of an alternative source of energy for neurons (ketone bodies), the reduction in glucose and insulin concentrations, the reduction in amyloid plaques, the induction of autophagy, the alleviation of microglia activation, the reduction in excessive neuronal activation, the modulation of intestinal microbiota, the expression of genes, dopamine production and the increase in glutamine conversion into GABA. The studies discussed (including randomised controlled studies), conducted in neurological patients, have stressed the effectiveness of the ketogenic diet in the treatment of epilepsy and have demonstrated its promising therapeutic potential in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and migraine. A frequent advantage of the diet was demonstrated over non-ketogenic diets (in the control groups) in the therapy of neurological diseases, with simultaneous safety and feasibility when conducting the nutritional model.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Katarzyna Kowalcze
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
133
|
Li Z, Li S, Xiao Y, Zhong T, Yu X, Wang L. Nutritional intervention for diabetes mellitus with Alzheimer's disease. Front Nutr 2022; 9:1046726. [PMID: 36458172 PMCID: PMC9707640 DOI: 10.3389/fnut.2022.1046726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2025] Open
Abstract
The combined disease burden of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing, and the two diseases share some common pathological changes. However, the pharmacotherapeutic approach to this clinical complexity is limited to symptomatic rather than disease-arresting, with the possible exception of metformin. Whether nutritional intervention might extend or synergize with these effects of metformin is of interest. In particular, dietary patterns with an emphasis on dietary diversity shown to affect cognitive function are of growing interest in a range of food cultural settings. This paper presents the association between diabetes and AD. In addition, the cross-cultural nutritional intervention programs with the potential to mitigate both insulin resistance (IR) and hyperglycemia, together with cognitive impairment are also reviewed. Both dietary patterns and nutritional supplementation showed the effects of improving glycemic control and reducing cognitive decline in diabetes associated with AD, but the intervention specificity remained controversial. Multi-nutrient supplements combined with diverse diets may have preventive and therapeutic potential for DM combined with AD, at least as related to the B vitamin group and folate-dependent homocysteine (Hcy). The nutritional intervention has promise in the prevention and management of DM and AD comorbidities, and more clinical studies would be of nutritional scientific merit.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
134
|
Bagheri-Mohammadi S, Askari S, Alani B, Moosavi M, Ghasemi R. Cinnamaldehyde Regulates Insulin and Caspase-3 Signaling Pathways in the Sporadic Alzheimer's Disease Model: Involvement of Hippocampal Function via IRS-1, Akt, and GSK-3β Phosphorylation. J Mol Neurosci 2022; 72:2273-2291. [PMID: 36210429 DOI: 10.1007/s12031-022-02075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/01/2022] [Indexed: 12/14/2022]
Abstract
Insulin signaling disruption and caspase-3 cleavage play a pathologic role in Alzheimer's disease (AD). Evidence suggested that cinnamaldehyde (Cin), the major component of cinnamon, has the ability to act as a neuroprotective agent. However, little evidence is available to demonstrate its effectiveness in regulating the insulin and caspase-3 signaling pathways and underlying molecular mechanisms. Therefore, the present study was conducted to correlate the molecular mechanisms of these signaling pathways and Cin treatment on animal behavioral performance in an intracerebroventricular (ICV)-streptozotocin (STZ, 3 mg/kg) model. The sporadic AD rat model was treated with Cin (10 and 100 mg/kg; intraperitoneal, i.p) daily for 2 weeks. Novel object recognition (NOR), Morris water maze (MWM), and elevated plus maze (EPM) tests were performed to assess recognition/spatial memory and anxiety-like behavior, respectively. Hippocampal Aβ aggregation was assessed using Congo red staining. The activity of hippocampal caspase-3 and IRS-1/Akt/GSK-3β signaling pathways were analyzed using the Western blot technique. The results revealed that Cin (100 mg/kg, effective dose) improved recognition/spatial memory deficits and anxiety-like behavior. In addition, Cin negated the effects of STZ on Aβ aggregation and caspase-3 cleavage in the hippocampus. Furthermore, the Western blot method showed that hippocampal IRS-1/AKT/GSK-3β phosphorylation was altered in ICV-STZ animal model, while Cin modulated this signaling pathway through decreasing Phospho.IRS-1Ser307/Total.IRS-1 ratio and also increasing Phospho.AktSer473/Total.Akt and Phospho.GSK-3βSer9/Total.GSK-3β ratios. These findings suggest that Cin is involved in the regulation of hippocampal IRS-1/AKT/GSK-3β and caspase-3 pathways in a sporadic AD model, and modulation of these signaling pathways also influences the animal behavioral performance.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
135
|
Hardy J, de Strooper B, Escott-Price V. Diabetes and Alzheimer's disease: shared genetic susceptibility? Lancet Neurol 2022; 21:962-964. [PMID: 36270305 DOI: 10.1016/s1474-4422(22)00395-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022]
Affiliation(s)
- John Hardy
- Dementia Research Institute, University College London, London WC1N 3BG, UK; Reta Lilla Weston Laboratories, Department of Neurodegeneration, Institute of Neurology, University College London, London WC1N 3BG, UK.
| | - Bart de Strooper
- Dementia Research Institute, University College London, London WC1N 3BG, UK; VIB Center for Brain & Disease Research, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
136
|
Tan SW, Xie T, Malik TH, Gao Y. Advances of neurovascular protective potential of 3-N-butylphthalide and its derivatives in diabetic related diseases. J Diabetes Complications 2022; 36:108335. [PMID: 36240669 DOI: 10.1016/j.jdiacomp.2022.108335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/20/2022]
Abstract
3-N-butylphthalide (NBP) is a component isolated from seeds of Chinese celery, and it was firstly approved for the treatment of ischemic stroke. With the gradual in-depth understanding of its pharmacological action, it was found that it may have potential effects on treating diabetes and its complications. This review aims to illustrate the researches on the properties of NBP and its therapeutic efficacy in diabetic related diseases. This review will discuss the results of experiments in vitro and in vivo to make progress in understanding the beneficial effects of NBP and its derivatives on diabetic complications including diabetic vascular diseases, diabetic peripheral neuropathy, diabetic brain related diseases and diabetic cataract. We will also demonstrate NBP's numerous molecular targets and interactions with multiple cellular signaling pathways such as oxidative stress, inflammatory responses, apoptosis and autophagy. NBP is proved to be a potential therapeutic approach for treating diabetic complications.
Collapse
Affiliation(s)
- Shu-Wen Tan
- Department of Endocrinology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | | | - Ying Gao
- Department of Endocrinology, The First Hospital of Jilin University, Jilin, China.
| |
Collapse
|
137
|
Preeti K, Sood A, Fernandes V. Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer's Disease. Cell Mol Neurobiol 2022; 42:2527-2551. [PMID: 34515874 PMCID: PMC11421648 DOI: 10.1007/s10571-021-01147-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disorder. It is characterized clinically by progressive memory loss and impaired cognitive function. Its progression occurs from neuronal synapse loss to amyloid pathology and Tau deposit which eventually leads to the compromised neuronal function. Neurons in central nervous tissue work in a composite and intricate network with the glia and vascular cells. Microglia and astrocytes are becoming the prime focus due to their involvement in various aspects of neurophysiology, such as trophic support to neurons, synaptic modulation, and brain surveillance. AD is also often considered as the sequela of prolonged metabolic dyshomeostasis. The neuron and glia have different metabolic profiles as cytosolic glycolysis and mitochondrial-dependent oxidative phosphorylation (OXPHOS), especially under dyshomeostasis or with aging pertaining to their unique genetic built-up. Various efforts are being put in to decipher the role of mitochondrial dynamics regarding their trafficking, fission/fusion imbalance, and mitophagy spanning over both neurons and glia to improve aging-related brain health. The mitochondrial dysfunction may lead to activation in various signaling mechanisms causing metabolic reprogramming in glia cells, further accelerating AD-related pathogenic events. The glycolytic-dominant astrocytes switch to the neurotoxic phenotype, i.e., disease-associated astrocyte under metabolic stress. The microglia also transform from resting to reactive phenotype, i.e., disease-associated microglia. It may also exist in otherwise a misconception an M1, glycolytic, or M2, an OXPHOS-dependent phenotype. Further, glial transformation plays a vital role in regulating hallmarks of AD pathologies like synapse maintenance, amyloid, and Tau clearance. In this updated review, we have tried to emphasize the metabolic regulation of glial reactivity, mitochondrial quality control mechanisms, and their neuroinflammatory response in Alzheimer's progression.
Collapse
Affiliation(s)
- Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
138
|
Yuan S, Yang J, Jian Y, Lei Y, Yao S, Hu Z, Liu X, Tang C, Liu W. Treadmill Exercise Modulates Intestinal Microbes and Suppresses LPS Displacement to Alleviate Neuroinflammation in the Brains of APP/PS1 Mice. Nutrients 2022; 14:nu14194134. [PMID: 36235786 PMCID: PMC9572649 DOI: 10.3390/nu14194134] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Neuroinflammation occurs throughout the pathogenesis of Alzheimer’s disease (AD). Here, we investigated the effects of treadmill exercise on neuroinflammation in APP/PS1 transgenic AD mice and the potential involvement of microbe–gut–brain axis (MGB) mechanisms based on growing evidence that AD’s pathogenesis is correlated with a deterioration in the function of gut microbiota. APP/PS1 transgenic AD mice were subjected to 12 weeks of treadmill exercise, followed by spatial memory tests. After the behavioral study, the amyloid (Aβ) pathology, gut microbes and metabolites, bacterial lipopolysaccharide (LPS) displacement, and degree of neuroinflammation were analyzed. We found that this strategy of exercise enriched gut microbial diversity and alleviated neuroinflammation in the brain. Notably, exercise led to reductions in pathogenic bacteria such as intestinal Allobaculum, increases in probiotic bacteria such as Akkermansia, increased levels of intestine–brain barrier proteins, and attenuated LPS displacement. These results suggest that prolonged exercise can effectively modulate gut microbes and the intestinal barrier and thereby reduce LPS displacement and ultimately alleviate AD-related neuroinflammation.
Collapse
Affiliation(s)
- Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yong Lei
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Sisi Yao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xia Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Changfa Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
- Correspondence:
| |
Collapse
|
139
|
Qeva E, Sollazzo C, Bilotta F. Insulin signaling in the central nervous system, a possible pathophysiological mechanism of anesthesia-induced delayed neurocognitive recovery/postoperative neurocognitive disorder: a narrative review. Expert Rev Neurother 2022; 22:839-847. [PMID: 36332201 DOI: 10.1080/14737175.2022.2144234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Impairment in neurocognitive functions ranges between delayed neurocognitive recovery (DNR) and postoperative neurocognitive disorders (pNCD). Incidence varies from 11% after noncardiac surgery to 60% after cardiac surgery. AREAS COVERED Insulin receptors (IRs) signaling pathway in the central nervous system (CNS) could be a possible pathophysiological mechanism of anesthesia-induced DNR/pNCD and perioperative intranasal insulin administration could be a preventive approach. This hypothesis is supported by the following evidence: effects of IRs-CNS signaling pathway on neuromodulation; higher incidence of DNR/pNCD in patients with insulin resistance; neurotoxicity of IRs signaling pathways after anesthetic exposure; improvement of neurocognitive impairment after insulin exposure. This narrative review was conducted after a literature search of PubMed, EMBASE and SCOPUS online medical data performed in May 2022. EXPERT OPINION Perioperative intranasal insulin is shown to be protective and future studies should address: the role of insulin as a neuromodulator; its integration into neuroprotection approaches; patient populations that might benefit from this approach; a well-defined protocol of intranasal insulin administration in a perioperative background and other disciplines; and possible collateral effects.
Collapse
Affiliation(s)
- Ega Qeva
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy.,Department of Anesthesia, Intensive Care and Emergency, University of Turin, 'Città Della Salute e Della Scienza' Hospital, 10126 Turin, Italy
| | - Camilla Sollazzo
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy
| | - Federico Bilotta
- Department of Anesthesia and Intensive Care Medicine, "Sapienza" University of Rome, 'Policlinico Umberto I' Hospital, 00161 Rome, Italy
| |
Collapse
|
140
|
Povarnina PY, Volkova AA, Vorontsova ON, Kamensky AA, Gudasheva TA, Seredenin SB. A Low-Molecular-Weight BDNF Mimetic, Dipeptide GSB-214, Prevents Memory Impairment in Rat Models of Alzheimer's Disease. Acta Naturae 2022; 14:94-100. [PMID: 36694902 PMCID: PMC9844091 DOI: 10.32607/actanaturae.11755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 01/22/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is known to be involved in the pathogenesis of Alzheimer's disease (AD). However, the pharmacological use of full-length neurotrophin is limited, because of its macromolecular protein nature. A dimeric dipeptide mimetic of the BDNF loop 1, bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylene diamide (GSB-214), was designed at the Zakusov Research Institute of Pharmacology. GSB-214 activates TrkB, PI3K/AKT, and PLC-γ1 in vitro. GSB-214 exhibited a neuroprotective activity during middle cerebral artery occlusion in rats when administered intraperitoneally (i.p.) at a dose of 0.1 mg/kg and improved memory in the novel object recognition test (0.1 and 1.0 mg/kg, i.p.). In the present study, we investigated the effects of GSB-214 on memory in the scopolamine- and steptozotocin-induced AD models, with reference to activation of TrkB receptors. AD was modeled in rats using a chronic i.p. scopolamine injection or a single streptozotocin injection into the cerebral ventricles. GSB-214 was administered within 10 days after the exposure to scopolamine at doses of 0.05, 0.1, and 1 mg/kg (i.p.) or within 14 days after the exposure to streptozotocin at a dose of 0.1 mg/kg (i.p.). The effect of the dipeptide was evaluated in the novel object recognition test; K252A, a selective inhibitor of tyrosine kinase receptors, was used to reveal a dependence between the mnemotropic action and Trk receptors. GSB-214 at doses of 0.05 and 0.1 mg/kg statistically significantly prevented scopolamine-induced long-term memory impairment, while not affecting short-term memory. In the streptozotocin-induced model, GSB-214 completely eliminated the impairment of short-term memory. No mnemotropic effect of GSB-214 was registered when Trk receptors were inhibited by K252A.
Collapse
Affiliation(s)
- P Yu Povarnina
- Research Zakusov Institute of Pharmacology, Moscow, 125315 Russia
| | - A A Volkova
- Research Zakusov Institute of Pharmacology, Moscow, 125315 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991 Russia
| | - O N Vorontsova
- Research Zakusov Institute of Pharmacology, Moscow, 125315 Russia
| | - A A Kamensky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991 Russia
| | - T A Gudasheva
- Research Zakusov Institute of Pharmacology, Moscow, 125315 Russia
| | - S B Seredenin
- Research Zakusov Institute of Pharmacology, Moscow, 125315 Russia
| |
Collapse
|
141
|
Čater M, Hölter SM. A Pathophysiological Intersection of Diabetes and Alzheimer's Disease. Int J Mol Sci 2022; 23:11562. [PMID: 36232867 PMCID: PMC9569835 DOI: 10.3390/ijms231911562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes is among the most prevalent diseases of the modern world and is strongly linked to an increased risk of numerous neurodegenerative disorders, although the exact pathophysiological mechanisms are not clear yet. Insulin resistance is a serious pathological condition, connecting type 2 diabetes, metabolic syndrome, and obesity. Recently, insulin resistance has been proven to be connected also to cognitive decline and dementias, including the most prevalent form, Alzheimer's disease. The relationship between diabetes and Alzheimer's disease regarding pathophysiology is so significant that it has been proposed that some presentations of the condition could be termed type 3 diabetes.
Collapse
Affiliation(s)
- Maša Čater
- Chair of Genetics, Animal Biotechnology and Immunology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
| | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Munich, 85764 Neuherberg, Germany
- School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| |
Collapse
|
142
|
Kumar V, Kim SH, Bishayee K. Dysfunctional Glucose Metabolism in Alzheimer’s Disease Onset and Potential Pharmacological Interventions. Int J Mol Sci 2022; 23:ijms23179540. [PMID: 36076944 PMCID: PMC9455726 DOI: 10.3390/ijms23179540] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related dementia. The alteration in metabolic characteristics determines the prognosis. Patients at risk show reduced glucose uptake in the brain. Additionally, type 2 diabetes mellitus increases the risk of AD with increasing age. Therefore, changes in glucose uptake in the cerebral cortex may predict the histopathological diagnosis of AD. The shifts in glucose uptake and metabolism, insulin resistance, oxidative stress, and abnormal autophagy advance the pathogenesis of AD syndrome. Here, we summarize the role of altered glucose metabolism in type 2 diabetes for AD prognosis. Additionally, we discuss diagnosis and potential pharmacological interventions for glucose metabolism defects in AD to encourage the development of novel therapeutic methods.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - So-Hyeon Kim
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Kausik Bishayee
- Biomedical Science Core-Facility, Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea
- Correspondence: or
| |
Collapse
|
143
|
Myette-Côté É, Soto-Mota A, Cunnane SC. Ketones: potential to achieve brain energy rescue and sustain cognitive health during ageing. Br J Nutr 2022; 128:407-423. [PMID: 34581265 DOI: 10.1017/s0007114521003883] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer’s disease (AD) is the most common major neurocognitive disorder of ageing. Although largely ignored until about a decade ago, accumulating evidence suggests that deteriorating brain energy metabolism plays a key role in the development and/or progression of AD-associated cognitive decline. Brain glucose hypometabolism is a well-established biomarker in AD but was mostly assumed to be a consequence of neuronal dysfunction and death. However, its presence in cognitively asymptomatic populations at higher risk of AD strongly suggests that it is actually a pre-symptomatic component in the development of AD. The question then arises as to whether progressive AD-related cognitive decline could be prevented or slowed down by correcting or bypassing this progressive ‘brain energy gap’. In this review, we provide an overview of research on brain glucose and ketone metabolism in AD and its prodromal condition – mild cognitive impairment (MCI) – to provide a clearer basis for proposing keto-therapeutics as a strategy for brain energy rescue in AD. We also discuss studies using ketogenic interventions and their impact on plasma ketone levels, brain energetics and cognitive performance in MCI and AD. Given that exercise has several overlapping metabolic effects with ketones, we propose that in combination these two approaches might be synergistic for brain health during ageing. As cause-and-effect relationships between the different hallmarks of AD are emerging, further research efforts should focus on optimising the efficacy, acceptability and accessibility of keto-therapeutics in AD and populations at risk of AD.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- Montreal Clinical Research Institute, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Adrian Soto-Mota
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
144
|
Samuel I, Ben-Haroush Schyr R, Arad Y, Attali T, Azulai S, Bergel M, Halfon A, Hefetz L, Hirsch T, Israeli H, Lax N, Nitzan K, Sender D, Sweetat S, Okun E, Rosenmann H, Ben-Zvi D. Sleeve Gastrectomy Reduces Glycemia but Does Not Affect Cognitive Impairment in Lean 5xFAD Mice. Front Neurosci 2022; 16:937663. [PMID: 36033613 PMCID: PMC9403181 DOI: 10.3389/fnins.2022.937663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and hyperglycemia are risk factors for cognitive decline and for the development of Alzheimer’s Disease (AD). Bariatric surgery is an effective treatment for obesity that was shown to improve cognitive decline in obese patients. Bariatric surgery was shown to exert weight loss independent effects on metabolic diseases such as type 2 diabetes. We tested whether sleeve gastrectomy (SG), a common bariatric surgery, can affect the cognitive impairment in lean, normoglycemic female 5xFAD mice, a genetic model for AD. 5xFAD mice and wild-type (WT) littermates underwent SG or sham surgery at the age of 5 months and were tested for metabolic, behavioral, and molecular phenotypes 90 days later. SG led to a reduction in blood glucose levels and total plasma cholesterol levels in 5xFAD mice without inducing weight loss. However, the surgery did not affect the outcomes of long-term spatial memory tests in these mice. Analysis of β-Amyloid plaques corroborated the behavioral studies in showing no effect of surgery on the molecular phenotype of 5xFAD mice. In conclusion, SG leads to an improved metabolic profile in lean female 5xFAD mice without inducing weight loss but does not affect the brain pathology or behavioral phenotype. Our results suggest that the positive effects of bariatric surgery on cognitive decline in obese patients are likely attributed to weight loss and improvement in obesity sequelae, and not to weight loss independent effects of surgery.
Collapse
Affiliation(s)
- Itia Samuel
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Attali
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Shira Azulai
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Aviv Halfon
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
- Department of Military Medicine and Tzameret, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamir Hirsch
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer’s Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Neta Lax
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Keren Nitzan
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Dana Sender
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Sahar Sweetat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer’s Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
- *Correspondence: Hanna Rosenmann,
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
- Danny Ben-Zvi,
| |
Collapse
|
145
|
Greenwood EK, Angelova DM, Büchner HMI, Brown DR. The AICD fragment of APP initiates a FoxO3a mediated response via FANCD2. Mol Cell Neurosci 2022; 122:103760. [PMID: 35901928 DOI: 10.1016/j.mcn.2022.103760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
The amyloid precursor protein (APP) is a cell surface protein of uncertain function that is notable for being the parent protein of beta-amyloid. Research around this protein has focussed heavily on the link to Alzheimer's disease and neurodegeneration. However, there is increasing evidence that APP may be linked to neuronal loss through mechanisms independent of beta-amyloid. FoxO3a is a transcription factor associated with neuronal longevity and apoptosis. In neurons, FoxO3a is associated with cell death through pathways that include BIM, a BCL-2 family member. In this study we have shown that APP overexpression increased the cellular levels and activity of FoxO3a. This increased expression and activity is not a result of decreased phosphorylation but is more likely a result of increased nuclear stability due to increased levels of FANCD2, a binding partner of FoxO3a. The changes caused by APP overexpression were shown to be due to the AICD fragment of APP possibly directly inducing transcription increase in FANCD2. These findings strengthen the link between APP metabolism and FoxO3a neuronal activity. This link may be crucial in better understanding the cellular role of APP and its link to neurodegeneration and aging.
Collapse
Affiliation(s)
| | | | | | - David R Brown
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
146
|
Espinosa-Jiménez T, Busquets O, Cano A, Sánchez-López E, Verdaguer E, Parcerisas A, Olloquequi J, Auladell C, Folch J, Wahli W, Vázquez-Carrera M, Camins A, Ettcheto M. Peroxisomal Proliferator-Activated Receptor β/δ Deficiency Induces Cognitive Alterations. Front Pharmacol 2022; 13:902047. [PMID: 35899125 PMCID: PMC9310104 DOI: 10.3389/fphar.2022.902047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ), the most PPAR abundant isotype in the central nervous system, is involved in microglial homeostasis and metabolism, whose disturbances have been demonstrated to play a key role in memory impairment. Although PPARβ/δ function is well-established in metabolism, its contribution to neuronal and specifically memory process is underexplored. Therefore, the aim of the study is to determine the role of PPARβ/δ in the neuropathological pathways involved in memory impairment and as to whether a risk factor implicated in memory loss such as obesity modulates neuropathological markers. To carry out this study, 6-month-old total knock-out for the Ppard gene male mice with C57BL/6X129/SV background (PPARβ/δ-/-) and wild-type (WT) littermates with the same genetic background were used. Animals were fed, after the weaning (at 21 days old), and throughout their growth, either conventional chow (CT) or a palmitic acid-enriched diet (HFD). Thus, four groups were defined: WT CT, WT HFD, PPARβ/δ-/- CT, and PPARβ/δ-/- HFD. Before sacrifice, novel object recognition test (NORT) and glucose and insulin tolerance tests were performed. After that, animals were sacrificed by intracardiac perfusion or cervical dislocation. Different techniques, such as GolgiStain kit or immunofluorescence, were used to evaluate the role of PPARβ/δ in memory dysfunction. Our results showed a decrease in dendritic spine density and synaptic markers in PPARβ/δ-/- mice, which were corroborated in the NORT. Likewise, our study demonstrated that the lack of PPARβ/δ receptor enhances gliosis in the hippocampus, contributing to astrocyte and microglial activation and to the increase in neuroinflammatory biomarkers. Additionally, alterations in the hippocampal insulin receptor pathway were found. Interestingly, while some of the disturbances caused by the lack of PPARβ/δ were not affected by feeding the HFD, others were exacerbated or required the combination of both factors. Taken together, the loss of PPARβ/δ-/- affects neuronal and synaptic structure, contributing to memory dysfunction, and they also present this receptor as a possible new target for the treatment of memory impairment.
Collapse
Affiliation(s)
- Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City, NY, United States
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Research Center and Memory Clinic, Fundació ACE Institut Català de Neurociències Aplicades—International University of Catalunya (UIC), Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Parcerisas
- Departament of Basic Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- ToxAlim (Research Center in Food Toxicology), INRAE, Toulouse Cedex, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- *Correspondence: Miren Ettcheto,
| |
Collapse
|
147
|
Xu X, Qi P, Zhang Y, Sun H, Yan Y, Sun W, Liu S. Effect of Selenium Treatment on Central Insulin Sensitivity: A Proteomic Analysis in β-Amyloid Precursor Protein/Presenilin-1 Transgenic Mice. Front Mol Neurosci 2022; 15:931788. [PMID: 35875664 PMCID: PMC9302600 DOI: 10.3389/fnmol.2022.931788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Prior studies have demonstrated a close association between brain insulin resistance and Alzheimer’s disease (AD), while selenium supplementation was shown to improve insulin homeostasis in AD patients and to exert neuroprotective effects in a mouse model of AD. However, the mechanisms underlying the neuroprotective actions of selenium remain incompletely understood. In this study, we performed a label-free liquid chromatography-tandem mass spectrometry (LC–MS/MS) quantitative proteomics approach to analyze differentially expressed proteins (DEPs) in the hippocampus and cerebral cortex of Aβ precursor protein (APP)/presenilin-1 (PS1) mice following 2 months of treatment with sodium selenate. A total of 319 DEPs (205 upregulated and 114 downregulated proteins) were detected after selenium treatment. Functional enrichment analysis revealed that the DEPs were mainly enriched in processes affecting axon development, neuron differentiation, tau protein binding, and insulin/insulin-like growth factor type 1 (IGF1)-related pathways. These results demonstrate that a number of insulin/IGF1 signaling pathway-associated proteins are differentially expressed in ways that are consistent with reduced central insulin resistance, suggesting that selenium has therapeutic value in the treatment of neurodegenerative and metabolic diseases such as AD and non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Xia Xu
- Department of Nursing, School of Nursing, Shandong Xiehe University, Jinan, China
| | - Pishui Qi
- Department of Pharmacy, Shandong Rongjun General Hospital, Jinan, China
| | - Ying Zhang
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
| | - Huihuan Sun
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
| | - Yong Yan
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian, China
- *Correspondence: Wenxiu Sun,
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
- Shudong Liu,
| |
Collapse
|
148
|
Barloese MCJ, Bauer C, Petersen ET, Hansen CS, Madsbad S, Siebner HR. Neurovascular Coupling in Type 2 Diabetes With Cognitive Decline. A Narrative Review of Neuroimaging Findings and Their Pathophysiological Implications. Front Endocrinol (Lausanne) 2022; 13:874007. [PMID: 35860697 PMCID: PMC9289474 DOI: 10.3389/fendo.2022.874007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 01/21/2023] Open
Abstract
Type 2 diabetes causes substantial long-term damage in several organs including the brain. Cognitive decline is receiving increased attention as diabetes has been established as an independent risk factor along with the identification of several other pathophysiological mechanisms. Early detection of detrimental changes in cerebral blood flow regulation may represent a useful clinical marker for development of cognitive decline for at-risk persons. Technically, reliable evaluation of neurovascular coupling is possible with several caveats but needs further development before it is clinically convenient. Different modalities including ultrasound, positron emission tomography and magnetic resonance are used preclinically to shed light on the many influences on vascular supply to the brain. In this narrative review, we focus on the complex link between type 2 diabetes, cognition, and neurovascular coupling and discuss how the disease-related pathology changes neurovascular coupling in the brain from the organ to the cellular level. Different modalities and their respective pitfalls are covered, and future directions suggested.
Collapse
Affiliation(s)
- Mads C. J. Barloese
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Imaging, Center for Functional and Diagnostic Imaging, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Christian Bauer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Fredriksberg, Copenhagen, Denmark
| |
Collapse
|
149
|
Kalra S, Dhar M, Afsana F, Aggarwal P, Aye TT, Bantwal G, Barua M, Bhattacharya S, Das AK, Das S, Dasgupta A, Dhakal G, Dhingra A, Esfahanian F, Gadve S, Jacob J, Kapoor N, Latheef A, Mahadeb Y, Maskey R, Naseri W, Ratnasingam J, Raza A, Saboo B, Sahay R, Shah M, Shaikh S, Sharma SK, Shrestha D, Somasundaram N, Tiwaskar M, Jawdekar A. Asian Best Practices for Care of Diabetes in Elderly (ABCDE). Rev Diabet Stud 2022; 18:100-134. [PMID: 35831938 PMCID: PMC10044048 DOI: 10.1900/rds.2022.18.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The elderly population with diabetes is diverse with the majority experiencing a decline in physical and mental capabilities, impacting the entire diabetes management process. Therefore, a need for geriatric-specific guidelines, especially for the Asian population, was identified and
subsequently developed by an expert panel across government and private institutions from several Asian countries. The panel considered clinical evidence (landmark trials, position papers, expert opinions), recommendations from several important societies along with their decades of clinical
experience and expertise, while meticulously devising thorough geriatric-specific tailored management strategies. The creation of the ABCDE best practices document underscores and explores the gaps and challenges and determines optimal methods for diabetes management of the elderly population
in the Asian region.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sambit Das
- Dr.Sambit's Centre of Diabetes and Endocrinology, India
| | | | | | | | | | | | | | | | - Ali Latheef
- National Diabetes Centre, Indira Gandhi Memorial, India
| | | | | | | | | | - Abbas Raza
- Shaukat Khanum Cancer Hospital and Research Centre, Pakistan
| | - Banshi Saboo
- Diabetes Care and Hormone Clinic, Ahmedabad, India
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Medina-Vera D, Navarro JA, Rivera P, Rosell-Valle C, Gutiérrez-Adán A, Sanjuan C, López-Gambero AJ, Tovar R, Suárez J, Pavón FJ, Baixeras E, Decara J, Rodríguez de Fonseca F. d-Pinitol promotes tau dephosphorylation through a cyclin-dependent kinase 5 regulation mechanism: A new potential approach for tauopathies? Br J Pharmacol 2022; 179:4655-4672. [PMID: 35760415 PMCID: PMC9544772 DOI: 10.1111/bph.15907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Recent evidence links brain insulin resistance with neurodegenerative diseases, where hyperphosphorylated tau protein contributes to neuronal cell death. In the present study, we aimed to evaluate if d‐pinitol inositol, which acts as an insulin sensitizer, affects the phosphorylation status of tau protein. Experimental Approach We studied the pharmacological effect of d‐pinitol on insulin signalling and tau phosphorylation in the hippocampus of Wistar and Zucker rats. To this end, we evaluated by western blotting the Akt pathway and its downstream proteins as being one of the main insulin‐mediator pathways. Also, we explored the functional status of additional kinases phosphorylating tau, including PKA, ERK1/2, AMPK and CDK5. We utilized the 3xTg mouse model as a control for tauopathy, since it carries tau mutations that promote phosphorylation and aggregation. Key Results Surprisingly, we discovered that oral d‐pinitol treatment lowered tau phosphorylation significantly, but not through the expected kinase GSK‐3 regulation. An extensive search for additional kinases phosphorylating tau revealed that this effect was mediated through a mechanism dependent on the reduction of the activity of the CDK5, affecting both its p35 and p25 subunits. This effect disappeared in leptin‐deficient Zucker rats, uncovering that the association of leptin deficiency, obesity, dyslipidaemia and hyperinsulinaemia abrogates d‐pinitol actions on tau phosphorylation. The 3xTg mice confirmed d‐pinitol effectiveness in a genetic AD‐tauopathy. Conclusion and Implications The present findings suggest that d‐pinitol, by regulating CDK5 activity through a decrease of CDK5R1, is a potential drug for developing treatments for neurological disorders such as tauopathies.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA and CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Carlos Sanjuan
- Euronutra S.L., Parque Tecnológico de Andalucía, Málaga, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Rubén Tovar
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA and CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Regional de Málaga, UGC Salud Mental, Málaga, Spain
| |
Collapse
|