101
|
Velappan N, Nguyen HB, Micheva-Viteva S, Bedinger D, Ye C, Mangadu B, Watts AJ, Meagher R, Bradfute S, Hu B, Waldo GS, Lillo AM. Healthy humans can be a source of antibodies countering COVID-19. Bioengineered 2022; 13:12598-12624. [PMID: 35599623 PMCID: PMC9275966 DOI: 10.1080/21655979.2022.2076390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/05/2022] Open
Abstract
Here, we describe the isolation of 18 unique anti SARS-CoV-2 human single-chain antibodies from an antibody library derived from healthy donors. The selection used a combination of phage and yeast display technologies and included counter-selection strategies meant to direct the selection of the receptor-binding motif (RBM) of SARS-CoV-2 spike protein's receptor binding domain (RBD2). Selected antibodies were characterized in various formats including IgG, using flow cytometry, ELISA, high throughput SPR, and fluorescence microscopy. We report antibodies' RBD2 recognition specificity, binding affinity, and epitope diversity, as well as ability to block RBD2 binding to the human receptor angiotensin-converting enzyme 2 (ACE2) and to neutralize authentic SARS-CoV-2 virus infection in vitro. We present evidence supporting that: 1) most of our antibodies (16 out of 18) selectively recognize RBD2; 2) the best performing 8 antibodies target eight different epitopes of RBD2; 3) one of the pairs tested in sandwich assays detects RBD2 with sub-picomolar sensitivity; and 4) two antibody pairs inhibit SARS-CoV-2 infection at low nanomolar half neutralization titers. Based on these results, we conclude that our antibodies have high potential for therapeutic and diagnostic applications. Importantly, our results indicate that readily available non immune (naïve) antibody libraries obtained from healthy donors can be used to select high-quality monoclonal antibodies, bypassing the need for blood of infected patients, and offering a widely accessible and low-cost alternative to more sophisticated and expensive antibody selection approaches (e.g. single B cell analysis and natural evolution in humanized mice).
Collapse
Affiliation(s)
- Nileena Velappan
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM87547, USA
| | - Hau B. Nguyen
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM87547, USA
| | | | - Daniel Bedinger
- Experimental division, Carterra Inc, Walnut Creek, CA, 94568, USA
| | - Chunyan Ye
- Center for Global Health and Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Betty Mangadu
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Austin J. Watts
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM87547, USA
- Experimental division, Carterra Inc, Walnut Creek, CA, 94568, USA
- Center for Global Health and Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Robert Meagher
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Steven Bradfute
- Center for Global Health and Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Bin Hu
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM87547, USA
| | - Geoffrey S. Waldo
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM87547, USA
| | - Antonietta M. Lillo
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM87547, USA
| |
Collapse
|
102
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
103
|
Nguyen H, Lan PD, Nissley DA, O’Brien EP, Li MS. Cocktail of REGN Antibodies Binds More Strongly to SARS-CoV-2 Than Its Components, but the Omicron Variant Reduces Its Neutralizing Ability. J Phys Chem B 2022; 126:2812-2823. [PMID: 35403431 PMCID: PMC9016775 DOI: 10.1021/acs.jpcb.2c00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A promising approach to combat Covid-19 infections is the development of effective antiviral antibodies that target the SARS-CoV-2 spike protein. Understanding the structures and molecular mechanisms underlying the binding of antibodies to SARS-CoV-2 can contribute to quickly achieving this goal. Recently, a cocktail of REGN10987 and REGN10933 antibodies was shown to be an excellent candidate for the treatment of Covid-19. Here, using all-atom steered molecular dynamics and coarse-grained umbrella sampling, we examine the interactions of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with REGN10987 and REGN10933 separately as well as together. Both computational methods show that REGN10933 binds to RBD more strongly than REGN10987. Importantly, the cocktail binds to RBD (simultaneous binding) more strongly than its components. The dissociation constants of REGN10987-RBD and REGN10933-RBD complexes calculated from the coarse-grained simulations are in good agreement with the experimental data. Thus, REGN10933 is probably a better candidate for treating Covid-19 than REGN10987, although the cocktail appears to neutralize the virus more efficiently than REGN10933 or REGN10987 alone. The association of REGN10987 with RBD is driven by van der Waals interactions, while electrostatic interactions dominate in the case of REGN10933 and the cocktail. We also studied the effectiveness of these antibodies on the two most dangerous variants Delta and Omicron. Consistent with recent experimental reports, our results confirmed that the Omicron variant reduces the neutralizing activity of REGN10933, REGN10987, and REGN10933+REGN10987 with the K417N, N440K, L484A, and Q498R mutations playing a decisive role, while the Delta variant slightly changes their activity.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Pham Dang Lan
- Life
Science Lab, Institute for Computational
Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam,Faculty
of Physics and Engineering Physics, VNUHCM-University
of Science, 227, Nguyen
Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Daniel A. Nissley
- Department
of Statistics, University of Oxford, Oxford
Protein Bioinformatics Group, OX1 2JD Oxford, United Kingdom
| | - Edward P. O’Brien
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States,Bioinformatics
and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States,Institute
for Computational and Data Sciences, Penn
State University, University Park, Pennsylvania 16802, United States
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland,
| |
Collapse
|
104
|
McMillan CLD, Azuar A, Choo JJY, Modhiran N, Amarilla AA, Isaacs A, Honeyman KE, Cheung STM, Liang B, Wurm MJ, Pino P, Kint J, Fernando GJP, Landsberg MJ, Khromykh AA, Hobson-Peters J, Watterson D, Young PR, Muller DA. Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines (Basel) 2022; 10:578. [PMID: 35455326 PMCID: PMC9030474 DOI: 10.3390/vaccines10040578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/02/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Kate E. Honeyman
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Maria J. Wurm
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Translational Research Institute, Vaxxas Pty Ltd., Brisbane, QLD 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| |
Collapse
|
105
|
Ertesvåg NU, Xiao J, Zhou F, Ljostveit S, Sandnes H, Lartey S, Sævik M, Hansen L, Madsen A, Mohn KGI, Fjelltveit E, Olofsson JS, Tan TK, Rijal P, Schimanski L, Øyen S, Brokstad KA, Dunachie S, Jämsén A, James WS, Harding AC, Harvala H, Nguyen D, Roberts D, Zambon M, Townsend A, Langeland N, Cox RJ. A rapid antibody screening haemagglutination test for predicting immunity to SARS-CoV-2 variants of concern. COMMUNICATIONS MEDICINE 2022; 2:36. [PMID: 35603265 PMCID: PMC9053181 DOI: 10.1038/s43856-022-00091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/23/2022] [Indexed: 11/09/2022] Open
Abstract
Background Evaluation of susceptibility to emerging SARS-CoV-2 variants of concern (VOC) requires rapid screening tests for neutralising antibodies which provide protection. Methods Firstly, we developed a receptor-binding domain-specific haemagglutination test (HAT) to Wuhan and VOC (alpha, beta, gamma and delta) and compared to pseudotype, microneutralisation and virus neutralisation assays in 835 convalescent sera. Secondly, we investigated the antibody response using the HAT after two doses of mRNA (BNT162b2) vaccination. Sera were collected at baseline, three weeks after the first and second vaccinations from older (80-99 years, n = 89) and younger adults (23-77 years, n = 310) and compared to convalescent sera from naturally infected individuals (1-89 years, n = 307). Results Here we show that HAT antibodies highly correlated with neutralising antibodies (R = 0.72-0.88) in convalescent sera. Home-dwelling older individuals have significantly lower antibodies to the Wuhan strain after one and two doses of BNT162b2 vaccine than younger adult vaccinees and naturally infected individuals. Moverover, a second vaccine dose boosts and broadens the antibody repertoire to VOC in naïve, not previously infected older and younger adults. Most (72-76%) older adults respond after two vaccinations to alpha and delta, but only 58-62% to beta and gamma, compared to 96-97% of younger vaccinees and 68-76% of infected individuals. Previously infected older individuals have, similarly to younger adults, high antibody titres after one vaccination. Conclusions Overall, HAT provides a surrogate marker for neutralising antibodies, which can be used as a simple inexpensive, rapid test. HAT can be rapidly adaptable to emerging VOC for large-scale evaluation of potentially decreasing vaccine effectiveness.
Collapse
Affiliation(s)
| | - Julie Xiao
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
| | - Fan Zhou
- Influenza Centre, University of Bergen, Bergen, Norway
| | - Sonja Ljostveit
- Influenza Centre, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Helene Sandnes
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sarah Lartey
- Influenza Centre, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Marianne Sævik
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lena Hansen
- Influenza Centre, University of Bergen, Bergen, Norway
| | - Anders Madsen
- Influenza Centre, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Kristin G. I. Mohn
- Influenza Centre, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Fjelltveit
- Influenza Centre, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
| | - Lisa Schimanski
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
| | - Siri Øyen
- Eidsvåg Family Practice, Bergen, Norway
| | - Karl Albert Brokstad
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | | | - Anni Jämsén
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - William S. James
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| | - Adam C. Harding
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE UK
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, Colindale, UK
| | - Dung Nguyen
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - David Roberts
- Clinical, Research and Development, NHS Blood and Transplant, Oxford, UK
| | - Maria Zambon
- Virology Reference Department, National Infection Service, Public Health England, Colindale, UK
| | - Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute, John Radcliffe Hospital, Oxford, UK
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, University of Bergen, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
106
|
Muena NA, García-Salum T, Pardo-Roa C, Avendaño MJ, Serrano EF, Levican J, Almonacid LI, Valenzuela G, Poblete E, Strohmeier S, Salinas E, Muñoz A, Haslwanter D, Dieterle ME, Jangra RK, Chandran K, González C, Riquelme A, Krammer F, Tischler ND, Medina RA. Induction of SARS-CoV-2 neutralizing antibodies by CoronaVac and BNT162b2 vaccines in naïve and previously infected individuals. EBioMedicine 2022; 78:103972. [PMID: 35366624 PMCID: PMC8965458 DOI: 10.1016/j.ebiom.2022.103972] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A major challenge of the SARS-CoV-2 pandemic is to better define "protective thresholds" to guide the global response. We aimed to characterize the longitudinal dynamics of the antibody responses in naturally infected individuals in Chile and compared them to humoral responses induced after immunization with CoronaVac-based on an inactivated whole virus -or the BNT162b2- based on mRNA-vaccines. We also contrasted them with the respective effectiveness and efficacy data available for both vaccines. METHODS We determined and compared the longitudinal neutralizing (nAb) and anti-nucleocapsid (anti-N) antibody responses of 74 COVID-19 individuals (37 outpatient and 37 hospitalized) during the acute disease and convalescence. We also assessed the antibody boosting of 36 of these individuals who were immunized after convalescence with either the CoronaVac (n = 30) or the BNT162b2 (n = 6) vaccines. Antibody titres were also measured for 50 naïve individuals immunized with two doses of CoronaVac (n = 35) or BNT162b2 (n = 15) vaccines. The neutralizing level after vaccination was compared to those of convalescent individuals and the predicted efficacy was estimated. FINDINGS SARS-CoV-2 infection induced robust nAb and anti-N antibody responses lasting >9 months, but showing a rapid nAb decay. After convalescence, nAb titres were significantly boosted by vaccination with CoronaVac or BNT162b2. In naïve individuals, the calculated mean titre induced by two doses of CoronaVac or BNT162b2 was 0·2 times and 5.2 times, respectively, that of convalescent individuals, which has been proposed as threshold of protection. CoronaVac induced no or only modest anti-N antibody responses. Using two proposed logistic models, the predicted efficacy of BNT162b2 was estimated at 97%, in close agreement with phase 3 efficacy studies, while for CoronaVac it was ∼50% corresponding to the lowest range of clinical trials and below the real-life data from Chile (from February 2 through May 1, 2021 during the predominant circulation of the Gamma variant), where the estimated vaccine effectiveness to prevent COVID-19 was 62·8-64·6%. INTERPRETATION The decay of nAbs titres in previously infected individuals over time indicates that vaccination is needed to boost humoral memory responses. Immunization of naïve individuals with two doses of CoronaVac induced nAbs titres that were significantly lower to that of convalescent patients, and similar to vaccination with one dose of BTN162b2. The real life effectiveness for CoronaVac in Chile was higher than estimated; indicating that lower titres and additional cellular immune responses induced by CoronaVac might afford protection in a highly immunized population. Nevertheless, the lower nAb titre induced by two doses of CoronaVac as compared to the BTN162b2 vaccine in naïve individuals, highlights the need of booster immunizations over time to maintain protective levels of antibody, particularly with the emergence of new SARS-CoV-2 variants. FUNDING FONDECYT 1161971, 1212023, 1181799, FONDECYT Postdoctorado 3190706 and 3190648, ANID Becas/Doctorado Nacional 21212258, PIA ACT 1408, CONICYT REDES180170, Centro Ciencia & Vida, FB210008, Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia grants from the Agencia Nacional de Investigación y Desarrollo (ANID) of Chile; NIH-NIAD grants U19AI135972, R01AI132633 and contracts HHSN272201400008C and 75N93019C00051; the JPB Foundation, the Open Philanthropy Project grant 2020-215611 (5384); and by anonymous donors. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Nicolás A Muena
- Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile
| | - Tamara García-Salum
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María José Avendaño
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eileen F Serrano
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Levican
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo I Almonacid
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Valenzuela
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Estefany Poblete
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erick Salinas
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andres Muñoz
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA; Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Claudia González
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Otorhinolaryngology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arnoldo Riquelme
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Florian Krammer
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole D Tischler
- Laboratorio de Virología Molecular, Fundación Ciencia and Vida, Santiago, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Rafael A Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
107
|
Xiang R, Wang Y, Wang L, Deng X, Huo S, Jiang S, Yu F. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Curr Opin Virol 2022; 53:101199. [PMID: 35038651 PMCID: PMC8716168 DOI: 10.1016/j.coviro.2021.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2) is a continuing worldwide threat to human health and social economy. Historically, SARS-CoV-2 follows SARS and MERS as the third coronavirus spreading across borders and continents, but far more dangerous with long-lasting symptomatic consequences. The current situation is strong evidence that coronaviruses will continue to be pathogens of consequence in the future, thus calling for the development of neutralizing antibody-based prophylactics and therapeutics for prevention and treatment of COVID-19 and other human coronavirus diseases. This review summarized the progresses of developing neutralizing monoclonal antibodies against infection of SARS-CoV-2, SARS-CoV, and MERS-CoV, and discussed their potential applications in prevention and treatment of COVID-19 and other human coronavirus diseases.
Collapse
Affiliation(s)
- Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yang Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiaoqian Deng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China.
| |
Collapse
|
108
|
Shi X, Gong X, Xiong H, Zhang J. Cellular distribution of C-C motif chemokine ligand 2 like immunoreactivities in frontal cortex and corpus callosum of normal and lipopolysaccharide treated animal. BMC Neurosci 2022; 23:20. [PMID: 35354428 PMCID: PMC8965573 DOI: 10.1186/s12868-022-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND C-C motif chemokine ligand 2 (CCL2) is reported to be involved in the pathogenesis of various neurological and/or psychiatric diseases. Tissue or cellular expression of CCL2, in normal or pathological condition, may play an essential role in recruiting monocytes or macrophages into targeted organs, and be involved in a certain pathogenic mechanism. However, few studies focused on tissue and cellular distribution of the CCL2 peptide in brain grey and white matters (GM, WM), and the changes of the GM and WM cellular CCL2 level in septic or endotoxic encephalopathy was not explored. Hence, the CCL2 cellular distribution in the front brain cortex and the corpus callosum (CC) was investigated in the present work by using immunofluorescent staining. RESULTS (1) CCL2 like immunoreactivity (CCL2-ir) in the CC is evidently higher than the cortex. When the measurement includes ependymal layer attached to the CC, CCL2-ir intensity is significantly higher than cortex. (2) Structures in perivascular areas, most of them are GFAP positive, contribute major CCL2-ir positive profiles in both GM and WM, but apparently more in the CC, where they are bilaterally distributed in the lateral CC between the cingulate cortex and ventricles. (3) The neuron-like CCL2-ir positive cells in cortex are significantly more than in the CC, and that number is significantly increased in the cortex following systemic lipopolysaccharide (LPS), but not in the CC. (4) In addition to CCL2-ir positive perivascular rings, more CCL2-ir filled cashew shape elements are observed, probably inside of microvasculature, especially in the CC following systemic LPS. (5) Few macrophage/microglia marker-Iba-1 and CCL2-ir co-labeled structures especially the soma is found in normal cortex and CC; the co-localizations are significantly augmented following systemic LPS, and co-labeled amoeba like somata are presented. (6) CCL2-ir and astrocyte marker GFAP or Iba-1 double labeled structures are also observed within the ependymal layer. No accumulation of neutrophils was detected. CONCLUSION There exist differences in the cellular distribution of the CCL2 peptide in frontal cortex GM and subcortical WM-CC, in both the physiological condition and experimental endotoxemia. Which might cause different pathological change in the GM and WM.
Collapse
Affiliation(s)
- Xue Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated to Hubei University of Arts and Science, 136 Jinzhou Street, Xiangyang, 441021, China.
| | - Huangui Xiong
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jingdong Zhang
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA. .,Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0531, USA.
| |
Collapse
|
109
|
Diaz-Salinas MA, Li Q, Ejemel M, Yurkovetskiy L, Luban J, Shen K, Wang Y, Munro JB. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. eLife 2022; 11:75433. [PMID: 35323111 PMCID: PMC8963877 DOI: 10.7554/elife.75433] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects cells through binding to angiotensin-converting enzyme 2 (ACE2). This interaction is mediated by the receptor-binding domain (RBD) of the viral spike (S) glycoprotein. Structural and dynamic data have shown that S can adopt multiple conformations, which controls the exposure of the ACE2-binding site in the RBD. Here, using single-molecule Förster resonance energy transfer (smFRET) imaging, we report the effects of ACE2 and antibody binding on the conformational dynamics of S from the Wuhan-1 strain and in the presence of the D614G mutation. We find that D614G modulates the energetics of the RBD position in a manner similar to ACE2 binding. We also find that antibodies that target diverse epitopes, including those distal to the RBD, stabilize the RBD in a position competent for ACE2 binding. Parallel solution-based binding experiments using fluorescence correlation spectroscopy (FCS) indicate antibody-mediated enhancement of ACE2 binding. These findings inform on novel strategies for therapeutic antibody cocktails.
Collapse
Affiliation(s)
- Marco A Diaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Qi Li
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Monir Ejemel
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Yang Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - James B Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
110
|
González-Domínguez I, Martínez JL, Slamanig S, Lemus N, Liu Y, Lai TY, Carreño JM, Singh (a) G, Singh (b) G, Schotsaert M, Mena I, McCroskery S, Coughlan L, Krammer F, García-Sastre A, Palese P, Sun W. Trivalent NDV-HXP-S vaccine protects against phylogenetically distant SARS-CoV-2 variants of concern in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.21.485247. [PMID: 35350201 PMCID: PMC8963686 DOI: 10.1101/2022.03.21.485247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant.
Collapse
Affiliation(s)
| | - Jose Luis Martínez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Lemus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yonghong Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh (a)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh (b)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen McCroskery
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
111
|
Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses 2022; 14:640. [PMID: 35337047 PMCID: PMC8949778 DOI: 10.3390/v14030640] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 spike protein mediates target recognition, cellular entry, and ultimately the viral infection that leads to various levels of COVID-19 severities. Positive evolutionary selection of mutations within the spike protein has led to the genesis of new SARS-CoV-2 variants with greatly enhanced overall fitness. Given the trend of variants with increased fitness arising from spike protein alterations, it is critical that the scientific community understand the mechanisms by which these mutations alter viral functions. As of March 2022, five SARS-CoV-2 strains were labeled "variants of concern" by the World Health Organization: the Alpha, Beta, Gamma, Delta, and Omicron variants. This review summarizes the potential mechanisms by which the common mutations on the spike protein that occur within these strains enhance the overall fitness of their respective variants. In addressing these mutations within the context of the SARS-CoV-2 spike protein structure, spike/receptor binding interface, spike/antibody binding, and virus neutralization, we summarize the general paradigms that can be used to estimate the effects of future mutations along SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70802, USA; (N.M.); (T.Z.); (M.C.M.)
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70802, USA; (N.M.); (T.Z.); (M.C.M.)
| | - Yingying Wu
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA;
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70802, USA; (N.M.); (T.Z.); (M.C.M.)
| | - Gianluca Veggiani
- The Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70802, USA; (N.M.); (T.Z.); (M.C.M.)
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
112
|
Pitisuttithum P, Luvira V, Lawpoolsri S, Muangnoicharoen S, Kamolratanakul S, Sivakorn C, Narakorn P, Surichan S, Prangpratanporn S, Puksuriwong S, Lamola S, Mercer LD, Raghunandan R, Sun W, Liu Y, Carreño JM, Scharf R, Phumratanaprapin W, Amanat F, Gagnon L, Hsieh CL, Kaweepornpoj R, Khan S, Lal M, McCroskery S, McLellan J, Mena I, Meseck M, Phonrat B, Sabmee Y, Singchareon R, Slamanig S, Suthepakul N, Tcheou J, Thantamnu N, Theerasurakarn S, Tran S, Vilasmongkolchai T, White JA, Bhardwaj N, Garcia-Sastre A, Palese P, Krammer F, Poopipatpol K, Wirachwong P, Hjorth R, Innis BL. Safety and immunogenicity of an inactivated recombinant Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Interim results of a randomised, placebo-controlled, phase 1 trial. EClinicalMedicine 2022; 45:101323. [PMID: 35284808 PMCID: PMC8903824 DOI: 10.1016/j.eclinm.2022.101323] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based recombinant Newcastle disease virus vaccine expressing the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It's being developed by public sector manufacturers in Thailand, Vietnam, and Brazil; herein are initial results from Thailand. Methods This phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy males and non-pregnant females, aged 18-59 years and negative for SARS-CoV-2 antibodies, were eligible. Participants were randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1 µg, 1 µg+CpG1018 (a toll-like receptor 9 agonist), 3 µg, 3 µg+CpG1018, 10 µg, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively. Secondary outcomes were immunogenicity measures (anti-S IgG and pseudotyped virus neutralisation). An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity through day 43 per protocol. ClinicalTrials.gov (NCT04764422). Findings Between March 20 and April 23, 2021, 377 individuals were screened and 210 were enroled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5·7% to 17·1% among vaccine groups and was 2·9% in controls; there was no vaccine-related serious adverse event. The 10 µg formulation's immunogenicity ranked best, followed by 3 µg+CpG1018, 3 µg, 1 µg+CpG1018, and 1 µg formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from 122·23 international units per mL (IU/mL; 1 µg, 95% confidence interval (CI) 86·40-172·91) to 474·35 IU/mL (10 µg, 95% CI 320·90-701·19), with 93·9% to 100% of vaccine groups attaining a ≥ 4-fold increase over baseline. Interpretation NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg and 3 µg+CpG1018 formulations advanced to phase 2. Funding National Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates Foundation, National Institutes of Health (USA).
Collapse
Affiliation(s)
- Punnee Pitisuttithum
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Viravarn Luvira
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Saranath Lawpoolsri
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Sant Muangnoicharoen
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Supitcha Kamolratanakul
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Chaisith Sivakorn
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Piengthong Narakorn
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Somchaiya Surichan
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Sumalee Prangpratanporn
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Suttida Puksuriwong
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Steven Lamola
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Laina D. Mercer
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | | | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Yonghong Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Rami Scharf
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Weerapong Phumratanaprapin
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Luc Gagnon
- Nexelis, 525 Bd Cartier O, Laval, QC H7V 3S8, Canada
| | - Ching-Lin Hsieh
- College of Natural Sciences, The University of Texas at Austin, 120 Inner Campus Dr Stop G2500, Austin, TX 78712, USA
| | - Ruangchai Kaweepornpoj
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Sarwat Khan
- Nexelis, 525 Bd Cartier O, Laval, QC H7V 3S8, Canada
| | - Manjari Lal
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Stephen McCroskery
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Jason McLellan
- College of Natural Sciences, The University of Texas at Austin, 120 Inner Campus Dr Stop G2500, Austin, TX 78712, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Marcia Meseck
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Benjaluck Phonrat
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Yupa Sabmee
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Ratsamikorn Singchareon
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Nava Suthepakul
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Narumon Thantamnu
- Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Sompone Theerasurakarn
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Steven Tran
- Nexelis, 525 Bd Cartier O, Laval, QC H7V 3S8, Canada
| | | | - Jessica A White
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Kittisak Poopipatpol
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Ponthip Wirachwong
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Richard Hjorth
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| | - Bruce L Innis
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA
| |
Collapse
|
113
|
Zhang M, Gong Y, Jiao S. Neutralization heterogeneity of circulating SARS-CoV-2 variants to sera elicited by a vaccinee or convalescent. Future Virol 2022; 17:10.2217/fvl-2021-0100. [PMID: 35492429 PMCID: PMC9041375 DOI: 10.2217/fvl-2021-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
COVID-19, which was first reported in December 2019 in China, has caused a global outbreak. Five variants of concern (VOCs) have been identified in different countries since the global pandemic, namely, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.529). Although multiple vaccines have been found to be effective, some of the amino acid changes may increase the infectivity of virus and decrease the sensitivity to antibodies. Here we characterize the VOCs and discuss their sensitivity to antibodies elicited by convalescent and vaccinee sera. In conclusion, several variants display a reduction in the susceptibility to neutralization antibodies generated by natural infection or vaccination, which threatens the containment of the epidemic.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Research & Development, Beijing DCTY Biotech Co., Ltd, 86 Shuangying West Road, Beijing, 102200, People's Republic of China
| | - Yixin Gong
- Department of Research & Development, Beijing DCTY Biotech Co., Ltd, 86 Shuangying West Road, Beijing, 102200, People's Republic of China
| | - Shunchang Jiao
- Department of Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, People's Republic of China
| |
Collapse
|
114
|
Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. Nat Commun 2022; 13:933. [PMID: 35177602 PMCID: PMC8854392 DOI: 10.1038/s41467-022-28601-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 01/01/2023] Open
Abstract
Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets. Antibodies can have synergistic effects, but mechanisms are not well understood. Here, Ragotte et al. identify three antibodies that bind neighbouring epitopes on CyRPA, a malaria vaccine candidate, and show that lateral interactions between the antibodies slow dissociation and inhibit parasite growth synergistically.
Collapse
|
115
|
Leonard AC, Weinstein JJ, Steiner PJ, Erbse AH, Fleishman SJ, Whitehead TA. Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning. Protein Eng Des Sel 2022; 35:gzac002. [PMID: 35325236 PMCID: PMC9077414 DOI: 10.1093/protein/gzac002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 11/12/2022] Open
Abstract
Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.
Collapse
Affiliation(s)
- Alison C Leonard
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - Jonathan J Weinstein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Paul J Steiner
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| | - Annette H Erbse
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
116
|
Beaudoin-Bussières G, Chen Y, Ullah I, Prévost J, Tolbert WD, Symmes K, Ding S, Benlarbi M, Gong SY, Tauzin A, Gasser R, Chatterjee D, Vézina D, Goyette G, Richard J, Zhou F, Stamatatos L, McGuire AT, Charest H, Roger M, Pozharski E, Kumar P, Mothes W, Uchil PD, Pazgier M, Finzi A. A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Rep 2022; 38:110368. [PMID: 35123652 PMCID: PMC8786652 DOI: 10.1016/j.celrep.2022.110368] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jérémie Prévost
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Kelly Symmes
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shilei Ding
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexandra Tauzin
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Dani Vézina
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Jonathan Richard
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Fei Zhou
- Division of Basic and Translational Biophysics, Unit on Structural Biology, NICHD, NIH, Bethesda, MD 20892, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Hughes Charest
- Laboratoire de Santé Publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Michel Roger
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Edwin Pozharski
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA.
| | - Andrés Finzi
- Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
117
|
Amraei R, Xia C, Olejnik J, White MR, Napoleon MA, Lotfollahzadeh S, Hauser BM, Schmidt AG, Chitalia V, Mühlberger E, Costello CE, Rahimi N. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry into human endothelial cells. Proc Natl Acad Sci U S A 2022; 119:2113874119. [PMID: 35078919 PMCID: PMC8833221 DOI: 10.1073/pnas.2113874119] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118
| | - Mitchell R White
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118
| | - Marc A Napoleon
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118
| | - Saran Lotfollahzadeh
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118
| | - Blake M Hauser
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118
- Veterans Affairs Boston Healthcare System, Boston, MA 02118
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118;
| | - Nader Rahimi
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118;
| |
Collapse
|
118
|
He WT, Musharrafieh R, Song G, Dueker K, Tse LV, Martinez DR, Schäfer A, Callaghan S, Yong P, Beutler N, Torres JL, Volk RM, Zhou P, Yuan M, Liu H, Anzanello F, Capozzola T, Parren M, Garcia E, Rawlings SA, Smith DM, Wilson IA, Safonova Y, Ward AB, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Targeted isolation of panels of diverse human protective broadly neutralizing antibodies against SARS-like viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.09.08.459480. [PMID: 35169804 PMCID: PMC8845431 DOI: 10.1101/2021.09.08.459480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The emergence of current SARS-CoV-2 variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy 1-7 . Development of broadly effective coronavirus vaccines that can mitigate these threats is needed 8, 9 . Notably, several recent studies have revealed that vaccination of recovered COVID-19 donors results in enhanced nAb responses compared to SARS-CoV-2 infection or vaccination alone 10-13 . Here, we utilized a targeted donor selection strategy to isolate a large panel of broadly neutralizing antibodies (bnAbs) to sarbecoviruses from two such donors. Many of the bnAbs are remarkably effective in neutralization against sarbecoviruses that use ACE2 for viral entry and a substantial fraction also show notable binding to non-ACE2-using sarbecoviruses. The bnAbs are equally effective against most SARS-CoV-2 VOCs and many neutralize the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor binding domain (RBD) as opposed to strain-specific nAbs to the receptor binding site that are commonly elicited in SARS-CoV-2 infection and vaccination 14-18 . Consistent with targeting of conserved sites, select RBD bnAbs exhibited in vivo protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model. The generation of a large panel of potent bnAbs provides new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and, importantly, provides a molecular basis for effective design of pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reid M. Volk
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 9203
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
119
|
Ionov S, Lee J. An Immunoproteomic Survey of the Antibody Landscape: Insights and Opportunities Revealed by Serological Repertoire Profiling. Front Immunol 2022; 13:832533. [PMID: 35178051 PMCID: PMC8843944 DOI: 10.3389/fimmu.2022.832533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Immunoproteomics has emerged as a versatile tool for analyzing the antibody repertoire in various disease contexts. Until recently, characterization of antibody molecules in biological fluids was limited to bulk serology, which identifies clinically relevant features of polyclonal antibody responses. The past decade, however, has seen the rise of mass-spectrometry-enabled proteomics methods that have allowed profiling of the antibody response at the molecular level, with the disease-specific serological repertoire elucidated in unprecedented detail. In this review, we present an up-to-date survey of insights into the disease-specific immunological repertoire by examining how quantitative proteomics-based approaches have shed light on the humoral immune response to infection and vaccination in pathogenic illnesses, the molecular basis of autoimmune disease, and the tumor-specific repertoire in cancer. We address limitations of this technology with a focus on emerging potential solutions and discuss the promise of high-resolution immunoproteomics in therapeutic discovery and novel vaccine design.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
120
|
Schneider MM, Emmenegger M, Xu CK, Condado Morales I, Meisl G, Turelli P, Zografou C, Zimmermann MR, Frey BM, Fiedler S, Denninger V, Jacquat RP, Madrigal L, Ilsley A, Kosmoliaptsis V, Fiegler H, Trono D, Knowles TP, Aguzzi A. Microfluidic characterisation reveals broad range of SARS-CoV-2 antibody affinity in human plasma. Life Sci Alliance 2022; 5:e202101270. [PMID: 34848436 PMCID: PMC8645332 DOI: 10.26508/lsa.202101270] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, K d, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations.
Collapse
Affiliation(s)
- Matthias M Schneider
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | | | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Chryssa Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manuela R Zimmermann
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Beat M Frey
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | | | - Viola Denninger
- Fluidic Analytics, Unit A, Paddocks Business Centre, Cambridge, UK
| | - Raphaël Pb Jacquat
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Lidia Madrigal
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Alison Ilsley
- Fluidic Analytics, Unit A, Paddocks Business Centre, Cambridge, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge, UK
| | - Heike Fiegler
- Fluidic Analytics, Unit A, Paddocks Business Centre, Cambridge, UK
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tuomas Pj Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
121
|
Peng R, Pan Y, Li Z, Qin Z, Rini JM, Liu X. SPEEDS: A portable serological testing platform for rapid electrochemical detection of SARS-CoV-2 antibodies. Biosens Bioelectron 2022; 197:113762. [PMID: 34773750 PMCID: PMC8558107 DOI: 10.1016/j.bios.2021.113762] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has resulted in a worldwide health crisis. Rapid diagnosis, new therapeutics and effective vaccines will all be required to stop the spread of COVID-19. Quantitative evaluation of serum antibody levels against the SARS-CoV-2 virus provides a means of monitoring a patient's immune response to a natural viral infection or vaccination, as well as evidence of a prior infection. In this paper, a portable and low-cost electrochemical immunosensor is developed for the rapid and accurate quantification of SARS-CoV-2 serum antibodies. The immunosensor is capable of quantifying the concentrations of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies against the SARS-CoV-2 spike protein in human serum. For IgG and IgM, it provides measurements in the range of 10.1 ng/mL - 60 μg/mL and 1.64 ng/mL - 50 μg/mL, respectively, both with an assay time of 13 min. We also developed device stabilization and storage strategies to achieve stable performance of the immunosensor over 24-week storage at room temperature. We evaluated the performance of the immunosensor using COVID-19 patient serum samples collected at different time points after symptom onset. The rapid and sensitive detection of IgG and IgM provided by our immunosensor fulfills the need of rapid COVID-19 serological testing for both point-of-care diagnosis and population immunity screening.
Collapse
Affiliation(s)
- Ran Peng
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yueyue Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, 361 University Ave, Toronto, Ontario, M5G 1M1, Canada
| | - Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, 361 University Ave, Toronto, Ontario, M5G 1M1, Canada; Department of Biochemistry, University of Toronto, 361 University Ave, Toronto, Ontario, M5G 1M1, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.
| |
Collapse
|
122
|
Saini S, Agarwal M, Pradhan A, Pareek S, Singh AK, Dhawan G, Dhawan U, Kumar Y. Exploring the role of framework mutations in enabling breadth of a cross-reactive antibody (CR3022) against the SARS-CoV-2 RBD and its variants of concern. J Biomol Struct Dyn 2022; 41:2341-2354. [PMID: 35098888 DOI: 10.1080/07391102.2022.2030800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cross-reactive and broadly neutralizing antibodies against surface proteins of diverse strains of rapidly evolving viral pathogens like SARS-CoV-2 can prevent infection and therefore are crucial for the development of effective universal vaccines. While antibodies typically incorporate mutations in their complementarity determining regions during affinity maturation, mutations in the framework regions have been reported as players in determining properties of broadly neutralizing antibodies against HIV and the Influenza virus. We propose an increase in the cross-reactive potential of CR3022 against the emerging SARS- CoV-2 variants of concern through enhanced conformational flexibility. In this study, we use molecular dynamics simulations, in silico mutagenesis, structural modeling, and docking to explore the role of light chain FWR mutations in CR3022, a SARS-CoV anti-spike (S)-protein antibody cross-reactive to the S-protein receptor binding domain of SARS-CoV-2. Our study shows that single substitutions in the light chain framework region of CR3022 with conserved epitopes across SARS-CoV strains allow targeting of diverse antibody epitope footprints that align with the epitopes of recently-categorized neutralizing antibody classes while enabling binding to more than one strain of SARS-CoV-2. Our study has implications for rapid and evolution-based engineering of broadly neutralizing antibodies and reaffirms the role of framework mutations in effective change of antibody orientation and conformation via improved flexibility.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samvedna Saini
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| | - Manusmriti Agarwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India.,Faculty of Technology, University of Delhi, New Delhi, India
| | - Amartya Pradhan
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India.,Faculty of Technology, University of Delhi, New Delhi, India.,Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Savitha Pareek
- High Performance Computing (HPC) & AI Innovation Lab, Dell EMC, Bengaluru, India
| | - Ashish K Singh
- High Performance Computing (HPC) & AI Innovation Lab, Dell EMC, Bengaluru, India
| | - Gagan Dhawan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
123
|
Yu W, Zhong N, Li X, Ren J, Wang Y, Li C, Yao G, Zhu R, Wang X, Jia Z, Wu C, Chen R, Zheng W, Liao H, Wu X, Yuan X. Structure Based Affinity Maturation and Characterizing of SARS-CoV Antibody CR3022 against SARS-CoV-2 by Computational and Experimental Approaches. Viruses 2022; 14:v14020186. [PMID: 35215781 PMCID: PMC8875849 DOI: 10.3390/v14020186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
The COVID-19 epidemic is raging around the world. Neutralizing antibodies are powerful tools for the prevention and treatment of SARS-CoV-2 infection. Antibody CR3022, a SARS-CoV neutralizing antibody, was found to cross-react with SARS-CoV-2, but its affinity was lower than that of its binding with SARS-CoV, which greatly limited the further development of CR3022 against SARS-CoV-2. Therefore, it is necessary to improve its affinity to SARS-CoV-2 in vitro. In this study, the structure-based molecular simulations were utilized to virtually mutate the possible key residues in the complementarity-determining regions (CDRs) of the CR3022 antibody. According to the criteria of mutation energy, the mutation sites that have the potential to impact the antibody affinity were then selected. Then optimized CR3022 mutants with the enhanced affinity were further identified and verified by enzyme-linked immunosorbent assay (ELISA), surface plasma resonance (SPR) and autoimmune reactivity experiments. Finally, molecular dynamics (MD) simulation and binding free energy calculation (MM/PBSA) were performed on the wild-type CR3022 and its two double-site mutants to understand in more detail the contribution of these sites to the higher affinity. It was found that the binding affinity of the CR3022 antibody could be significantly enhanced more than ten times after the introduction of the S103F/Y mutation in HCDR–3 and the S33R mutation in LCDR–1. The additional hydrogen-bonding, hydrophobic interactions, as well as salt-bridges formed between the modified double-site mutated antibody and SARS-CoV-2 RBD were identified. The computational and experimental results clearly demonstrated that the affinity of the modified antibody has been greatly enhanced. This study indicates that CR3022 as a neutralizing antibody recognizing the conserved region of RBD against SARS-CoV with cross-reactivity with SARS-CoV-2, a different member in a large family of coronaviruses, could be improved by the computational and experimental approaches which provided insights for developing antibody drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Wei Yu
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (G.Y.); (R.Z.)
| | - Nan Zhong
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Xin Li
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Jiayi Ren
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- School of Health, Zhuhai College of Science and Technology, Zhuhai 519041, China
| | - Yueming Wang
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Chengming Li
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Gui Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (G.Y.); (R.Z.)
| | - Rui Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (G.Y.); (R.Z.)
| | - Xiaoli Wang
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Zhenxing Jia
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Changwen Wu
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Rongfeng Chen
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Weihong Zheng
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
| | - Huaxin Liao
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
- Correspondence: (H.L.); (X.W.); (X.Y.); Tel.: +86-756-726-3999 (X.Y.)
| | - Xiaomin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (G.Y.); (R.Z.)
- Correspondence: (H.L.); (X.W.); (X.Y.); Tel.: +86-756-726-3999 (X.Y.)
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China; (W.Y.); (N.Z.); (X.L.); (J.R.); (Y.W.); (C.L.)
- Zhuhai Trinomab Biotechnology Co., Ltd., Zhuhai 519040, China; (X.W.); (Z.J.); (C.W.); (R.C.); (W.Z.)
- Correspondence: (H.L.); (X.W.); (X.Y.); Tel.: +86-756-726-3999 (X.Y.)
| |
Collapse
|
124
|
Ehling RA, Weber CR, Mason DM, Friedensohn S, Wagner B, Bieberich F, Kapetanovic E, Vazquez-Lombardi R, Di Roberto RB, Hong KL, Wagner C, Pataia M, Overath MD, Sheward DJ, Murrell B, Yermanos A, Cuny AP, Savic M, Rudolf F, Reddy ST. SARS-CoV-2 reactive and neutralizing antibodies discovered by single-cell sequencing of plasma cells and mammalian display. Cell Rep 2022; 38:110242. [PMID: 34998467 PMCID: PMC8692065 DOI: 10.1016/j.celrep.2021.110242] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).
Collapse
Affiliation(s)
- Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Raphaël B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland
| | | | - Michele Pataia
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; deepCDR Biologics AG, Basel, Switzerland
| | - Max D Overath
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland; Institute of Microbiology and Immunology, Department of Biology, ETH Zurich, Zurich, Switzerland; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Andreas P Cuny
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Miodrag Savic
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Surgery, Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland; Department of Health, Economics and Health Directorate, Canton Basel-Landschaft, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland; Botnar Research Centre for Child Health, Basel, Switzerland.
| |
Collapse
|
125
|
Tauzin A, Gong SY, Beaudoin-Bussières G, Vézina D, Gasser R, Nault L, Marchitto L, Benlarbi M, Chatterjee D, Nayrac M, Laumaea A, Prévost J, Boutin M, Sannier G, Nicolas A, Bourassa C, Gendron-Lepage G, Medjahed H, Goyette G, Bo Y, Perreault J, Gokool L, Morrisseau C, Arlotto P, Bazin R, Dubé M, De Serres G, Brousseau N, Richard J, Rovito R, Côté M, Tremblay C, Marchetti GC, Duerr R, Martel-Laferrière V, Kaufmann DE, Finzi A. Strong humoral immune responses against SARS-CoV-2 Spike after BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Host Microbe 2022; 30:97-109.e5. [PMID: 34953513 PMCID: PMC8639412 DOI: 10.1016/j.chom.2021.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
The standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered three weeks apart. However, some public health authorities spaced these doses, raising questions about efficacy. We analyzed longitudinal humoral responses against the D614G strain and variants of concern for SARS-CoV-2 in a cohort of SARS-CoV-2-naive and previously infected individuals who received the BNT162b2 mRNA vaccine with sixteen weeks between doses. While administering a second dose to previously infected individuals did not significantly improve humoral responses, these responses significantly increased in naive individuals after a 16-week spaced second dose, achieving similar levels as in previously infected individuals. Comparing these responses to those elicited in individuals receiving a short (4-week) dose interval showed that a 16-week interval induced more robust responses among naive vaccinees. These findings suggest that a longer interval between vaccine doses does not compromise efficacy and may allow greater flexibility in vaccine administration.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lauriane Nault
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Manon Nayrac
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Marianne Boutin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alexandre Nicolas
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | | | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa ON K1H 8M5, Canada
| | - Josée Perreault
- Héma-Québec, Affaires Médicales et Innovation, Quebec QC G1V 5C3, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | | | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Quebec QC G1V 5C3, Canada
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec QC H2P 1E2, Canada
| | - Nicholas Brousseau
- Institut National de Santé Publique du Québec, Quebec QC H2P 1E2, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Roberta Rovito
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa ON K1H 8M5, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Giulia C Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
126
|
Murin CD, Gilchuk P, Crowe JE, Ward AB. Structural Biology Illuminates Molecular Determinants of Broad Ebolavirus Neutralization by Human Antibodies for Pan-Ebolavirus Therapeutic Development. Front Immunol 2022; 12:808047. [PMID: 35082794 PMCID: PMC8784787 DOI: 10.3389/fimmu.2021.808047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023] Open
Abstract
Monoclonal antibodies (mAbs) have proven effective for the treatment of ebolavirus infection in humans, with two mAb-based drugs Inmazeb™ and Ebanga™ receiving FDA approval in 2020. While these drugs represent a major advance in the field of filoviral therapeutics, they are composed of antibodies with single-species specificity for Zaire ebolavirus. The Ebolavirus genus includes five additional species, two of which, Bundibugyo ebolavirus and Sudan ebolavirus, have caused severe disease and significant outbreaks in the past. There are several recently identified broadly neutralizing ebolavirus antibodies, including some in the clinical development pipeline, that have demonstrated broad protection in preclinical studies. In this review, we describe how structural biology has illuminated the molecular basis of broad ebolavirus neutralization, including details of common antigenic sites of vulnerability on the glycoprotein surface. We begin with a discussion outlining the history of monoclonal antibody therapeutics for ebolaviruses, with an emphasis on how structural biology has contributed to these efforts. Next, we highlight key structural studies that have advanced our understanding of ebolavirus glycoprotein structures and mechanisms of antibody-mediated neutralization. Finally, we offer examples of how structural biology has contributed to advances in anti-viral medicines and discuss what opportunities the future holds, including rationally designed next-generation therapeutics with increased potency, breadth, and specificity against ebolaviruses.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/immunology
- Antiviral Agents/therapeutic use
- Drug Combinations
- Ebolavirus/drug effects
- Ebolavirus/immunology
- Ebolavirus/physiology
- Epitopes/chemistry
- Epitopes/immunology
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Humans
- Models, Molecular
- Protein Domains/immunology
- Viral Proteins/chemistry
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
127
|
Yuan TZ, Garg P, Wang L, Willis JR, Kwan E, Hernandez AGL, Tuscano E, Sever EN, Keane E, Soto C, Mucker EM, Fouch ME, Davidson E, Doranz BJ, Kailasan S, Aman MJ, Li H, Hooper JW, Saphire EO, Crowe JE, Liu Q, Axelrod F, Sato AK. Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs 2022; 14:2002236. [PMID: 34967699 PMCID: PMC8726723 DOI: 10.1080/19420862.2021.2002236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an evolving global public health crisis in need of therapeutic options. Passive immunization of monoclonal antibodies (mAbs) represents a promising therapeutic strategy capable of conferring immediate protection from SARS-CoV-2 infection. Herein, we describe the discovery and characterization of neutralizing SARS-CoV-2 IgG and VHH antibodies from four large-scale phage libraries. Each library was constructed synthetically with shuffled complementarity-determining region loops from natural llama and human antibody repertoires. While most candidates targeted the receptor-binding domain of the S1 subunit of SARS-CoV-2 spike protein, we also identified a neutralizing IgG candidate that binds a unique epitope on the N-terminal domain. A select number of antibodies retained binding to SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa and Delta. Overall, our data show that synthetic phage libraries can rapidly yield SARS-CoV-2 S1 antibodies with therapeutically desirable features, including high affinity, unique binding sites, and potent neutralizing activity in vitro, and a capacity to limit disease in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Specificity
- Binding Sites, Antibody
- COVID-19/immunology
- COVID-19/metabolism
- COVID-19/prevention & control
- COVID-19/virology
- Cell Surface Display Techniques
- Chlorocebus aethiops
- Disease Models, Animal
- Epitopes
- Female
- Host-Pathogen Interactions
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoglobulin G/pharmacology
- Mesocricetus
- Peptide Library
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/metabolism
- Single-Domain Antibodies/pharmacology
- Spike Glycoprotein, Coronavirus/immunology
- Vero Cells
Collapse
Affiliation(s)
- Tom Z. Yuan
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | | | - Linya Wang
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Jordan R. Willis
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, USA
| | - Eric Kwan
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | | | - Emily Tuscano
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Emily N. Sever
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Erica Keane
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Cinque Soto
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric M. Mucker
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | | | | | | | | | | | - Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jay W. Hooper
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiang Liu
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Fumiko Axelrod
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Aaron K. Sato
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| |
Collapse
|
128
|
Lan Q, Xia S, Lu L. Coronavirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:101-121. [DOI: 10.1007/978-981-16-8702-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
129
|
Nitahara Y, Nakagama Y, Kaku N, Candray K, Michimuko Y, Tshibangu-Kabamba E, Kaneko A, Yamamoto H, Mizobata Y, Kakeya H, Yasugi M, Kido Y. High-Resolution Linear Epitope Mapping of the Receptor Binding Domain of SARS-CoV-2 Spike Protein in COVID-19 mRNA Vaccine Recipients. Microbiol Spectr 2021; 9:e0096521. [PMID: 34756082 PMCID: PMC8579840 DOI: 10.1128/spectrum.00965-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
The prompt rollout of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine is facilitating population immunity, which is becoming more dominant than natural infection-mediated immunity. In the midst of coronavirus disease 2019 (COVID-19) vaccine deployment, understanding the epitope profiles of vaccine-elicited antibodies will be the first step in assessing the functionality of vaccine-induced immunity. In this study, the high-resolution linear epitope profiles of Pfizer-BioNTech COVID-19 mRNA vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The vaccine-induced antibodies targeting the RBD had a broader distribution across the RBD than that induced by the natural infection. Half-maximal neutralization titers were measured in vitro by live virus neutralization assays. As a result, relatively lower neutralizability was observed in vaccine recipient sera, when normalized to a total anti-RBD IgG titer. However, mutation panel assays targeting the SARS-CoV-2 variants of concern have shown that the vaccine-induced epitope variety, rich in breadth, may grant resistance against future viral evolutionary escapes, serving as an advantage of vaccine-induced immunity. IMPORTANCE Establishing vaccine-based population immunity has been the key factor in attaining herd protection. Thanks to expedited worldwide research efforts, the potency of mRNA vaccines against the coronavirus disease 2019 (COVID-19) is now incontestable. The next debate is regarding the coverage of SARS-CoV-2 variants. In the midst of vaccine deployment, it is of importance to describe the similarities and differences between the immune responses of COVID-19 vaccine recipients and naturally infected individuals. In this study, we demonstrated that the antibody profiles of vaccine recipients are richer in variety, targeting a key protein of the invading virus, than those of naturally infected individuals. Vaccine-elicited antibodies included more nonneutralizing antibodies than infection-elicited antibodies, and their breadth in antibody variations suggested possible resilience against future SARS-CoV-2 variants. The antibody profile achieved by vaccinations in naive individuals provides important insight into the first step toward vaccine-based population immunity.
Collapse
Affiliation(s)
- Yuko Nitahara
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yu Nakagama
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Natsuko Kaku
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Katherine Candray
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yu Michimuko
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Evariste Tshibangu-Kabamba
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Akira Kaneko
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiromasa Yamamoto
- Department of Traumatology and Critical Care Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yasumitsu Mizobata
- Department of Traumatology and Critical Care Medicine, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroshi Kakeya
- Department of Infection Control Science, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mayo Yasugi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Izumisano, Osaka, Japan
- Asian Health Science Research Institute, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Yasutoshi Kido
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
130
|
Joyce MG, Chen WH, Sankhala RS, Hajduczki A, Thomas PV, Choe M, Martinez EJ, Chang WC, Peterson CE, Morrison EB, Smith C, Chen RE, Ahmed A, Wieczorek L, Anderson A, Case JB, Li Y, Oertel T, Rosado L, Ganesh A, Whalen C, Carmen JM, Mendez-Rivera L, Karch CP, Gohain N, Villar Z, McCurdy D, Beck Z, Kim J, Shrivastava S, Jobe O, Dussupt V, Molnar S, Tran U, Kannadka CB, Soman S, Kuklis C, Zemil M, Khanh H, Wu W, Cole MA, Duso DK, Kummer LW, Lang TJ, Muncil SE, Currier JR, Krebs SJ, Polonis VR, Rajan S, McTamney PM, Esser MT, Reiley WW, Rolland M, de Val N, Diamond MS, Gromowski GD, Matyas GR, Rao M, Michael NL, Modjarrad K. SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Rep 2021; 37:110143. [PMID: 34919799 PMCID: PMC8651551 DOI: 10.1016/j.celrep.2021.110143] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/19/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID50 > 10,000) following a single immunization, whereas RBD-ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations and also show durable and potent neutralization against circulating VoCs. Passive transfer of immunoglobulin G (IgG) purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2-blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.
Collapse
Affiliation(s)
- M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elaine B Morrison
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Clayton Smith
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aslaa Ahmed
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alexander Anderson
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yifan Li
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Therese Oertel
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Lorean Rosado
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Akshaya Ganesh
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Connor Whalen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Joshua M Carmen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christopher P Karch
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Neelakshi Gohain
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Zuzana Villar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - David McCurdy
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Zoltan Beck
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jiae Kim
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shikha Shrivastava
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ousman Jobe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sebastian Molnar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Chandrika B Kannadka
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandrine Soman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michelle Zemil
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Htet Khanh
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | | | | | | | | | | | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Saravanan Rajan
- Antibody Discovery and Protein Engineering (ADPE), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Patrick M McTamney
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T Esser
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Morgane Rolland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
131
|
Lubin JH, Markosian C, Balamurugan D, Pasqualini R, Arap W, Burley SK, Khare SD. Structural models of SARS-CoV-2 Omicron variant in complex with ACE2 receptor or antibodies suggest altered binding interfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.12.472313. [PMID: 34931193 PMCID: PMC8687476 DOI: 10.1101/2021.12.12.472313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is enormous ongoing interest in characterizing the binding properties of the SARS-CoV-2 Omicron Variant of Concern (VOC) (B.1.1.529), which continues to spread towards potential dominance worldwide. To aid these studies, based on the wealth of available structural information about several SARS-CoV-2 variants in the Protein Data Bank (PDB) and a modeling pipeline we have previously developed for tracking the ongoing global evolution of SARS-CoV-2 proteins, we provide a set of computed structural models (henceforth models) of the Omicron VOC receptor-binding domain (omRBD) bound to its corresponding receptor Angiotensin-Converting Enzyme (ACE2) and a variety of therapeutic entities, including neutralizing and therapeutic antibodies targeting previously-detected viral strains. We generated bound omRBD models using both experimentally-determined structures in the PDB as well as machine learningbased structure predictions as starting points. Examination of ACE2-bound omRBD models reveals an interdigitated multi-residue interaction network formed by omRBD-specific substituted residues (R493, S496, Y501, R498) and ACE2 residues at the interface, which was not present in the original Wuhan-Hu-1 RBD-ACE2 complex. Emergence of this interaction network suggests optimization of a key region of the binding interface, and positive cooperativity among various sites of residue substitutions in omRBD mediating ACE2 binding. Examination of neutralizing antibody complexes for Barnes Class 1 and Class 2 antibodies modeled with omRBD highlights an overall loss of interfacial interactions (with gain of new interactions in rare cases) mediated by substituted residues. Many of these substitutions have previously been found to independently dampen or even ablate antibody binding, and perhaps mediate antibody-mediated neutralization escape ( e.g ., K417N). We observe little compensation of corresponding interaction loss at interfaces when potential escape substitutions occur in combination. A few selected antibodies ( e.g ., Barnes Class 3 S309), however, feature largely unaltered or modestly affected protein-protein interfaces. While we stress that only qualitative insights can be obtained directly from our models at this time, we anticipate that they can provide starting points for more detailed and quantitative computational characterization, and, if needed, redesign of monoclonal antibodies for targeting the Omicron VOC Spike protein. In the broader context, the computational pipeline we developed provides a framework for rapidly and efficiently generating retrospective and prospective models for other novel variants of SARS-CoV-2 bound to entities of virological and therapeutic interest, in the setting of a global pandemic.
Collapse
Affiliation(s)
- Joseph H. Lubin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Christopher Markosian
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - D. Balamurugan
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07101
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Stephen K. Burley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- RCSB Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- RCSB Protein Data Bank, San Diego Supercomputer Center and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92067
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
132
|
Analysis of B cell receptor repertoires reveals key signatures of systemic B cell response after SARS-CoV-2 infection. J Virol 2021; 96:e0160021. [PMID: 34878902 PMCID: PMC8865482 DOI: 10.1128/jvi.01600-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2–reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.
Collapse
|
133
|
Gu M, Torres JL, Li Y, Van Ry A, Greenhouse J, Wallace S, Chiang CI, Pessaint L, Jackson AM, Porto M, Kar S, Li Y, Ward AB, Wang Y. One dose of COVID-19 nanoparticle vaccine REVC-128 protects against SARS-CoV-2 challenge at two weeks post-immunization. Emerg Microbes Infect 2021. [PMID: 34651563 DOI: 10.1101/2021.04.02.438218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
ABSTRACTA COVID-19 vaccine that can give early protection is needed to eliminate the viral spread efficiently. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomains with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titre at two weeks post-immunization. This is significantly higher than titre caused by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by a spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for the SARS-CoV-2 virus challenge was implemented two weeks post a single dose of REVC-128 immunization. The results showed that vaccination protects hamsters against the SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage for protected animals, compared with ∼10% weight loss, high viral loads and tissue damage in unprotected animals. Furthermore, the data showed that vaccine REVC-128 is thermostable at up to 37°C for at least 4 weeks. These findings, along with a history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine to give the earliest protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maggie Gu
- ReVacc Scientific, Frederick, MD, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yijia Li
- ReVacc Biotech, Frederick, MD, USA
| | | | | | | | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | | | - Abigail M Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
- Department of Microbiology and Immunology and Center of Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yimeng Wang
- ReVacc Scientific, Frederick, MD, USA
- ReVacc Biotech, Frederick, MD, USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| |
Collapse
|
134
|
Ebihara T, Masuda A, Takahashi D, Hino M, Mon H, Kakino K, Fujii T, Fujita R, Ueda T, Lee JM, Kusakabe T. Production of scFv, Fab, and IgG of CR3022 Antibodies Against SARS-CoV-2 Using Silkworm-Baculovirus Expression System. Mol Biotechnol 2021; 63:1223-1234. [PMID: 34304364 PMCID: PMC8310559 DOI: 10.1007/s12033-021-00373-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/16/2021] [Indexed: 01/15/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is currently spreading around the world and causing many casualties. Antibodies against such emerging infectious diseases are one of the important tools for basic viral research and the development of diagnostic and therapeutic agents. CR3022 is a monoclonal antibody against the receptor binding domain (RBD) of the spike protein (S protein) of SARS-CoV found in SARS patients, but it was also shown to have strong affinity for that of SARS-CoV-2. In this study, we produced large amounts of three formats of CR3022 antibodies (scFv, Fab and IgG) with high purity using a silkworm-baculovirus expression vector system. Furthermore, SPR measurements showed that the affinity of those silkworm-produced IgG antibodies to S protein was almost the same as that produced in mammalian expression system. These results indicate that the silkworm-baculovirus expression system is an excellent expression system for emerging infectious diseases that require urgent demand for diagnostic agents and therapeutic agents.
Collapse
Affiliation(s)
- Takeru Ebihara
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Daisuke Takahashi
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
135
|
Gu M, Torres JL, Li Y, Van Ry A, Greenhouse J, Wallace S, Chiang CI, Pessaint L, Jackson AM, Porto M, Kar S, Li Y, Ward AB, Wang Y. One dose of COVID-19 nanoparticle vaccine REVC-128 protects against SARS-CoV-2 challenge at two weeks post-immunization. Emerg Microbes Infect 2021; 10:2016-2029. [PMID: 34651563 PMCID: PMC8567933 DOI: 10.1080/22221751.2021.1994354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACTA COVID-19 vaccine that can give early protection is needed to eliminate the viral spread efficiently. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomains with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titre at two weeks post-immunization. This is significantly higher than titre caused by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by a spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for the SARS-CoV-2 virus challenge was implemented two weeks post a single dose of REVC-128 immunization. The results showed that vaccination protects hamsters against the SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage for protected animals, compared with ∼10% weight loss, high viral loads and tissue damage in unprotected animals. Furthermore, the data showed that vaccine REVC-128 is thermostable at up to 37°C for at least 4 weeks. These findings, along with a history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine to give the earliest protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maggie Gu
- ReVacc Scientific, Frederick, MD, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yijia Li
- ReVacc Biotech, Frederick, MD, USA
| | | | | | | | - Chi-I Chiang
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | | | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville, MD, USA,Department of Microbiology and Immunology and Center of Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Yimeng Wang
- ReVacc Scientific, Frederick, MD, USA,ReVacc Biotech, Frederick, MD, USA,Institute for Bioscience and Biotechnology Research, Rockville, MD, USA, Yimeng Wang 4539 Metropolitan Court, Frederick, MD21704, USA
| |
Collapse
|
136
|
Xue JB, Tao SC. Epitope Analysis of Anti-SARS-CoV-2 Neutralizing Antibodies. Curr Med Sci 2021; 41:1065-1074. [PMID: 34606064 PMCID: PMC8488073 DOI: 10.1007/s11596-021-2453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 is threatening thousands of millions of people around the world. In the absence of specific and highly effective medicines, the treatment of infected persons is still very challenging. As therapeutics, neutralizing antibodies (NAbs) have great potential. Many NAbs have been reported, and most target various regions on the receptor-binding domain of the spike (S) protein, or the N-terminal domain. Several NAbs and NAb cocktails have been authorized for emergency use, and more are in clinical trials or are under development. In this review, considering the angle of binding epitopes on the S protein, we summarize the functions and the underlying mechanisms of a set of well-recognized NAbs and provide guidance for vaccine design and the combinatorial use of these antibodies. In addition, we review the NAbs and NAb cocktails that have been approved for emergency use and discuss the effectiveness of these NAbs for combating severe acute respiratory syndrome coronavirus 2 mutants.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- COVID-19/immunology
- COVID-19/virology
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Humans
- Models, Molecular
- Mutation
- Pandemics
- Receptors, Virus/chemistry
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
Collapse
Affiliation(s)
- Jun-biao Xue
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Sheng-ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
137
|
Dussupt V, Sankhala RS, Mendez-Rivera L, Townsley SM, Schmidt F, Wieczorek L, Lal KG, Donofrio GC, Tran U, Jackson ND, Zaky WI, Zemil M, Tritsch SR, Chen WH, Martinez EJ, Ahmed A, Choe M, Chang WC, Hajduczki A, Jian N, Peterson CE, Rees PA, Rutkowska M, Slike BM, Selverian CN, Swafford I, Teng IT, Thomas PV, Zhou T, Smith CJ, Currier JR, Kwong PD, Rolland M, Davidson E, Doranz BJ, Mores CN, Hatziioannou T, Reiley WW, Bieniasz PD, Paquin-Proulx D, Gromowski GD, Polonis VR, Michael NL, Modjarrad K, Joyce MG, Krebs SJ. Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nat Immunol 2021; 22:1503-1514. [PMID: 34716452 PMCID: PMC8642242 DOI: 10.1038/s41590-021-01068-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Binding Sites/genetics
- COVID-19/immunology
- COVID-19/metabolism
- COVID-19/prevention & control
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Humans
- Mice, Transgenic
- Neutralization Tests
- Protein Binding
- Protein Conformation
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- Sequence Homology, Amino Acid
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Vincent Dussupt
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Rajeshwer S. Sankhala
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Letzibeth Mendez-Rivera
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Samantha M. Townsley
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Fabian Schmidt
- grid.134907.80000 0001 2166 1519Laboratory of Retrovirology, The Rockefeller University, New York, NY USA
| | - Lindsay Wieczorek
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Kerri G. Lal
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Gina C. Donofrio
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Ursula Tran
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Nathaniel D. Jackson
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Weam I. Zaky
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Michelle Zemil
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Sarah R. Tritsch
- grid.253615.60000 0004 1936 9510Milken Institute School of Public Health, The George Washington University, Washington, DC USA
| | - Wei-Hung Chen
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Elizabeth J. Martinez
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Aslaa Ahmed
- grid.507680.c0000 0001 2230 3166Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Misook Choe
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - William C. Chang
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Agnes Hajduczki
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Ningbo Jian
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Caroline E. Peterson
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Phyllis A. Rees
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Magdalena Rutkowska
- grid.134907.80000 0001 2166 1519Laboratory of Retrovirology, The Rockefeller University, New York, NY USA
| | - Bonnie M. Slike
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | | | - Isabella Swafford
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - I-Ting Teng
- grid.419681.30000 0001 2164 9667Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | - Paul V. Thomas
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Tongqing Zhou
- grid.419681.30000 0001 2164 9667Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | | | - Jeffrey R. Currier
- grid.507680.c0000 0001 2230 3166Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Peter D. Kwong
- grid.419681.30000 0001 2164 9667Vaccine Research Center, NIAID, NIH, Bethesda, MD USA
| | - Morgane Rolland
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | | | | | - Christopher N. Mores
- grid.253615.60000 0004 1936 9510Milken Institute School of Public Health, The George Washington University, Washington, DC USA
| | - Theodora Hatziioannou
- grid.134907.80000 0001 2166 1519Laboratory of Retrovirology, The Rockefeller University, New York, NY USA
| | - William W. Reiley
- grid.250945.f0000 0004 0462 7513Trudeau Institute, Saranac Lake, NY USA
| | - Paul D. Bieniasz
- grid.134907.80000 0001 2166 1519Laboratory of Retrovirology, The Rockefeller University, New York, NY USA ,grid.134907.80000 0001 2166 1519Howard Hughes Medical Institute, The Rockefeller University, New York, NY USA
| | - Dominic Paquin-Proulx
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Gregory D. Gromowski
- grid.507680.c0000 0001 2230 3166Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Victoria R. Polonis
- grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Nelson L. Michael
- grid.507680.c0000 0001 2230 3166Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Kayvon Modjarrad
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - M. Gordon Joyce
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Shelly J. Krebs
- grid.507680.c0000 0001 2230 3166Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.507680.c0000 0001 2230 3166U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| |
Collapse
|
138
|
Satta S, Lai A, Cavallero S, Williamson C, Chen J, Blázquez‐Medela AM, Roustaei M, Dillon BJ, Ashammakhi N, Carlo DD, Li Z, Sun R, Hsiai TK. Rapid Detection and Inhibition of SARS-CoV-2-Spike Mutation-Mediated Microthrombosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103266. [PMID: 34687279 PMCID: PMC8646611 DOI: 10.1002/advs.202103266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Indexed: 05/26/2023]
Abstract
Activation of endothelial cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is thought to be the primary driver for the increasingly recognized thrombotic complications in coronavirus disease 2019 patients, potentially due to the SARS-CoV-2 Spike protein binding to the human angiotensin-converting enzyme 2 (hACE2). Vaccination therapies use the same Spike sequence or protein to boost host immune response as a protective mechanism against SARS-CoV-2 infection. As a result, cases of thrombotic events are reported following vaccination. Although vaccines are generally considered safe, due to genetic heterogeneity, age, or the presence of comorbidities in the population worldwide, the prediction of severe adverse outcome in patients remains a challenge. To elucidate Spike proteins underlying patient-specific-vascular thrombosis, the human microcirculation environment is recapitulated using a novel microfluidic platform coated with human endothelial cells and exposed to patient specific whole blood. Here, the blood coagulation effect is tested after exposure to Spike protein in nanoparticles and Spike variant D614G in viral vectors and the results are corroborated using live SARS-CoV-2. Of note, two potential strategies are also examined to reduce blood clot formation, by using nanoliposome-hACE2 and anti-Interleukin (IL) 6 antibodies.
Collapse
Affiliation(s)
- Sandro Satta
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Angela Lai
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Susana Cavallero
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
- Department of MedicineVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCA90073USA
| | - Cayden Williamson
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Justin Chen
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Ana M. Blázquez‐Medela
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Mehrdad Roustaei
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Barbara J. Dillon
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Nureddin Ashammakhi
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Dino Di Carlo
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| | - Zhaoping Li
- Department of MedicineVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCA90073USA
- Division of Clinical NutritionDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
| | - Ren Sun
- Department of Molecular and Medical PharmacologyDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Tzung K. Hsiai
- Division of CardiologyDepartment of MedicineDavid Geffen School of Medicine at University of CaliforniaLos AngelesCA90095USA
- Department of MedicineVeterans Affairs Greater Los Angeles Healthcare SystemLos AngelesCA90073USA
- Department of BioengineeringHenry Samueli School of Engineering & Applied ScienceUniversity of CaliforniaLos AngelesCA90095USA
| |
Collapse
|
139
|
Zhu T, Xiao Y, Meng X, Tang L, Li B, Zhao Z, Tan Q, Shan H, Liu L, Huang X. Nanovesicles derived from bispecific CAR-T cells targeting the spike protein of SARS-CoV-2 for treating COVID-19. J Nanobiotechnology 2021; 19:391. [PMID: 34823562 PMCID: PMC8614633 DOI: 10.1186/s12951-021-01148-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Considering the threat of the COVID-19 pandemic, caused by SARS-CoV-2, there is an urgent need to develop effective treatments. At present, neutralizing antibodies and small-molecule drugs such as remdesivir, the most promising compound to treat this infection, have attracted considerable attention. However, some potential problems need to be concerned including viral resistance to antibody-mediated neutralization caused by selective pressure from a single antibody treatment, the unexpected antibody-dependent enhancement (ADE) effect, and the toxic effect of small-molecule drugs. RESULTS Here, we constructed a type of programmed nanovesicle (NV) derived from bispecific CAR-T cells that express two single-chain fragment variables (scFv), named CR3022 and B38, to target SARS-CoV-2. Nanovesicles that express both CR3022 and B38 (CR3022/B38 NVs) have a stronger ability to neutralize Spike-pseudovirus infectivity than nanovesicles that express either CR3022 or B38 alone. Notably, the co-expression of CR3022 and B38, which target different epitopes of spike protein, could reduce the incidence of viral resistance. Moreover, the lack of Fc fragments on the surface of CR3022/B38 NVs could prevent ADE effects. Furthermore, the specific binding ability to SARS-CoV-2 spike protein and the drug loading capacity of CR3022/B38 NVs can facilitate targeted delivery of remdesiver to 293 T cells overexpressing spike protein. These results suggest that CR3022/B38 NVs have the potential ability to target antiviral drugs to the main site of viral infection, thereby enhancing the antiviral ability by inhibiting intracellular viral replication and reducing adverse drug reactions. CONCLUSIONS In summary, we demonstrate that nanovesicles derived from CAR-T cells targeting the spike protein of SARS-COV-2 have the ability to neutralize Spike-pseudotyped virus and target antiviral drugs. This novel therapeutic approach may help to solve the dilemma faced by neutralizing antibodies and small-molecule drugs in the treatment of COVID-19.
Collapse
Affiliation(s)
- Tianchuan Zhu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, Guangdong, China
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China
| | - Yuchen Xiao
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Xiaojun Meng
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Lantian Tang
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Bin Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhaoyan Zhao
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Qingqin Tan
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, Guangdong, China.
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China.
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, Guangdong, China.
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China.
| |
Collapse
|
140
|
Leonard AC, Weinstein JJ, Steiner PJ, Erbse AH, Fleishman SJ, Whitehead TA. Stabilization of the SARS-CoV-2 Receptor Binding Domain by Protein Core Redesign and Deep Mutational Scanning.. [PMID: 34845448 PMCID: PMC8629191 DOI: 10.1101/2021.11.22.469552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen—specific antibodies at multiple distinct epitopes. This is a challenge, as stability-enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain (S RBD) using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L RBD mutations, maintains recognition by the receptor ACE2 and a panel of different anti-RBD monoclonal antibodies, is between 1–2°C more thermally stable than the original RBD using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original RBD. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes, particularly powerful for cases when there are multiple or unknown binding sites.
Collapse
|
141
|
Guo X, Kazanova A, Thurmond S, Saragovi HU, Rudd CE. Effective chimeric antigen receptor T cells against SARS-CoV-2. iScience 2021; 24:103295. [PMID: 34693218 PMCID: PMC8520176 DOI: 10.1016/j.isci.2021.103295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Current therapies to treat coronavirus disease 2019 (COVID-19) involve vaccines against the spike protein S1 of SARS-CoV-2. Here, we outline an alternative approach involving chimeric antigen receptors (CARs) in T cells (CAR-Ts). CAR-T recognition of the SARS-CoV-2 receptor-binding domain (RBD) peptide induced ribosomal protein S6 phosphorylation, the increased expression of activation antigen, CD69 and effectors, interferon-γ, granzyme B, perforin, and Fas-ligand on overlapping subsets of CAR-Ts. CAR-Ts further showed potent in vitro killing of target cells loaded with RBD, S1 peptide, or expressing the S1 protein. The efficacy of killing varied with different sized hinge regions, whereas time-lapse microscopy showed CAR-T cluster formation around RBD-expressing targets. Cytolysis of targets was mediated primarily by the GZMB/perforin pathway. Lastly, we showed in vivo killing of S1-expressing cells by our SARS-CoV-2 CAR-Ts in mice. The successful generation of SARS-CoV-2 CAR-Ts represents a living vaccine approach for the treatment of COVID-19. Cytolytic CAR-Ts can be successfully developed against SARS-CoV-2 CAR-Ts binding to RBD peptide induced effectors IFN-γ, GZMB, Perforin and FasL CAR-Ts with different hinge regions showed differences in target killing SARS-CoV-2 CAR-Ts show successful in vivo killing of S1-expressing cells in mice
Collapse
Affiliation(s)
- Xueyang Guo
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - Alexandra Kazanova
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - Stephanie Thurmond
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
| | - H. Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Christopher E. Rudd
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC H3T 1J4, Canada
- Division of Immunology-Oncology, Centre de Researche-Hopital Maisonneuve-Rosemont Hospital (CR-HMR), Montreal, QC H1T 2M4, Canada
- Division of Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
- Corresponding author
| |
Collapse
|
142
|
Tcheou J, Raskin A, Singh G, Kawabata H, Bielak D, Sun W, González-Domínguez I, Sather DN, García-Sastre A, Palese P, Krammer F, Carreño JM. Safety and Immunogenicity Analysis of a Newcastle Disease Virus (NDV-HXP-S) Expressing the Spike Protein of SARS-CoV-2 in Sprague Dawley Rats. Front Immunol 2021; 12:791764. [PMID: 34868082 PMCID: PMC8637447 DOI: 10.3389/fimmu.2021.791764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 01/14/2023] Open
Abstract
Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Relatively high vaccination rates have been achieved in most regions of the United States and several countries worldwide. However, access to vaccines in low- and mid-income countries (LMICs) is still suboptimal. Second generation vaccines that are universally affordable and induce systemic and mucosal immunity are needed. Here we performed an extended safety and immunogenicity analysis of a second-generation SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing a pre-fusion stabilized version of the spike protein (NDV-HXP-S) administered intranasally (IN), intramuscularly (IM), or IN followed by IM in Sprague Dawley rats. Local reactogenicity, systemic toxicity, and post-mortem histopathology were assessed after the vaccine administration, with no indication of severe local or systemic reactions. Immunogenicity studies showed that the three vaccination regimens tested elicited high antibody titers against the wild type SARS-CoV-2 spike protein and the NDV vector. Moreover, high antibody titers were induced against the spike of B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants of concern (VOCs). Importantly, robust levels of serum antibodies with neutralizing activity against the authentic SARS-CoV-2 USA-WA1/2020 isolate were detected after the boost. Overall, our study expands the pre-clinical safety and immunogenicity characterization of NDV-HXP-S and reinforces previous findings in other animal models about its high immunogenicity. Clinical testing of this vaccination approach is ongoing in different countries including Thailand, Vietnam, Brazil and Mexico.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- COVID-19 Vaccines/immunology
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Newcastle disease virus/genetics
- Newcastle disease virus/immunology
- Rats
- Rats, Sprague-Dawley
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Safety
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Vaccination
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hisaaki Kawabata
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dominika Bielak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Irene González-Domínguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
143
|
Kongsuphol P, Jia H, Cheng HL, Gu Y, Shunmuganathan BD, Chen MW, Lim SM, Ng SY, Tambyah PA, Nasir H, Gao X, Tay D, Kim S, Gupta R, Qian X, Kozma MM, Purushotorman K, McBee ME, MacAry PA, Sikes HD, Preiser PR. A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies. COMMUNICATIONS MEDICINE 2021; 1:46. [PMID: 35602218 PMCID: PMC9053278 DOI: 10.1038/s43856-021-00045-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Background Neutralizing antibodies (NAbs) prevent pathogens from infecting host cells. Detection of SARS-CoV-2 NAbs is critical to evaluate herd immunity and monitor vaccine efficacy against SARS-CoV-2, the virus that causes COVID-19. All currently available NAb tests are lab-based and time-intensive. Method We develop a 10 min cellulose pull-down test to detect NAbs against SARS-CoV-2 from human plasma. The test evaluates the ability of antibodies to disrupt ACE2 receptor-RBD complex formation. The simple, portable, and rapid testing process relies on two key technologies: (i) the vertical-flow paper-based assay format and (ii) the rapid interaction of cellulose binding domain to cellulose paper. Results Here we show the construction of a cellulose-based vertical-flow test. The developed test gives above 80% sensitivity and specificity and up to 93% accuracy as compared to two current lab-based methods using COVID-19 convalescent plasma. Conclusions A rapid 10 min cellulose based test has been developed for detection of NAb against SARS-CoV-2. The test demonstrates comparable performance to the lab-based tests and can be used at Point-of-Care. Importantly, the approach used for this test can be easily extended to test RBD variants or to evaluate NAbs against other pathogens.
Collapse
Affiliation(s)
- Patthara Kongsuphol
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Huan Jia
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Hoi Lok Cheng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Yue Gu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Bhuvaneshwari D/O Shunmuganathan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Ming Wei Chen
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Dr, Singapore, 637551 Singapore
| | - Sing Mei Lim
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Say Yong Ng
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Paul Ananth Tambyah
- Department of Medicine, National University Hospital (NUH), 5 Lower Kent Ridge Rd, Singapore, 119074 Singapore
- The Infectious Diseases Translational Research Programme (ID TRP), NUS Yong Loo Lin School of Medicine, 1E Kent Ridge Road, Singapore, 119228 Singapore
| | - Haziq Nasir
- Department of Medicine, National University Hospital (NUH), 5 Lower Kent Ridge Rd, Singapore, 119074 Singapore
| | - Xiaohong Gao
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Dr, Singapore, 637551 Singapore
| | - Dousabel Tay
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 25 Ames Street, Building 66, Cambridge, MA 02139 USA
| | - Seunghyeon Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 25 Ames Street, Building 66, Cambridge, MA 02139 USA
| | - Rashi Gupta
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Xinlei Qian
- Life Sciences Institute (LSI), National University of Singapore (NUS), Center for Life Sciences, #05-02, 28 Medical Drive, Singapore, 117456 Singapore
| | - Mary M. Kozma
- Life Sciences Institute (LSI), National University of Singapore (NUS), Center for Life Sciences, #05-02, 28 Medical Drive, Singapore, 117456 Singapore
| | - Kiren Purushotorman
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
| | - Megan E. McBee
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
| | - Paul A. MacAry
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 5 Science Drive 2, Blk MD4, Level 3, Singapore, 117545 Singapore
- Life Sciences Institute (LSI), National University of Singapore (NUS), Center for Life Sciences, #05-02, 28 Medical Drive, Singapore, 117456 Singapore
| | - Hadley D. Sikes
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 25 Ames Street, Building 66, Cambridge, MA 02139 USA
| | - Peter R. Preiser
- Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE way, Singapore, 138602 Singapore
- School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang Dr, Singapore, 637551 Singapore
| |
Collapse
|
144
|
Díaz-Salinas MA, Li Q, Ejemel M, Yurkovetskiy L, Luban J, Shen K, Wang Y, Munro JB. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34790979 DOI: 10.1101/2021.10.29.466470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects cells through binding to angiotensin-converting enzyme 2 (ACE2). This interaction is mediated by the receptor-binding domain (RBD) of the viral spike (S) glycoprotein. Structural and dynamic data have shown that S can adopt multiple conformations, which controls the exposure of the ACE2-binding site in the RBD. Here, using single-molecule Förster resonance energy transfer (smFRET) imaging we report the effects of ACE2 and antibody binding on the conformational dynamics of S from the Wuhan-1 strain and the B.1 variant (D614G). We find that D614G modulates the energetics of the RBD position in a manner similar to ACE2 binding. We also find that antibodies that target diverse epitopes, including those distal to the RBD, stabilize the RBD in a position competent for ACE2 binding. Parallel solution-based binding experiments using fluorescence correlation spectroscopy (FCS) indicate antibody-mediated enhancement of ACE2 binding. These findings inform on novel strategies for therapeutic antibody cocktails.
Collapse
|
145
|
Lai CY, To A, Wong TAS, Lieberman MM, Clements DE, Senda JT, Ball AH, Pessaint L, Andersen H, Furuyama W, Marzi A, Donini O, Lehrer AT. Recombinant protein subunit SARS-CoV-2 vaccines formulated with CoVaccine HT adjuvant induce broad, Th1 biased, humoral and cellular immune responses in mice. Vaccine X 2021; 9:100126. [PMID: 34778744 PMCID: PMC8570651 DOI: 10.1016/j.jvacx.2021.100126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
The speed at which several COVID-19 vaccines went from conception to receiving FDA and EMA approval for emergency use is an achievement unrivaled in the history of vaccine development. Mass vaccination efforts using the highly effective vaccines are currently underway to generate sufficient herd immunity and reduce transmission of the SARS-CoV-2 virus. Despite the most advanced vaccine technology, global recipient coverage, especially in resource-poor areas remains a challenge as genetic drift in naïve population pockets threatens overall vaccine efficacy. In this study, we described the production of insect-cell expressed SARS-CoV-2 spike protein ectodomain constructs and examined their immunogenicity in mice. We demonstrated that, when formulated with CoVaccine HTTM adjuvant, an oil-in-water nanoemulsion compatible with lyophilization, our vaccine candidates elicit a broad-spectrum IgG response, high neutralizing antibody (NtAb) titers against SARS-CoV-2 prototype and variants of concern, specifically B.1.351 (Beta) and P.1. (Gamma), and an antigen-specific IFN-γ secreting response in outbred mice. Of note, different ectodomain constructs yielded variations in NtAb titers against the prototype strain and some VOC. Dose response experiments indicated that NtAb titers increased with antigen dose, but not adjuvant dose, and may be higher with a lower adjuvant dose. Our findings lay the immunological foundation for the development of a dry-thermostabilized vaccine that is deployable without refrigeration.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | - Michael M. Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Aquena H. Ball
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
| | | | | | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH,
Hamilton, Montana, MT, USA
| | | | - Axel T. Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology,
John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI,
USA
- Pacific Center for Emerging Infectious Disease Research, John A. Burns
School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
146
|
Li T, Han X, Gu C, Guo H, Zhang H, Wang Y, Hu C, Wang K, Liu F, Luo F, Zhang Y, Hu J, Wang W, Li S, Hao Y, Shen M, Huang J, Long Y, Song S, Wu R, Mu S, Chen Q, Gao F, Wang J, Long S, Li L, Wu Y, Gao Y, Xu W, Cai X, Qu D, Zhang Z, Zhang H, Li N, Gao Q, Zhang G, He C, Wang W, Ji X, Tang N, Yuan Z, Xie Y, Yang H, Zhang B, Huang A, Jin A. Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants. Nat Commun 2021; 12:6304. [PMID: 34728625 PMCID: PMC8563728 DOI: 10.1038/s41467-021-26539-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470–495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450–458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic. Neutralizing antibodies are currently one versatile strategy to treat SARS-CoV-2 infection. Here, Li et al. characterize three monoclonal antibodies neutralizing authentic virus infection in vitro and in vivo by targeting the receptor binding domain as evidenced by Cryo-EM.
Collapse
Affiliation(s)
- Tingting Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Xiaojian Han
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hangtian Guo
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Huajun Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yingming Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Chao Hu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Kai Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400010, China
| | - Fengjiang Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Feiyang Luo
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Yanan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400010, China
| | - Wang Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Shenglong Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Yanan Hao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150000, China
| | - Jingjing Huang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Yingyi Long
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Shuyi Song
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Ruixin Wu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Song Mu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Qian Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Fengxia Gao
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Jianwei Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Shunhua Long
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Luo Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zherui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongqing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400010, China
| | - Guiji Zhang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400010, China
| | - Changlong He
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400010, China
| | - Wei Wang
- Institute of life sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xiaoyun Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China.,Institute of life sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Ni Tang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400010, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400010, China.
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China. .,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
147
|
Burnett DL, Jackson KJL, Langley DB, Aggrawal A, Stella AO, Johansen MD, Balachandran H, Lenthall H, Rouet R, Walker G, Saunders BM, Singh M, Li H, Henry JY, Jackson J, Stewart AG, Witthauer F, Spence MA, Hansbro NG, Jackson C, Schofield P, Milthorpe C, Martinello M, Schulz SR, Roth E, Kelleher A, Emery S, Britton WJ, Rawlinson WD, Karl R, Schäfer S, Winkler TH, Brink R, Bull RA, Hansbro PM, Jäck HM, Turville S, Christ D, Goodnow CC. Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability. Immunity 2021; 54:2908-2921.e6. [PMID: 34788600 PMCID: PMC8554075 DOI: 10.1016/j.immuni.2021.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.
Collapse
Affiliation(s)
- Deborah L Burnett
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia.
| | | | - David B Langley
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | - Matt D Johansen
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | | | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Gregory Walker
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Bernadette M Saunders
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Hui Li
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Jake Y Henry
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Alastair G Stewart
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Franka Witthauer
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Nicole G Hansbro
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Claire Milthorpe
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Sebastian R Schulz
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Edith Roth
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | | | - Sean Emery
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - William D Rawlinson
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, SEALS Randwick, Sydney, NSW 2031, Australia
| | - Rudolfo Karl
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Simon Schäfer
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Thomas H Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Rowena A Bull
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Philip M Hansbro
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2006, Australia
| | - Hans-Martin Jäck
- Division of Molecular Immunology, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stuart Turville
- UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia; Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; UNSW Sydney, Faculty of Medicine, Sydney, NSW 2010, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
148
|
Schardt JS, Pornnoppadol G, Desai AA, Park KS, Zupancic JM, Makowski EK, Smith MD, Chen H, Garcia de Mattos Barbosa M, Cascalho M, Lanigan TM, Moon JJ, Tessier PM. Discovery and characterization of high-affinity, potent SARS-CoV-2 neutralizing antibodies via single B cell screening. Sci Rep 2021; 11:20738. [PMID: 34671080 PMCID: PMC8528929 DOI: 10.1038/s41598-021-99401-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Monoclonal antibodies that target SARS-CoV-2 with high affinity are valuable for a wide range of biomedical applications involving novel coronavirus disease (COVID-19) diagnosis, treatment, and prophylactic intervention. Strategies for the rapid and reliable isolation of these antibodies, especially potent neutralizing antibodies, are critical toward improved COVID-19 response and informed future response to emergent infectious diseases. In this study, single B cell screening was used to interrogate antibody repertoires of immunized mice and isolate antigen-specific IgG1+ memory B cells. Using these methods, high-affinity, potent neutralizing antibodies were identified that target the receptor-binding domain of SARS-CoV-2. Further engineering of the identified molecules to increase valency resulted in enhanced neutralizing activity. Mechanistic investigation revealed that these antibodies compete with ACE2 for binding to the receptor-binding domain of SARS-CoV-2. These antibodies may warrant further development for urgent COVID-19 applications. Overall, these results highlight the potential of single B cell screening for the rapid and reliable identification of high-affinity, potent neutralizing antibodies for infectious disease applications.
Collapse
Affiliation(s)
- John S. Schardt
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ghasidit Pornnoppadol
- grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alec A. Desai
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kyung Soo Park
- grid.214458.e0000000086837370Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jennifer M. Zupancic
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Emily K. Makowski
- grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Matthew D. Smith
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Hongwei Chen
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Marilia Cascalho
- grid.214458.e0000000086837370Department of Surgery, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Thomas M. Lanigan
- grid.214458.e0000000086837370Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
| | - James J. Moon
- grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Peter M. Tessier
- grid.214458.e0000000086837370Departments of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA ,grid.214458.e0000000086837370University of Michigan, North Campus Research Complex, B10-179, 2800 Plymouth Road, Ann Arbor, MI 48109 USA
| |
Collapse
|
149
|
Walls AC, Miranda MC, Schäfer A, Pham MN, Greaney A, Arunachalam PS, Navarro MJ, Tortorici MA, Rogers K, O'Connor MA, Shirreff L, Ferrell DE, Bowen J, Brunette N, Kepl E, Zepeda SK, Starr T, Hsieh CL, Fiala B, Wrenn S, Pettie D, Sydeman C, Sprouse KR, Johnson M, Blackstone A, Ravichandran R, Ogohara C, Carter L, Tilles SW, Rappuoli R, Leist SR, Martinez DR, Clark M, Tisch R, O'Hagan DT, Van Der Most R, Van Voorhis WC, Corti D, McLellan JS, Kleanthous H, Sheahan TP, Smith KD, Fuller DH, Villinger F, Bloom J, Pulendran B, Baric RS, King NP, Veesler D. Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell 2021; 184:5432-5447.e16. [PMID: 34619077 PMCID: PMC8440233 DOI: 10.1016/j.cell.2021.09.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Allison Greaney
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mary-Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Kenneth Rogers
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Megan A O'Connor
- Washington National Primate Research Center, Seattle, WA 98121, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Lisa Shirreff
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Douglas E Ferrell
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tyler Starr
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Max Johnson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alyssa Blackstone
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Sasha W Tilles
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Roland Tisch
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | | | | | - Wesley C Van Voorhis
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kelly D Smith
- UW Medicine Department of Laboratory Medicine and Pathology, Seattle, WA 98195, USA
| | - Deborah H Fuller
- Washington National Primate Research Center, Seattle, WA 98121, USA; Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Jesse Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
150
|
Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, Sakakibara S, Inoue T, Tadokoro T, Anraku Y, Yumoto K, Tian C, Fukuhara H, Sasaki M, Orba Y, Shiwa N, Iwata N, Nagata N, Suzuki T, Sasaki J, Sekizuka T, Tonouchi K, Sun L, Fukushi S, Satofuka H, Kazuki Y, Oshimura M, Kurosaki T, Kuroda M, Matsuura Y, Suzuki T, Sawa H, Hashiguchi T, Maenaka K, Takahashi Y. A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity 2021; 54:2385-2398.e10. [PMID: 34508662 PMCID: PMC8382582 DOI: 10.1016/j.immuni.2021.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/02/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.
Collapse
Affiliation(s)
- Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Akihiko Sato
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Takao Nomura
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takashi Tadokoro
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kohei Yumoto
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Cong Tian
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideo Fukuhara
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Nozomi Shiwa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Naoko Iwata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tateki Suzuki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Jiei Sasaki
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomic Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Lin Sun
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroyuki Satofuka
- Chromosome Engineering Research Center, Tottori University, Tottori 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori 683-8503, Japan; Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan
| | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Makoto Kuroda
- Pathogen Genomic Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan; Laboratory of Medical Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan.
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|