101
|
Rutter GA, Georgiadou E, Martinez-Sanchez A, Pullen TJ. Metabolic and functional specialisations of the pancreatic beta cell: gene disallowance, mitochondrial metabolism and intercellular connectivity. Diabetologia 2020; 63:1990-1998. [PMID: 32894309 PMCID: PMC7476987 DOI: 10.1007/s00125-020-05205-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
All forms of diabetes mellitus involve the loss or dysfunction of pancreatic beta cells, with the former predominating in type 1 diabetes and the latter in type 2 diabetes. Deeper understanding of the coupling mechanisms that link glucose metabolism in these cells to the control of insulin secretion is therefore likely to be essential to develop new therapies. Beta cells display a remarkable metabolic specialisation, expressing high levels of metabolic sensing enzymes, including the glucose transporter GLUT2 (encoded by SLC2A2) and glucokinase (encoded by GCK). Genetic evidence flowing from both monogenic forms of diabetes and genome-wide association studies for the more common type 2 diabetes, supports the importance for normal glucose-stimulated insulin secretion of metabolic signalling via altered ATP generation, while also highlighting unsuspected roles for Zn2+ storage, intracellular lipid transfer and other processes. Intriguingly, genes involved in non-oxidative metabolic fates of the sugar, such as those for lactate dehydrogenase (LDHA) and monocarboxylate transporter-1 ([MCT-1] SLC16A1), as well as the acyl-CoA thioesterase (ACOT7) and others, are selectively repressed ('disallowed') in beta cells. Furthermore, mutations in genes critical for mitochondrial oxidative metabolism, such as TRL-CAG1-7 encoding tRNALeu, are linked to maternally inherited forms of diabetes. Correspondingly, impaired Ca2+ uptake into mitochondria, or collapse of a normally interconnected mitochondrial network, are associated with defective insulin secretion. Here, we suggest that altered mitochondrial metabolism may also impair beta cell-beta cell communication. Thus, we argue that defective oxidative glucose metabolism is central to beta cell failure in diabetes, acting both at the level of single beta cells and potentially across the whole islet to impair insulin secretion. Graphical abstract.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Timothy J Pullen
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Diabetes, School of Life Course Science, Faculty of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
102
|
Nalla A, Ringholm L, Sørensen SN, Damm P, Mathiesen ER, Nielsen JH. Possible mechanisms involved in improved beta cell function in pregnant women with type 1 diabetes. Heliyon 2020; 6:e04569. [PMID: 32904239 PMCID: PMC7452446 DOI: 10.1016/j.heliyon.2020.e04569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/11/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022] Open
Abstract
Pregnancy is known to be associated with an increased demand for insulin that is normally compensated by an increased beta cell mass and insulin secretion. Recent studies have suggested enhanced beta cell function during pregnancy in women with type 1 diabetes (T1D). To explore the possible mechanisms behind enhanced beta cell function during pregnancy in women with T1D we investigated the impact of circulating factors in serum from nine women from each group of pregnant women with and without T1D, after pregnancy and non-diabetic non-pregnant women on rat islet cell proliferation and apoptosis, and on T-lymphocyte activation. In addition, circulating levels of pancreatic hormones and selected cytokines and adipokines were measured. Rat islet cell proliferation was higher in serum from pregnant women with T1D (p < 0.05) compared to T1D women after pregnancy. Apoptosis in INS-1E cell was lower (p < 0.05) in serum from pregnant women with T1D compared to T1D women after pregnancy. T-lymphocyte cell (Jurkat) proliferation was reduced by serum from pregnant women without T1D only (p < 0.05). Higher C-peptide levels and lower levels of ghrelin, IL-6, MCP-1, IL-8 and adipsin were observed in pregnant women with T1D compared to T1D women after pregnancy. In conclusion, the improved beta cell function in women with T1D during pregnancy may be due to lower levels of proinflammatory cytokines and/or higher levels of pregnancy-associated growth factors.
Collapse
Affiliation(s)
- Amarnadh Nalla
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Corresponding author.
| | - Lene Ringholm
- Center for Pregnant Women with Diabetes, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Departments of Endocrinology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Susanne Nørskov Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Departments of Obstetrics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elisabeth Reinhardt Mathiesen
- Center for Pregnant Women with Diabetes, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Departments of Endocrinology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Høiriis Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
103
|
Brovkina O, Dashinimaev E. Advances and complications of regenerative medicine in diabetes therapy. PeerJ 2020; 8:e9746. [PMID: 33194345 PMCID: PMC7485501 DOI: 10.7717/peerj.9746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid development of technologies in regenerative medicine indicates clearly that their common application is not a matter of if, but of when. However, the regeneration of beta-cells for diabetes patients remains a complex challenge due to the plurality of related problems. Indeed, the generation of beta-cells masses expressing marker genes is only a first step, with maintaining permanent insulin secretion, their protection from the immune system and avoiding pathological modifications in the genome being the necessary next developments. The prospects of regenerative medicine in diabetes therapy were promoted by the emergence of promising results with embryonic stem cells (ESCs). Their pluripotency and proliferation in an undifferentiated state during culture have ensured the success of ESCs in regenerative medicine. The discovery of induced pluripotent stem cells (iPSCs) derived from the patients’ own mesenchymal cells has provided further hope for diabetes treatment. Nonetheless, the use of stem cells has significant limitations related to the pluripotent stage, such as the risk of development of teratomas. Thus, the direct conversion of mature cells into beta-cells could address this issue. Recent studies have shown the possibility of such transdifferentiation and have set trends for regeneration medicine, directed at minimizing genome modifications and invasive procedures. In this review, we will discuss the published results of beta-cell regeneration and the advantages and disadvantages illustrated by these experiments.
Collapse
Affiliation(s)
- Olga Brovkina
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
104
|
Yagihashi S. What can we learn from the islet of Joslin Medalists? J Diabetes Investig 2020; 11:1117-1119. [PMID: 32343033 PMCID: PMC7477497 DOI: 10.1111/jdi.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022] Open
Abstract
This commentary refers to the recent study of Joslin Medalists that showed evidence of residual endocrine cells still functioning in response to glucose stimuli. Islet pathology showed the ongoing remodeling influenced by autoimmune attack and glucose toxicity. The results showed the presence of functional endocrine cells that contribute to the longevity of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumanToho University School of MedicineChibaJapan
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
105
|
Jamiołkowska-Sztabkowska M, Głowińska-Olszewska B, Łuczyński W, Konstantynowicz J, Bossowski A. Regular physical activity as a physiological factor contributing to extend partial remission time in children with new onset diabetes mellitus-Two years observation. Pediatr Diabetes 2020; 21:800-807. [PMID: 32277567 DOI: 10.1111/pedi.13018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Beneficial effects of physical activity (PA) are confirmed in patients with all types of long-lasting diabetes. The possibility of PA to be a factor prolonging remission phase in children with new-onset type 1 diabetes (T1D) has not yet been thoroughly studied. OBJECTIVE The aim of the study was to elucidate the influence of regular PA on prevalence of partial remission (PR), metabolic control, daily insulin requirement (DIR), and C-peptide secretion in children newly diagnosed with T1D. METHODS A total of 125 children diagnosed with T1D were studied prospectively for 2 years. Patients were controlled every 3 months and advised with PA according to ISPAD recommendations. Anthropometric parameters, HbA1c, C-peptide level and DIR were analyzed. Patients' PA level was assessed using a self-designed questionnaire. RESULTS We classified 43% of participants as physically-active. In this group, lower HbA1c after 2 years, lower DIR after 3, 6 months, and after 2 years (all P < .05) were found. At discharge from hospital, the prevalence of DIR < 0.5 U/kg/24 h with near normoglycemia was similar in both groups. Then, we observed higher PR prevalence in active group lasting over time and resulting in 44% vs 13% after 2 years (P < .001). C-peptide after 2 years was comparable in both groups, with higher prevalence of clinically significant levels (>0.2 nmoL/L) in active group: 79.6% vs 61.4% (P = .029). CONCLUSIONS These data support the view that regular PA may essentially contribute to extending PR time in pediatric diabetes, and may therefore lead to a better long-term metabolic control of the disease.
Collapse
Affiliation(s)
- Milena Jamiołkowska-Sztabkowska
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland.,Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Głowińska-Olszewska
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| | - Włodzimierz Łuczyński
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland.,Department of Medical Simulations, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
106
|
Miller RG, Yu L, Becker DJ, Orchard TJ, Costacou T. Older age of childhood type 1 diabetes onset is associated with islet autoantibody positivity >30 years later: the Pittsburgh Epidemiology of Diabetes Complications Study. Diabet Med 2020; 37:1386-1394. [PMID: 32011014 PMCID: PMC7369217 DOI: 10.1111/dme.14261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2020] [Indexed: 01/12/2023]
Abstract
AIMS To examine the association between islet autoantibody positivity and clinical characteristics, residual β-cell function (C-peptide) and prevalence of complications in a childhood-onset (age <17 years), long-duration (≥32 years) type 1 diabetes cohort. METHODS Islet autoantibodies (glutamic acid decarboxylase, insulinoma-associated protein 2 and zinc transporter-8 antibodies) were measured in the serum of participants who attended the 2011-2013 Pittsburgh Epidemiology of Diabetes Complications study follow-up examination (n=177, mean age 51 years, diabetes duration 43 years). RESULTS Prevalences of islet autoantibodies were: glutamic acid decarboxylase, 32%; insulinoma-associated protein 2, 22%; and zinc transporter-8, 4%. Positivity for each islet autoantibody was associated with older age at diabetes onset (glutamic acid decarboxylase antibodies, P=0.03; insulinoma-associated protein 2 antibodies, P=0.001; zinc transporter-8 antibodies, P<0.0001). Older age at onset was also associated with an increasing number of autoantibodies (P = 0.001). Glutamic acid decarboxylase antibody positivity was also associated with lower HbA1c (P = 0.02), insulinoma-associated protein 2 antibody positivity was associated with lower prevalence of severe hypoglycaemic episodes (P=0.02) and both distal and autonomic neuropathy (P=0.04 for both), and zinc transporter-8 antibody positivity was associated with higher total and LDL cholesterol (P=0.01). No association between autoantibody positivity and C-peptide was observed. CONCLUSIONS The strong association between islet autoantibody positivity and older age at type 1 diabetes onset supports the hypothesis of a less aggressive, and thus more persistent, immune process in those with older age at onset. This observation suggests that there may be long-term persistence of heterogeneity in the underlying autoimmune process.
Collapse
Affiliation(s)
- R G Miller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - L Yu
- School of Medicine, Barbara Davis Center, University of Colorado Denver, Aurora, CO, USA
| | - D J Becker
- Department of Paediatrics, Division of Pediatric Endocrinology and Diabetes, University of Pittsburgh, Pittsburgh, PA
| | - T J Orchard
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - T Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
107
|
Lord S, Greenbaum CJ. Insulin is necessary but not sufficient: changing the therapeutic paradigm in type 1 diabetes. F1000Res 2020; 9. [PMID: 32789003 PMCID: PMC7400689 DOI: 10.12688/f1000research.21801.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 01/07/2023] Open
Abstract
Despite the clear evidence that type 1 diabetes (T1D) begins well before hyperglycemia is evident, there are no clinically available disease-modifying therapies for early-stage disease. However, following the exciting results of the Teplizumab Prevention Study, the first study to demonstrate that overt T1D can be delayed with immunotherapy, there is renewed optimism that in the future, T1D will be treated before hyperglycemia develops. A different treatment paradigm is needed, as a majority of people with T1D do not meet the glycemic targets that are associated with a lower risk of T1D complications and therefore remain vulnerable to complications and shortened life expectancy. The following review will outline the history and current status of immunotherapy for T1D and highlight some challenges and ideas for the future. Although such efforts have been worldwide, we will focus particularly on the activities of Diabetes TrialNet, a National Institutes of Health consortium launched in 2004.
Collapse
Affiliation(s)
- Sandra Lord
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Carla J Greenbaum
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| |
Collapse
|
108
|
Ullsten S, Espes D, Quach M, Fex M, Sandberg M, Carlsson P. Highly blood perfused, highly metabolically active pancreatic islets may be more susceptible for immune attack. Physiol Rep 2020; 8:e14444. [PMID: 32618430 PMCID: PMC7333349 DOI: 10.14814/phy2.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Differences in pancreatic islet susceptibility during type 1 diabetes development may be explained by interislet variations. This study aimed to investigate if heterogeneities in vascular support and metabolic activity in rat and human islets may explain why some islets are attacked earlier than other islets. In rats, highly blood perfused islets were identified by injection of microspheres into the ascending aorta, whereas a combination of anterograde and retrograde injections of microspheres into pancreas was used to determine the islet vascular drainage system. Highly blood perfused islets had superior function and lower glucose threshold for insulin release when compared with other islets. These islets had a preferential direct venous drainage to the portal vein, whereas other islets mainly were incorporated into the exocrine capillary system. In BioBreeding rats, the hypothesis that islets with high islet blood perfusion was more prone to immune cell infiltration was investigated. Indeed, highly blood perfused islets were the first affected by the immune attack. In human subjects, differences in glucose threshold for insulin (C-peptide) secretion was evaluated in individuals recently diagnosed for type 1 diabetes and compared to control subjects. A preferential loss of capacity for insulin release in response to low glucose concentrations was observed at debut of type 1 diabetes. Our study indicates that highly blood perfused islets with direct venous drainage and lower glucose threshold for insulin release are of great importance for normal glucose homeostasis. At the same time, these highly metabolically active islets were the primary target of the immune system.
Collapse
Affiliation(s)
- Sara Ullsten
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Daniel Espes
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
- Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - My Quach
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Malin Fex
- Department of Clinical SciencesLund University Diabetes CenterLund UniversityLundSweden
| | - Monica Sandberg
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| | - Per‐Ola Carlsson
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
- Department of Medical SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
109
|
Dirr EW, Urdaneta ME, Patel Y, Johnson RD, Campbell-Thompson M, Otto KJ. Designing a bioelectronic treatment for Type 1 diabetes: targeted parasympathetic modulation of insulin secretion. BIOELECTRONICS IN MEDICINE 2020; 3:17-31. [PMID: 33169091 PMCID: PMC7604671 DOI: 10.2217/bem-2020-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 12/31/2022]
Abstract
The pancreas is a visceral organ with exocrine functions for digestion and endocrine functions for maintenance of blood glucose homeostasis. In pancreatic diseases such as Type 1 diabetes, islets of the endocrine pancreas become dysfunctional and normal regulation of blood glucose concentration ceases. In healthy individuals, parasympathetic signaling to islets via the vagus nerve, triggers release of insulin from pancreatic β-cells and glucagon from α-cells. Using electrical stimulation to augment parasympathetic signaling may provide a way to control pancreatic endocrine functions and ultimately control blood glucose. Historical data suggest that cervical vagus nerve stimulation recruits many visceral organ systems. Simultaneous modulation of liver and digestive function along with pancreatic function provides differential signals that work to both raise and lower blood glucose. Targeted pancreatic vagus nerve stimulation may provide a solution to minimizing off-target effects through careful electrode placement just prior to pancreatic insertion.
Collapse
Affiliation(s)
- Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Morgan E Urdaneta
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Yogi Patel
- Department of Biomedical Engineering, Georgia Institute of Technology University of Florida, Gainesville, FL 32611, USA
| | - Richard D Johnson
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Martha Campbell-Thompson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, Immunology, & Laboratory Medicine University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
- Department of Materials Science & Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
110
|
Abstract
Background The extended and clinically silent progression of Type 1 diabetes (T1D) creates a challenge for clinical interventions and for understanding the mechanisms that underlie its pathogenesis. Over the course of the development of Type 1 diabetes, studies in animal models and of human tissues have identified adaptive changes in β cells that may affect their immunogenicity and susceptibility to killing. Loss of β cells has traditionally been identified by impairment in function but environmental factors may affect these measurements. Scope of Review In this review we will highlight features of β cell responses to cell death, particularly in the setting of inflammation, and focus on methods of detecting β cell death in vivo. Major conclusions We developed an assay to measure β cell death in vivo by detecting cell free DNA with epigenetic modifications of the INS gene that are found in β cells. This assay has robust technical performance and identifies killing in individuals at very high risk for disease, but its ability to identify β cell killing in at-risk relatives is limited by the short half-life of the cell free DNA and the need for repeated sampling over an extended course. We present results from the Diabetes Prevention Trial-1 using this assay. In addition, recent studies have identified cellular adaptations in some β cells that may avoid killing but impair metabolic function. Cells with these characteristics may aggravate the autoimmune response but also may represent a potentially recoverable source of functional β cells.
Collapse
Affiliation(s)
| | | | | | | | - Maria Korah
- Department of Immunobiology, New Haven, CT, USA
| | - Jinxiu Rui
- Department of Immunobiology, New Haven, CT, USA
| | | | - Kevan C Herold
- Department of Immunobiology, New Haven, CT, USA; Department of Internal Medicine Yale University, New Haven, CT, USA.
| |
Collapse
|
111
|
Leete P, Oram RA, McDonald TJ, Shields BM, Ziller C, Hattersley AT, Richardson SJ, Morgan NG. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 2020; 63:1258-1267. [PMID: 32172310 PMCID: PMC7228905 DOI: 10.1007/s00125-020-05115-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS It is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. METHODS Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (<2 years) from young people diagnosed at age <7 years, 7-12 years and ≥13 years. The patterns were correlated with the insulitis profiles in the inflamed islets of the same groups of individuals. C-peptide levels and the proinsulin:C-peptide ratio were measured in the circulation of a cohort of living patients with longer duration of disease but who were diagnosed in these same age ranges. RESULTS Distinct patterns of proinsulin localisation were seen in the islets of people with recent-onset type 1 diabetes, which differed markedly between children diagnosed at <7 years and those diagnosed at ≥13 years. Proinsulin processing was aberrant in most residual insulin-containing islets of the younger group but this was much less evident in the group ≥13 years (p < 0.0001). Among all individuals (including children in the middle [7-12 years] range) aberrant proinsulin processing correlated with the assigned immune cell profiles defined by analysis of the lymphocyte composition of islet infiltrates. C-peptide levels were much lower in individuals diagnosed at <7 years than in those diagnosed at ≥13 years (median <3 pmol/l, IQR <3 to <3 vs 34.5 pmol/l, IQR <3-151; p < 0.0001), while the median proinsulin:C-peptide ratio was increased in those with age of onset <7 years compared with people diagnosed aged ≥13 years (0.18, IQR 0.10-0.31) vs 0.01, IQR 0.009-0.10 pmol/l; p < 0.0001). CONCLUSIONS/INTERPRETATION Among those with type 1 diabetes diagnosed under the age of 30 years, there are histologically distinct endotypes that correlate with age at diagnosis. Recognition of such differences should inform the design of future immunotherapeutic interventions designed to arrest disease progression.
Collapse
Affiliation(s)
- Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Timothy J McDonald
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Clemens Ziller
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
112
|
Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020; 41:5807952. [PMID: 32179913 PMCID: PMC7255501 DOI: 10.1210/endrev/bnaa005] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial damage is implicated as a major contributing factor for a number of noncommunicable chronic diseases such as cardiovascular diseases, cancer, obesity, and insulin resistance/type 2 diabetes. Here, we discuss the role of mitochondria in maintaining cellular and whole-organism homeostasis, the mechanisms that promote mitochondrial dysfunction, and the role of this phenomenon in noncommunicable chronic diseases. We also review the state of the art regarding the preclinical evidence associated with the regulation of mitochondrial function and the development of current mitochondria-targeted therapeutics to treat noncommunicable chronic diseases. Finally, we give an integrated vision of how mitochondrial damage is implicated in these metabolic diseases.
Collapse
Affiliation(s)
- Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo Sanchez-Aguilera
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, NSW, Australia
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Matías Monsalves-Alvarez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas.,Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
113
|
Korem Kohanim Y, Tendler A, Mayo A, Friedman N, Alon U. Endocrine Autoimmune Disease as a Fragility of Immune Surveillance against Hypersecreting Mutants. Immunity 2020; 52:872-884.e5. [PMID: 32433950 PMCID: PMC7237888 DOI: 10.1016/j.immuni.2020.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Some endocrine organs are frequent targets of autoimmune attack. Here, we addressed the origin of autoimmune disease from the viewpoint of feedback control. Endocrine tissues maintain mass through feedback loops that balance cell proliferation and removal according to hormone-driven regulatory signals. We hypothesized the existence of a dedicated mechanism that detects and removes mutant cells that missense the signal and therefore hyperproliferate and hypersecrete with potential to disrupt organismal homeostasis. In this mechanism, hypersecreting cells are preferentially eliminated by autoreactive T cells at the cost of a fragility to autoimmune disease. The "autoimmune surveillance of hypersecreting mutants" (ASHM) hypothesis predicts the presence of autoreactive T cells in healthy individuals and the nature of self-antigens as peptides from hormone secretion pathway. It explains why some tissues get prevalent autoimmune disease, whereas others do not and instead show prevalent mutant-expansion disease (e.g., hyperparathyroidism). The ASHM hypothesis is testable, and we discuss experimental follow-up.
Collapse
Affiliation(s)
- Yael Korem Kohanim
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avichai Tendler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
114
|
Camunas-Soler J, Dai XQ, Hang Y, Bautista A, Lyon J, Suzuki K, Kim SK, Quake SR, MacDonald PE. Patch-Seq Links Single-Cell Transcriptomes to Human Islet Dysfunction in Diabetes. Cell Metab 2020; 31:1017-1031.e4. [PMID: 32302527 PMCID: PMC7398125 DOI: 10.1016/j.cmet.2020.04.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Impaired function of pancreatic islet cells is a major cause of metabolic dysregulation and disease in humans. Despite this, it remains challenging to directly link physiological dysfunction in islet cells to precise changes in gene expression. Here we show that single-cell RNA sequencing combined with electrophysiological measurements of exocytosis and channel activity (patch-seq) can be used to link endocrine physiology and transcriptomes at the single-cell level. We collected 1,369 patch-seq cells from the pancreata of 34 human donors with and without diabetes. An analysis of function and gene expression networks identified a gene set associated with functional heterogeneity in β cells that can be used to predict electrophysiology. We also report transcriptional programs underlying dysfunction in type 2 diabetes and extend this approach to cryopreserved cells from donors with type 1 diabetes, generating a valuable resource for understanding islet cell heterogeneity in health and disease.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Yan Hang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - James Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94518, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
115
|
Gong S, Wu C, Zhong T, Xie Y, Liu F, Li J, Li X, Zhou Z. Complicated curve association of body weight at diagnosis with C-peptide in children and adults with new-onset type 1 diabetes. Diabetes Metab Res Rev 2020; 36:e3285. [PMID: 31909856 DOI: 10.1002/dmrr.3285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
AIM To investigate the association of body mass index (BMI) or BMI z-score (BMIz) at diagnosis with β-cell function in new-onset type 1 diabetes (T1D) patients in children and adults. METHODS This was a retrospective cohort study; 256 children (<18 years) and 245 adults (≥18 years) with less than 1-year duration were recruited and followed for 4 years with an interval of 12 months. Smooth curve fitting, a two-piecewise linear model, and Cox proportional hazards models were utilized to investigate the influence of BMI/BMIz on C-peptide levels. RESULTS Heavier patients (BMIz ≥ -1 in children and BMI in adults ≥20.2 kg/m2 ) had greater C-peptide with a complicated J curve in all age groups after adjustment for age of onset, sex, and disease duration. Moreover, after 4 years of follow-up, patients with higher BMI/BMIz had a lower risk of β-cell failure (HR = 0.7; 95% CI, 0.6-1.0; P = .026). However, no association was found between baseline BMI/BMIz at diagnosis and C-peptide rate of decline during 1 year follow-up. CONCLUSION Association between BMI/BMIz and C-peptide in T1D followed a complicated J curve pattern, and heavier patients had greater C-peptide at diagnosis and a lower risk of β-cell failure at 4 years, suggesting that baseline BMI is a useful predictor for β-cell function in patients with T1D.
Collapse
Affiliation(s)
- Siyuan Gong
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Chao Wu
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Ting Zhong
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yuting Xie
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Fang Liu
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Juan Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Xia Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| |
Collapse
|
116
|
Cooper JG, Bakke Å, Dalen I, Carlsen S, Skeie S, Løvaas KF, Sandberg S, Thue G. Factors associated with glycaemic control in adults with Type 1 diabetes: a registry-based analysis including 7601 individuals from 34 centres in Norway. Diabet Med 2020; 37:828-837. [PMID: 31469928 DOI: 10.1111/dme.14123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 01/22/2023]
Abstract
AIMS To use data from the Norwegian Diabetes Registry for Adults and Statistics Norway to assess factors associated with glycaemic control in type 1 diabetes. METHODS The analyses included all individuals aged ≥18 years who had a type 1 diabetes duration of >2 years and a recorded value in the registry between 2013 and 2015 (n=7601). Predicted mean HbA1c levels for subgroups of participants were assessed using linear regression analysis. RESULTS Young age (18-25 years), low education levels, smoking, living alone, exercising infrequently, monitoring glucose infrequently, high insulin requirements, low frequency of symptomatic hypoglycaemia, history of ketoacidosis and a BMI <18.5 kg/m2 were associated with a 2-12-mmol/mol (0.2-1.1%) higher HbA1c level. Those with 10-15 years of diabetes duration had 5-mmol/mol (0.5%) higher HbA1c level than those who had a diabetes duration of 2-5 years. Sex, participation (ever) in a diabetes education course, or ever experiencing serious hypoglycaemia were not associated with glycaemic control. CONCLUSIONS We present representative national data on factors that were associated with glycaemic control. A better understanding and awareness of these factors, together with technological advances in diabetes management, could lead to more personalized management strategies, better glycaemic control and a lower risk of diabetes complications.
Collapse
Affiliation(s)
- J G Cooper
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
- Norwegian Organisation for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Å Bakke
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - I Dalen
- Department of Research, Section of Biostatistics, Stavanger University Hospital, Stavanger, Norway
| | - S Carlsen
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
| | - S Skeie
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - K F Løvaas
- Norwegian Organisation for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway
| | - S Sandberg
- Norwegian Organisation for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- The Norwegian Porphyria Centre (NAPOS) Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - G Thue
- Norwegian Organisation for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
117
|
Nigi L, Maccora C, Dotta F, Sebastiani G. From immunohistological to anatomical alterations of human pancreas in type 1 diabetes: New concepts on the stage. Diabetes Metab Res Rev 2020; 36:e3264. [PMID: 31850667 DOI: 10.1002/dmrr.3264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
The histological analysis of human pancreatic samples in type 1 diabetes (T1D) has been proven essential to move forward in the evaluation of in situ events characterizing T1D. Increasing availability of pancreatic tissues collected from diabetic multiorgan donors by centralized biorepositories, which have shared tissues among researchers in the field, has allowed a deeper understanding of T1D pathophysiology, using novel immunohistological and high-throughput methods. In this review, we provide a comprehensive update of the main recent advancements in the characterization of cellular and molecular events involving endocrine and exocrine pancreas as well as the immune system in the onset and progression of T1D. Additionally, we underline novel elements, which provide evidence that T1D pathological changes affect not only islet β-cells but also the entire pancreas.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Carla Maccora
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
118
|
Panzer JK, Hiller H, Cohrs CM, Almaça J, Enos SJ, Beery M, Cechin S, Drotar DM, Weitz JR, Santini J, Huber MK, Muhammad Fahd Qadir M, Pastori RL, Domínguez-Bendala J, Phelps EA, Atkinson MA, Pugliese A, Caicedo A, Kusmartseva I, Speier S. Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis. JCI Insight 2020; 5:134525. [PMID: 32324170 DOI: 10.1172/jci.insight.134525] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
In type 1 diabetes (T1D), autoimmune destruction of pancreatic β cells leads to insulin deficiency and loss of glycemic control. However, knowledge about human pancreas pathophysiology in T1D remains incomplete. To address this limitation, we established a pancreas tissue slice platform of donor organs with and without diabetes, facilitating the first live cell studies of human pancreas in T1D pathogenesis to our knowledge. We show that pancreas tissue slices from organ donors allow thorough assessment of processes critical for disease development, including insulin secretion, β cell physiology, endocrine cell morphology, and immune infiltration within the same donor organ. Using this approach, we compared detailed pathophysiological profiles for 4 pancreata from donors with T1D with 19 nondiabetic control donors. We demonstrate that β cell loss, β cell dysfunction, alterations of β cell physiology, and islet infiltration contributed differently to individual cases of T1D, allowing insight into pathophysiology and heterogeneity of T1D pathogenesis. Thus, our study demonstrates that organ donor pancreas tissue slices represent a promising and potentially novel approach in the search for successful prevention and reversal strategies of T1D.
Collapse
Affiliation(s)
- Julia K Panzer
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Helmut Hiller
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Christian M Cohrs
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Joana Almaça
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Stephen J Enos
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - Maria Beery
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Sirlene Cechin
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise M Drotar
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| | - John R Weitz
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Jorge Santini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Mollie K Huber
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Mirza Muhammad Fahd Qadir
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Cell Biology and Anatomy and
| | - Ricardo L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Cell Biology and Anatomy and
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Alberto Pugliese
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, and.,Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alejandro Caicedo
- Department of Medicine, Division of Metabolism, Endocrinology and Diabetes, and
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Stephan Speier
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
119
|
Butt MI, Mukhtar N, Riazuddin M, Amer L, Elsayed T. A Life-Changing Moment in a Patient with Type 1 Diabetes: Insulin Holiday. Galen Med J 2020; 9:e1769. [PMID: 34466590 PMCID: PMC8344034 DOI: 10.31661/gmj.v9i0.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 11/16/2022] Open
Abstract
Background The diagnosis of type 1 diabetes can be a life-changing moment for our patients particularly having to live with the idea of taking insulin all their life and the barriers it can bring about. Case report We report a patient with ten years of autoimmune type 1 diabetes treated with insulin. He was able to stop insulin in favour of oral diabetes agents after dynamic endocrine tests confirmed micro insulin secretion despite autoimmunity. Our case demonstrates that a detailed history and thorough investigations adopting a holistic approach can sometimes change the course of disease management and can leave a positive impact on the life of our patients. Conclusion Patients with partial retention of beta-cell function in type 1 diabetes can temporarily stop insulin safely with ongoing surveillance.
Collapse
Affiliation(s)
- Muhammad Imran Butt
- King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Al Faisal University, Riyadh, Kingdom of Saudi Arabia
- Correspondence to: Dr Muhammad Imran Butt, Consultant Endocrinologist, King Faisal Specialist Hospital & Research Centre & Al Faisal University, Riyadh, Kingdom of Saudi Arabia Telephone Number: 00966503353950 Email Address:
| | - Noha Mukhtar
- King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Riazuddin
- King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Lama Amer
- King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Tarek Elsayed
- King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
120
|
Klocperk A, Petruzelkova L, Pavlikova M, Rataj M, Kayserova J, Pruhova S, Kolouskova S, Sklenarova J, Parackova Z, Sediva A, Sumnik Z. Changes in innate and adaptive immunity over the first year after the onset of type 1 diabetes. Acta Diabetol 2020; 57:297-307. [PMID: 31570993 DOI: 10.1007/s00592-019-01427-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
AIMS The development of the immune phenotype in patients with type 1 diabetes (T1D) during the first year following disease onset remains poorly described, and studies analysing the longitudinal development of a complex set of immunological and metabolic parameters are missing. Thus, we aim to provide such complex view in a cohort of 38 children with new onset T1D who were prospectively followed for 1 year. METHODS All subjects were tested for a set of immunological parameters (complete blood count; serum immunoglobulins; and T, B and dendritic cells), HbA1c and daily insulin dose at baseline and at 6 and 12 months after T1D diagnosis. A mixed meal tolerance test was administered to each of the subjects 12 months after diagnosis, and the C-peptide area under the curve (AUC) was noted and was then tested for association with all immunological parameters. RESULTS A gradual decrease in leukocytes (adjusted p = 0.0012) was reflected in a significant decrease in neutrophils (adjusted p = 0.0061) over the post-onset period, whereas Tregs (adjusted p = 0.0205) and originally low pDCs (adjusted p < 0.0001) increased. The expression of the receptor for BAFF (BAFFR) on B lymphocytes (adjusted p = 0.0127) markedly increased after onset. No immunological parameters were associated with C-peptide AUC; however, we observed a linear increase in C-peptide AUC with the age of the patients (p < 0.0001). CONCLUSIONS Our study documents substantial changes in the innate and adaptive immune system over the first year after disease diagnosis but shows no association between immunological parameters and residual beta-cell activity. The age of patients remains the best predictor of C-peptide AUC, whereas the role of the immune system remains unresolved.
Collapse
Affiliation(s)
- Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic.
| | - Lenka Petruzelkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Michal Rataj
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Jana Kayserova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Stanislava Kolouskova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Jana Sklenarova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| |
Collapse
|
121
|
Ludvigsson J. Autoantigen Treatment in Type 1 Diabetes: Unsolved Questions on How to Select Autoantigen and Administration Route. Int J Mol Sci 2020; 21:E1598. [PMID: 32111075 PMCID: PMC7084272 DOI: 10.3390/ijms21051598] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Autoantigen treatment has been tried for the prevention of type 1 diabetes (T1D) and to preserve residual beta-cell function in patients with a recent onset of the disease. In experimental animal models, efficacy was good, but was insufficient in human subjects. Besides the possible minor efficacy of peroral insulin in high-risk individuals to prevent T1D, autoantigen prevention trials have failed. Other studies on autoantigen prevention and intervention at diagnosis are ongoing. One problem is to select autoantigen/s; others are dose and route. Oral administration may be improved by using different vehicles. Proinsulin peptide therapy in patients with T1D has shown possible minor efficacy. In patients with newly diagnosed T1D, subcutaneous injection of glutamic acid decarboxylase (GAD) bound to alum hydroxide (GAD-alum) can likely preserve beta-cell function, but the therapeutic effect needs to be improved. Intra-lymphatic administration may be a better alternative than subcutaneous administration, and combination therapy might improve efficacy. This review elucidates some actual problems of autoantigen therapy in the prevention and/or early intervention of type 1 diabetes.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Dept of Biomedical and Clinical Sciences, Lnköping university, SE 58185 Linköping, Sweden
| |
Collapse
|
122
|
Claessens LA, Wesselius J, van Lummel M, Laban S, Mulder F, Mul D, Nikolic T, Aanstoot HJ, Koeleman BPC, Roep BO. Clinical and genetic correlates of islet-autoimmune signatures in juvenile-onset type 1 diabetes. Diabetologia 2020; 63:351-361. [PMID: 31754749 PMCID: PMC6946733 DOI: 10.1007/s00125-019-05032-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Heterogeneity in individuals with type 1 diabetes has become more generally appreciated, but has not yet been extensively and systematically characterised. Here, we aimed to characterise type 1 diabetes heterogeneity by creating immunological, genetic and clinical profiles for individuals with juvenile-onset type 1 diabetes in a cross-sectional study. METHODS Participants were HLA-genotyped to determine HLA-DR-DQ risk, and SNP-genotyped to generate a non-HLA genetic risk score (GRS) based on 93 type 1 diabetes-associated SNP variants outside the MHC region. Islet autoimmunity was assessed as T cell proliferation upon stimulation with the beta cell antigens GAD65, islet antigen-2 (IA-2), preproinsulin (PPI) and defective ribosomal product of the insulin gene (INS-DRIP). Clinical parameters were collected retrospectively. RESULTS Of 80 individuals, 67 had proliferation responses to one or more islet antigens, with vast differences in the extent of proliferation. Based on the multitude and amplitude of the proliferation responses, individuals were clustered into non-, intermediate and high responders. High responders could not be characterised entirely by enrichment for the highest risk HLA-DR3-DQ2/DR4-DQ8 genotype. However, high responders did have a significantly higher non-HLA GRS. Clinically, high T cell responses to beta cell antigens did not reflect in worsened glycaemic control, increased complications, development of associated autoimmunity or younger age at disease onset. The number of beta cell antigens that an individual responded to increased with disease duration, pointing to chronic islet autoimmunity and epitope spreading. CONCLUSIONS/INTERPRETATION Collectively, these data provide new insights into type 1 diabetes disease heterogeneity and highlight the importance of stratifying patients on the basis of their genetic and autoimmune signatures for immunotherapy and personalised disease management.
Collapse
Affiliation(s)
- Laura A Claessens
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris Wesselius
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Menno van Lummel
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandra Laban
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Flip Mulder
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dick Mul
- Diabeter, Center for Pediatric and Adolescent Diabetes Care and Research, Rotterdam, the Netherlands
| | - Tanja Nikolic
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Aanstoot
- Diabeter, Center for Pediatric and Adolescent Diabetes Care and Research, Rotterdam, the Netherlands
| | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart O Roep
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute, National Medical Center, City of Hope, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
123
|
Sachs S, Bastidas-Ponce A, Tritschler S, Bakhti M, Böttcher A, Sánchez-Garrido MA, Tarquis-Medina M, Kleinert M, Fischer K, Jall S, Harger A, Bader E, Roscioni S, Ussar S, Feuchtinger A, Yesildag B, Neelakandhan A, Jensen CB, Cornu M, Yang B, Finan B, DiMarchi RD, Tschöp MH, Theis FJ, Hofmann SM, Müller TD, Lickert H. Targeted pharmacological therapy restores β-cell function for diabetes remission. Nat Metab 2020; 2:192-209. [PMID: 32694693 DOI: 10.1038/s42255-020-0171-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/15/2020] [Indexed: 12/27/2022]
Abstract
Dedifferentiation of insulin-secreting β cells in the islets of Langerhans has been proposed to be a major mechanism of β-cell dysfunction. Whether dedifferentiated β cells can be targeted by pharmacological intervention for diabetes remission, and ways in which this could be accomplished, are unknown as yet. Here we report the use of streptozotocin-induced diabetes to study β-cell dedifferentiation in mice. Single-cell RNA sequencing (scRNA-seq) of islets identified markers and pathways associated with β-cell dedifferentiation and dysfunction. Single and combinatorial pharmacology further show that insulin treatment triggers insulin receptor pathway activation in β cells and restores maturation and function for diabetes remission. Additional β-cell selective delivery of oestrogen by Glucagon-like peptide-1 (GLP-1-oestrogen conjugate) decreases daily insulin requirements by 60%, triggers oestrogen-specific activation of the endoplasmic-reticulum-associated protein degradation system, and further increases β-cell survival and regeneration. GLP-1-oestrogen also protects human β cells against cytokine-induced dysfunction. This study not only describes mechanisms of β-cell dedifferentiation and regeneration, but also reveals pharmacological entry points to target dedifferentiated β cells for diabetes remission.
Collapse
Affiliation(s)
- Stephan Sachs
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Miguel A Sánchez-Garrido
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Kleinert
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Fischer
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Sigrid Jall
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra Harger
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Erik Bader
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Sara Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Siegfried Ussar
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | | | - Marion Cornu
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Richard D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthias H Tschöp
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Munich, Germany.
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Clinic and Polyclinic IV, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.
- Department of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
124
|
Grönberg A, Espes D, Carlsson PO. Better HbA1c during the first years after diagnosis of type 1 diabetes is associated with residual C peptide 10 years later. BMJ Open Diabetes Res Care 2020; 8:8/1/e000819. [PMID: 32107263 PMCID: PMC7206906 DOI: 10.1136/bmjdrc-2019-000819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To identify the factors associated with residual C peptide production at least 10 years after diagnosis in children and adolescents with type 1 diabetes. RESEARCH DESIGN AND METHODS 73 children and adolescents (<25 years), born in 1988-2005, diagnosed with type 1 diabetes were included during the 4-year study period (2013-2016). At least 10 years after diagnosis, we measured any remaining C peptide concentration using an ultrasensitive C peptide ELISA (≥1.17 pmol/L). The average hemoglobin A1c (HbA1c) was calculated during each of the 10 years after diagnosis and further grand average was calculated for the entire study period. RESULTS C peptide was detectable in 38% of participants. The C peptide concentration was 4.3±5.3 pmol/L. At onset of type 1 diabetes, participants were on average approximately 5 years of age, and their average HbA1c was 9.4% (79 mmol/mol). During the first 3 years after diagnosis, HbA1c was lower in the group with detectable C peptide at follow-up ≥10 years later. Moreover, detectable C peptide was more common among female participants. Body mass index SD scores had not increased since the 1-year follow-up, but were higher in patients with measurable C peptide. Nine participants (12%) had been diagnosed with celiac disease and two (3%) with hypothyreosis. Eighteen (25%) participants had retinopathy. CONCLUSIONS Children and adolescents with detectable C peptide after more than 10 years of diabetes duration were predominantly female and had better HbA1c than others during the first 3 years after diagnosis.
Collapse
Affiliation(s)
- Annika Grönberg
- Department of Women's and Children's Health, Uppsala Universitet Institutionen for kvinnors och barns halsa, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
125
|
Allegretti PA, Horton TM, Abdolazimi Y, Moeller HP, Yeh B, Caffet M, Michel G, Smith M, Annes JP. Generation of highly potent DYRK1A-dependent inducers of human β-Cell replication via Multi-Dimensional compound optimization. Bioorg Med Chem 2020; 28:115193. [PMID: 31757680 PMCID: PMC6941846 DOI: 10.1016/j.bmc.2019.115193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Small molecule stimulation of β-cell regeneration has emerged as a promising therapeutic strategy for diabetes. Although chemical inhibition of dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is sufficient to enhance β-cell replication, current lead compounds have inadequate cellular potency for in vivo application. Herein, we report the clinical stage anti-cancer kinase inhibitor OTS167 as a structurally novel, remarkably potent DYRK1A inhibitor and inducer of human β-cell replication. Unfortunately, OTS167's target promiscuity and cytotoxicity curtails utility. To tailor kinase selectivity towards DYRK1A and reduce cytotoxicity we designed a library of fifty-one OTS167 derivatives based upon a modeled structure of the DYRK1A-OTS167 complex. Indeed, derivative characterization yielded several leads with exceptional DYRK1A inhibition and human β-cell replication promoting potencies but substantially reduced cytotoxicity. These compounds are the most potent human β-cell replication-promoting compounds yet described and exemplify the potential to purposefully leverage off-target activities of advanced stage compounds for a desired application.
Collapse
Affiliation(s)
- Paul A Allegretti
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Timothy M Horton
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yassan Abdolazimi
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Hannah P Moeller
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Yeh
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Matthew Caffet
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Guillermina Michel
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
126
|
Pang H, Luo S, Huang G, Xia Y, Xie Z, Zhou Z. Advances in Knowledge of Candidate Genes Acting at the Beta-Cell Level in the Pathogenesis of T1DM. Front Endocrinol (Lausanne) 2020; 11:119. [PMID: 32226409 PMCID: PMC7080653 DOI: 10.3389/fendo.2020.00119] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
T1DM (type 1 diabetes mellitus), which results from the irreversible elimination of beta-cells mediated by autoreactive T cells, is defined as an autoimmune disease. It is widely accepted that T1DM is caused by a combination of genetic and environmental factors, but the precise underlying molecular mechanisms are still unknown. To date, more than 50 genetic risk regions contributing to the pathogenesis of T1DM have been identified by GWAS (genome-wide association studies). Notably, more than 60% of the identified candidate genes are expressed in islets and beta-cells, which makes it plausible that these genes act at the beta-cell level and play a key role in the pathogenesis of T1DM. In this review, we focus on the current status of candidate genes that act at the beta-cell level by regulating the innate immune response and antiviral activity, affecting susceptibility to proapoptotic stimuli and influencing the pancreatic beta-cell phenotype.
Collapse
Affiliation(s)
- Haipeng Pang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Ying Xia
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
- *Correspondence: Zhiguo Xie
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, China
- Zhiguang Zhou
| |
Collapse
|
127
|
Feng Y, Zhang Y, Chen Y, Chen S, Shen M, Fu Q, He Y, Liu Y, Hsu HT, Xu X, Chen H, Yang T, Xu K. The associations between three genome-wide risk variants for serum C-peptide of T1D and autoantibody-positive T1D risk, and clinical characteristics in Chinese population. J Hum Genet 2019; 65:297-303. [PMID: 31827251 DOI: 10.1038/s10038-019-0705-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 01/12/2023]
Abstract
AIMS Recent meta-genome-wide association studies identified several genetic variants associated with beta-cell function in type 1 diabetes (T1D). The aim of this study was to investigate the associations between these variants and T1D risk, C-peptide levels, islet-specific autoantibodies, and lipid levels in Chinese Han population. METHODS A total of 1005 unrelated autoantibody-positive T1D cases and 1417 healthy controls were included, which were genotyped for rs559047, rs9260151, and rs3135002. T1D individuals were measured for both C-peptide and lipid levels. Logistic regression models were used to examine these associations. RESULTS We found that rs3135002 A allele showed a genome-wide significant association with T1D risk (OR = 0.22, 95% CI = 0.17-0.30; P = 7.49 × 10-27), and significant heterogeneity of effect size was observed between early-onset and later-onset T1D subgroups (I2 = 80% and P = 0.026). Rs559047 had a nominal association with fasting C-peptide levels in newly diagnosed T1D individuals (P = 0.036). Moreover, rs3135002 A allele was significantly associated with GADA positivity (OR = 0.52, 95% CI = 0.30-0.91, P = 0.02). In addition, nominal correlations were observed with HDL levels for rs559047 (P = 0.042), while LDL levels for rs9260151 (P = 0.032) in T1D individuals. CONCLUSIONS Our results indicate that there are both similarities and differences for the associations of genetic variants among T1D development, progression, and related autoimmunity, metabolic traits.
Collapse
Affiliation(s)
- Yingjie Feng
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yuyue Zhang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yang Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Shu Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.,Department of Endocrinology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China
| | - Min Shen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Qi Fu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yunqiang He
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Yuwei Liu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Hsiang-Ting Hsu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xinyu Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Heng Chen
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Tao Yang
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Kuanfeng Xu
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
128
|
Sims EK, Syed F, Nyalwidhe J, Bahnson HT, Haataja L, Speake C, Morris MA, Balamurugan AN, Mirmira RG, Nadler J, Mastracci TL, Arvan P, Greenbaum CJ, Evans-Molina C. Abnormalities in proinsulin processing in islets from individuals with longstanding T1D. Transl Res 2019; 213:90-99. [PMID: 31442418 PMCID: PMC6783367 DOI: 10.1016/j.trsl.2019.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 01/11/2023]
Abstract
We recently described the persistence of detectable serum proinsulin in a large majority of individuals with longstanding type 1 diabetes (T1D), including individuals with undetectable serum C-peptide. Here, we sought to further explore the mechanistic etiologies of persistent proinsulin secretion in T1D at the level of the islet, using tissues obtained from human donors. Immunostaining for proinsulin and insulin was performed on human pancreatic sections from the Network for Pancreatic Organ Donors with Diabetes (nPOD) collection (n = 24). Differential proinsulin processing enzyme expression was analyzed using mass spectrometry analysis of human islets isolated from pancreatic sections with laser capture microdissection (n = 6). Proinsulin processing enzyme mRNA levels were assessed using quantitative real-time PCR in isolated human islets (n = 10) treated with or without inflammatory cytokines. Compared to nondiabetic controls, immunostaining among a subset (4/9) of insulin positive T1D donor islets revealed increased numbers of cells with proinsulin-enriched, insulin-poor staining. T1D donor islets also exhibited increased proinsulin fluorescence intensity relative to insulin fluorescence intensity. Laser capture microdissection followed by mass spectrometry revealed reductions in the proinsulin processing enzymes prohormone convertase 1/3 (PC1/3) and carboxypeptidase E (CPE) in T1D donors. Twenty-four hour treatment of human islets with inflammatory cytokines reduced mRNA expression of the processing enzymes PC1/3, PC2, and CPE. Taken together, these data provide new mechanistic insight into altered proinsulin processing in long-duration T1D and suggest that reduced β cell prohormone processing is associated with proinflammatory cytokine-induced reductions in proinsulin processing enzyme expression.
Collapse
Affiliation(s)
- Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julius Nyalwidhe
- Departments of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Henry T Bahnson
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Margaret A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Appakalai N Balamurugan
- Department of Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana; The Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jerry Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia; Departments of Medicine and Pharmacology, New York Medical College
| | - Teresa L Mastracci
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Biosciences Research Institute, Indianapolis, Indiana
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana; The Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
129
|
Salinno C, Cota P, Bastidas-Ponce A, Tarquis-Medina M, Lickert H, Bakhti M. β-Cell Maturation and Identity in Health and Disease. Int J Mol Sci 2019; 20:E5417. [PMID: 31671683 PMCID: PMC6861993 DOI: 10.3390/ijms20215417] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
The exponential increase of patients with diabetes mellitus urges for novel therapeutic strategies to reduce the socioeconomic burden of this disease. The loss or dysfunction of insulin-producing β-cells, in patients with type 1 and type 2 diabetes respectively, put these cells at the center of the disease initiation and progression. Therefore, major efforts have been taken to restore the β-cell mass by cell-replacement or regeneration approaches. Implementing novel therapies requires deciphering the developmental mechanisms that generate β-cells and determine the acquisition of their physiological phenotype. In this review, we summarize the current understanding of the mechanisms that coordinate the postnatal maturation of β-cells and define their functional identity. Furthermore, we discuss different routes by which β-cells lose their features and functionality in type 1 and 2 diabetic conditions. We then focus on potential mechanisms to restore the functionality of those β-cell populations that have lost their functional phenotype. Finally, we discuss the recent progress and remaining challenges facing the generation of functional mature β-cells from stem cells for cell-replacement therapy for diabetes treatment.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- School of Medicine, Technical University of Munich, 81675Munich, Germany.
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
| |
Collapse
|
130
|
Bini J, Sanchez-Rangel E, Gallezot JD, Naganawa M, Nabulsi N, Lim K, Najafzadeh S, Shirali A, Ropchan J, Matuskey D, Huang Y, Herold KC, Harris PE, Sherwin RS, Carson RE, Cline GW. PET Imaging of Pancreatic Dopamine D 2 and D 3 Receptor Density with 11C-(+)-PHNO in Type 1 Diabetes. J Nucl Med 2019; 61:570-576. [PMID: 31601695 DOI: 10.2967/jnumed.119.234013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) has traditionally been characterized by a complete destruction of β-cell mass (BCM); however, there is growing evidence of possible residual BCM present in T1DM. Given the absence of in vivo tools to measure BCM, routine clinical measures of β-cell function (e.g., C-peptide release) may not reflect BCM. We previously demonstrated the potential utility of PET imaging with the dopamine D2 and D3 receptor agonist 3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol (11C-(+)-PHNO) to differentiate between healthy control (HC) and T1DM individuals. Methods: Sixteen individuals participated (10 men, 6 women; 9 HCs, 7 T1DMs). The average duration of diabetes was 18 ± 6 y (range, 14-30 y). Individuals underwent PET/CT scanning with a 120-min dynamic PET scan centered on the pancreas. One- and 2-tissue-compartment models were used to estimate pancreas and spleen distribution volume. Reference region approaches (spleen as reference) were also investigated. Quantitative PET measures were correlated with clinical outcome measures. Immunohistochemistry was performed to examine colocalization of dopamine receptors with endocrine hormones in HC and T1DM pancreatic tissue. Results: C-peptide release was not detectable in any T1DM individuals, whereas proinsulin was detectable in 3 of 5 T1DM individuals. Pancreas SUV ratio minus 1 (SUVR-1) (20-30 min; spleen as reference region) demonstrated a statistically significant reduction (-36.2%) in radioligand binding (HCs, 5.6; T1DMs, 3.6; P = 0.03). Age at diagnosis correlated significantly with pancreas SUVR-1 (20-30 min) (R 2 = 0.67, P = 0.025). Duration of diabetes did not significantly correlate with pancreas SUVR-1 (20-30 min) (R 2 = 0.36, P = 0.16). Mean acute C-peptide response to arginine at maximal glycemic potentiation did not significantly correlate with SUVR-1 (20-30 min) (R 2 = 0.57, P = 0.05), nor did mean baseline proinsulin (R 2 = 0.45, P = 0.10). Immunohistochemistry demonstrated colocalization of dopamine D3 receptor and dopamine D2 receptor in HCs. No colocalization of the dopamine D3 receptor or dopamine D2 receptor was seen with somatostatin, glucagon, or polypeptide Y. In a separate T1DM individual, no immunostaining was seen with dopamine D3 receptor, dopamine D2 receptor, or insulin antibodies, suggesting that loss of endocrine dopamine D3 receptor and dopamine D2 receptor expression accompanies loss of β-cell functional insulin secretory capacity. Conclusion: Thirty-minute scan durations and SUVR-1 provide quantitative outcome measures for 11C-(+)-PHNO, a dopamine D3 receptor-preferring agonist PET radioligand, to differentiate BCM in T1DM and HCs.
Collapse
Affiliation(s)
- Jason Bini
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; and
| | | | - Mika Naganawa
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Keunpoong Lim
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Anupama Shirali
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Jim Ropchan
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - David Matuskey
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kevan C Herold
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Paul E Harris
- Department of Medicine, Division of Endocrinology, Columbia University, New York, New York
| | - Robert S Sherwin
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard E Carson
- PET Center, Yale University School of Medicine, New Haven, Connecticut
| | - Gary W Cline
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
131
|
Dayan CM, Korah M, Tatovic D, Bundy BN, Herold KC. Changing the landscape for type 1 diabetes: the first step to prevention. Lancet 2019; 394:1286-1296. [PMID: 31533907 DOI: 10.1016/s0140-6736(19)32127-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Over several decades, studies have described the progression of autoimmune diabetes, from the first appearance of autoantibodies until, and after, the diagnosis of clinical disease with hyperglycaemia and insulin dependence. Despite the improved management of type 1 diabetes with exogenous insulin, most patients do not meet clinical glycaemic goals, and diabetes remains an important medical problem that affects children and adults. Clinical and preclinical studies have suggested strategies to prevent the diagnosis of type 1 diabetes in people at risk, but the outcomes of previous clinical trials have not met their primary endpoints of disease prevention or delay. The results from the TN-10 teplizumab prevention trial show that the diagnosis of type 1 diabetes can be delayed by treatment with a FcR non-binding monoclonal antibody to CD3 in people at high risk for disease. This Series paper discusses how this clinical achievement raises new questions about for whom, and when, immunological strategies might be developed to prevent type 1 diabetes, and how to achieve this goal.
Collapse
Affiliation(s)
- Colin M Dayan
- Diabetes Research Group, Cardiff University School of Medicine, Cardiff, UK
| | - Maria Korah
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Danijela Tatovic
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA
| | - Brian N Bundy
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
132
|
Li X, Cheng J, Huang G, Luo S, Zhou Z. Tapering decay of β-cell function in Chinese patients with autoimmune type 1 diabetes: A four-year prospective study. J Diabetes 2019; 11:802-808. [PMID: 30767397 DOI: 10.1111/1753-0407.12907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND This study investigated the natural progression of β-cell function in Chinese autoimmune type 1 diabetic (T1D) patients and clarified factors possibly influencing the course of the disease. METHODS The natural progression of β-cell function of 325 newly diagnosed Chinese autoimmune T1D patients was assessed by fasting and postprandial C-peptide (FCP and PCP, respectively) levels. β-Cell function failure was defined as FCP <50 pM and PCP <100 pM, whereas preserved β-cell function was defined as FCP >200 pM or PCP >400 pM. β-Cell function that did not meet these criteria was described as residual. RESULTS At initial recruitment, 33.3% of patients had β-cell function failure, whereas 41.0% and 25.8% of patients had preserved or residual β-cell function, respectively. The percentage of patients who developed β-cell function failure during follow-up at 12, 24, 36, and 48 months after recruitment to the study was 55.8%, 75.6%, 86.7%, and 92.7%, respectively. Moreover, the slope of the β-cell function curve decreased over time, indicating that the pattern of its decline was non-linear and tapering. Seven percent of patients did not develop β-cell function failure within 4 years after diagnosis. Patients with lower initial FCP levels were more likely to develop β-cell function failure. CONCLUSIONS Chinese autoimmune T1D patients have considerable residual β-cell function at initial diagnosis, and the manner of progression of β-cell function failure is non-linear with a tapering decay rate. Furthermore, initial FCP levels may predict β-cell function failure in Chinese autoimmune T1D patients.
Collapse
Affiliation(s)
- Xia Li
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Jin Cheng
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Gan Huang
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Shuoming Luo
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital and the Diabetes Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
133
|
Zóka A, Barna G, Nyírő G, Molnár Á, Németh L, Műzes G, Somogyi A, Firneisz G. Reduced GLP-1 response to a meal is associated with the CTLA4 rs3087243 G/G genotype. Cent Eur J Immunol 2019; 44:299-306. [PMID: 31933538 PMCID: PMC6953372 DOI: 10.5114/ceji.2019.89604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/22/2017] [Indexed: 02/05/2023] Open
Abstract
Although insulitis is the characteristic main feature of type 1 diabetes mellitus (T1DM), many aspects of β cell loss still remain elusive. Immune dysregulation and alterations in the dipeptidyl-peptidase-4-incretin system might have a role in disease development, but their connection is poorly understood. We assessed the associations of a few selected, immunologically relevant single nucleotide gene variants with the DPP-4-incretin system in individuals with T1DM and in healthy controls. Prandial plasma (total, active) GLP-1 levels, serum DPP-4 activity, CD25 and CTLA-4 expression of T cells and DPP4 rs6741949, CTLA4 rs3087243, CD25 rs61839660 and PTPN2 rs2476601 SNPs were assessed in 33 T1DM patients and 34 age-, gender-, BMI-matched non-diabetic controls without a family history of T1DM. CTLA-4 expression was lower in the Foxp3+CD25+ regulatory T cells from individuals homozygous for the CTLA4 rs3087243-G variant compared to those who carry an A allele. Prandial plasma total GLP-1 levels 45 min after a standardized meal were reduced in individuals homozygous for the CTLA4 rs3087243 G major allele compared to A allele carriers both in the entire study population (with statistical power over 90%) and within the T1DM group. Here we report for the first time a reduced total prandial GLP-1 plasma concentration in individuals with the CTLA4 rs3087243 G/G genotype. One may speculate that immune response-related L cell damage might possibly explain this novel association.
Collapse
Affiliation(s)
- András Zóka
- 2 Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Barna
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Nyírő
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Ágnes Molnár
- 2 Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - László Németh
- Department of Probability Theory and Statistics, Eötvös Lóránd University, Budapest, Hungary
| | - Györgyi Műzes
- 2 Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Somogyi
- 2 Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Firneisz
- 2 Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
134
|
Abstract
The novel understanding that the presence of multiple islet autoantibodies, indicating islet autoimmunity, inevitably leads to type 1 diabetes mellitus (T1DM) has necessitated the development of a new staging classification system for the condition. Coupled with an improved understanding of the disease course, the realization that T1DM appears to be more heterogeneous than previously thought has led to unique opportunities to develop more targeted therapies that may be applied even before the onset of dysglycemia or symptoms. To date, several therapies have been trialed to delay or halt disease progression in both presymptomatic and clinical T1DM, each demonstrating varying degrees of effectiveness, toxicity, and utility. Key research supports the eventual implementation of immunotherapy in autoimmune diabetes, potentially calling for a paradigm shift among care providers. It will likely be necessary to develop new approaches to trial design and to address potential barriers to progress before an effective treatment for the disease may be achieved.
Collapse
|
135
|
Simeoli R, Fierabracci A. Insights into the Role of MicroRNAs in the Onset and Development of Diabetic Neuropathy. Int J Mol Sci 2019; 20:ijms20184627. [PMID: 31540445 PMCID: PMC6770207 DOI: 10.3390/ijms20184627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy is a serious complication of chronic hyperglycemia in diabetes patients. This complication can involve both peripheral sensorimotor and autonomic nervous system. The precise nature of injury to the peripheral nerves mediated by chronic hyperglycemia is unknown; however, several mechanisms have been proposed including polyol pathway activation, enhanced glycation of proteins and lipids, increased oxidative stress, and cytokine release in the site of injury. MicroRNAs (miRNAs) are small non-coding RNAs that mediate RNA interference by post-transcriptionally modulating gene expression and protein synthesis. Therefore, they have been implicated in several developmental, physiological, and pathophysiological processes where they modulate the expression of different proteins. Recently, miRNAs gained an increasing attention also for their role as diagnostic test in many diseases due to their stability in serum and their easy detection. Furthermore, recent studies suggest that miRNAs may be involved in diabetic neuropathy although their role in the onset and the development of this complication is not fully understood. In this review, we discuss the most recent literature providing evidence for miRNAs role in diabetic neuropathy opening new pathways to improve both early diagnosis and treatment of this complication.
Collapse
Affiliation(s)
- Raffaele Simeoli
- Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy.
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
136
|
Williams KV, Becker DJ, Orchard TJ, Costacou T. Persistent C-peptide levels and microvascular complications in childhood onset type 1 diabetes of long duration. J Diabetes Complications 2019; 33:657-661. [PMID: 31239235 PMCID: PMC6690760 DOI: 10.1016/j.jdiacomp.2019.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 01/12/2023]
Abstract
AIMS The aim was to determine if persistent c-peptide in long duration childhood onset (<17 years) type 1 diabetes (T1D) related to microvascular complications. METHODS Pittsburgh Epidemiology of Diabetes Complications (EDC) participants (n = 185) had serum c-peptide levels measured by Mercodia ultra-sensitive ELISA at the 25-year follow-up exam. Microvascular complications between those with and without detectable c-peptide were compared. RESULTS Eighteen (9.7%) participants had detectable median c-peptide levels of 3.8 (2.6, 12.2) pmol/L and did not differ from those without detectable levels. No differences in microalbuminuria, confirmed distal symmetric polyneuropathy, renal failure, or between those with one or more complications were found between the two groups. Proliferative retinopathy (PR) was marginally lower in those with detectable c-peptide (33.3% vs 55.1%, p = 0.08). However, those with c-peptide were somewhat less likely to have fasted for a full 8-h (66.7% vs. 84.9%, p = 0.09). Excluding those not fully fasted, PR no longer approached significance but macroalbuminuria became marginally lower in those with detectable levels (23.4% vs 0%, p = 0.07). CONCLUSIONS Low levels of c-peptide in T1D patients of long duration were detected but were not strongly related to microvascular complications.
Collapse
Affiliation(s)
- Katherine V Williams
- University of Pittsburgh Department of Epidemiology, DLR Building, 3512 Fifth Avenue, Pittsburgh, PA 15213, United States of America.
| | - Dorothy J Becker
- Children's Hospital of Pittsburgh Division of Endocrinology, 4401 Penn Avenue, Pittsburgh, PA 15224, United States of America.
| | - Trevor J Orchard
- University of Pittsburgh Department of Epidemiology, DLR Building, 3512 Fifth Avenue, Pittsburgh, PA 15213, United States of America.
| | - Tina Costacou
- University of Pittsburgh Department of Epidemiology, DLR Building, 3512 Fifth Avenue, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
137
|
Blanter M, Sork H, Tuomela S, Flodström-Tullberg M. Genetic and Environmental Interaction in Type 1 Diabetes: a Relationship Between Genetic Risk Alleles and Molecular Traits of Enterovirus Infection? Curr Diab Rep 2019; 19:82. [PMID: 31401790 PMCID: PMC6689284 DOI: 10.1007/s11892-019-1192-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We provide an overview of the current knowledge regarding the natural history of human type 1 diabetes (T1D) and the documented associations between virus infections (in particular the enteroviruses) and disease development. We review studies that examine whether T1D-specific risk alleles in genes involved in the function of the immune system can alter susceptibility to virus infections or affect the magnitude of the host antiviral response. We also highlight where the major gaps in our knowledge exist and consider possible implications that new insights gained from the discussed gene-environment interaction studies may bring. RECENT FINDINGS A commonality between several of the studied T1D risk variants studied is their role in modulating the host immune response to viral infection. Generally, little support exists indicating that the risk variants increase susceptibility to infection and moreover, they usually appear to predispose the immune system towards a hyper-reactive state, decrease the risk of infection, and/or favor the establishment of viral persistence. In conclusion, although the current number of studies is limited, this type of research can provide important insights into the mechanisms that are central to disease pathogenesis and further describe how genetic and environmental factors jointly influence the risk of T1D development. The latter may provide genetic markers that could be used for patient stratification and for the selection of method(s) for disease prevention.
Collapse
Affiliation(s)
- Marfa Blanter
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- 0000 0001 0668 7884grid.5596.fLaboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, EU Belgium
| | - Helena Sork
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soile Tuomela
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
138
|
Davanso MR, Caliari-Oliveira C, Couri CEB, Covas DT, de Oliveira Leal AM, Voltarelli JC, Malmegrim KCR, Yaochite JNU. DPP-4 Inhibition Leads to Decreased Pancreatic Inflammatory Profile and Increased Frequency of Regulatory T Cells in Experimental Type 1 Diabetes. Inflammation 2019; 42:449-462. [PMID: 30707388 DOI: 10.1007/s10753-018-00954-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sitagliptin is a dipeptidyl peptidase-4 inhibitor (iDPP-4), which has been used for type 2 diabetes treatment. Recently, iDPP-4 has been described as a promising treatment of type 1 diabetes (T1D) but is still necessary to evaluate immune effects of sitagliptin. C57BL/6 mice were induced by multiple low doses of streptozotocin. Diabetes incidence, insulin, glucagon, glucagon-like peptide-1 (GLP-1) serum levels, and inflammatory cytokine levels were quantified in pancreas homogenate after 30 and 90 days of treatment. In addition, frequencies of inflammatory and regulatory T cell subsets were determined in the spleen and in the pancreatic lymph nodes. iDPP-4 decreased blood glucose level while increased GLP-1 and insulin levels. After long-term treatment, treated diabetic mice presented decreased frequency of CD4+CD26+ T cells and increased percentage of CD4+CD25hiFoxp3+ T cells in the spleen. Besides, pancreatic lymph nodes from diabetic mice treated with iDPP-4 presented lower percentage of CD11b+ cells and decreased levels of inflammatory cytokines in the pancreas. Treatment of type 1 diabetic mice with iDPP-4 improved metabolic control, decreased inflammatory profile in the pancreatic microenvironment, and increased systemic regulatory T cell frequency. Therefore, we suggest the long-term use of sitagliptin as a feasible and effective therapy for T1D.
Collapse
Affiliation(s)
- Mariana Rodrigues Davanso
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Carolina Caliari-Oliveira
- In Situ Cell Therapy, Supera Innovation Technology Park, Av. Dra. Nadir Aguiar, 1805, prédio 2, sala 313, Ribeirão Preto, São Paulo, 14056-680, Brazil
| | - Carlos Eduardo Barra Couri
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Dimas Tadeu Covas
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Angela Merice de Oliveira Leal
- Departamento de Medicina, Universidade Federal de São Carlos, Rodovia Washington Luís Km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Júlio César Voltarelli
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Centro de Terapia Celular, Centro Regional de Hemoterapia do Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Rua Tenente Catão Roxo 2501, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Juliana Navarro Ueda Yaochite
- Departmento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, Rua Alexandre Baraúna, 949, Fortaleza, Ceará, 60430-160, Brazil
| |
Collapse
|
139
|
Berra C, De Fazio F, Azzolini E, Albini M, Zangrandi F, Mirani M, Garbossa S, Guardado-Mendoza R, Condorelli G, Folli F. Hypoglycemia and hyperglycemia are risk factors for falls in the hospital population. Acta Diabetol 2019; 56:931-938. [PMID: 30929079 DOI: 10.1007/s00592-019-01323-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/08/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine the role of hypoglycemia, hyperglycemia or the combination of both as independent risk factors for falls in a hospital population. Secondary objectives included evaluation of other risk factors for falling and their relationships with glucose levels. RESEARCH DESIGN AND METHODS Retrospective cohort study over 2 years on hospitalized subjects (N = 57411) analyzing in-hospital-falls and capillary glucose values. Bivariate analysis (χ2 test) and multivariate analysis (logistic regression) were performed to test for correlation of glucose values, age, sex, Charlson index, service of care, diagnosis at discharge and diabetes treatment with risk of in-hospital-falls. RESULTS The comparison of patients who experienced a fall (fall population) with the non-fall population suggested that: glucose determinations were significantly more frequent in the fall population (OR 3.45; CI 2.98-3.99; p < 0.0001); values of glucose below 70 mg/dl and over 200 mg/dl were significantly associated to falls during hospitalization (OR 1.76; CI 1.42-2.19; p < 0.001) as compared to glycemic values between 70 and 200 mg/dl; diabetes treatment was significantly correlated to risk of fall (OR 2.97; CI 2.54-3.49; p < 0.001); the frequency of glycemia measurements below 70 mg/dl and over 200 mg/dl in the same subject was significantly associated to falls during hospitalization (OR 1.01; CI 1.01-1.02; p < 0.001). CONCLUSION Hypoglycemia and hyperglycemia during hospital stays are correlated with an increased risk for falls in the hospitalized population. Presence of diabetes, use of insulin or glucose variability could potentially constitute risk factors for falls inside the hospital as well.
Collapse
Affiliation(s)
- Cesare Berra
- Metabolic Disease and Diabetes, Multimedica IRCCS, Milan, Sesto San Giovanni, Italy.
| | - Francesco De Fazio
- Quality Monitoring Office, Humanitas Clinical and Research Hospital, Milan, Rozzano, Italy
| | - Elena Azzolini
- Clinical Quality Department, Humanitas Clinical and Research Hospital, Milan, Rozzano, Italy
| | - Marco Albini
- Quality Monitoring Office, Humanitas Clinical and Research Hospital, Milan, Rozzano, Italy
| | - Federico Zangrandi
- Clinical Quality Department, Humanitas Clinical and Research Hospital, Milan, Rozzano, Italy
| | - Marco Mirani
- Metabolic Disease and Diabetes, Humanitas Clinical and Research Hospital, Milan, Rozzano, Italy
| | - Stefania Garbossa
- Departmental Unit Diabetes and Metabolic Disorders, ASST Santi Paolo e Carlo, Milan, Italy
- Department of Health Science, University of Milan, Milan, Italy
| | - Rodolfo Guardado-Mendoza
- Research Department, Hospital Regional de Alta Especialidad del Bajío, León, Mexico
- Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, Humanitas Clinical and Research Center - IRCCS, Milan, Rozzano, Italy
- Humanitas University, Milan, Italy
- Institute of Genetics and Biomedical Research (Milan Unit), National Research Council of Italy, Milan, Rozzano, Italy
| | - Franco Folli
- Departmental Unit Diabetes and Metabolic Disorders, ASST Santi Paolo e Carlo, Milan, Italy.
- Department of Health Science, University of Milan, Milan, Italy.
| |
Collapse
|
140
|
Joosten L, Brom M, Peeters H, Bos D, Himpe E, Bouwens L, Boerman O, Gotthardt M. Measuring the Pancreatic β Cell Mass in Vivo with Exendin SPECT during Hyperglycemia and Severe Insulitis. Mol Pharm 2019; 16:4024-4030. [DOI: 10.1021/acs.molpharmaceut.9b00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hanneke Peeters
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Desirée Bos
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Eddy Himpe
- Department of Cell Differentiation (DIFF), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Luc Bouwens
- Department of Cell Differentiation (DIFF), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Otto Boerman
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
141
|
Bouillet B, Rouland A, Petit JM, Vergès B. A low-carbohydrate high-fat diet initiated promptly after diagnosis provides clinical remission in three patients with type 1 diabetes. DIABETES & METABOLISM 2019; 46:511-513. [PMID: 31301353 DOI: 10.1016/j.diabet.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
Affiliation(s)
- B Bouillet
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, France; Inserm Unit, LNC-UMR 1231, University of Burgundy, Dijon, France.
| | - A Rouland
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, France; Inserm Unit, LNC-UMR 1231, University of Burgundy, Dijon, France
| | - J M Petit
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, France; Inserm Unit, LNC-UMR 1231, University of Burgundy, Dijon, France
| | - B Vergès
- Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, France; Inserm Unit, LNC-UMR 1231, University of Burgundy, Dijon, France
| |
Collapse
|
142
|
Yu MG, Keenan HA, Shah HS, Frodsham SG, Pober D, He Z, Wolfson EA, D'Eon S, Tinsley LJ, Bonner-Weir S, Pezzolesi MG, King GL. Residual β cell function and monogenic variants in long-duration type 1 diabetes patients. J Clin Invest 2019; 129:3252-3263. [PMID: 31264968 DOI: 10.1172/jci127397] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUNDIn the Joslin Medalist Study (Medalists), we determined whether significant associations exist between β cell function and pathology and clinical characteristics.METHODSIndividuals with type 1 diabetes (T1D) for 50 or more years underwent evaluation including HLA analysis, basal and longitudinal autoantibody (AAb) status, and β cell function by a mixed-meal tolerance test (MMTT) and a hyperglycemia/arginine clamp procedure. Postmortem analysis of pancreases from 68 Medalists was performed. Monogenic diabetes genes were screened for the entire cohort.RESULTSOf the 1019 Medalists, 32.4% retained detectable C-peptide levels (>0.05 ng/mL, median: 0.21 ng/mL). In those who underwent a MMTT (n = 516), 5.8% responded with a doubling of baseline C-peptide levels. Longitudinally (n = 181, median: 4 years), C-peptide levels increased in 12.2% (n = 22) and decreased in 37% (n = 67) of the Medalists. Among those with repeated MMTTs, 5.4% (3 of 56) and 16.1% (9 of 56) had waxing and waning responses, respectively. Thirty Medalists with baseline C-peptide levels of 0.1 ng/mL or higher underwent the clamp procedure, with HLA-/AAb- and HLA+/AAb- Medalists being most responsive. Postmortem examination of pancreases from 68 Medalists showed that all had scattered insulin-positive cells; 59 additionally had few insulin-positive cells within a few islets; and 14 additionally had lobes with multiple islets with numerous insulin-positive cells. Genetic analysis revealed that 280 Medalists (27.5%) had monogenic diabetes variants; in 80 (7.9%) of these Medalists, the variants were classified as "likely pathogenic" (rare exome variant ensemble learner [REVEL] >0.75).CONCLUSIONAll Medalists retained insulin-positive β cells, with many responding to metabolic stimuli even after 50 years of T1D. The Medalists were heterogeneous with respect to β cell function, and many with HLA+ diabetes risk alleles also had monogenic diabetes variants, indicating the importance of genetic testing for clinically diagnosed T1D.FUNDINGFunding for this work was provided by the Dianne Nunnally Hoppes Fund; the Beatson Pledge Fund; the NIH, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); and the American Diabetes Association (ADA).
Collapse
Affiliation(s)
- Marc Gregory Yu
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hillary A Keenan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hetal S Shah
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott G Frodsham
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, USA
| | - David Pober
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Zhiheng He
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily A Wolfson
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Stephanie D'Eon
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Liane J Tinsley
- Clinic Administration, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Susan Bonner-Weir
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcus G Pezzolesi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah, USA
| | - George Liang King
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
143
|
Kaestner KH, Powers AC, Naji A, Atkinson MA. NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes 2019; 68:1394-1402. [PMID: 31127054 PMCID: PMC6609987 DOI: 10.2337/db19-0058] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes risk can reliably be predicted by markers of autoimmunity, but approaches to prevent or modify the underlying disease process are needed. We posit this void fundamentally results from a limited understanding of immune-islet cell interactions within the pancreas and relevant immune organs, contributions of β-cells to their own demise, and epigenetic predispositions affecting both immune and islet cells. Because biopsy of the human pancreas and pancreatic lymph nodes carries risk and the pancreas begins to autodigest soon after death, detailed cellular and molecular phenotyping of the human type 1 diabetes pancreas is lacking, limiting our understanding of the mechanisms of β-cell loss. To address these challenges, the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases established the Human Pancreas Analysis Program (HPAP) to procure human type 1 diabetes pancreata for an extensive array of tissue-based, cellular, and epigenetic assays aimed at critical knowledge gaps in our understanding of the local immune attack and loss of β-cells. In this Methodology Review, we describe how HPAP is performing detailed islet and immune cell phenotyping and creating publicly available data sets with the goals of an improved understanding of type 1 diabetes and the development of more effective treatments to prevent or reverse the disease.
Collapse
Affiliation(s)
- Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida Diabetes Institute, Gainesville, FL
| |
Collapse
|
144
|
Seelig E, Trinh B, Hanssen H, Schmid‐Trucksäss A, Ellingsgaard H, Christ‐Crain M, Donath MY. Exercise and the dipeptidyl-peptidase IV inhibitor sitagliptin do not improve beta-cell function and glucose homeostasis in long-lasting type 1 diabetes-A randomised open-label study. Endocrinol Diabetes Metab 2019; 2:e00075. [PMID: 31294088 PMCID: PMC6613228 DOI: 10.1002/edm2.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/18/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Increasing evidence points to beta-cell regeneration in individuals with type 1 diabetes mellitus (type 1 DM) at all stages of the disease. Exercise and glucagon-like peptide-1 (GLP-1) independently improve beta-cell function and glucose homeostasis in animal studies and in clinical trials in individuals with type 2 diabetes mellitus (type 2 DM). Whether a combination of both, exercise and GLP-1, induces a similar effect in individuals with long-lasting type 1 DM remains to be investigated. METHODS In an open-label study, participants with long-standing type 1 DM were randomly assigned to oral sitagliptin 100 mg daily for 12 weeks in combination with or without an exercise intervention. The primary end-point was change in the area under the concentration-time curve of C-peptide during a mixed meal tolerance test before and after 12 weeks of intervention. RESULTS A total of 24 participants were included in the study and treated with sitagliptin, 12 participants were allocated to a 12-week exercise intervention. After 12 weeks, there was no difference in the change of AUC C-peptide between groups (exercise: 0 [-1424 to 1870], no exercise: 2091 [283-17 434]; P = 0.09). HDL improved in the exercise intervention group compared to the group with sitagliptin only (exercise: 0.11 [-0.09 to 0.27]; no exercise: -0.18 [-0.24 to 0.01]; P = 0.04). AUC glucose was numerically slightly lower in the exercise intervention group but this did not translate into changes in HbA1c. CONCLUSION The combination of exercise and sitagliptin had no effect on beta-cell function in individuals with long-lasting type 1 DM.
Collapse
Affiliation(s)
- Eleonora Seelig
- Clinic of Endocrinology, Diabetes and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust‐Medical Research Council Institute of Metabolic ScienceAddenbrooke's HospitalCambridgeUK
| | - Beckey Trinh
- Clinic of Endocrinology, Diabetes and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Henner Hanssen
- Department of Sports Medicine, Institute of Exercise and Health SciencesUniversity of BaselBaselSwitzerland
| | - Arno Schmid‐Trucksäss
- Department of Sports Medicine, Institute of Exercise and Health SciencesUniversity of BaselBaselSwitzerland
| | - Helga Ellingsgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Mirjam Christ‐Crain
- Clinic of Endocrinology, Diabetes and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and MetabolismUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
145
|
Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett 2019; 593:1598-1615. [PMID: 31215021 DOI: 10.1002/1873-3468.13495] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
N-glycosylation is a ubiquitous protein modification, and N-glycosylation profiles are emerging as both biomarkers and functional effectors in various types of diabetes. Genome-wide association studies identified glycosyltransferase genes as candidate causal genes for type 1 and type 2 diabetes. Studies focused on N-glycosylation changes in type 2 diabetes demonstrated that patients can be distinguished from healthy controls based on N-glycome composition. In addition, individuals at an increased risk of future disease development could be identified based on N-glycome profiles. Moreover, accumulating evidence indicates that N-glycans have a major role in preventing the impairment of glucose-stimulated insulin secretion by maintaining the glucose transporter in proper orientation, indicating that interindividual variation in protein N-glycosylation might be a novel risk factor contributing to diabetes development. Defective N-glycosylation of T cells has been implicated in type 1 diabetes pathogenesis. Furthermore, studies of N-glycan alterations have successfully been used to identify individuals with rare types of diabetes (such as the HNF1A-MODY), and also to evaluate functional significance of novel diabetes-associated mutations. In conclusion, both N-glycans and glycosyltransferases emerge as potential therapeutic targets in diabetes.
Collapse
Affiliation(s)
- Najda Rudman
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
146
|
Abstract
PURPOSE OF REVIEW Pancreatic β-cells play a critical role in whole-body glucose homeostasis by regulating the release of insulin in response to minute by minute alterations in metabolic demand. As such, β-cells are staunchly resilient but there are circumstances where they can become functionally compromised or physically lost due to pathophysiological changes which culminate in overt hyperglycemia and diabetes. RECENT FINDINGS In humans, β-cell mass appears to be largely defined in the postnatal period and this early replicative and generative phase is followed by a refractory state which persists throughout life. Despite this, efforts to identify physiological and pharmacological factors which might re-initiate β-cell replication (or cause the replenishment of β-cells by neogenesis or transdifferentiation) are beginning to bear fruit. Controlled manipulation of β-cell mass in humans still represents a holy grail for therapeutic intervention in diabetes, but progress is being made which may lead to ultimate success.
Collapse
Affiliation(s)
- Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Noel G. Morgan
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| |
Collapse
|
147
|
Abstract
PURPOSE OF REVIEW Quantitative markers for beta-cell mass (BCM) in human pancreas are currently lacking. Medical imaging using positron emission tomography (PET) markers for beta-cell restricted targets may provide an accurate and non-invasive measurement of BCM, to assist diagnosis and treatment of metabolic disease. GPR44 was recently discovered as a putative marker for beta cells and this review summarizes the developments so far. RECENT FINDINGS Several small molecule binders targeting GPR44 have been radiolabeled for PET imaging and evaluated in vitro and in small and large animal models. 11C-AZ12204657 and 11C-MK-7246 displayed a dose-dependent and GPR44-mediated binding to beta cells both in vitro and in vivo, with negligible uptake in exocrine pancreas. GPR44 represents an attractive target for visualization of BCM. Further progress in radioligand development including clinical testing is expected to clarify the role of GPR44 as a surrogate marker for BCM in humans.
Collapse
Affiliation(s)
- Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-752 37, Uppsala, Sweden.
- Antaros Medical AB, Mölndal, Sweden.
| |
Collapse
|
148
|
Brissova M, Haliyur R, Saunders D, Shrestha S, Dai C, Blodgett DM, Bottino R, Campbell-Thompson M, Aramandla R, Poffenberger G, Lindner J, Pan FC, von Herrath MG, Greiner DL, Shultz LD, Sanyoura M, Philipson LH, Atkinson M, Harlan DM, Levy SE, Prasad N, Stein R, Powers AC. α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes. Cell Rep 2019. [PMID: 29514095 PMCID: PMC6368357 DOI: 10.1016/j.celrep.2018.02.032] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many patients with type 1 diabetes (T1D) have residual β cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual β cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant β cells appeared to maintain several aspects of regulated insulin secretion. However, the function of T1D α cells was markedly reduced, and these cells had alterations in transcription factors constituting α and β cell identity. In the native pancreas and after placing the T1D islets into a non-autoimmune, normoglycemic in vivo environment, there was no evidence of α-to-β cell conversion. These results suggest an explanation for the disordered T1D counterregulatory glucagon response to hypoglycemia.
Collapse
Affiliation(s)
- Marcela Brissova
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Diane Saunders
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Chunhua Dai
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David M Blodgett
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA; Math and Science Division, Babson College, Wellesley, MA 02457, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA
| | - Martha Campbell-Thompson
- Department of Pathology, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA
| | - Radhika Aramandla
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gregory Poffenberger
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jill Lindner
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fong Cheng Pan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, the La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Dale L Greiner
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - May Sanyoura
- Departments of Medicine and Pediatrics, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL, USA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL, USA
| | - Mark Atkinson
- Department of Pathology, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL, USA
| | - David M Harlan
- Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Roland Stein
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alvin C Powers
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
149
|
Kang NY, Soetedjo AAP, Amirruddin NS, Chang YT, Eriksson O, Teo AKK. Tools for Bioimaging Pancreatic β Cells in Diabetes. Trends Mol Med 2019; 25:708-722. [PMID: 31178230 DOI: 10.1016/j.molmed.2019.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
When diabetes is diagnosed, the majority of insulin-secreting pancreatic β cells are already dysfunctional or destroyed. This β cell dysfunction/destruction usually takes place over many years, making timely detection and clinical intervention difficult. For this reason, there is immense interest in developing tools to bioimage β cell mass and/or function noninvasively to facilitate early diagnosis of diabetes as well as to assist the development of novel antidiabetic therapies. Recent years have brought significant progress in β cell imaging that is now inching towards clinical applicability. We explore here the need to bioimage human β cells noninvasively in various types of diabetes, and we discuss current and emerging tools for bioimaging β cells. Further developments in this field are expected to facilitate β cell imaging in diabetes.
Collapse
Affiliation(s)
- Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Chembok-ro (1115-1 Dongnae-dong), Dong-gu, Daegu City 41061, Republic of Korea.
| | | | - Nur Shabrina Amirruddin
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, 11 Biopolis Way, 02-02 Helios, 138667, Singapore; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea; Center for Self-assembly and Complexity, Institute for Basic Science (IBS), 77 Hyogok-dong, Nam-gu, Pohang 37673, Republic of Korea
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala SE-752 36, Sweden
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, 138673, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| |
Collapse
|
150
|
Shinjo T, Ishikado A, Hasturk H, Pober DM, Paniagua SM, Shah H, Wu IH, Tinsley LJ, Matsumoto M, Keenan HA, Van Dyke TE, Genco RJ, King GL. Characterization of periodontitis in people with type 1 diabetes of 50 years or longer duration. J Periodontol 2019; 90:565-575. [PMID: 31026349 DOI: 10.1002/jper.18-0735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/01/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Periodontitis is more common and severe in people with diabetes than the general population. We have reported in the Joslin Medalist Study that people with type 1 diabetes of ≥50 years (Medalists) may have endogenous protective factors against diabetic nephropathy and retinopathy. METHODS In this cross-sectional study, the prevalence of periodontitis according to the Centers for Disease Control/American Academy of Periodontology classification in a subset (n = 170, mean age = 64.6 ± 6.9 years) of the Medalist cohort, and its associations to various criteria of periodontitis and diabetic complications were assessed. RESULTS The prevalence of severe periodontitis in Medalists was only 13.5% which was lower than reported levels in diabetic patients of similar ages. Periodontal parameters, including bleeding on probing, plaque index, gingival index, and demographic traits, including male sex, chronological age, and age at diagnosis were significantly associated with severity of periodontitis, which did not associate with diabetes duration, hemoglobin A1c (HbA1c), body mass index, and lipid profiles. Random serum C-peptide levels inversely associated with severity of periodontitis (P = 0.03), lower probing depth (P = 0.0002), and clinical attachment loss (P = 0.03). Prevalence of cardiovascular diseases (CVD) and systemic inflammatory markers, plasma interleukin-6 (IL-6), and serum immunoglobulin G titer against Porphyromonas gingivalis positively associated with severity of periodontitis (P = 0.002 and 0.02, respectively). Antibody titer to P. gingivalis correlated positively and significantly with CVD, serum IL-6, and high-sensitivity C-reactive protein. CONCLUSIONS Some Medalists could be protected from severe periodontitis even with hyperglycemia. Endogenous protective factors for periodontitis could possibly be related to residual insulin production and lower levels of chronic inflammation.
Collapse
Affiliation(s)
- Takanori Shinjo
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Atsushi Ishikado
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.,R&D Department, Sunstar, Takatsuki, Japan
| | - Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - David M Pober
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Samantha M Paniagua
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hetal Shah
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - I-Hsien Wu
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Liane J Tinsley
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Motonobu Matsumoto
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.,R&D Department, Sunstar, Takatsuki, Japan
| | | | - Thomas E Van Dyke
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Robert J Genco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - George L King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|