101
|
Thomas K, Beyer F, Lewe G, Zhang R, Schindler S, Schönknecht P, Stumvoll M, Villringer A, Witte AV. Higher body mass index is linked to altered hypothalamic microstructure. Sci Rep 2019; 9:17373. [PMID: 31758009 PMCID: PMC6874651 DOI: 10.1038/s41598-019-53578-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 01/23/2023] Open
Abstract
Animal studies suggest that obesity-related diets induce structural changes in the hypothalamus, a key brain area involved in energy homeostasis. Whether this translates to humans is however largely unknown. Using a novel multimodal approach with manual segmentation, we here show that a higher body mass index (BMI) selectively predicted higher proton diffusivity within the hypothalamus, indicative of compromised microstructure in the underlying tissue, in a well-characterized population-based cohort (n1 = 338, 48% females, age 21-78 years, BMI 18-43 kg/m²). Results were independent from confounders and confirmed in another independent sample (n2 = 236). In addition, while hypothalamic volume was not associated with obesity, we identified a sexual dimorphism and larger hypothalamic volumes in the left compared to the right hemisphere. Using two large samples of the general population, we showed that a higher BMI specifically relates to altered microstructure in the hypothalamus, independent from confounders such as age, sex and obesity-associated co-morbidities. This points to persisting microstructural changes in a key regulatory area of energy homeostasis occurring with excessive weight. Our findings may help to better understand the pathomechanisms of obesity and other eating-related disorders.
Collapse
Affiliation(s)
- K Thomas
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany
| | - F Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany
| | - G Lewe
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - R Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - S Schindler
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, 04103, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - P Schönknecht
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, 04103, Leipzig, Germany
| | - M Stumvoll
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany
- Department of Endocrinology and Nephrology, Leipzig University Hospital, 04103, Leipzig, Germany
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany
- Clinic of Cognitive Neurology, Leipzig University Hospital, 04103, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, 04103, Leipzig, Germany
| | - A V Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany.
| |
Collapse
|
102
|
Nogueira PAS, Pereira MP, Soares JJG, de Assis Silva Gomes J, Ribeiro DL, Razolli DS, Velloso LA, Neto MB, Zanon RG. Swimming reduces fatty acids-associated hypothalamic damage in mice. J Chem Neuroanat 2019; 103:101713. [PMID: 31726089 DOI: 10.1016/j.jchemneu.2019.101713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/20/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022]
Abstract
The arcuate and the paraventricular and lateral hypothalamic nuclei, related to hunger and satiety control, are generally compromised by excess fatty acids. In this situation, fatty acids cause inflammation via TLR4 (toll like receptor 4) and the nuclei become less responsive to the hormones leptin and insulin, contributing to the development of obesity. In this work, these nuclei were analyzed in animals fed with high-fat diet and submitted to swimming without and with load for two months. For this, frontal sections of the hypothalamus were immunolabelled with GFAP (glial fibrillary acidic protein), synaptophysin, IL-6 (interleukin 6) and TLR4. Also, proteins extracted from the hypothalamus were analyzed using Western blotting (GFAP and synaptophysin), fluorometric analysis for caspases 3 and 7, and CBA (cytometric bead array) for Th1, Th2, and Th17 profiles. The high-fat diet significantly caused overweight and, in the hypothalamus, decreased synapses and increased astrocytic reactivity. The swimming with load, especially 80 % of the maximum load, reduced those consequences. The high-fat diet increased TLR4 in the arcuate nucleus and the swimming exercise with 80 % of the maximum load showed a tendency of reducing this expression. Swimming did not significantly influence the inflammatory or anti-inflammatory cytokines in the hypothalamus or in plasma. The high-fat diet in sedentary animals increased the expression of caspases 3 and 7 and swimming practice reduced this increment to levels compatible with animals fed on a normal diet. The set of results conclude that the impact of swimming on the damage caused in the hypothalamus by a high-fat diet is positive. The different aspects analyzed in here point to better cellular viability and conservation of the synapses in the hypothalamic nuclei of overweight animals that practiced swimming with a load.
Collapse
Affiliation(s)
- Pedro Augusto Silva Nogueira
- Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil; Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Miriam Pimenta Pereira
- Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | | - Juliana de Assis Silva Gomes
- Laboratory of Cellular Interactions Biology, Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele Lisboa Ribeiro
- Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Daniela Soares Razolli
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil; Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Licio Augusto Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Morun Bernardino Neto
- Department of Basic and Environmental Sciences, University of São Paulo, Lorena, São Paulo, Brazil
| | - Renata Graciele Zanon
- Institute of Biomedical Science, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
103
|
Izquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC. Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later? Nutrients 2019; 11:nu11112704. [PMID: 31717265 PMCID: PMC6893721 DOI: 10.3390/nu11112704] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Leptin, a hormone that is capable of effectively reducing food intake and body weight, was initially considered for use in the treatment of obesity. However, obese subjects have since been found to have high levels of circulating leptin and to be insensitive to the exogenous administration of leptin. The inability of leptin to exert its anorexigenic effects in obese individuals, and therefore, the lack of clinical utility of leptin in obesity, is defined as leptin resistance. This phenomenon has not yet been adequately characterized. Elucidation of the molecular mechanisms underlying leptin resistance is of vital importance for the application of leptin as an effective treatment for obesity. Leptin must cross the blood–brain barrier (BBB) to reach the hypothalamus and exert its anorexigenic functions. The mechanisms involved in leptin transportation across the blood–brain barrier continue to be unclear, thereby preventing the clinical application of leptin in the treatment of obesity. In recent years, new strategies have been developed to recover the response to leptin in obesity. We have summarized these strategies in this review.
Collapse
Affiliation(s)
- Andrea G. Izquierdo
- Laboratory of Epigenomics in Endocrinology and Nutrition, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.G.I.); (A.B.C.)
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Ana B. Crujeiras
- Laboratory of Epigenomics in Endocrinology and Nutrition, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.G.I.); (A.B.C.)
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Felipe F. Casanueva
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto Salud Carlos III, 28029 Madrid, Spain
- Laboratory of Molecular Endocrinology, Instituto de Investigacion Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
- Molecular Endocrinolgy, Universidad de Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain
- Correspondence: (F.F.C.); (M.C.C.); Tel.: +34-9-8195-6189 (F.F.C.); +34-9-8195-6189 (M.C.C.)
| | - Marcos C. Carreira
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto Salud Carlos III, 28029 Madrid, Spain
- Laboratory of Molecular Endocrinology, Instituto de Investigacion Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
- Correspondence: (F.F.C.); (M.C.C.); Tel.: +34-9-8195-6189 (F.F.C.); +34-9-8195-6189 (M.C.C.)
| |
Collapse
|
104
|
Quarta C, Fioramonti X, Cota D. POMC Neurons Dysfunction in Diet-induced Metabolic Disease: Hallmark or Mechanism of Disease? Neuroscience 2019; 447:3-14. [PMID: 31689486 DOI: 10.1016/j.neuroscience.2019.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
One important lesson from the last decade of studies in the field of systemic energy metabolism is that obesity is first and foremost a brain disease. Hypothalamic neurons dysfunction observed in response to chronic metabolic stress is a key pathogenic node linking consumption of hypercaloric diets with body weight gain and associated metabolic sequelae. A key hypothalamic neuronal population expressing the neuropeptide Pro-opio-melanocortin (POMC) displays altered electrical activity and dysregulated neuropeptides production capacity after long-term feeding with hypercaloric diets. However, whether such neuronal dysfunction represents a consequence or a mechanism of disease, remains a subject of debate. Here, we will review and highlight emerging pathogenic mechanisms that explain why POMC neurons undergo dysfunctional activity in response to caloric overload, and critically address whether these mechanisms may be causally implicated in the physiopathology of obesity and of its associated co-morbidities.
Collapse
Affiliation(s)
- Carmelo Quarta
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| | - Xavier Fioramonti
- Université de Bordeaux, Institut National de la Recherche Agronomique, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
105
|
Mussa BM, Taneera J, Mohammed AK, Srivastava A, Mukhopadhyay D, Sulaiman N. Potential role of hypothalamic microRNAs in regulation of FOS and FTO expression in response to hypoglycemia. J Physiol Sci 2019; 69:981-991. [PMID: 31728912 PMCID: PMC10717546 DOI: 10.1007/s12576-019-00718-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023]
Abstract
Hypoglycemia-associated autonomic failure (HAAF) is a serious complication of diabetes which is associated with the absence of physiological homeostatic counter-regulatory mechanisms that are controlled by the hypothalamus and sympathetic nervous system. Identification of biomarkers for early detection of HAAF requires an advanced understanding of molecular signature of hypoglycemia which is yet to be identified. The outcomes of the present study have shown that the viability and the apoptotic rate of the hypothalamic neurons (mHypoE-N39) were decreased significantly due to hypoglycemia in a dose-dependent fashion (p < 0.05). Although there are more than 1000 miRNAs differentially expressed in hypothalamus, only twelve miRNAs (miR-7a, miR-7b, miR-9, miR-29b, miR-29c, miR-30a, miR-30b, miR-30c, miR-101b-3p, miR-181a-5p, miR-378-3p and miR-873-5p) were correlated to two main hypothalamic regulatory proteins, FOS and FTO. Expression of these proteins was very sensitive to hypoglycemia. We demonstrated that hypoglycemia modulates the expression of hypothalamic miRNAs that are related to FOS and FTO.
Collapse
Affiliation(s)
- Bashair M Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| | - Jalal Taneera
- Basic Medical Science Department, College of Medicine, Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Ankita Srivastava
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Debasmita Mukhopadhyay
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Nabil Sulaiman
- Family Medicine and Behavioral Science, College of Medicine, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| |
Collapse
|
106
|
Couvineau A, Voisin T, Nicole P, Gratio V, Abad C, Tan YV. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2019; 10:709. [PMID: 31695678 PMCID: PMC6817618 DOI: 10.3389/fendo.2019.00709] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 02/05/2023] Open
Abstract
Orexins [orexin-A (OXA) and orexin-B (OXB)] are two isoforms of neuropeptides produced by the hypothalamus. The main biological actions of orexins, focused on the central nervous system, are to control the sleep/wake process, appetite and feeding, energy homeostasis, drug addiction, and cognitive processes. These effects are mediated by two G protein-coupled receptor (GPCR) subtypes named OX1R and OX2R. In accordance with the synergic and dynamic relationship between the nervous and immune systems, orexins also have neuroprotective and immuno-regulatory (i.e., anti-inflammatory) properties. The present review gathers recent data demonstrating that orexins may have a therapeutic potential in several pathologies with an immune component including multiple sclerosis, Alzheimer's disease, narcolepsy, obesity, intestinal bowel diseases, septic shock, and cancers.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Valérie Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “la Ligue Nationale Contre le Cancer”, University of Paris, Paris, France
| | - Catalina Abad
- University of Rouen Normandy, INSERM U1234 PANTHER, IRIB, Rouen, France
| | - Yossan-Var Tan
- University of Rouen Normandy, INSERM U1234 PANTHER, IRIB, Rouen, France
| |
Collapse
|
107
|
Jia E, Yan Y, Zhou M, Li X, Jiang G, Liu W, Zhang D. Combined effects of dietary quercetin and resveratrol on growth performance, antioxidant capability and innate immunity of blunt snout bream (Megalobrama amblycephala). Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114268] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
108
|
Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients 2019; 11:nu11092022. [PMID: 31466350 PMCID: PMC6770316 DOI: 10.3390/nu11092022] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased total plasma free fatty acid (FFA) concentrations and an elevated risk of cardiovascular disease. The exact mechanisms by which the plasma FFA profile of subjects with T2DM changes is unclear, but it is thought that dietary fats and changes to lipid metabolism are likely to contribute. Therefore, establishing the changes in concentrations of specific FFAs in an individual’s plasma is important. Each type of FFA has different effects on physiological processes, including the regulation of lipolysis and lipogenesis in adipose tissue, inflammation, endocrine signalling and the composition and properties of cellular membranes. Alterations in such processes due to altered plasma FFA concentrations/profiles can potentially result in the development of insulin resistance and coagulatory defects. Finally, fibrates and statins, lipid-regulating drugs prescribed to subjects with T2DM, are also thought to exert part of their beneficial effects by impacting on plasma FFA concentrations. Thus, it is also interesting to consider their effects on the concentration of FFAs in plasma. Collectively, we review how FFAs are altered in T2DM and explore the likely downstream physiological and pathological implications of such changes.
Collapse
|
109
|
Li DD, Ling SC, Wu K, Luo Z. Identification of Five Key Genes Involved in Intrinsic Apoptotic Pathway From Yellow Catfish Pelteobagrus fulvidraco and Their Transcriptional Responses to High Fat Diet (HFD). Front Physiol 2019; 10:921. [PMID: 31427980 PMCID: PMC6687843 DOI: 10.3389/fphys.2019.00921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022] Open
Abstract
The hypothesis of the present study is that apoptosis through an intrinsic mitochondrial pathway may mediate high fat diet (HFD)-induced changes in the metabolism of Pelteobagrus fulvidraco. To this end, we cloned the full-length cDNA sequences of Cycs, Apaf1, Casp9, Casp3a, and Casp3b involved in the mitochondria apoptotic pathway, and explored their mRNA tissue expressions and transcriptional responses to HFD. All of these members shared similar domains to their orthologous vertebrate genes. They were constitutively expressed in all analyzed tissues but varied from tissue to tissue. Compared to the control, HFD up-regulated the mRNA expression of partial genes among these five key genes (Cycs, Apaf1, Casp9, Casp3a, and Casp3b) in mesenteric fat, intestine, ovary and the kidney, indicating the induction of apoptosis in these tissues; in contrast, HFD down-regulated mRNA levels of partial genes among the five key genes (Cycs, Apaf1, Casp9, Casp3a, and Casp3b) in the heart, spleen and gill tissues, indicating the inhibition of apoptosis in these tissues. The present study will facilitate further exploration into the functions of these genes at the molecular level and disclose the critical involvement of these genes against nutrient changes, indicating that processes of apoptosis in various tissues may differentially be modified by HFD.
Collapse
Affiliation(s)
- Dan-Dan Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Shi-Cheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
110
|
Liu Y, Yu J, Shi YC, Zhang Y, Lin S. The role of inflammation and endoplasmic reticulum stress in obesity-related cognitive impairment. Life Sci 2019; 233:116707. [PMID: 31374234 DOI: 10.1016/j.lfs.2019.116707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
The epidemiological investigations and animal model experiments have confirmed the impact of obesity on the brain, behavior, and cognition. However, the mechanism by which obesity affects cognitive function is not fully understood. With the development of an aging society, there is an increase in the economic and social burden caused by the decline in cognitive function. This manuscript reviews the effects of inflammation and endoplasmic reticulum stress (ERS) on the hypothalamus, hippocampus, and the possible impact on cognitive impairment. These findings provide new insights into the pathophysiological mechanisms that lead to the development of cognitive impairment in the context of obesity.
Collapse
Affiliation(s)
- Yilan Liu
- Quanzhou First Hospital, Fujian Medical University, China
| | - Jing Yu
- Quanzhou First Hospital, Fujian Medical University, China
| | - Yan-Chuan Shi
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Yi Zhang
- Quanzhou First Hospital, Fujian Medical University, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China; Illawarra Health and Medical Research Institute, Wollongong 2522, Australia.
| |
Collapse
|
111
|
Chudoba C, Wardelmann K, Kleinridders A. Molecular effects of dietary fatty acids on brain insulin action and mitochondrial function. Biol Chem 2019; 400:991-1003. [PMID: 30730834 DOI: 10.1515/hsz-2018-0477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/28/2019] [Indexed: 01/17/2023]
Abstract
The prevalence of obesity and its co-morbidities such as insulin resistance and type 2 diabetes are tightly linked to increased ingestion of palatable fat enriched food. Thus, it seems intuitive that the brain senses elevated amounts of fatty acids (FAs) and affects adaptive metabolic response, which is connected to mitochondrial function and insulin signaling. This review will address the effect of dietary FAs on brain insulin and mitochondrial function with a special emphasis on the impact of different FAs on brain function and metabolism.
Collapse
Affiliation(s)
- Chantal Chudoba
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kristina Wardelmann
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - André Kleinridders
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
112
|
Nakandakari SCBR, Muñoz VR, Kuga GK, Gaspar RC, Sant'Ana MR, Pavan ICB, da Silva LGS, Morelli AP, Simabuco FM, da Silva ASR, de Moura LP, Ropelle ER, Cintra DE, Pauli JR. Short-term high-fat diet modulates several inflammatory, ER stress, and apoptosis markers in the hippocampus of young mice. Brain Behav Immun 2019; 79:284-293. [PMID: 30797044 DOI: 10.1016/j.bbi.2019.02.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
The consumption of saturated fatty acids is one of the leading risk factors for Alzheimer's Disease (AD) development. Indeed, the short-term consumption of a high-fat diet (HFD) is related to increased inflammatory signals in the hippocampus; however, the potential molecular mechanisms linking it to AD pathogenesis are not fully elucidated. In our study, we investigated the effects of short-term HFD feeding (within 3, 7 and 10 days) in AD markers and neuroinflammation in the hippocampus of mice. The short period of HFD increased fasting glucose and HOMA-IR. Also, mice fed HFD increased the protein content of β-Amyloid, pTau, TNFα, IL1β, pJNK, PTP1B, peIF2α, CHOP, Caspase3, Cleaved-Caspase3 and Alzheimer-related genes (Bax, PS1, PEN2, Aph1b). At 10 days, both neuronal (N2a) and microglial (BV2) cells presented higher expression of inflammatory and apoptotic genes when stimulated with palmitate. These findings suggest that a short period of consumption of a diet rich in saturated fat is associated with activation of inflammatory, ER stress and apoptotic signals in the hippocampus of young mice.
Collapse
Affiliation(s)
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Gabriel Keine Kuga
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Marcella Ramos Sant'Ana
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LABMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil; OCRC - Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; CEPECE - Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, SP, Brazil.
| |
Collapse
|
113
|
Radiologic evidence that hypothalamic gliosis is improved after bariatric surgery in obese women with type 2 diabetes. Int J Obes (Lond) 2019; 44:178-185. [PMID: 31201362 PMCID: PMC7366782 DOI: 10.1038/s41366-019-0399-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES Hypothalamic neurons play a major role in the control of body mass. Obese subjects present radiologic signs of gliosis in the hypothalamus, which may reflect the damage or loss of neurons involved in whole-body energy homeostasis. It is currently unknown if hypothalamic gliosis (1) differs between obese nondiabetic (ND) and obese diabetic subjects (T2D) or (2) is modified by extensive body mass reduction via Roux-n-Y gastric bypass (RYGB). SUBJECTS/METHODS Fifty-five subjects (all female) including lean controls (CT; n = 13), ND (n = 28), and T2D (n = 14) completed at least one study visit. Subjects underwent anthropometrics and a multi-echo MRI sequence to measure mean bilateral T2 relaxation time in the mediobasal hypothalamus (MBH) and two reference regions (amygdala and putamen). The obese groups underwent RYGB and were re-evaluated 9 months later. Analyses were by linear mixed models. RESULTS Analyses of T2 relaxation time at baseline showed a group by region interaction only in the MBH (P < 0.0001). T2D had longer T2 relaxation times compared to either CT or ND groups. To examine the effects of RYGB on hypothalamic gliosis a three-way (group by region by time) mixed effects model adjusted for age was executed. Group by region (P < 0.0001) and region by time (P = 0.0005) interactions were significant. There was a reduction in MBH relaxation time by RYGB, and, although the T2D group still had higher T2 relaxation time overall compared to the ND group, the T2D group had significantly lower T2 relaxation time after surgery and the ND group showed a trend. The degree of reduction in MBH T2 relaxation time by RYGB was unrelated to clinical outcomes. CONCLUSION T2 relaxation times, a marker of hypothalamic gliosis, are higher in obese women with T2D and are reduced by RYGB-induced weight loss.
Collapse
|
114
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
115
|
Russell JA, Brunton PJ. Giving a good start to a new life via maternal brain allostatic adaptations in pregnancy. Front Neuroendocrinol 2019; 53:100739. [PMID: 30802468 DOI: 10.1016/j.yfrne.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 12/23/2022]
Abstract
Successful pregnancy requires adjustments to multiple maternal homeostatic mechanisms, governed by the maternal brain to support and enable survival of the growing fetus and placenta. Such adjustments fit the concept of allostasis (stability through change) and have a cost: allostatic load. Allostasis is driven by ovarian, anterior pituitary, placental and feto-placental hormones acting on the maternal brain to promote adaptations that support the pregnancy and protect the fetus. Many women carry an existing allostatic load into pregnancy, from socio-economic circumstances, poor mental health and in 'developed' countries, also from obesity. These pregnancies have poorer outcomes indicating negative interactions (failing allostasis) between pre-pregnancy and pregnancy allostatic loads. Use of animal models, such as adult prenatally stressed female offspring with abnormal neuroendocrine, metabolic and behavioural phenotypes, to probe gene expression changes, and epigenetic mechanisms in the maternal brain in adverse pregnancies are discussed, with the prospect of ameliorating poor pregnancy outcomes.
Collapse
Affiliation(s)
- John A Russell
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK; Zhejiang University-University of Edinburgh Institute, Haining, Zhejiang, PR China.
| |
Collapse
|
116
|
Li P, Rao Z, Laing B, Bunner WP, Landry T, Prete A, Yuan Y, Zhang ZT, Huang H. Vertical sleeve gastrectomy improves liver and hypothalamic functions in obese mice. J Endocrinol 2019; 241:JOE-18-0658.R2. [PMID: 30875680 DOI: 10.1530/joe-18-0658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
Vertical sleeve gastrectomy (VSG) is an effective surgery to treat obesity and diabetes. However, the direct effect of VSG on metabolic functions is not fully understood. We aimed to investigate if alterations in hypothalamic neurons were linked with perturbations in liver metabolism after VSG in an energy intake-controlled obese mouse model. C57BL/6 and hrNPY-GFP reporter mice received HFD for 12 weeks and were then divided into three groups: Sham (ad lib), sham (pair-fed) with VSG, and VSG. Food intake was measured daily, and blood glucose levels were measured before and after the study. Energy expenditure and body composition were determined. Serum parameters, liver lipid and glycogen contents were measured, and gene/protein expression were analyzed. Hypothalamic POMC, AgRP/NPY, and tyrosine hydroxylase expressing neurons were counted. As results, we found that VSG reduced body weight gain and adiposity induced by HFD, increased energy expenditure independent of energy intake. Fed and fasted blood glucose levels were reduced in the VSG group. While serum active GLP-1 level was increased, the active ghrelin and triglycerides levels were decreased along with improved insulin resistance in VSG group. Liver lipid accumulation, glycogen content, and gluconeogenic gene expression were reduced in the VSG group. In the hypothalamus, TH expressing neuron population was decreased, and the POMC-expressing neuron population was increased in the VSG group. Our data suggests that VSG improves metabolic symptoms by increasing energy expenditure and lowering lipid and glycogen contents in the liver. These physiological alterations are possibly related to changes in hypothalamic neuron populations.
Collapse
Affiliation(s)
- Peixin Li
- P Li, Department of Comprehensive Surgery, Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China, Beijing, China
| | - Zhijian Rao
- Z Rao, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Brenton Laing
- B Laing, Department of Kinesiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, 27858, United States
| | - Wyatt Paul Bunner
- W Bunner, Department of Kinesiology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, United States
| | - Taylor Landry
- T Landry, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, . East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Amber Prete
- A Prete, Department of Psychology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Yuan Yuan
- Y Yuan, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, . East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA , Greenville, United States
| | - Zhong-Tao Zhang
- Z Zhang, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hu Huang
- H Huang, Department of Kinesiology, East Carolina University, Greenville, North Carolina USA, Human Performance Laboratory, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA, Greenville, United States
| |
Collapse
|
117
|
Nyamugenda E, Trentzsch M, Russell S, Miles T, Boysen G, Phelan KD, Baldini G. Injury to hypothalamic Sim1 neurons is a common feature of obesity by exposure to high-fat diet in male and female mice. J Neurochem 2019; 149:73-97. [PMID: 30615192 DOI: 10.1111/jnc.14662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/16/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
The hypothalamus is essential for regulation of energy homeostasis and metabolism. Feeding hypercaloric, high-fat (HF) diet induces hypothalamic arcuate nucleus injury and alters metabolism more severely in male than in female mice. The site(s) and extent of hypothalamic injury in male and female mice are not completely understood. In the paraventricular nucleus (PVN) of the hypothalamus, single-minded family basic helix-loop helix transcription factor 1 (Sim1) neurons are essential to control energy homeostasis. We tested the hypothesis that exposure to HF diet induces injury to Sim1 neurons in the PVN of male and female mice. Mice expressing membrane-bound enhanced green fluorescent protein (mEGFP) in Sim1 neurons (Sim1-Cre:Rosa-mEGFP mice) were generated to visualize the effects of exposure to HF diet on these neurons. Male and female Sim1-Cre:Rosa-mEGFP mice exposed to HF diet had increased weight, hyperleptinemia, and developed hepatosteatosis. In male and female mice exposed to HF diet, expression of mEGFP was reduced by > 40% in Sim1 neurons of the PVN, an effect paralleled by cell apoptosis and neuronal loss, but not by microgliosis. In the arcuate nucleus of the Sim1-Cre:Rosa-mEGFP male mice, there was decreased alpha-melanocyte-stimulating hormone in proopiomelanocortin neurons projecting to the PVN, with increased cell apoptosis, neuronal loss, and microgliosis. These defects were undetectable in the arcuate nucleus of female mice exposed to the HF diet. Thus, injury to Sim1 neurons of the PVN is a shared feature of exposure to HF diet in mice of both sexes, while injury to proopiomelanocortin neurons in arcuate nucleus is specific to male mice. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Eugene Nyamugenda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Marcus Trentzsch
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Susan Russell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tiffany Miles
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
118
|
Prisingkorn W, Jakovlić I, Yi SK, Deng FY, Zhao YH, Wang WM. Gene expression patterns indicate that a high-fat-high-carbohydrate diet causes mitochondrial dysfunction in fish. Genome 2019; 62:53-67. [PMID: 30830800 DOI: 10.1139/gen-2018-0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Expensive and unsustainable fishmeal is increasingly being replaced with cheaper lipids and carbohydrates as sources of energy in aquaculture. Although it is known that the excess of lipids and carbohydrates has negative effects on nutrient utilization, growth, metabolic homeostasis, and health of fish, our current understanding of mechanisms behind these effects is limited. To improve the understanding of diet-induced metabolic disorders (both in fish and other vertebrates), we conducted an eight-week high-fat-high-carbohydrate diet feeding trial on blunt snout bream (Megalobrama amblycephala), and studied gene expression changes (transcriptome and qPCR) in the liver. Disproportionately large numbers of differentially expressed genes were associated with mitochondrial metabolism, neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's), and functional categories indicative of liver dysfunction. A high-fat-high-carbohydrate diet may have caused mitochondrial dysfunction, and possibly downregulated the mitochondrial biogenesis in the liver. While the relationship between diet and neurodegenerative disorders is well-established in mammals, this is the first report of this connection in fish. We propose that fishes should be further explored as a potentially promising model to study the mechanisms of diet-associated neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Ivan Jakovlić
- b Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China
| | - Shao-Kui Yi
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Fang-Yu Deng
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Yu-Hua Zhao
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Wei-Min Wang
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| |
Collapse
|
119
|
Ramírez D, Saba J, Turati J, Carniglia L, Imsen M, Mohn C, Scimonelli T, Durand D, Caruso C, Lasaga M. NDP-MSH reduces oxidative damage induced by palmitic acid in primary astrocytes. J Neuroendocrinol 2019; 31:e12673. [PMID: 30712280 DOI: 10.1111/jne.12673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Recent findings relate obesity to inflammation in key hypothalamic areas for body weight control. Hypothalamic inflammation has also been related to oxidative stress. Palmitic acid (PA) is the most abundant free fatty acid found in food, and in vitro studies indicate that it triggers a pro-inflammatory response in the brain. Melanocortins are neuropeptides with proven anti-inflammatory and neuroprotective action mediated by melanocortin receptor 4 (MC4R), but little is known about the effect of melanocortins on oxidative stress. The aim of this study was to investigate whether melanocortins could alleviate oxidative stress induced by a high fat diet (HFD) model. We found that NDP-MSH treatment decreased PA-induced reactive oxygen species production in astrocytes, an effect blocked by the MC4R inhibitor JKC363. NDP-MSH abolished nuclear translocation of Nrf2 induced by PA and blocked the inhibitory effect of PA on superoxide dismutase (SOD) activity and glutathione levels while it also per se increased activity of SOD and γ-glutamate cysteine ligase (γ-GCL) antioxidant enzymes. However, HFD reduced hypothalamic MC4R and brain derived neurotrophic factor mRNA levels, thereby preventing the neuroprotective mechanism induced by melanocortins.
Collapse
Affiliation(s)
- Delia Ramírez
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julieta Saba
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan Turati
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudia Mohn
- Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Teresa Scimonelli
- IFEC-CONICET, Pharmacology Department, School of Chemistry, National University of Cordoba, Cordoba, Argentina
| | - Daniela Durand
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
120
|
Sewaybricker LE, Schur EA, Melhorn SJ, Campos BM, Askren MK, Nogueira GAS, Zambon MP, Antonio MARGM, Cendes F, Velloso LA, Guerra-Junior G. Initial evidence for hypothalamic gliosis in children with obesity by quantitative T2 MRI and implications for blood oxygen-level dependent response to glucose ingestion. Pediatr Obes 2019; 14:e12486. [PMID: 30537237 PMCID: PMC7027952 DOI: 10.1111/ijpo.12486] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE In adults, hypothalamic gliosis has been documented using quantitative T2 neuroimaging, whereas functional magnetic resonance imaging (fMRI) has shown a defective hypothalamic response to nutrients. No studies have yet evaluated these hypothalamic abnormalities in children with obesity. METHODS Children with obesity and lean controls underwent quantitative MRI measuring T2 relaxation time, along with continuous hypothalamic fMRI acquisition to evaluate early response to glucose ingestion. RESULTS Children with obesity (N = 11) had longer T2 relaxation times, consistent with gliosis, in the mediobasal hypothalamus (MBH) compared to controls (N = 9; P = 0.004). Moreover, there was a highly significant group*region interaction (P = 0.002), demonstrating that signs of gliosis were specific to MBH and not to reference regions. Longer T2 relaxation times correlated with measures of higher adiposity, including visceral fat percentage (P = 0.01). Mean glucose-induced hypothalamic blood oxygen-level dependent signal change did not differ between groups (P = 0.11). However, mean left MBH T2 relaxation time negatively correlated with glucose-induced hypothalamic signal change (P < 0.05). CONCLUSION Imaging signs of hypothalamic gliosis were present in children with obesity and positively associated with more severe adiposity. Children with the strongest evidence for gliosis showed the least activation after glucose ingestion. These initial findings suggest that the hypothalamus is both structurally and functionally affected in childhood obesity.
Collapse
Affiliation(s)
- Leticia E. Sewaybricker
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Campinas, Brazil,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ellen A. Schur
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Susan J. Melhorn
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Brunno M. Campos
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Mary K. Askren
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Guilherme A. S. Nogueira
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | - Mariana P. Zambon
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Licio A. Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | - Gil Guerra-Junior
- Department of Pediatrics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
121
|
Niccolai E, Boem F, Russo E, Amedei A. The Gut⁻Brain Axis in the Neuropsychological Disease Model of Obesity: A Classical Movie Revised by the Emerging Director "Microbiome". Nutrients 2019; 11:156. [PMID: 30642052 PMCID: PMC6356219 DOI: 10.3390/nu11010156] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide epidemic of obesity has become an important public health issue, with serious psychological and social consequences. Obesity is a multifactorial disorder in which various elements (genetic, host, and environment), play a definite role, even if none of them satisfactorily explains its etiology. A number of neurological comorbidities, such as anxiety and depression, charges the global obesity burden, and evidence suggests the hypothesis that the brain could be the seat of the initial malfunction leading to obesity. The gut microbiome plays an important role in energy homeostasis regulating energy harvesting, fat deposition, as well as feeding behavior and appetite. Dietary patterns, like the Western diet, are known to be a major cause of the obesity epidemic, probably promoting a dysbiotic drift in the gut microbiota. Moreover, the existence of a "gut⁻brain axis" suggests a role for microbiome on hosts' behavior according to different modalities, including interaction through the nervous system, and mutual crosstalk with the immune and the endocrine systems. In the perspective of obesity as a real neuropsychological disease and in light of the discussed considerations, this review focuses on the microbiome role as an emerging director in the development of obesity.
Collapse
Affiliation(s)
- Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Federico Boem
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
122
|
Lizarbe B, Soares AF, Larsson S, Duarte JMN. Neurochemical Modifications in the Hippocampus, Cortex and Hypothalamus of Mice Exposed to Long-Term High-Fat Diet. Front Neurosci 2019; 12:985. [PMID: 30670942 PMCID: PMC6331468 DOI: 10.3389/fnins.2018.00985] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
Metabolic syndrome and diabetes impact brain function and metabolism. While it is well established that rodents exposed to diets rich in saturated fat develop brain dysfunction, contrasting results abound in the literature, likely as result of exposure to different high-fat diet (HFD) compositions and for varied periods of time. In the present study, we investigated alterations of hippocampal-dependent spatial memory by measuring Y-maze spontaneous alternation, metabolic profiles of the hippocampus, cortex and hypothalamus by 1H magnetic resonance spectroscopy (MRS), and levels of proteins specific to synaptic and glial compartments in mice exposed for 6 months to different amounts of fat (10, 45, or 60% of total energy intake). Increasing the dietary amount of fat from 10 to 45% or 60% resulted in obesity accompanied by increased leptin, fasting blood glucose and insulin, and reduced glucose tolerance. In comparison to controls (10%-fat), only mice fed the 60%-fat diet showed increased fed glycemia, as well as plasma corticosterone that has a major impact on brain function. HFD-induced metabolic profile modifications measured by 1H MRS were observed across the three brain areas in mice exposed to 60%- but not 45%-fat diet, while both HFD groups displayed impaired hippocampal-dependent memory. HFD also affected systems involved in neuro- or gliotransmission in the hippocampus. Namely, relative to controls, 60%-fat-fed mice showed reduced SNAP-25, PSD-95 and syntaxin-4 immunoreactivity, while 45%-fat-fed mice showed reduced gephyrin and syntaxin-4 immunoreactivity. For both HFD levels, reductions of the vesicular glutamate transporter vGlut1 and levels of the vesicular GABA transporter were observed in the hippocampus and hypothalamus, relative to controls. Immunoreactivity against GFAP and/or Iba-1 in the hypothalamus was higher in mice exposed to HFD than controls, suggesting occurrence of gliosis. We conclude that different levels of dietary fat result in distinct neurochemical alterations in the brain.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sara Larsson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
123
|
Martínez Leo EE, Segura Campos MR. Systemic Oxidative Stress: A key Point in Neurodegeneration - A Review. J Nutr Health Aging 2019; 23:694-699. [PMID: 31560025 DOI: 10.1007/s12603-019-1240-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic oxidative stress (SOS) has an important role in the mechanisms activation of neuronal death, involved in the neurodegenerative disease (ND) etiology. Brain is susceptible to oxidative stress injuries due to its high energy and metabolic request, therefore minimal imbalances of the redox state, as occurs in mitochondrial dysfunction, favour tissue injury and neuroinflammatory mechanisms activation. ND affect around the world about a billion people, without distinction of sex, educational level and economic status. Public measures generation that prevent ND from the SOS are possible promising therapeutic targets that could reduce the ND incidence. We discuss here the effects and mechanisms of SOS derived neurodegeneration, as well as the neuroinflammation repercussions for some cerebral structures.
Collapse
Affiliation(s)
- E E Martínez Leo
- M.R. Segura Campos Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, 97203 Mérida, Yucatán, México, +52 999 930 0550, E-mail:
| | | |
Collapse
|
124
|
Pimentel LL, Fontes AL, Salsinha AS, Cardoso BB, Gomes AM, Rodríguez-Alcalá LM. Microbiological In Vivo Production of CLNA as a Tool in the Regulation of Host Microbiota in Obesity Control. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:369-394. [DOI: 10.1016/b978-0-444-64183-0.00010-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
125
|
Klein C, Jonas W, Wiedmer P, Schreyer S, Akyüz L, Spranger J, Hellweg R, Steiner B. High-fat Diet and Physical Exercise Differentially Modulate Adult Neurogenesis in the Mouse Hypothalamus. Neuroscience 2018; 400:146-156. [PMID: 30599265 DOI: 10.1016/j.neuroscience.2018.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
The hypothalamus has emerged as a novel neurogenic niche in the adult brain during the past decade. However, little is known about its regulation and the role hypothalamic neurogenesis might play in body weight and appetite control. High-fat diet (HFD) has been demonstrated to induce an inflammatory response and to alter neurogenesis in the hypothalamus and functional outcome measures, e.g. body weight. Such modulation poses similarities to what is known from adult hippocampal neurogenesis, which is highly responsive to lifestyle factors, such as nutrition or physical exercise. With the rising question of a principle of neurogenic stimulation by lifestyle in the adult brain as a physiological regulatory mechanism of central and peripheral functions, exercise is interventionally applied in obesity and metabolic syndrome conditions, promoting weight loss and improving glucose tolerance and insulin sensitivity. To investigate the potential pro-neurogenic cellular processes underlying such beneficial peripheral outcomes, we exposed adult female mice to HFD together with physical exercise and evaluated neurogenesis and inflammatory markers in the arcuate nucleus (ArcN) of the hypothalamus. We found that HFD increased neurogenesis, whereas physical exercise stimulated cell proliferation. HFD also increased the amount of microglia, which was counteracted by physical exercise. Physiologically, exercise increased food and fat intake but reduced HFD-induced body weight gain. These findings support the hypothesis that hypothalamic neurogenesis may represent a counter-regulatory mechanism in response to environmental or physiological insults to maintain energy balance.
Collapse
Affiliation(s)
- C Klein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - W Jonas
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - P Wiedmer
- German Institute of Human Nutrition, Department of Experimental Diabetology, Potsdam-Rehbrücke, Germany
| | - S Schreyer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany
| | - L Akyüz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Germany
| | - J Spranger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Endocrinology, Diabetes and Nutritional Medicine, Berlin, Germany
| | - R Hellweg
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Department of Psychiatry, Berlin, Germany
| | - B Steiner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Germany.
| |
Collapse
|
126
|
de Araujo TM, Razolli DS, Correa-da-Silva F, de Lima-Junior JC, Gaspar RS, Sidarta-Oliveira D, Victorio SC, Donato J, Kim YB, Velloso LA. The partial inhibition of hypothalamic IRX3 exacerbates obesity. EBioMedicine 2018; 39:448-460. [PMID: 30522931 PMCID: PMC6354701 DOI: 10.1016/j.ebiom.2018.11.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/01/2022] Open
Abstract
Background The Iroquois homeobox 3 (Irx3) gene has been identified as a functional long-range target of obesity-associated variants within the fat mass and obesity-associated protein (FTO) gene. It is highly expressed in the hypothalamus, and both whole-body knockout and hypothalamic restricted abrogation of its expression results in a lean phenotype, which is mostly explained by the resulting increased energy expenditure in the brown adipose tissue. Because of its potential implication in the pathogenesis of obesity, we evaluated the hypothalamic cell distribution of Irx3 and the outcomes of inhibiting its expression in a rodent model of diet-induced obesity. Methods Bioinformatics tools were used to evaluate the correlations between hypothalamic Irx3 and neurotransmitters, markers of thermogenesis and obesity related phenotypes. Droplet-sequencing analysis in >20,000 hypothalamic cells was used to explore the types of hypothalamic cells expressing Irx3. Lentivirus was used to inhibit hypothalamic Irx3 and the resulting phenotype was studied. Findings IRX3 is expressed predominantly in POMC neurons. Its expression is inhibited during prolonged fasting, as well as when mice are fed a high-fat diet. The partial inhibition of hypothalamic Irx3 using a lentivirus resulted in increased diet-induced body mass gain and adiposity due to increased caloric intake and reduced energy expenditure. Interpretation Contrary to the results obtained when lean mice are submitted to complete inhibition of Irx3, partial inhibition of hypothalamic Irx3 in obese mice causes an exacerbation of the obese phenotype. These data suggest that at least some of the Irx3 functions in the hypothalamus are regulated according to a hormetic pattern, and modulation of its expression can be a novel approach to modifying the body's energy-handling regulation. Fund Sao Paulo Research Foundation grants 2013/07607-8 (LAV) and 2017/02983-2 (JDJ); NIH grants R01DK083567 (YBK).
Collapse
Affiliation(s)
- Thiago Matos de Araujo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil; Divison of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Daniela S Razolli
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Felipe Correa-da-Silva
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Jose C de Lima-Junior
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Rodrigo S Gaspar
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Sheila C Victorio
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Young-Bum Kim
- Divison of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
127
|
Li J, Wang S, Wang B, Wei H, Liu X, Hao J, Duan Y, Hua J, Zheng X, Feng X, Yan X. High-fat-diet impaired mitochondrial function of cumulus cells but improved the efficiency of parthenogenetic embryonic quality in mice. Anim Cells Syst (Seoul) 2018; 22:243-252. [PMID: 30460104 PMCID: PMC6138337 DOI: 10.1080/19768354.2018.1497707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 01/24/2023] Open
Abstract
Global human health has been compromised by high-fat diets. This study aimed to investigate the relationship between a high-fat diet and parthenogenetic embryo quality. Mice fed a high-fat or a normal diet was used as treated or control groups, respectively. Estradiol (E2), total cholesterol (TC) and total triglyceride (TG) were detected by Enzyme-Linked ImmunoSorbent Assay (ELISA). Cumulus-oocyte complexes (COCs) were collected from the mice in the treated and control groups. The ultrastructure of COCs, the expression level of genes involved in mitochondrial and nuclear functions in cumulus cells and oocytes quality were evaluated with transmission electron microscopy, real-time quantitative polymerase chain reaction (RT-PCR) and artificial parthenogenesis, respectively. The results showed that the efficiency of parthenogenetic embryonic development in vitro was significantly higher in the treated group than in the control group (p < .05). The expression level of genes involved in mitochondrial function was lower in cumulus cells from the treated group than that from the control group (p < .05). The estradiol and cholesterol level in the serum and the expression level of P450 arom were higher in the treated group than the control group (p < .05). The reactive oxygen species (ROS) level was higher in culumus cells from the treated group than the control group, while the mitochondrial membrane potential was lower in cumulus cells from the treated group (p < .05). Accumulation of lipid droplets was only in cumulus but in oocyte, the results demonstrated that mitochondrial functions were impaired by a high-fat diet, but parthenogenetic embryonic development in vitro was improved, in controllable range of damage for the body.
Collapse
Affiliation(s)
- Jingjing Li
- College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Shuang Wang
- Department of Experimental Surgery of Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bo Wang
- College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Hao Wei
- College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Xin Liu
- College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Jun Hao
- Department of Experimental Surgery of Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yanping Duan
- Department of Experimental Surgery of Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jinlian Hua
- Biotechnology, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaomin Zheng
- Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan, People's Republic of China.,Department of Histology and Embryology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiuliang Feng
- Department of Experimental Surgery of Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xingrong Yan
- College of Life Sciences, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
128
|
Mendes NF, Kim YB, Velloso LA, Araújo EP. Hypothalamic Microglial Activation in Obesity: A Mini-Review. Front Neurosci 2018; 12:846. [PMID: 30524228 PMCID: PMC6262396 DOI: 10.3389/fnins.2018.00846] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
Emerging data demonstrate that microglia activation plays a pivotal role in the development of hypothalamic inflammation in obesity. Early after the introduction of a high-fat diet, hypothalamic microglia undergo morphological, and functional changes in response to excessive dietary saturated fats. Initially the resident microglia are affected; however, as diet-induced obesity persists, bone marrow-derived myeloid cells gradually replace resident microglia. Genetic and pharmacological approaches aimed at dampening the inflammatory activity in the hypothalamus of experimental models of obesity have proven beneficial to correct the obese phenotype and improve metabolic abnormalities commonly associated with obesity. These approaches provide an experimental proof-of-concept that hypothalamic inflammation is central to the pathophysiology of obesity; understanding the details of the roles played by microglia in this process may help the development of preventive and therapeutic advances in the field. In this review, we discuss the potential mechanisms underlying hypothalamic microglial activation in high-fat induced obesity.
Collapse
Affiliation(s)
- Natália F Mendes
- School of Nursing, State University of Campinas, Campinas, Brazil.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism - Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| | - Young-Bum Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism - Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lício A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| | - Eliana P Araújo
- School of Nursing, State University of Campinas, Campinas, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas, Campinas, Brazil
| |
Collapse
|
129
|
Oliveira ADAB, Melo NDFM, Vieira ÉDS, Nogueira PAS, Coope A, Velloso LA, Dezonne RS, Ueira-Vieira C, Botelho FV, Gomes JDAS, Zanon RG. Palmitate treated-astrocyte conditioned medium contains increased glutathione and interferes in hypothalamic synaptic network in vitro. Neurochem Int 2018; 120:140-148. [PMID: 30138641 DOI: 10.1016/j.neuint.2018.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/30/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
|
130
|
Gaspar JM, Velloso LA. Hypoxia Inducible Factor as a Central Regulator of Metabolism - Implications for the Development of Obesity. Front Neurosci 2018; 12:813. [PMID: 30443205 PMCID: PMC6221908 DOI: 10.3389/fnins.2018.00813] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/18/2018] [Indexed: 12/19/2022] Open
Abstract
The hypothalamus plays a major role in the regulation of food intake and energy expenditure. In the last decade, it was demonstrated that consumption of high-fat diets triggers the activation of an inflammatory process in the hypothalamus, inducing neurofunctional alterations and contributing to the development of obesity. Hypoxia-inducible factors (HIFs) are key molecules that regulate cellular responses to inflammation and hypoxia, being essential for the normal cell function and survival. Currently, evidence points to a role of HIF pathway in metabolic regulation that could also be involved in the progression of obesity and metabolic diseases. The challenge is to understand how HIF modulation impacts body mass gain and metabolic disorders such as insulin resistance. Distinct animal models with tissue-specific knocking-out or overexpression of hypoxia signaling pathway genes revealed a cell-specificity in the activation of HIF pathways, and some of them have opposite phenotypes among the various HIFs gain- and loss-of-function mouse models. In this review, we discuss the major findings that provide support for a role of HIF pathway involvement in the regulation of metabolism, especially in glucose and energy homeostasis.
Collapse
Affiliation(s)
- Joana M Gaspar
- Post-Graduation in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil.,Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lício A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
131
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
132
|
Gaspar JM, Mendes NF, Corrêa-da-Silva F, Lima-Junior JCD, Gaspar RC, Ropelle ER, Araujo EP, Carvalho HM, Velloso LA. Downregulation of HIF complex in the hypothalamus exacerbates diet-induced obesity. Brain Behav Immun 2018; 73:550-561. [PMID: 29935943 DOI: 10.1016/j.bbi.2018.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 11/25/2022] Open
Abstract
Hypothalamic hypoxia-inducible factor-1 (HIF-1) can regulate whole-body energy homeostasis in response to changes in blood glucose, suggesting that it acts as a sensor for systemic energy stores. Here, we hypothesized that hypothalamic HIF-1 could be affected by diet-induced obesity (DIO). We used eight-week old, male C57Bl6 mice, fed normal chow diet or with high fat diet for 1, 3, 7, 14 and 28 days. The expression of HIF-1alpha and HIF-1beta was measured by PCR and western blotting and its hypothalamic distribution was evaluated by fluorescence microscopy. Inhibition of HIF-1beta in arcuate nucleus of hypothalamus was performed using stereotaxic injection of shRNA lentiviral particles and animals were grouped under normal chow diet or high fat diet for 14 days. Using bioinformatics, we show that in humans, the levels of HIF-1 transcripts are directly correlated with those of hypothalamic transcripts for proteins involved in inflammation, regulation of apoptosis, autophagy, and the ubiquitin/proteasome system; furthermore, in rodents, hypothalamic HIF-1 expression is directly correlated with the phenotype of increased energy expenditure. In mice, DIO was accompanied by increased HIF-1 expression. The inhibition of hypothalamic HIF-1 by injection of an shRNA resulted in a further increase in body mass, a decreased basal metabolic rate, increased hypothalamic inflammation, and glucose intolerance. Thus, hypothalamic HIF-1 is increased during DIO, and its inhibition worsens the obesity-associated metabolic phenotype. Thus, hypothalamic HIF-1 emerges as a target for therapeutic intervention against obesity.
Collapse
Affiliation(s)
- Joana M Gaspar
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil
| | - Natália Ferreira Mendes
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil; Faculty of Nursing, University of Campinas, Campinas, São Paulo, Brazil
| | - Felipe Corrêa-da-Silva
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil
| | - José C de Lima-Junior
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil
| | - Rodrigo C Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eliana P Araujo
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil; Faculty of Nursing, University of Campinas, Campinas, São Paulo, Brazil
| | - Humberto M Carvalho
- Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lício A Velloso
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil.
| |
Collapse
|
133
|
Dátilo MN, Sant'Ana MR, Formigari GP, Rodrigues PB, de Moura LP, da Silva ASR, Ropelle ER, Pauli JR, Cintra DE. Omega-3 from Flaxseed Oil Protects Obese Mice Against Diabetic Retinopathy Through GPR120 Receptor. Sci Rep 2018; 8:14318. [PMID: 30254287 PMCID: PMC6156233 DOI: 10.1038/s41598-018-32553-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
The chronic and low-grade inflammation induced by obesity seem to be the “first hit” to retinopathy associated to diabetes type 2. Herein, we hypothesized that omega-3 fatty acids from flaxseed oil enriched diet disrupt the pro-inflammatory status in the retina, protecting against retinopathy development. For eight weeks under a high-fat diet (HF), several physiological parameters were monitored to follow the metabolic homeostasis disruption. After this period, mice were treated with a HF substituted in part of lard by flaxseed oil (FS) for another eight weeks. Food behavior, weight gain, glucose and insulin sensitivity, electroretinography, RT-qPCR and western blots were carried out. The HF was able to induce a pro-inflammatory background in the retina, changing IL1β and TNFα. VEGF, a master piece of retinopathy, had early onset increased also induced by HF. The FS-diet was able to decrease inflammation and retinopathy and improved retinal electro stimuli compared to HF group. GPR120 and GPR40 (G Protein-Coupled Receptors 120 and 40), an omega-3 fatty acid receptors, were detected in the retina for the first time. FS-diet modulated the gene expression and protein content of these receptors. Thus, unsaturated fatty acids protect the retina from diabetes type 2 mice model from disease progression.
Collapse
Affiliation(s)
- Marcella Neves Dátilo
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.,Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.,Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - Patrícia Brito Rodrigues
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.,Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, LabMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, LabMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, LabMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil. .,Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.
| |
Collapse
|
134
|
The Effects of High Fat Diet-Induced Stress on Olfactory Sensitivity, Behaviors, and Transcriptional Profiling in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19102855. [PMID: 30241362 PMCID: PMC6213603 DOI: 10.3390/ijms19102855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
High-fat diet (HFD) often causes obesity and it has detrimental effects on the sensory system. In particular, sensory-mediated responses are crucial for maintaining energy balance, as they are involved in a metabolic regulation; however, there is still no clear explanation about the relationship between HFD-induced stress and sensory system. To gain insight on how HFD-induced stress affects olfactory sensitivity and behavioral responses, we have used a Drosophila melanogaster model for olfactory and nutrient-related signaling and accessed physiological, behavioral, and transcriptional changes. We demonstrated that lifespan and climbing ability in HFD-treated flies decreased and that olfactory sensitivity and behavioral responses to odorants were changed. Olfactory sensitivity to eight of ten odorants after 14 days on HFD treatment were reduced, while behavioral attraction was increased to benzaldehyde in flies that were treated with HFD. This behavioral and physiological modification in HFD-treated flies for 14 days was accompanied by a significant decrease in DmOrco gene expression in a peripheral olfactory organ, suggesting that is could be involved in the action of metabolic and sensory signal. Gene expression profiles of antennae showed significant differences on the olfactory receptors, odorant-binding proteins, and insulin signaling. Our results suggested that olfactory sensitivity and behavioral responses to HFD-induced stress are mediated through olfactory and nutrient-related signaling pathways.
Collapse
|
135
|
Tse EK, Belsham DD. Palmitate induces neuroinflammation, ER stress, and Pomc mRNA expression in hypothalamic mHypoA-POMC/GFP neurons through novel mechanisms that are prevented by oleate. Mol Cell Endocrinol 2018; 472:40-49. [PMID: 29180108 DOI: 10.1016/j.mce.2017.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/23/2017] [Indexed: 01/17/2023]
Abstract
Dietary fats can modulate brain function. How free fatty acids (FFAs) alter hypothalamic pro-opiomelanocortin (POMC) neurons remain undefined. The saturated FFA, palmitate, increased neuroinflammatory and ER stress markers, as well as Pomc mRNA levels, but did not affect insulin signaling, in mHypoA-POMC/GFP-2 neurons. This effect was mediated through the MAP kinases JNK and ERK. Further, the increase in Pomc was dependent on palmitoyl-coA synthesis, but not de novo ceramide synthesis, as inhibition of SPT enhanced palmitate-induced Pomc expression, while methylpalmitate had no effect. While palmitate concomitantly induces neuroinflammation and ER stress, these effects were independent of changes in Pomc expression. Palmitate thus has direct acute effects on Pomc, which appears to be important for negative feedback, but not directly related to neuroinflammation. The monounsaturated FFA oleate completely blocked the palmitate-mediated increase in neuroinflammation, ER stress, and Pomc mRNAs. This study provides insight into the complex central metabolic regulation by FFAs.
Collapse
Affiliation(s)
- Erika K Tse
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Departments of Medicine and Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
136
|
Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes - An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3805-3823. [PMID: 30251697 DOI: 10.1016/j.bbadis.2018.08.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes has traditionally been viewed as a metabolic disorder characterised by chronic high glucose levels, insulin resistance, and declining insulin secretion from the pancreas. Modern lifestyle, with abundant nutrient supply and reduced physical activity, has resulted in dramatic increases in the rates of obesity-associated disease conditions, including diabetes. The associated excess of nutrients induces a state of systemic low-grade chronic inflammation that results from production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. Here, we review the mechanisms by which obesity induces adipose tissue dysregulation, detailing the roles of adipose tissue secreted factors and their action upon other cells and tissues central to glucose homeostasis and type 2 diabetes. Furthermore, given the emerging importance of adipokines, cytokines and chemokines in disease progression, we suggest that type 2 diabetes should now be viewed as an autoinflammatory disease, albeit one that is driven by metabolic dysregulation.
Collapse
Affiliation(s)
- Laura L Gonzalez
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karin Garrie
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Mark D Turner
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
137
|
Marinho R, Munõz VR, Pauli LSS, Ropelle ECC, Moura LP, Moraes JC, Moura‐Assis A, Cintra DE, da Silva ASR, Ropelle ER, Pauli JR. Endurance training prevents inflammation and apoptosis in hypothalamic neurons of obese mice. J Cell Physiol 2018; 234:880-890. [PMID: 30078194 DOI: 10.1002/jcp.26909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Rodolfo Marinho
- Department of Physical Education Institute of Biosciences, São Paulo State University (UNESP) Rio Claro Brazil
| | - Vitor R. Munõz
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
| | | | | | - Leandro P. Moura
- Department of Physical Education Institute of Biosciences, São Paulo State University (UNESP) Rio Claro Brazil
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
- OCRC—Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas Brazil
- CEPECE—Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
| | - Juliana C. Moraes
- Faculty of Medical Sciences, State University of Campinas (UNICAMP) Limeira Brazil
| | | | - Dennys E. Cintra
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
- OCRC—Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas Brazil
| | - Adelino S. R. da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Eduardo R. Ropelle
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
- OCRC—Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas Brazil
- CEPECE—Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
| | - José R. Pauli
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
- OCRC—Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas Brazil
- CEPECE—Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
| |
Collapse
|
138
|
Mendes NF, Gaspar JM, Lima-Júnior JC, Donato J, Velloso LA, Araújo EP. TGF-β1 down-regulation in the mediobasal hypothalamus attenuates hypothalamic inflammation and protects against diet-induced obesity. Metabolism 2018; 85:171-182. [PMID: 29660453 DOI: 10.1016/j.metabol.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND The consumption of large amounts of dietary fats induces hypothalamic inflammation and impairs the function of the melanocortin system, leading to a defective regulation of caloric intake and whole-body energy expenditure. In mice fed a high-fat diet (HFD), TGF-β1 expression was increased and NF-κB signaling was activated in proopiomelanocortin neurons, which plays an important role in the obesity-associated hypothalamic inflammation scenario. However, whether excessive hypothalamic TGF-β1 impairs energy homeostasis remains unclear. OBJECTIVES We aimed to investigate the role of diet-induced hypothalamic TGF-β1 on inflammation and whole-body energy homeostasis. METHODS A TGF-β1 inhibitory lentiviral shRNA particle was stereotaxically injected bilaterally in the arcuate nucleus (ARC) of C57BL/6 mice fed a HFD. We assessed changes in body mass and adiposity, food intake, inflammatory markers, and the function of energy and glucose metabolism. RESULTS TGF-β1 down-regulation in the ARC-attenuated body-mass gain, reduced fat-mass accumulation, decreased hypothalamic inflammatory markers, and protected against HFD-induced lipohypertrophy of brown adipose tissue. In addition, the inhibition of hypothalamic TGF-β1 increased the locomotor activity and improved whole-body lipid metabolism, which attenuated hepatic fat accumulation and serum triglyceride levels. No changes were observed in food intake and glucose homeostasis. CONCLUSION Hypothalamic TGF-β1 down-regulation attenuates hypothalamic inflammation and improves energy metabolism, resulting in lower body-mass gain and lower fat-mass accumulation, which protects mice from the development of obesity. Our data suggest that modulation of hypothalamic TGF-β1 expression might be an effective strategy to treat obesity.
Collapse
Affiliation(s)
- Natália F Mendes
- School of Nursing, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Joana M Gaspar
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - José C Lima-Júnior
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Lício A Velloso
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Eliana P Araújo
- School of Nursing, State University of Campinas (UNICAMP), Brazil; Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
139
|
Santamarina AB, Jamar G, Mennitti LV, de Rosso VV, Cesar HC, Oyama LM, Pisani LP. The Use of Juçara ( Euterpe edulis Mart.) Supplementation for Suppression of NF-κB Pathway in the Hypothalamus after High-Fat Diet in Wistar Rats. Molecules 2018; 23:molecules23071814. [PMID: 30037112 PMCID: PMC6100376 DOI: 10.3390/molecules23071814] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023] Open
Abstract
Obesity is associated with modern diets that are rich in saturated fatty acids. These dietary patterns are linked to low-grade proinflammatory mechanisms, such as the toll-like receptor 4/nuclear factor kappa-B (NF-κB) pathway rapidly activated through high-fat diets. Juçara is a berry rich in anthocyanins and unsaturated fatty acids, which prevents obesity and associated comorbidities. We evaluated the effect of different doses of freeze-dried juçara pulp on NF-κB pathway after the consumption of short-term high-fat diet. Male Wistar rats with ad libitum access to food and water were divided into four groups: Control diet (C), high-fat diet (HFC), high-fat diet with 0.25% juçara (HFJ 0.25%), and high-fat diet with 0.5% juçara (HFJ 0.5%). Energy intake and body weight gain were increased in HFC and HFJ 0.5% groups compared to C group. The hypothalamus weight reduced in the HFC group compared to C and HFJ 0.25% groups. Cytokines, MYD88, TRAF6, and pNF-κBp50 levels in the hypothalamus, serum triacylglycerol, LDL-cholesterol (LDL-C), and free fatty acid levels were improved in the HFJ 0.25% group. In summary, the HFJ 0.25% group had better protective effects than those in the HFJ 0.5%. Therefore, 0.25% juçara can be used to protect against central inflammation through the high-fat diet-induced NF-κB pathway.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, São Paulo 11015-020, Brazil.
| | - Giovana Jamar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, São Paulo 11015-020, Brazil.
| | - Laís Vales Mennitti
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, São Paulo 11015-020, Brazil.
| | - Veridiana Vera de Rosso
- Departamento de Biociências, Universidade Federal de São Paulo, São Paulo 11015-020, Brazil.
| | - Helena Cassia Cesar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, São Paulo 11015-020, Brazil.
| | - Lila Missae Oyama
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil.
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Universidade Federal de São Paulo, São Paulo 11015-020, Brazil.
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE); Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Rua Silva Jardim, 136, Térreo, Vila Mathias, Santos, São Paulo 11015-020, Brazil.
| |
Collapse
|
140
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
141
|
Safahani M, Aligholi H, Noorbakhsh F, Djalali M, Pishva H, Mousavi SMM, Alipour F, Gorji A, Koohdani F. Resveratrol promotes the arcuate nucleus architecture remodeling to produce more anorexigenic neurons in high-fat-diet–fed mice. Nutrition 2018. [PMID: 29524783 DOI: 10.1016/j.nut.2017.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
142
|
Safahani M, Aligholi H, Noorbakhsh F, Djalali M, Pishva H, Modarres Mousavi SM, Alizadeh L, Gorji A, Koohdani F. Switching from high-fat diet to foods containing resveratrol as a calorie restriction mimetic changes the architecture of arcuate nucleus to produce more newborn anorexigenic neurons. Eur J Nutr 2018; 58:1687-1701. [PMID: 29785640 DOI: 10.1007/s00394-018-1715-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE These days, obesity threatens the health for which one of the main interventions is calorie restriction (CR). Due to the difficulty of compliance with this treatment, CR mimetics such as resveratrol (RSV) have been considered. The present study compared the effects of RSV and CR on hypothalamic remodeling in a diet-switching experiment. METHODS C57BL/6 male mice received high-fat diet (HFD) for 4 weeks, subsequently their diet switched to chow diet, HFD + RSV, chow diet + RSV or CR diet for a further 6 weeks. Body weight, fat accumulation, hypothalamic apoptosis and expression of trophic factors as well as generation and fate specification of newborn cells in arcuate nucleus (ARC) were evaluated. RESULTS Switching diet to RSV-containing foods leading to weight and fat loss after 6 weeks. In addition, not only a significant reduction in apoptosis but also a considerable increase in production of newborn cells in ARC occurred following consumption of RSV-enriched diets. These were in line with augmentation of hypothalamic ciliary neurotrophic factor and leukemia inhibitory factor expression. Interestingly, RSV-containing diets changed the fate of newborn neurons toward generation of more proopiomelanocortin than neuropeptide Y neurons. The CR had effects similar to those of RSV-containing diets in the all-evaluated aspects besides neurogenesis in ARC. CONCLUSIONS Although both RSV-containing and CR diets changed the fate of newborn neurons to create an anorexigenic architecture for ARC, newborn neurons were more available after switching to RSV-enriched diets. It can be consider as a promising mechanism for future investigations.
Collapse
Affiliation(s)
- Maryam Safahani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Pishva
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam-al-Anbia Hospital, Tehran, Iran. .,Department of Neurology, Department of Neurosurgery, Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 45, 48149, Münster, Germany. .,Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fariba Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
143
|
YENER Y, YERLİKAYA FH. Western diet induces endogen oxidative deoxyribonucleic acid damage and infl ammation in Wistar rats. REV NUTR 2018. [DOI: 10.1590/1678-98652018000300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective Nutritional diseases such as metabolic syndrome, cardiovascular disorder, chronic inflammation or even cancer are observed in people who sustain their lifestyle by Western diet due to high calorie intake. The origin of these diseases are the degraded deoxyribonucleic acid structure. In this study, we investigated whether Western diet produced endogenous oxidative deoxyribonucleic acid damage, apoptosis or inflammation. Methods Twenty-eight male Wistar rats, aged 10-12 weeks, were divided into four groups. The rats in control group received the standard diet and the remaining rats were given one of the following three diets for four weeks: a high-fat diet containing 35% fat, a high-sucrose diet containing 69% sucrose and Western diet comprising both two types of diets. After treatment the serum 8-hydroxy-2-deoxyguanosine, poly (adenosine diphosphate ribose) polymerase-1, chitinase-3-like protein 1, soluble urokinase-type plasminogen activator receptor, Fas ligand and cytochrome c levels were measured. Results It was observed no changes in the serum soluble urokinase-type plasminogen activator receptor, Fas ligand and cytochrome c levels whereas a statistically significant increase in the serum 8-hydroxy-2-deoxyguanosine, poly (adenosine diphosphate ribose) polymerase-1 and chitinase-3-like protein 1 levels were found only in rats that were given Western diet. Conclusion The findings show that Western diet produced endogenous oxidative deoxyribonucleic acid damage, which then increased serum poly (adenosine diphosphate ribose) polymerase-1 levels, eventually leading to inflammation.
Collapse
|
144
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
145
|
Abstract
The current paradigms of prevention and treatment are unable to curb obesity rates, which indicates the need to explore alternative therapeutic approaches. Obesity leads to several damages to the body and is an important risk factor for a number of other chronic diseases. Furthermore, despite the first alterations in obesity being observed and reported in peripheral tissues, studies indicate that obesity can also cause brain damage. Obesity leads to a chronic low-grade inflammatory state, and the therapeutic manipulation of inflammation can be explored. In this context, the use of n-3 PUFA (especially in the form of fish oil, rich in EPA and DHA) may be an interesting strategy, as this substance is known by its anti-inflammatory effect and numerous benefits to the body, such as reduction of TAG, cardiac arrhythmias, blood pressure and platelet aggregation, and has shown potential to help treat obesity. Thereby, the aim of this narrative review was to summarise the literature related to n-3 PUFA use in obesity treatment. First, the review provides a brief description of the obesity pathophysiology, including alterations that occur in peripheral tissues and at the central nervous system. In the sequence, we describe what are n-3 PUFA, their sources and their general effects. Finally, we explore the main topic linking obesity and n-3 PUFA. Animal and human studies were included and alterations on the whole organism were described (peripheral tissues and brain).
Collapse
|
146
|
Aerobic Interval Training Regulated SIRT3 Attenuates High-Fat-Diet-Associated Cognitive Dysfunction. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2708491. [PMID: 29765980 PMCID: PMC5885335 DOI: 10.1155/2018/2708491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/07/2018] [Indexed: 12/27/2022]
Abstract
Cognitive dysfunction is an important complicated disease in obesity. Exercise ameliorates obesity and the related cognitive dysfunction. However, the underlying mechanism is still unclear. In this study, we investigated whether aerobic interval training (AIT) could attenuate high-fat-diet- (HFD-) associated cognitive dysfunction and the possible mechanism of SIRT3-MnSOD pathway. C57BL/6 wild-type (WT) mice and SIRT3 knockout (KO) mice were randomized into control (Con) or HFD group with or without AIT training for 6 weeks. The spatial learning and memory ability were impaired in HFD group compared to the control group. The levels of mitochondrial protein acetylation were increased in the hippocampus of HFD group. The acetylation level of antioxidative MnSOD was increased as well. As a result, the ROS and MDA levels were significantly increased, which leads to the neuron apoptosis in the hippocampus. SIRT3 deficiency further aggravated HFD-induced cognitive dysfunction and susceptibility to oxidative stress injury. However, AIT upregulated neuron SIRT3 expression and decreased the acetylation of MnSOD. The hippocampus neuron oxidative stress and apoptosis were both decreased compared to untrained HFD group, which finally improved cognitive function of HFD mice. Collectively, AIT attenuates HFD-associated cognitive dysfunction through SIRT3 upregulation and improvement of antioxidative MnSOD activity.
Collapse
|
147
|
Wei L, Yao M, Zhao Z, Jiang H, Ge S. High-fat diet aggravates postoperative cognitive dysfunction in aged mice. BMC Anesthesiol 2018; 18:20. [PMID: 29439655 PMCID: PMC5812108 DOI: 10.1186/s12871-018-0482-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Background Silent Information Regulator 1 (Sirt1) and apoptosis play key roles in postoperative cognitive dysfunction (POCD). Consuming a high-fat diet (HFD), a prevalent type of diet in modern society, has been increasingly recognized as contributing to neurodegenerative diseases. Although Sirt1 and apoptosis are significant responders to HFD in the brain, little is known regarding the functional correlations between HFD and POCD. Methods Thirty-two aged C57BL/6 male mice were randomly divided into 2 groups: an ad libitum (AL) group (fed a regular diet) and high-fat diet (HF) group (fed a high-fat diet). After 8 weeks, the animals were divided into four sub-groups: an ad libitum control (ALC) group, ad libitum surgery (ALS) group, high-fat diet control (HFC) group, and high-fat diet surgery (HFS) group. The ALS and HFS groups were exposed to 3% sevoflurane in 33% oxygen for 3 h and were subsequently subjected to exploratory surgery to establish the POCD model. The ALC and HFC groups were treated with 33% oxygen for 3 h without surgery. After 48 h, the learning and memory abilities of mice in each group were tested using the Morris water maze (MWM). The expression levels of Sirt1, Bcl-2, Bax and caspase-3 cleaved were detected by western blot. Results The MWM and western blotting results showed that the learning and memory abilities were decreased in the HFC group compared with the ALC group. The learning and memory abilities and the expression of Sirt1 in the hippocampus in the HFS group were significantly decreased compared with the other groups. A significant decrease in Sirt1 expression was also observed in the HFC group compared with the ALS group. The level of Bcl-2 was lower in the HFS group than in the HFC and ALC groups. The expression levels of caspase-3 cleaved and Bax increased in the HFS group compared with the HFC group. Moreover, the expression of caspase-3 cleaved was higher in the HFC group than in the ALS group. Conclusion HFD can aggravate POCD in aged C57BL/6 mice, an effect that may be related to the inhibition expression of Sirt1 and the promotion of neuronal apoptosis.
Collapse
Affiliation(s)
- Lan Wei
- Department of Anesthesia, Zhongshan Hospital Qingpu Branch affiliated to Fudan University, Shanghai, China
| | - Minmin Yao
- Department of Anesthesia, Zhongshan Hospital affiliated to Fudan University, Shanghai, China
| | - Zhimeng Zhao
- Department of Anesthesia, Zhongshan Hospital affiliated to Fudan University, Shanghai, China
| | - Hui Jiang
- Department of Anesthesia, Zhongshan Hospital Qingpu Branch affiliated to Fudan University, Shanghai, China.
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
148
|
Carraro RS, Souza GF, Solon C, Razolli DS, Chausse B, Barbizan R, Victorio SC, Velloso LA. Hypothalamic mitochondrial abnormalities occur downstream of inflammation in diet-induced obesity. Mol Cell Endocrinol 2018; 460:238-245. [PMID: 28760600 DOI: 10.1016/j.mce.2017.07.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Hypothalamic dysfunction is a common feature of experimental obesity. Studies have identified at least three mechanisms involved in the development of hypothalamic neuronal defects in diet-induced obesity: i, inflammation; ii, endoplasmic reticulum stress; and iii, mitochondrial abnormalities. However, which of these mechanisms is activated earliest in response to the consumption of large portions of dietary fats is currently unknown. Here, we used immunoblot, real-time PCR, mitochondrial respiration assays and transmission electron microscopy to evaluate markers of inflammation, endoplasmic reticulum stress and mitochondrial abnormalities in the hypothalamus of Swiss mice fed a high-fat diet for up to seven days. In the present study we show that the expression of the inflammatory chemokine fractalkine was the earliest event detected. Its hypothalamic expression increased as early as 3 h after the introduction of a high-fat diet and was followed by the increase of cytokines. GPR78, an endoplasmic reticulum chaperone, was increased 6 h after the introduction of a high-fat diet, however the actual triggering of endoplasmic reticulum stress was only detected three days later, when IRE-1α was increased. Mitofusin-2, a protein involved in mitochondrial fusion and tethering of mitochondria to the endoplasmic reticulum, underwent a transient reduction 24 h after the introduction of a high-fat diet and then increased after seven days. There were no changes in hypothalamic mitochondrial respiration during the experimental period, however there were reductions in mitochondria/endoplasmic reticulum contact sites, beginning three days after the introduction of a high-fat diet. The inhibition of TNF-α with infliximab resulted in the normalization of mitofusin-2 levels 24 h after the introduction of the diet. Thus, inflammation is the earliest mechanism activated in the hypothalamus after the introduction of a high-fat diet and may play a mechanistic role in the development of mitochondrial abnormalities in diet-induced obesity.
Collapse
Affiliation(s)
- Rodrigo S Carraro
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, 13084-970 Campinas, SP, Brazil
| | - Gabriela F Souza
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, 13084-970 Campinas, SP, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, 13084-970 Campinas, SP, Brazil
| | - Daniela S Razolli
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, 13084-970 Campinas, SP, Brazil
| | - Bruno Chausse
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, 13084-970 Campinas, SP, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Roberta Barbizan
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, 13084-970 Campinas, SP, Brazil
| | - Sheila C Victorio
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, 13084-970 Campinas, SP, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling and Obesity and Comorbidities Research Center, University of Campinas, 13084-970 Campinas, SP, Brazil.
| |
Collapse
|
149
|
Ramalho AF, Bombassaro B, Dragano NR, Solon C, Morari J, Fioravante M, Barbizan R, Velloso LA, Araujo EP. Dietary fats promote functional and structural changes in the median eminence blood/spinal fluid interface-the protective role for BDNF. J Neuroinflammation 2018; 15:10. [PMID: 29316939 PMCID: PMC5761204 DOI: 10.1186/s12974-017-1046-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The consumption of large amounts of dietary fats activates an inflammatory response in the hypothalamus, damaging key neurons involved in the regulation of caloric intake and energy expenditure. It is currently unknown why the mediobasal hypothalamus is the main target of diet-induced brain inflammation. We hypothesized that dietary fats can damage the median eminence blood/spinal fluid interface. METHODS Swiss mice were fed on a high-fat diet, and molecular and structural studies were performed employing real-time PCR, immunoblot, immunofluorescence, transmission electron microscopy, and metabolic measurements. RESULTS The consumption of a high fat diet was sufficient to increase the expression of inflammatory cytokines and brain-derived neurotrophic factor in the median eminence, preceding changes in other circumventricular regions. In addition, it led to an early loss of the structural organization of the median eminence β1-tanycytes. This was accompanied by an increase in the hypothalamic expression of brain-derived neurotrophic factor. The immunoneutralization of brain-derived neurotrophic factor worsened diet-induced functional damage of the median eminence blood/spinal fluid interface, increased diet-induced hypothalamic inflammation, and increased body mass gain. CONCLUSIONS The median eminence/spinal fluid interface is affected at the functional and structural levels early after introduction of a high-fat diet. Brain-derived neurotrophic factor provides an early protection against damage, which is lost upon a persisting consumption of large amounts of dietary fats.
Collapse
Affiliation(s)
- Albina F Ramalho
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Bruna Bombassaro
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Nathalia R Dragano
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Carina Solon
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Joseane Morari
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Milena Fioravante
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Roberta Barbizan
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil
| | - Licio A Velloso
- LAV, Laboratory of Cell Signaling, University of Campinas, Campinas, SP, 13084-970, Brazil.
| | - Eliana P Araujo
- Faculty of Nursing, University of Campinas, Campinas, SP, 13084-970, Brazil
| |
Collapse
|
150
|
Farooqui AA, Farooqui T. Effects of Western, Mediterranean, Vegetarian, and Okinawan Diet Patterns on Human Brain. ROLE OF THE MEDITERRANEAN DIET IN THE BRAIN AND NEURODEGENERATIVE DISEASES 2018:317-332. [DOI: 10.1016/b978-0-12-811959-4.00020-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|