101
|
Srivastava S, Battu MB, Khan MZ, Nandicoori VK, Mukhopadhyay S. Mycobacterium tuberculosis PPE2 Protein Interacts with p67phox and Inhibits Reactive Oxygen Species Production. THE JOURNAL OF IMMUNOLOGY 2019; 203:1218-1229. [DOI: 10.4049/jimmunol.1801143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
|
102
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
103
|
Paardekooper LM, Dingjan I, Linders PTA, Staal AHJ, Cristescu SM, Verberk WCEP, van den Bogaart G. Human Monocyte-Derived Dendritic Cells Produce Millimolar Concentrations of ROS in Phagosomes Per Second. Front Immunol 2019; 10:1216. [PMID: 31191556 PMCID: PMC6548834 DOI: 10.3389/fimmu.2019.01216] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 01/07/2023] Open
Abstract
Neutrophils kill ingested pathogens by the so-called oxidative burst, where reactive oxygen species (ROS) are produced in the lumen of phagosomes at very high rates (mM/s), although these rates can only be maintained for a short period (minutes). In contrast, dendritic cells produce ROS at much lower rates, but they can sustain production for much longer after pathogen uptake (hours). It is becoming increasingly clear that this slow but prolonged ROS production is essential for antigen cross-presentation to activate cytolytic T cells, and for shaping the repertoire of antigen fragments for presentation to helper T cells. However, despite this importance of ROS production by dendritic cells for activation of the adaptive immune system, their actual ROS production rates have never been quantified. Here, we quantified ROS production in human monocyte-derived dendritic cells by measuring the oxygen consumption rate during phagocytosis. Although a large variation in oxygen consumption and phagocytic capacity was present among individuals and cells, we estimate a ROS production rate of on average ~0.5 mM/s per phagosome. Quantitative microscopy approaches showed that ROS is produced within minutes after pathogen encounter at the nascent phagocytic cup. H2DCFDA measurements revealed that ROS production is sustained for at least ~10 h after uptake. While ROS are produced by dendritic cells at an about 10-fold lower rate than by neutrophils, the net total ROS production is approximately similar. These are the first quantitative estimates of ROS production by a cell capable of antigen cross-presentation. Our findings provide a quantitative insight in how ROS affect dendritic cell function.
Collapse
Affiliation(s)
- Laurent M Paardekooper
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Ilse Dingjan
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Peter T A Linders
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Alexander H J Staal
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, Netherlands
| | - Wilco C E P Verberk
- Animal Ecology and Ecophysiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Tumor Immunology Lab, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
104
|
Dinauer MC. Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 2019; 133:2130-2139. [PMID: 30898864 PMCID: PMC6524563 DOI: 10.1182/blood-2018-11-844563] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies affecting the function of neutrophils and other phagocytic leukocytes are notable for an increased susceptibility to bacterial and fungal infections as a result of impaired leukocyte recruitment, ingestion, and/or killing of microbes. The underlying molecular defects can also impact other innate immune responses to infectious and inflammatory stimuli, leading to inflammatory and autoimmune complications that are not always directly related to infection. This review will provide an update on congenital disorders affecting neutrophil function in which a combination of host defense and inflammatory complications are prominent, including nicotinamide dinucleotide phosphate oxidase defects in chronic granulomatous disease and β2 integrin defects in leukocyte adhesion deficiency.
Collapse
Affiliation(s)
- Mary C Dinauer
- Department of Pediatrics and Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
105
|
Noubade R, Majri-Morrison S, Tarbell KV. Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity. Front Immunol 2019; 10:1014. [PMID: 31143179 PMCID: PMC6521804 DOI: 10.3389/fimmu.2019.01014] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/23/2019] [Indexed: 01/03/2023] Open
Abstract
Dendritic cells (DCs) efficiently process and present antigens to T cells, and by integrating environmental signals, link innate and adaptive immunity. DCs also control the balance between tolerance and immunity, and are required for T-cell mediated anti-tumor immunity. One subset of classical DCs, cDC1, are particularly important for eliciting CD8 T cells that can kill tumor cells. cDC1s are superior in antigen cross-presentation, a process of presenting exogenous antigens on MHC class I to activate CD8+ T cells. Tumor-associated cDC1s can transport tumor antigen to the draining lymph node and cross-present tumor antigens, resulting in priming and activation of cytotoxic T cells. Although cross-presenting cDC1s are critical for eliciting anti-tumor T cell responses, the role and importance of other DC subsets in anti-tumor immunity is not as well-characterized. Recent literature in other contexts suggests that critical crosstalk between DC subsets can significantly alter biological outcomes, and these DC interactions likely also contribute significantly to tumor-specific immune responses. Therefore, antigen presentation by cDC1s may be necessary but not sufficient for maximal immune responses against cancer. Here, we discuss recent advances in the understanding of DC subset interactions to maximize anti-tumor immunity, and propose that such interactions should be considered for the development of better DC-targeted immunotherapies.
Collapse
Affiliation(s)
- Rajkumar Noubade
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Sonia Majri-Morrison
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Kristin V Tarbell
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
106
|
Liu C, Whitener RL, Lin A, Xu Y, Chen J, Savinov A, Leiding JW, Wallet MA, Mathews CE. Neutrophil Cytosolic Factor 1 in Dendritic Cells Promotes Autoreactive CD8 + T Cell Activation via Cross-Presentation in Type 1 Diabetes. Front Immunol 2019; 10:952. [PMID: 31118934 PMCID: PMC6504685 DOI: 10.3389/fimmu.2019.00952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
Aims: Reactive oxygen species (ROS) are critical in driving the onset of type 1 diabetes (T1D). Ablation of ROS derived from phagocytic NADPH oxidase 2 is protective against autoimmune diabetes in non-obese diabetic (NOD) mice. However, the mechanisms of NADPH oxidase 2-derived ROS in T1D pathogenesis need to be elucidated. Here, we have examined the role of Ncf1 (the regulatory subunit of NADPH oxidase 2) in dendritic cells (DC). Results:Ncf1-mutant DCs exhibit reduced ability to activate autoreactive CD8+ T cells despite no difference in co-stimulatory molecule expression or pro-inflammatory cytokine production. When provided with exogenous whole-protein antigen, Ncf1-mutant NOD DCs showed strong phagosome acidification and rapid antigen degradation, which lead to an absence of protein translocation into the cytoplasm and deficient antigenic peptide loading on MHC Class I molecules. Innovation: This study demonstrates that Ncf1 (p47phox) is required for activation and effector function of CD8+ T cells by acting both intrinsically within the T cell as well as within professional antigen presenting cells. Conclusion: ROS promote CD8+ T cell activation by facilitating autoantigen cross-presentation by DCs. ROS scavengers could potentially represent an important component of therapies aiming to disrupt autoantigen presentation and activation of CD8+ T cells in individuals at-risk for developing T1D.
Collapse
Affiliation(s)
- Chao Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Robert L Whitener
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Andrea Lin
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Yuan Xu
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Alexei Savinov
- Children's Health Research Center, Sanford Research, Sioux Falls, SD, United States
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins-All Children's Hospital, University of South Florida, St. Petersburg, FL, United States
| | - Mark A Wallet
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, United States
| |
Collapse
|
107
|
De Santis F, Poerio N, Gismondi A, Nanni V, Di Marco G, Nisini R, Thaller MC, Canini A, Fraziano M. Hydroalcoholic extract from Origanum vulgare induces a combined anti-mycobacterial and anti-inflammatory response in innate immune cells. PLoS One 2019; 14:e0213150. [PMID: 30830942 PMCID: PMC6398838 DOI: 10.1371/journal.pone.0213150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/17/2019] [Indexed: 01/25/2023] Open
Abstract
In nature, many plants or their extracted compounds have been found to possess anti-inflammatory features and therapeutic properties against infectious as well as non-infectious diseases, including cancer. In this study, we analysed the immunomodulatory effects on innate immune cells of hydroalcoholic extract from Origanum vulgare L. ssp. hirtum (HyE-Ov), a plant traditionally known for its anti-oxidative properties. The effects of HyE-Ov were tested on human monocyte derived dendritic cells (DC), type-1 (M1) and type-2 macrophages (M2) infected with M. bovis Bacille Calmette-Guérin (BCG), used as a model of persistent intracellular bacterium. DC, M1 and M2 treated with HyE-Ov significantly enhanced their mycobactericidal activity, which was associated with phagosomal acidification in M1 and M2 and increase of phagosomal, but not mitochondrial ROS production in M1, M2, and DC. Treatment of BCG-infected DC with HyE-Ov significantly reduced TNF-α and IL-12 production and increased TGF-β synthesis. Finally, experiments were repeated using eight different HPLC fractions of HyE-Ov. Results showed that the capability to activate anti-microbial and anti-inflammatory response is shared by different fractions, suggesting that diverse bioactive molecules are present within the hydroalcoholic extract. Altogether, these results show that HyE-Ov promotes anti-mycobacterial innate immunity and limits inflammatory response in vitro and suggest that this plant extract may be exploitable as phytocomplex or nutraceutical for novel host-directed therapeutic approaches.
Collapse
Affiliation(s)
| | - Noemi Poerio
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Valentina Nanni
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Gabriele Di Marco
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Nisini
- Department of infectious diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Antonella Canini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- * E-mail:
| |
Collapse
|
108
|
Foote JR, Patel AA, Yona S, Segal AW. Variations in the Phagosomal Environment of Human Neutrophils and Mononuclear Phagocyte Subsets. Front Immunol 2019; 10:188. [PMID: 30881356 PMCID: PMC6405516 DOI: 10.3389/fimmu.2019.00188] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
The phagosome microenvironment maintains enzyme activity and function. Here we compared the phagosomal pH of human neutrophils, monocytes, dendritic cells (DC), and monocyte-derived cells. An unexpected observation was the striking difference in phagosomal environment between the three monocytes subsets. Classical monocytes and neutrophils exhibited alkaline phagosomes, yet non-classical monocytes had more acidic phagosomes, while intermediate monocytes had a phenotype in-between. We next investigated the differences between primary naïve DC vs. in vitro monocyte-derived DC (MoDC) and established that both these cells had acidic phagosomal environments. Across all phagocytes, alkalinization was dependent upon the activity of the NADPH oxidase activity, demonstrated by the absence of NADPH oxidase from a patient with chronic granulomatous disease (CGD) or the use of a pharmacological inhibitor, diphenylene iodonium (DPI). Interestingly, MoDC stimulated with bacterial lipopolysaccharide had increased phagosomal pH. Overall, the increase in alkalinity within the phagosome was associated with increased oxidase activity. These data highlight the heterogeneous nature and potential function of phagocytic vacuoles within the family of mononuclear phagocytes.
Collapse
Affiliation(s)
- Juliet R Foote
- Division of Medicine, University College London, London, United Kingdom
| | - Amit A Patel
- Division of Medicine, University College London, London, United Kingdom
| | - Simon Yona
- Division of Medicine, University College London, London, United Kingdom
| | - Anthony W Segal
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
109
|
Velazquez-Caldelas TE, Alcalá-Corona SA, Espinal-Enríquez J, Hernandez-Lemus E. Unveiling the Link Between Inflammation and Adaptive Immunity in Breast Cancer. Front Immunol 2019; 10:56. [PMID: 30761130 PMCID: PMC6362261 DOI: 10.3389/fimmu.2019.00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation has been recognized as an important driver in the development and growth of malignancies. Inflammatory signaling in cancer emerges from the combinatorial interaction of several deregulated pathways. Pathway deregulation is often driven by changes in the underlying gene regulatory networks. Confronted with such complex scenario, it can be argued that a closer analysis of the structure of such regulatory networks will shed some light on how gene deregulation led to sustained inflammation in cancer. Here, we inferred an inflammation-associated gene regulatory network from 641 breast cancer and 78 healthy samples. A modular structure analysis of the regulatory network was carried out, revealing a hierarchical modular structure. Modules show significant overrepresentation score p-values for biological processes unveiling a definite association between inflammatory processes and adaptive immunity. Other modules are enriched for T-cell activation, differentiation of CD8+ lymphocytes and immune cell migration, thus reinforcing the aforementioned association. These analyses suggest that in breast cancer tumors, the balance between antitumor response and immune tolerance involving CD8+ T cells is tipped in favor of the tumor. One possible mechanism is the induction of tolerance and anergization of these cells by persistent antigen exposure.
Collapse
Affiliation(s)
| | - Sergio Antonio Alcalá-Corona
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Ecology and Evolution, Erman Biology Center, The University of Chicago, Chicago, IL, United States
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernandez-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
110
|
The microbiome and immunodeficiencies: Lessons from rare diseases. J Autoimmun 2019; 98:132-148. [PMID: 30704941 DOI: 10.1016/j.jaut.2019.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Primary immunodeficiencies (PIDs) are inherited disorders of the immune system, associated with a considerable increase in susceptibility to infections. PIDs can also predispose to malignancy, inflammation and autoimmunity. There is increasing awareness that some aspects of the immune dysregulation in PIDs may be linked to intestinal microbiota. Indeed, the gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both locally and systemically. Recent studies have indicated that genetic defects causing PIDs lead to perturbations in the conventional mechanisms underlying homeostasis in the gut, resulting in poor immune surveillance at the intestinal barrier, which associates with altered intestinal permeability and bacterial translocation. Consistently, a substantial proportion of PID patients presents with clinically challenging IBD-like pathology. Here, we describe the current body of literature reporting on dysbiosis of the gut microbiota in different PIDs and how this can be either the result or cause of immune dysregulation. Further, we report how infections in PIDs enhance pathobionts colonization and speculate how, in turn, pathobionts may be responsible for increased disease susceptibility and secondary infections in these patients. The potential relationship between the microbial composition in the intestine and other sites, such as the oral cavity and skin, is also highlighted. Finally, we provide evidence, in preclinical models of PIDs, for the efficacy of microbiota manipulation to ameliorate disease complications, and suggest that the potential use of dietary intervention to correct dysbiotic flora in PID patients may hold promise.
Collapse
|
111
|
Paardekooper LM, Vos W, van den Bogaart G. Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget 2019; 10:883-896. [PMID: 30783517 PMCID: PMC6368231 DOI: 10.18632/oncotarget.26608] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Solid tumors grow at a high speed leading to insufficient blood supply to tumor cells. This makes the tumor hypoxic, resulting in the Warburg effect and an increased generation of reactive oxygen species (ROS). Hypoxia and ROS affect immune cells in the tumor micro-environment, thereby affecting their immune function. Here, we review the known effects of hypoxia and ROS on the function and physiology of dendritic cells (DCs). DCs can (cross-)present tumor antigen to activate naive T cells, which play a pivotal role in anti-tumor immunity. ROS might enter DCs via aquaporins in the plasma membrane, diffusion across the plasma membrane or via extracellular vesicles (EVs) released by tumor cells. Hypoxia and ROS exert complex effects on DCs, and can both inhibit and activate maturation of immature DCs. Furthermore, ROS transferred by EVs and/or produced by the DC can both promote antigen (cross-)presentation through phagosomal alkalinization, which preserves antigens by inhibiting proteases, and by direct oxidative modification of proteases. Hypoxia leads to a more migratory and inflammatory DC phenotype. Lastly, hypoxia alters DCs to shift the T- cell response towards a tumor suppressive Th17 phenotype. From numerous studies, the concept is emerging that hypoxia and ROS are mutually dependent effectors on DC function in the tumor micro-environment. Understanding their precise roles and interplay is important given that an adaptive immune response is required to clear tumor cells.
Collapse
Affiliation(s)
- Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Vos
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
112
|
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives. Initially, they were considered as metabolic by-products (of mitochondria in particular), which consistently lead to aging and disease. Over the last decades, however, it became increasingly apparent that virtually all eukaryotic cells possess specifically ROS-producing enzymes, namely, NOX NADPH oxidases. In most mammals, there are seven NOX isoforms: three closely related isoforms, NOX1, 2, 3, which are activated by cytoplasmic subunits; NOX4, which appears to be constitutively active; and the EF-hand-containing Ca2+-activated isoforms NOX5 and DUOX1 and 2. Loss-of-function mutations in NOX genes can lead to serious human disease. NOX2 deficiency leads to primary immune deficiency, while DUOX2 deficiency presents as congenital hypothyroidism. Nox-deficient mice provide important tools to explore the physiological functions of various NADPH oxidases as a loss of function in Nox2, Nox3, and Duox2 leads to a spontaneous phenotype. The genetic absence of Nox1, Nox4, and Duox1 does not result in an obvious mouse phenotype (the NOX5 gene is absent in rodents and can therefore not be studied using knockout mice). Since the discovery of the NOX family at the turn of the millennium, much progress in understanding the biochemistry and the physiology of NOX has been made; however many questions remain unanswered to date. This chapter is an overview of our present knowledge on mammalian NOX/DUOX enzymes.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
113
|
Baranov MV, Bianchi F, Schirmacher A, van Aart MAC, Maassen S, Muntjewerff EM, Dingjan I, Ter Beest M, Verdoes M, Keyser SGL, Bertozzi CR, Diederichsen U, van den Bogaart G. The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. iScience 2018; 11:160-177. [PMID: 30612035 PMCID: PMC6319320 DOI: 10.1016/j.isci.2018.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Antigen presentation to T cells in major histocompatibility complex class II (MHC class II) requires the conversion of early endo/phagosomes into lysosomes by a process called maturation. Maturation is driven by the phosphoinositide kinase PIKfyve. Blocking PIKfyve activity by small molecule inhibitors caused a delay in the conversion of phagosomes into lysosomes and in phagosomal acidification, whereas production of reactive oxygen species (ROS) increased. Elevated ROS resulted in reduced activity of cathepsin S and B, but not X, causing a proteolytic defect of MHC class II chaperone invariant chain Ii processing. We developed a novel universal MHC class II presentation assay based on a bio-orthogonal "clickable" antigen and showed that MHC class II presentation was disrupted by the inhibition of PIKfyve, which in turn resulted in reduced activation of CD4+ T cells. Our results demonstrate a key role of PIKfyve in the processing and presentation of antigens, which should be taken into consideration when targeting PIKfyve in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Frans Bianchi
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Anastasiya Schirmacher
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Melissa A C van Aart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Sjors Maassen
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Elke M Muntjewerff
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Ilse Dingjan
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands
| | | | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 28, 6525GA Nijmegen, the Netherlands; Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
114
|
Nordzieke DE, Medraño-Fernandez I. The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants (Basel) 2018; 7:antiox7110168. [PMID: 30463362 PMCID: PMC6262572 DOI: 10.3390/antiox7110168] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Membranes are of outmost importance to allow for specific signal transduction due to their ability to localize, amplify, and direct signals. However, due to the double-edged nature of reactive oxygen species (ROS)—toxic at high concentrations but essential signal molecules—subcellular localization of ROS-producing systems to the plasma membrane has been traditionally regarded as a protective strategy to defend cells from unwanted side-effects. Nevertheless, specialized regions, such as lipid rafts and caveolae, house and regulate the activated/inhibited states of important ROS-producing systems and concentrate redox targets, demonstrating that plasma membrane functions may go beyond acting as a securing lipid barrier. This is nicely evinced by nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases (NOX), enzymes whose primary function is to generate ROS and which have been shown to reside in specific lipid compartments. In addition, membrane-inserted bidirectional H2O2-transporters modulate their conductance precisely during the passage of the molecules through the lipid bilayer, ensuring time-scaled delivery of the signal. This review aims to summarize current evidence supporting the role of the plasma membrane as an organizing center that serves as a platform for redox signal transmission, particularly NOX-driven, providing specificity at the same time that limits undesirable oxidative damage in case of malfunction. As an example of malfunction, we explore several pathological situations in which an inflammatory component is present, such as inflammatory bowel disease and neurodegenerative disorders, to illustrate how dysregulation of plasma-membrane-localized redox signaling impacts normal cell physiology.
Collapse
Affiliation(s)
- Daniela E Nordzieke
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Iria Medraño-Fernandez
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
115
|
Burg AR, Tse HM. Redox-Sensitive Innate Immune Pathways During Macrophage Activation in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1373-1398. [PMID: 29037052 PMCID: PMC6166692 DOI: 10.1089/ars.2017.7243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Type 1 diabetes (T1D) is an autoimmune disease resulting in β-cell destruction mediated by islet-infiltrating leukocytes. The role of oxidative stress in human and murine models of T1D is highly significant as these noxious molecules contribute to diabetic complications and β-cell lysis, but their direct impact on dysregulated autoimmune responses is highly understudied. Pro-inflammatory macrophages play a vital role in the initiation and effector phases of T1D by producing free radicals and pro-inflammatory cytokines to facilitate β-cell destruction and to present antigen to autoreactive T cells. Recent Advances: Redox modulation of macrophage functions may play critical roles in autoimmunity. These include enhancing pro-inflammatory innate immune signaling pathways in response to environmental triggers, enforcing an M1 macrophage differentiation program, controlling antigen processing, and altering peptide recognition by oxidative post-translational modification. Therefore, an oxidative environment may act on multiple macrophage functions to orchestrate T1D pathogenesis. CRITICAL ISSUES Mechanisms involved in the initiation of T1D remain unclear, making preventive and early therapeutics difficult to develop. Although many of these advances in the redox regulation of macrophages are in their infancy, they provide insight into how oxidative stress aids in the precipitating event of autoimmune activation. FUTURE DIRECTIONS Future studies should be aimed at mechanistically determining which redox-regulated macrophage functions are pertinent in T1D pathogenesis, as well as at investigating potential targetable therapeutics to halt and/or dampen innate immune activation in T1D.
Collapse
Affiliation(s)
- Ashley R Burg
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
116
|
Dionisi M, De Archangelis C, Battisti F, Rahimi Koshkaki H, Belleudi F, Zizzari IG, Ruscito I, Albano C, Di Filippo A, Torrisi MR, Benedetti Panici P, Napoletano C, Nuti M, Rughetti A. Tumor-Derived Microvesicles Enhance Cross-Processing Ability of Clinical Grade Dendritic Cells. Front Immunol 2018; 9:2481. [PMID: 30455687 PMCID: PMC6230586 DOI: 10.3389/fimmu.2018.02481] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022] Open
Abstract
Tumor cells release extracellular microvesicles (MVs) in the microenvironment to deliver biological signals to neighboring cells as well as to cells in distant tissues. Tumor-derived MVs appear to play contradictory role promoting both immunosuppression and tumor growth and both evoking tumor specific immune response. Recent evidences indicate that tumor-derived MVs can positively impact Dendritic Cells (DCs) immunogenicity by reprogramming DC antigen processing machinery and intracellular signaling pathways, thus promoting anti-tumor response. DCs are considered pivot cells of the immune system due to their exclusive ability to coordinate the innate and acquired immune responses, cross-present exogenous antigens, and prime naïve T cells. DCs are required for the induction and maintenance of long-lasting anti-tumor immunity and their exploitation has been extensively investigated for the design of anti-tumor vaccines. However, the clinical grade culture conditions that are required to generate DCs for therapeutic use can strongly affect their functions. Here, we investigated the immunomodulatory impact of MVs carrying the MUC1 tumor glycoantigen (MVsMUC1) as immunogen formulation on clinical grade DCs grown in X-VIVO 15 (X-DCs). Results indicated that X-DCs displayed reduced performance of the antigen processing machinery in term of diminished phagocytosis and acidification of the phagosomal compartment suggesting an altered immunogenicity of clinical grade DCs. Pulsing DCs with MVsMUC1 restored phagosomal alkalinization, triggering ROS increase. This was not observed when a soluble MUC1 protein was employed (rMUC1). Concurrently, MVsMUC1 internalization by X-DCs allowed MUC1 cross-processing. Most importantly, MVsMUC1 pulsed DCs activated IFNγ response mediated by MUC1 specific CD8+ T cells. These results strongly support the employment of tumor-derived MVs as immunogen platforms for the implementation of DC-based vaccines.
Collapse
Affiliation(s)
- Marco Dionisi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Federico Battisti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Francesca Belleudi
- Department of Clinical and Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | | | - Ilary Ruscito
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,European Competence Center for Ovarian Cancer, Department of Gynecology, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Christian Albano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy.,U.O.C. Genetica medica e Diagnostica cellulare avanzata, S. Andrea University Hospital, Rome, Italy
| | | | - Chiara Napoletano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
117
|
Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, Weiser-Smeke AE, Álvarez-Hernández DA, Franyuti-Kelly GA, Tapia-Moreno M, Ibarra A, Gutiérrez-Kobeh L, Vázquez-López R. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Med Sci (Basel) 2018; 6:medsci6040088. [PMID: 30297662 PMCID: PMC6313400 DOI: 10.3390/medsci6040088] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are a type of cells derived from bone marrow that represent 1% or less of the total hematopoietic cells of any lymphoid organ or of the total cell count of the blood or epithelia. Dendritic cells comprise a heterogeneous population of cells localized in different tissues where they act as sentinels continuously capturing antigens to present them to T cells. Dendritic cells are uniquely capable of attracting and activating naïve CD4+ and CD8+ T cells to initiate and modulate primary immune responses. They have the ability to coordinate tolerance or immunity depending on their activation status, which is why they are also considered as the orchestrating cells of the immune response. The purpose of this review is to provide a general overview of the current knowledge on ontogeny and subsets of human dendritic cells as well as their function and different biological roles.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Sonia Margarita Tovar-Torres
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - María Sofía Tron-Gómez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Ariane Estrella Weiser-Smeke
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | | | | | - Antonio Ibarra
- Coordinación del Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| |
Collapse
|
118
|
Feduska JM, Tse HM. The proinflammatory effects of macrophage-derived NADPH oxidase function in autoimmune diabetes. Free Radic Biol Med 2018; 125:81-89. [PMID: 29723665 DOI: 10.1016/j.freeradbiomed.2018.04.581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease culminating in the destruction of insulin-producing pancreatic β-cells. While ultimately a T cell-mediated disease, macrophages play an indispensable role in disease initiation and progression. Infiltrating macrophages generate an inflammatory environment by releasing NADPH oxidase-derived superoxide and proinflammatory cytokines. The synthesis of reactive oxygen species (ROS) is acknowledged as putative factors contributing to autoimmunity and β-cell damage in T1D. In addition to direct lysis, free radicals collectively participate in β-cell destruction by providing a redox-dependent third signal necessary for islet-reactive CD4 and CD8 T cell maturation and by inducing oxidative post-translational modifications of β-cell epitopes to further exacerbate autoimmune responses. This review will provide an overview of macrophage function and a synergistic cross-talk with redox biology that contributes to autoimmune dysregulation in T1D.
Collapse
Affiliation(s)
- Joseph M Feduska
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294-2182, United States
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294-2182, United States.
| |
Collapse
|
119
|
Ewanchuk BW, Yates RM. The phagosome and redox control of antigen processing. Free Radic Biol Med 2018; 125:53-61. [PMID: 29578071 DOI: 10.1016/j.freeradbiomed.2018.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
In addition to debris clearance and antimicrobial function, versatile organelles known as phagosomes play an essential role in the processing of exogenous antigen in antigen presenting cells. While there has been much attention on human leukocyte antigen haplotypes in the determination of antigenic peptide repertoires, the lumenal biochemistries within phagosomes and endosomes are emerging as equally-important determinants of peptide epitope composition and immunodominance. Recently, the lumenal redox microenvironment within these degradative compartments has been shown to impact two key antigenic processing chemistries: proteolysis by lysosomal cysteine proteases and disulfide reduction of protein antigens. Through manipulation of the balance between oxidative and reductive capacities in the phagosome-principally by modulating NADPH oxidase (NOX2) and γ-interferon-inducible lysosomal thiol reductase (GILT) activities-studies have demonstrated changes to antigen processing patterns leading to modified repertoires of antigenic peptides available for presentation, and subsequently, altered disease progression in T cell-driven autoimmunity. This review focuses on the mechanisms and consequences of redox-mediated phagosomal antigen processing, and the potential downstream implications to tolerance and autoimmunity.
Collapse
Affiliation(s)
- Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
120
|
Thomas DC. How the phagocyte NADPH oxidase regulates innate immunity. Free Radic Biol Med 2018; 125:44-52. [PMID: 29953922 DOI: 10.1016/j.freeradbiomed.2018.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 11/16/2022]
Abstract
The phagocyte NADPH oxidase is a multi subunit protein complex that generates reactive oxygen species at cell membranes and within phagosomes. It is essential for host defence as evidenced by the severe immunodeficiency syndrome caused by a loss of one of the subunits. This is known as chronic granulomatous disease (CGD). However, the phagocyte NADPH oxidase also has a key role to play in regulating immunity and it is notable that chronic granulomatous disease is also characterised by autoimmune and autoinflammatory manifestations. This is because reactive oxygen species play a role in regulating signalling through their ability to post-translationally modify amino acid residues such as cysteine and methionine. In this review, I will outline the major aspects of innate immunity that are regulated by the phagocyte NADPH oxidase, including control of transcription, autophagy, the inflammasome and type 1 interferon signalling.
Collapse
Affiliation(s)
- David C Thomas
- Department of Medicine, University of Cambridge School of Clinical Medicine, Box 157 Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
121
|
Ma J, Wei K, Zhang H, Tang K, Li F, Zhang T, Liu J, Xu P, Yu Y, Sun W, Zhu L, Chen J, Zhou L, Liang X, Lv J, Fiskesund R, Liu Y, Huang B. Mechanisms by Which Dendritic Cells Present Tumor Microparticle Antigens to CD8 + T Cells. Cancer Immunol Res 2018; 6:1057-1068. [PMID: 30018046 DOI: 10.1158/2326-6066.cir-17-0716] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/17/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
Abstract
Tumor cell-derived microparticles (T-MP) contain tumor antigen profiles as well as innate signals, endowing them with vaccine potential; however, the precise mechanism by which DCs present T-MP antigens to T cells remains unclear. Here, we show that T-MPs activate a lysosomal pathway that is required for DCs presenting tumor antigens of T-MPs. DCs endocytose T-MPs to lysosomes, where T-MPs increase lysosomal pH from 5.0 to a peak of 8.5 via NOX2-catalyzed reactive oxygen species (ROS) production. This increased pH, coupled with T-MP-driven lysosomal centripetal migration, promotes the formation of MHC class I-tumor antigen peptide complexes. Concurrently, endocytosis of T-MPs results in the upregulation of CD80 and CD86. T-MP-increased ROS activate lysosomal Ca2+ channel Mcoln2, leading to Ca2+ release. Released Ca2+ activates transcription factor EB (TFEB), a lysosomal master regulator that directly binds to CD80 and CD86 promoters, promoting gene expression. These findings elucidate a pathway through which DCs efficiently present tumor antigen from T-MPs to CD8+ T cells, potentiating T-MPs as a novel tumor cell-free vaccine with clinical applications. Cancer Immunol Res; 6(9); 1057-68. ©2018 AACR.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Keke Wei
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianzhen Zhang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Junwei Liu
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pingwei Xu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuandong Yu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Sun
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - LiYan Zhu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhou
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Liang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Roland Fiskesund
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuying Liu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Huang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
122
|
Embgenbroich M, Burgdorf S. Current Concepts of Antigen Cross-Presentation. Front Immunol 2018; 9:1643. [PMID: 30061897 PMCID: PMC6054923 DOI: 10.3389/fimmu.2018.01643] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells have the ability to efficiently present internalized antigens on major histocompatibility complex (MHC) I molecules. This process is termed cross-presentation and is important role in the generation of an immune response against viruses and tumors, after vaccinations or in the induction of immune tolerance. The molecular mechanisms enabling cross-presentation have been topic of intense debate since many years. However, a clear view on these mechanisms remains difficult, partially due to important remaining questions, controversial results and discussions. Here, we give an overview of the current concepts of antigen cross-presentation and focus on a description of the major cross-presentation pathways, the role of retarded antigen degradation for efficient cross-presentation, the dislocation of antigens from endosomal compartment into the cytosol, the reverse transport of proteasome-derived peptides for loading on MHC I and the translocation of the cross-presentation machinery from the ER to endosomes. We try to highlight recent advances, discuss some of the controversial data and point out some of the major open questions in the field.
Collapse
Affiliation(s)
- Maria Embgenbroich
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Sven Burgdorf
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
123
|
Emmerson A, Trevelin SC, Mongue-Din H, Becker PD, Ortiz C, Smyth LA, Peng Q, Elgueta R, Sawyer G, Ivetic A, Lechler RI, Lombardi G, Shah AM. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J Clin Invest 2018; 128:3088-3101. [PMID: 29688896 PMCID: PMC6025997 DOI: 10.1172/jci97490] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II-induced (Ang II-induced) pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs. Mice globally deficient in Nox2 displayed increased numbers of Tregs in the heart at baseline, whereas Ang II-induced effector T cell (Teff) infiltration was inhibited. To investigate the role of Treg Nox2, we generated a mouse line with CD4-targeted Nox2 deficiency (Nox2fl/flCD4Cre+). These animals showed inhibition of Ang II-induced hypertension and cardiac remodeling related to increased tissue-resident Tregs and reduction in infiltrating Teffs, including Th17 cells. The protection in Nox2fl/flCD4Cre+ mice was reversed by anti-CD25 antibody depletion of Tregs. Mechanistically, Nox2-/y Tregs showed higher in vitro suppression of Teff proliferation than WT Tregs, increased nuclear levels of FoxP3 and NF-κB, and enhanced transcription of CD25, CD39, and CD73. Adoptive transfer of Tregs confirmed that Nox2-deficient cells had greater inhibitory effects on Ang II-induced heart remodeling than WT cells. These results identify a previously unrecognized role of Nox2 in modulating suppression of Tregs, which acts to enhance hypertension and cardiac remodeling.
Collapse
Affiliation(s)
- Amber Emmerson
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Silvia Cellone Trevelin
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Heloise Mongue-Din
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Pablo D. Becker
- King’s College London, Medical Research Council Centre for Transplantation, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Carla Ortiz
- King’s College London, Medical Research Council Centre for Transplantation, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Lesley A. Smyth
- King’s College London, Medical Research Council Centre for Transplantation, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Qi Peng
- King’s College London, Medical Research Council Centre for Transplantation, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Raul Elgueta
- King’s College London, Medical Research Council Centre for Transplantation, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Greta Sawyer
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Aleksandar Ivetic
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| | - Robert I. Lechler
- King’s College London, Medical Research Council Centre for Transplantation, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Giovanna Lombardi
- King’s College London, Medical Research Council Centre for Transplantation, School of Immunology and Microbial Sciences, London, United Kingdom
| | - Ajay M. Shah
- King’s College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, United Kingdom
| |
Collapse
|
124
|
Bakkum T, van Leeuwen T, Sarris AJC, van Elsland DM, Poulcharidis D, Overkleeft HS, van Kasteren SI. Quantification of Bioorthogonal Stability in Immune Phagocytes Using Flow Cytometry Reveals Rapid Degradation of Strained Alkynes. ACS Chem Biol 2018; 13:1173-1179. [PMID: 29693370 PMCID: PMC5962927 DOI: 10.1021/acschembio.8b00355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
One of the areas
in which bioorthogonal chemistry—chemistry
performed inside a cell or organism—has become of pivotal importance
is in the study of host–pathogen interactions. The incorporation
of bioorthogonal groups into the cell wall or proteome of intracellular
pathogens has allowed study within the endolysosomal system. However,
for the approach to be successful, the incorporated bioorthogonal
groups must be stable to chemical conditions found within these organelles,
which are some of the harshest found in metazoans: the groups are
exposed to oxidizing species, acidic conditions, and reactive thiols.
Here we present an assay that allows the assessment of the stability
of bioorthogonal groups within host cell phagosomes. Using a flow
cytometry-based assay, we have quantified the relative label stability
inside dendritic cell phagosomes of strained and unstrained alkynes.
We show that groups that were shown to be stable in other systems
were degraded by as much as 79% after maturation of the phagosome.
Collapse
Affiliation(s)
- Thomas Bakkum
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alexi J. C. Sarris
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Daphne M. van Elsland
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dimitrios Poulcharidis
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
125
|
Sakurai C, Itakura M, Kinoshita D, Arai S, Hashimoto H, Wada I, Hatsuzawa K. Phosphorylation of SNAP-23 at Ser95 causes a structural alteration and negatively regulates Fc receptor-mediated phagosome formation and maturation in macrophages. Mol Biol Cell 2018; 29:1753-1762. [PMID: 29771640 PMCID: PMC6080709 DOI: 10.1091/mbc.e17-08-0523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
SNAP-23 is a plasma membrane-localized soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNARE) involved in Fc receptor (FcR)-mediated phagocytosis. However, the regulatory mechanism underlying its function remains elusive. Using phosphorylation-specific antibodies, SNAP-23 was found to be phosphorylated at Ser95 in macrophages. To understand the role of this phosphorylation, we established macrophage lines overexpressing the nonphosphorylatable S95A or the phosphomimicking S95D mutation. The efficiency of phagosome formation and maturation was severely reduced in SNAP-23-S95D–overexpressing cells. To examine whether phosphorylation at Ser95 affected SNAP-23 structure, we constructed intramolecular Förster resonance energy transfer (FRET) probes of SNAP-23 designed to evaluate the approximation of the N termini of the two SNARE motifs. Interestingly, a high FRET efficiency was detected on the membrane when the S95D probe was used, indicating that phosphorylation at Ser95 caused a dynamic structural shift to the closed form. Coexpression of IκB kinase (IKK) 2 enhanced the FRET efficiency of the wild-type probe on the phagosome membrane. Furthermore, the enhanced phagosomal FRET signal in interferon-γ–activated macrophages was largely dependent on IKK2, and this kinase mediated a delay in phagosome-lysosome fusion. These results suggested that SNAP-23 phosphorylation at Ser95 played an important role in the regulation of SNARE-dependent membrane fusion during FcR-mediated phagocytosis.
Collapse
Affiliation(s)
- Chiye Sakurai
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.,Department of Cell Science, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | - Daiki Kinoshita
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hitoshi Hashimoto
- Department of Cell Science, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kiyotaka Hatsuzawa
- Division of Molecular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.,Department of Cell Science, Institute of Biomedical Science, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
126
|
NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 2018; 131:2367-2378. [PMID: 29618478 DOI: 10.1182/blood-2017-09-809004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood. Here, we demonstrate that phagocytosis of AC (efferocytosis) potently activated NADPH oxidase in mouse peritoneal exudate macrophages (PEMs). ROS generation was dependent on macrophage CD11b, Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response 88 (MyD88), and was also regulated by phosphatidylinositol 3-phosphate binding to the p40 phox oxidase subunit. Maturation of efferosomes containing apoptotic neutrophils was significantly delayed in CGD PEMs, including acidification and acquisition of proteolytic activity, and was associated with slower digestion of apoptotic neutrophil proteins. Treatment of wild-type macrophages with the vacuolar-type H+ ATPase inhibitor bafilomycin also delayed proteolysis within efferosomes, showing that luminal acidification was essential for efficient digestion of efferosome proteins. Finally, cross-presentation of AC-associated antigens by CGD PEMs to CD8 T cells was increased. These studies unravel a key role for the NADPH oxidase in the disposal of ACs by inflammatory macrophages. The oxidants generated promote efferosome maturation and acidification that facilitate the degradation of ingested ACs.
Collapse
|
127
|
Maxson ME, Naj X, O'Meara TR, Plumb JD, Cowen LE, Grinstein S. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. eLife 2018; 7:34798. [PMID: 29553370 PMCID: PMC5897098 DOI: 10.7554/elife.34798] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
Candida albicans hyphae can reach enormous lengths, precluding their internalization by phagocytes. Nevertheless, macrophages engulf a portion of the hypha, generating incompletely sealed tubular phagosomes. These frustrated phagosomes are stabilized by a thick cuff of F-actin that polymerizes in response to non-canonical activation of integrins by fungal glycan. Despite their continuity, the surface and invaginating phagosomal membranes retain a strikingly distinct lipid composition. PtdIns(4,5)P2 is present at the plasmalemma but is not detectable in the phagosomal membrane, while PtdIns(3)P and PtdIns(3,4,5)P3 co-exist in the phagosomes yet are absent from the surface membrane. Moreover, endo-lysosomal proteins are present only in the phagosomal membrane. Fluorescence recovery after photobleaching revealed the presence of a diffusion barrier that maintains the identity of the open tubular phagosome separate from the plasmalemma. Formation of this barrier depends on Syk, Pyk2/Fak and formin-dependent actin assembly. Antimicrobial mechanisms can thereby be deployed, limiting the growth of the hyphae.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xenia Naj
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Teresa R O'Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jonathan D Plumb
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
128
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
129
|
Macrophage Polarization Alters Postphagocytosis Survivability of the Commensal Streptococcus gordonii. Infect Immun 2018; 86:IAI.00858-17. [PMID: 29229734 DOI: 10.1128/iai.00858-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Oral streptococci are generally considered commensal organisms; however, they are becoming recognized as important associate pathogens during the development of periodontal disease as well as being associated with several systemic diseases, including as a causative agent of infective endocarditis. An important virulence determinant of these bacteria is an ability to evade destruction by phagocytic cells, yet how this subversion occurs is mostly unknown. Using Streptococcus gordonii as a model commensal oral streptococcus that is also associated with disease, we find that resistance to reactive oxygen species (ROS) with an active ability to damage phagosomes allows the bacterium to avoid destruction within macrophages. This ability to survive relies not only on the ROS resistance capabilities of the bacterium but also on ROS production by macrophages, with both being required for maximal survival of internalized bacteria. Importantly, we also show that this dependence on ROS production by macrophages for resistance has functional significance: S. gordonii intracellular survival increases when macrophages are polarized toward an activated (M1) profile, which is known to result in prolonged phagosomal ROS production compared to that of alternatively (M2) polarized macrophages. We additionally find evidence of the bacterium being capable of both delaying the maturation of and damaging phagosomes. Taken together, these results provide essential insights regarding the mechanisms through which normally commensal oral bacteria can contribute to both local and systemic inflammatory disease.
Collapse
|
130
|
Hipolito VEB, Ospina-Escobar E, Botelho RJ. Lysosome remodelling and adaptation during phagocyte activation. Cell Microbiol 2018; 20. [PMID: 29349904 DOI: 10.1111/cmi.12824] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Lysosomes are acidic and hydrolytic organelles responsible for receiving and digesting cargo acquired during endocytosis, phagocytosis, and autophagy. For macrophages and dendritic cells, the lysosome is kingpin, playing a direct role in microbe killing and antigen processing for presentation. Strikingly, the historic view that lysosomes are homogeneous and static organelles is being replaced with a more elegant paradigm, in which lysosomes are heterogeneous, dynamic, and respond to cellular needs. For example, lysosomes are signalling platforms that integrate stress detection and molecular decision hubs such as the mTOR complex 1 and AMPK to modulate cellular activity. These signals can even adjust lysosome activity by modulating transcription factors such as transcription factor EB (TFEB) and TFE3 that govern lysosome gene expression. Here, we review lysosome remodelling and adaptation during macrophage and dendritic cell stimulation. First, we assess the functional outcomes and regulatory mechanisms driving the dramatic restructuring of lysosomes from globular organelles into a tubular network during phagocyte activation. Second, we discuss lysosome adaptation and scaling in macrophages driven by TFEB and TFE3 stimulation in response to phagocytosis and microbe challenges. Collectively, we are beginning to appreciate that lysosomes are dynamic and adapt to serve phagocyte differentiation in response to microbes and immune stress.
Collapse
Affiliation(s)
- Victoria E B Hipolito
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Erika Ospina-Escobar
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
131
|
Spel L, Luteijn RD, Drijfhout JW, Nierkens S, Boes M, Wiertz EJH. Endocytosed soluble cowpox virus protein CPXV012 inhibits antigen cross-presentation in human monocyte-derived dendritic cells. Immunol Cell Biol 2018; 96:137-148. [PMID: 29363167 DOI: 10.1111/imcb.1024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
Abstract
Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner.
Collapse
Affiliation(s)
- Lotte Spel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Marianne Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Emmanuel J H Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
132
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
133
|
Faure F, Jouve M, Lebhar-Peguillet I, Sadaka C, Sepulveda F, Lantz O, Berre S, Gaudin R, Sánchez-Ramón S, Amigorena S. Blood monocytes sample MelanA/MART1 antigen for long-lasting cross-presentation to CD8 + T cells after differentiation into dendritic cells. Int J Cancer 2018; 142:133-144. [PMID: 28884480 DOI: 10.1002/ijc.31037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Abstract
Human blood monocytes are very potent to take up antigens. Like macrophages in tissue, they efficiently degrade exogenous protein and are less efficient than dendritic cells (DCs) at cross-presenting antigens to CD8+ T cells. Although it is generally accepted that DCs take up tissue antigens and then migrate to lymph nodes to prime T cells, the mechanisms of presentation of antigens taken up by monocytes are poorly documented so far. In the present work, we show that monocytes loaded in vitro with MelanA long peptides retain the capacity to stimulate antigen-specific CD8+ T cell clones after 5 days of differentiation into monocytes-derived dendritic cells (MoDCs). Tagged-long peptides can be visualized in electron-dense endocytic compartments distinct from lysosomes, suggesting that antigens can be protected from degradation for extended periods of time. To address the pathophysiological relevance of these findings, we screened blood monocytes from 18 metastatic melanoma patients and found that CD14+ monocytes from two patients effectively activate a MelanA-specific CD8 T cell clone after in vitro differentiation into MoDCs. This in vivo sampling of tumor antigen by circulating monocytes might alter the tumor-specific immune response and should be taken into account for cancer immunotherapy.
Collapse
Affiliation(s)
- Florence Faure
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Mabel Jouve
- Institut Curie, PSL Research University, CNRS UMR3215, Paris, 75005, France
| | | | - Charlotte Sadaka
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Fernando Sepulveda
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Stefano Berre
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Raphael Gaudin
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | |
Collapse
|
134
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|
135
|
Sundqvist M, Christenson K, Björnsdottir H, Osla V, Karlsson A, Dahlgren C, Speert DP, Fasth A, Brown KL, Bylund J. Elevated Mitochondrial Reactive Oxygen Species and Cellular Redox Imbalance in Human NADPH-Oxidase-Deficient Phagocytes. Front Immunol 2017; 8:1828. [PMID: 29375548 PMCID: PMC5744066 DOI: 10.3389/fimmu.2017.01828] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD.
Collapse
Affiliation(s)
- Martina Sundqvist
- The Phagocyte Research Group, Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- The Phagocyte Research Group, Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Halla Björnsdottir
- The Phagocyte Research Group, Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Osla
- The Phagocyte Research Group, Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson
- The Phagocyte Research Group, Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- The Phagocyte Research Group, Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - David P Speert
- Department of Pediatrics, Centre for Understanding and Preventing Infection in Children, University of British Columbia, Vancouver, BC, Canada
| | - Anders Fasth
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Kelly L Brown
- Department of Pediatrics, The University of British Columbia at The British Columbia Children's Hospital Research Institute (Formerly the Child and Family Research Institute), Vancouver, BC, Canada
| | - Johan Bylund
- The Phagocyte Research Group, Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Microbiology and Immunology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
136
|
Innate immune receptors for cross-presentation: The expanding role of NLRs. Mol Immunol 2017; 113:6-10. [PMID: 29198621 PMCID: PMC6859786 DOI: 10.1016/j.molimm.2017.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
PRRs temporally control cross-presentation during acute vs. chronic pathogen handling. NLRs signal in close proximity to phagosomal and endosomal membranes. Current status of NLR-dependent regulation of MHC class antigen presentation.
A critical role of pattern recognition receptors (PRRs) is to influence adaptive immune responses by regulating antigen presentation. Engagement of PRRs in dendritic cells (DCs) increases MHC class I antigen presentation and CD8+ T-cell activation by cross-presented peptides but the molecular mechanisms underlying these effects are not completely understood. Studies looking at the role of PRRs in cross-presentation have been largely limited to TLRs but the role of other PRRs such as cytosolic nucleotide-binding oligomerization domain-like (NOD-like) receptors remains particularly enigmatic. Here we discuss recent evidence of the role of PRRs on cross-presentation and consider how cytosolic NLR-associated pathways, such as NOD2, may integrate these signals resulting in effective adaptive CD8+ T cells responses.
Collapse
|
137
|
Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev 2017; 41:139-157. [PMID: 27965320 DOI: 10.1093/femsre/fuw042] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2016] [Indexed: 11/14/2022] Open
Abstract
Dysfunction of phagocytes is a relevant risk factor for staphylococcal infection. The most common hereditary phagocyte dysfunction is chronic granulomatous disease (CGD), characterized by impaired generation of reactive oxygen species (ROS) due to loss of function mutations within the phagocyte NADPH oxidase NOX2. Phagocytes ROS generation is fundamental to eliminate pathogens and to regulate the inflammatory response to infection. CGD is characterized by recurrent and severe bacterial and fungal infections, with Staphylococcus aureus as the most frequent pathogen, and skin and lung abscesses as the most common clinical entities. Staphylococcus aureus infection may occur in virtually any human host, presumably because of the many virulence factors of the bacterium. However, in the presence of functional NOX2, staphylococcal infections remain rare and are mainly linked to breaches of the skin barrier. In contrast, in patients with CGD, S. aureus readily survives and frequently causes clinically apparent disease. Astonishingly, little is known why S. aureus, which possesses a wide range of antioxidant enzymes (e.g. catalase, SOD), is particularly sensitive to control through NOX2. In this review, we will evaluate the discovery of CGD and our present knowledge of the role of NOX2 in S. aureus infection.
Collapse
Affiliation(s)
- Helene Buvelot
- Division of General Internal Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Klara M Posfay-Barbe
- Paediatric Infectious Diseases Unit, Department of Paediatrics, University Hospitals of Geneva, 1205 Geneva and Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Jacques Schrenzel
- Divisions of Infectious Diseases and Laboratory Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Karl-Heinz Krause
- Divisions of Infectious Diseases and Laboratory Medicine, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
138
|
Shi Y, Halperin SA, Lee SF. Expression, purification, and functional analysis of an antigen-targeting fusion protein composed of CD40 ligand and the C-terminal fragment of ovalbumin. Protein Expr Purif 2017; 142:37-44. [PMID: 28974444 DOI: 10.1016/j.pep.2017.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/06/2023]
Abstract
Delivering antigen via molecules specifically targeting receptors on the surface of antigen-presenting cells is a strategy to improve immune responses. In this study, an antigen-targeting fusion protein (OVA-CD40LS) composed of the C-terminal fragment of ovalbumin and the extracellular domain of mouse CD40 ligand was constructed by genetic fusion. The OVA-CD40LS and the control OVA (rOVA) genes were cloned in Escherichia coli and over-expressed as insoluble proteins. The rOVA protein was purified from the insoluble fraction of E. coli cell lysate by nickel affinity chromatography and refolded by step-wise dialysis to give a yield of 11.8 mg/L of culture. The OVA-CD40LS was purified by a 'two-round' nickel affinity and on-column protein-refolding chromatography. The yield was 528 μg/L of culture. The purified OVA-CD40LS, but not the rOVA, was able to simulate the production of pro-inflammatory cytokines and up-regulate cell surface marker proteins in mouse bone marrow-derived dendritic cells. The purified OVA-CD40LS elicited a robust immune response when injected submucosally in the oral cavity of mice. Collectively, the results indicate that the OVA-CD40LS fusion protein was biologically active, functioning as an antigen-targeting protein.
Collapse
Affiliation(s)
- Yunnuo Shi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University, Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
139
|
Battisti F, Napoletano C, Rahimi Koshkaki H, Belleudi F, Zizzari IG, Ruscito I, Palchetti S, Bellati F, Benedetti Panici P, Torrisi MR, Caracciolo G, Altieri F, Nuti M, Rughetti A. Tumor-Derived Microvesicles Modulate Antigen Cross-Processing via Reactive Oxygen Species-Mediated Alkalinization of Phagosomal Compartment in Dendritic Cells. Front Immunol 2017; 8:1179. [PMID: 28993771 PMCID: PMC5622295 DOI: 10.3389/fimmu.2017.01179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/06/2017] [Indexed: 01/04/2023] Open
Abstract
Dendritic cells (DCs) are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8+ T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS) accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies.
Collapse
Affiliation(s)
- Federico Battisti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Belleudi
- Department of Molecular and Clinical Medicine, Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | - Ilary Ruscito
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Department of Gynaecology, Obstetrics and Urology, Sapienza University of Rome, Rome, Italy
| | - Sara Palchetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Filippo Bellati
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy.,Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | | | - Maria Rosaria Torrisi
- Department of Molecular and Clinical Medicine, Instituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
140
|
Hsieh SH, Kurzai O, Brock M. Persistence within dendritic cells marks an antifungal evasion and dissemination strategy of Aspergillus terreus. Sci Rep 2017; 7:10590. [PMID: 28878289 PMCID: PMC5587622 DOI: 10.1038/s41598-017-10914-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/16/2017] [Indexed: 01/20/2023] Open
Abstract
Aspergillus terreus is an airborne human fungal pathogen causing life-threatening invasive aspergillosis in immunocompromised patients. In contrast to Aspergillus fumigatus, A. terreus infections are associated with high dissemination rates and poor response to antifungal treatment. Here, we compared the interaction of conidia from both fungal species with MUTZ-3-derived dendritic cells (DCs). After phagocytosis, A. fumigatus conidia rapidly escaped from DCs, whereas A. terreus conidia remained persisting with long-term survival. Escape from DCs was independent from DHN-melanin, as A. terreus conidia expressing wA showed no increased intracellular germination. Within DCs A. terreus conidia were protected from antifungals, whereas A. fumigatus conidia were efficiently cleared. Furthermore, while A. fumigatus conidia triggered expression of DC activation markers such as CD80, CD83, CD54, MHCII and CCR7, persistent A. terreus conidia were significantly less immunogenic. Moreover, DCs confronted with A. terreus conidia neither produced pro-inflammatory nor T-cell stimulating cytokines. However, TNF-α addition resulted in activation of DCs and provoked the expression of migration markers without inactivating intracellular A. terreus conidia. Therefore, persistence within DCs and possibly within other immune cells might contribute to the low response of A. terreus infections to antifungal treatment and could be responsible for its high dissemination rates.
Collapse
Affiliation(s)
- Shih-Hung Hsieh
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK.,Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Medical Microbiology and Mycology, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Septomics Research Center, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Matthias Brock
- Fungal Genetics and Biology Group, School of Life Sciences, University of Nottingham, University Park, NG7 2RD, Nottingham, UK.
| |
Collapse
|
141
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
142
|
NOX5 and p22phox are 2 novel regulators of human monocytic differentiation into dendritic cells. Blood 2017; 130:1734-1745. [PMID: 28830888 DOI: 10.1182/blood-2016-10-746347] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 08/03/2017] [Indexed: 01/25/2023] Open
Abstract
Dendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells and are key cells of the immune system, acquiring different phenotypes in accordance with their localization during the immune response. A subset of inflammatory DCs is derived from circulating monocytes (Mo) and has a key role in inflammation and infection. The pathways controlling Mo-DC differentiation are not fully understood. Our objective was to investigate the possible role of nicotinamide adenine dinucleotide phosphate reduced form oxidases (NOXs) in Mo-DC differentiation. In this study, we revealed that Mo-DC differentiation was inhibited by NOX inhibitors and reactive oxygen species scavengers. We show that the Mo-DC differentiation was dependent on p22phox, and not on gp91phox/NOX2, as shown by the reduced Mo-DC differentiation observed in chronic granulomatous disease patients lacking p22phox. Moreover, we revealed that NOX5 expression was strongly increased during Mo-DC differentiation, but not during Mo-macrophage differentiation. NOX5 was expressed in circulating myeloid DC, and at a lower level in plasmacytoid DC. Interestingly, NOX5 was localized at the outer membrane of the mitochondria and interacted with p22phox in Mo-DC. Selective inhibitors and small interfering RNAs for NOX5 indicated that NOX5 controlled Mo-DC differentiation by regulating the JAK/STAT/MAPK and NFκB pathways. These data demonstrate that the NOX5-p22phox complex drives Mo-DC differentiation, and thus could be critical for immunity and inflammation.
Collapse
|
143
|
Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, Chen X, Li XD, Deng L, Chen ZJ, Weichselbaum RR, Fu YX. Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein α Signaling. Immunity 2017; 47:363-373.e5. [PMID: 28801234 DOI: 10.1016/j.immuni.2017.07.016] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/09/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
Abstract
Inhibition of cytosolic DNA sensing represents a strategy that tumor cells use for immune evasion, but the underlying mechanisms are unclear. Here we have shown that CD47-signal regulatory protein α (SIRPα) axis dictates the fate of ingested DNA in DCs for immune evasion. Although macrophages were more potent in uptaking tumor DNA, increase of DNA sensing by blocking the interaction of SIRPα with CD47 preferentially occurred in dendritic cells (DCs) but not in macrophages. Mechanistically, CD47 blockade enabled the activation of NADPH oxidase NOX2 in DCs, which in turn inhibited phagosomal acidification and reduced the degradation of tumor mitochondrial DNA (mtDNA) in DCs. mtDNA was recognized by cyclic-GMP-AMP synthase (cGAS) in the DC cytosol, contributing to type I interferon (IFN) production and antitumor adaptive immunity. Thus, our findings have demonstrated how tumor cells inhibit innate sensing in DCs and suggested that the CD47-SIRPα axis is critical for DC-driven antitumor immunity.
Collapse
Affiliation(s)
- Meng Michelle Xu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Yang Pu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Dali Han
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yaoyao Shi
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuezhi Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Liang
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiang Chen
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-Dong Li
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liufu Deng
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhijian J Chen
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
144
|
Paardekooper LM, van den Bogaart G, Kox M, Dingjan I, Neerincx AH, Bendix MB, Beest MT, Harren FJM, Risby T, Pickkers P, Marczin N, Cristescu SM. Ethylene, an early marker of systemic inflammation in humans. Sci Rep 2017; 7:6889. [PMID: 28761087 PMCID: PMC5537290 DOI: 10.1038/s41598-017-05930-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
Ethylene is a major plant hormone mediating developmental processes and stress responses to stimuli such as infection. We show here that ethylene is also produced during systemic inflammation in humans and is released in exhaled breath. Traces of ethylene were detected by laser spectroscopy both in vitro in isolated blood leukocytes exposed to bacterial lipopolysaccharide (LPS) as well as in vivo following LPS administration in healthy volunteers. Exposure to LPS triggers formation of ethylene as a product of lipid peroxidation induced by the respiratory burst. In humans, ethylene was detected prior to the increase of blood levels of inflammatory cytokines and stress-related hormones. Our results highlight that ethylene release is an early and integral component of in vivo lipid peroxidation with important clinical implications as a breath biomarker of bacterial infection.
Collapse
Affiliation(s)
- Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Kox
- Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne H Neerincx
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Maura B Bendix
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans J M Harren
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Terence Risby
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Peter Pickkers
- Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nandor Marczin
- Department of Anaesthesia, Royal Brompton and Harefield NHS Foundation Trust, Harefield, UK
- Section of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Institute of Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
145
|
Blander JM. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation. Immunol Rev 2017; 272:65-79. [PMID: 27319343 DOI: 10.1111/imr.12428] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
146
|
Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev 2017; 273:156-79. [PMID: 27558334 DOI: 10.1111/imr.12439] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagocytosis, the regulated uptake of large particles (>0.5 μm in diameter), is essential for tissue homeostasis and is also an early, critical component of the innate immune response. Phagocytosis can be conceptually divided into three stages: phagosome, formation, maturation, and resolution. Each of these involves multiple reactions that require exquisite spatial and temporal orchestration. The molecular events underlying these stages are being unraveled and the current state of knowledge is briefly summarized in this article.
Collapse
Affiliation(s)
- Roni Levin
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Johnathan Canton
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
147
|
Dingjan I, Paardekooper LM, Verboogen DRJ, von Mollard GF, Ter Beest M, van den Bogaart G. VAMP8-mediated NOX2 recruitment to endosomes is necessary for antigen release. Eur J Cell Biol 2017; 96:705-714. [PMID: 28688576 PMCID: PMC5641923 DOI: 10.1016/j.ejcb.2017.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022] Open
Abstract
Climbing beans produced more than bush beans for 80% of the farmers. Both bean and maize responded positively to DAP fertilizer in 60% of the farms. Early planting increased fertilizer effects in bean-maize rotations. DAP is more profitable in climbing bean-rotation than in bush bean-maize rotation.
Cross-presentation of foreign antigen in major histocompatibility complex (MHC) class I by dendritic cells (DCs) requires activation of the NADPH-oxidase NOX2 complex. We recently showed that NOX2 is recruited to phagosomes by the SNARE protein VAMP8 where NOX2-produced reactive oxygen species (ROS) cause lipid oxidation and membrane disruption, promoting antigen translocation into the cytosol for cross-presentation. In this study, we extend these findings by showing that VAMP8 is also involved in NOX2 trafficking to endosomes. Moreover, we demonstrate in both human and mouse DCs that absence of VAMP8 leads to decreased ROS production, lipid peroxidation and antigen translocation, and that this impairs cross-presentation. In contrast, knockdown of VAMP8 did not affect recruitment of MHC class I and the transporter associated with antigen processing 1 (TAP1) to phagosomes, although surface levels of MHC class I were reduced. Thus, in addition to a secretory role, VAMP8-mediates trafficking of NOX2 to endosomes and phagosomes and this promotes induction of cytolytic T cell immune responses.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Daniëlle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | | | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
148
|
Ocaña-Morgner C, Sales S, Rothe M, Shevchenko A, Jessberger R. Tolerogenic versus Immunogenic Lipidomic Profiles of CD11c + Immune Cells and Control of Immunogenic Dendritic Cell Ceramide Dynamics. THE JOURNAL OF IMMUNOLOGY 2017; 198:4360-4372. [PMID: 28468968 DOI: 10.4049/jimmunol.1601928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/05/2017] [Indexed: 11/19/2022]
Abstract
Lipids affect the membrane properties determining essential biological processes. Earlier studies have suggested a role of switch-activated protein 70 (SWAP-70) in lipid raft formation of dendritic cells. We used lipidomics combined with genetic and biochemical assays to analyze the role of SWAP-70 in lipid dynamics. TLR activation using LPS as a ligand represented a pathogenic immunogenic stimulus, physical disruption of cell-cell contacts a tolerogenic stimulus. Physical disruption, but not LPS, caused an increase of phosphatidylcholine ether and cholesteryl esters in CD11c+ immune cells. An increase of ceramide (Cer) was a hallmark for LPS activation. SWAP-70 was required for regulating the increase and localization of Cers in the cell membrane. SWAP-70 controls Cer accumulation through the regulation of pH-dependent acid-sphingomyelinase activity and of RhoA-dependent transport of endosomal contents to the plasma membrane. Poor accumulation of Cers in Swap70-/- cells caused decreased apoptosis. This shows that two different pathways of activation, immunogenic and tolerogenic, induce different changes in the lipid composition of cultured CD11c+ cells, and highlights the important role of SWAP-70 in Cer dynamics in dendritic cells.
Collapse
Affiliation(s)
- Carlos Ocaña-Morgner
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden 01307, Germany; and
| | - Susanne Sales
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Manuela Rothe
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden 01307, Germany; and
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden 01307, Germany; and
| |
Collapse
|
149
|
Müller-Calleja N, Manukyan D, Canisius A, Strand D, Lackner KJ. Hydroxychloroquine inhibits proinflammatory signalling pathways by targeting endosomal NADPH oxidase. Ann Rheum Dis 2017; 76:891-897. [PMID: 27903507 DOI: 10.1136/annrheumdis-2016-210012] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/28/2016] [Accepted: 11/05/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Hydroxychloroquine (HCQ) has been used for decades to treat patients with rheumatic diseases, for example, systemic lupus erythematosus (SLE), rheumatoid arthritis or the antiphospholipid syndrome (APS). We hypothesise that HCQ might target endosomal NADPH oxidase (NOX), which is involved in the signal transduction of cytokines as well as antiphospholipid antibodies (aPL). METHODS For in vitro experiments, monocytic cells were stimulated with tumour necrosis factor α (TNFα), interleukin-1β (IL-1β) or a human monoclonal aPL and the activity of NOX was determined by flow cytometry. The expression of genes known to be induced by these stimuli was quantified by quantitative reverse transcription PCR. Live cell imaging was performed by confocal laser scanning microscopy. Finally, the effects of HCQ on NOX-induced signal transduction were analysed in an in vivo model of venous thrombosis. RESULTS HCQ strongly reduces or completely prevents the induction of endosomal NOX by TNFα, IL-1β and aPL in human monocytes and MonoMac1 cells. As a consequence, induction of downstream genes by these stimuli is reduced or abrogated. This effect of HCQ is not mediated by direct interference with the agonists but by inhibiting the translocation of the catalytic subunit of NOX2 (gp91phox) into the endosome. In vivo, HCQ protects mice from aPL-induced and NOX2-mediated thrombus formation. CONCLUSIONS We describe here a novel mechanism of action of HCQ, that is, interference with the assembly of endosomal NOX2. Since endosomal NOX2 is involved in many inflammatory and prothrombotic signalling pathways, this activity of HCQ might explain many of its beneficial effects in rheumatic diseases including the APS.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Davit Manukyan
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Antje Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Dennis Strand
- Department of Medicine 1, University Medical Center Mainz, Mainz, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
150
|
Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annu Rev Immunol 2017; 35:149-176. [PMID: 28125356 PMCID: PMC5508990 DOI: 10.1146/annurev-immunol-041015-055254] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To monitor the health of cells, the immune system tasks antigen-presenting cells with gathering antigens from other cells and bringing them to CD8 T cells in the form of peptides bound to MHC-I molecules. Most cells would be unable to perform this function because they use their MHC-I molecules to exclusively present peptides derived from the cell's own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC-I through a process called cross-presentation. How this important task is accomplished, its role in health and disease, and its potential for exploitation are the subject of this review.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Elena Merino
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Barry A Kriegsman
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655; , , , ,
| |
Collapse
|