101
|
Wang T, Song J, Liu Z, Liu Z, Cui J. Melatonin alleviates cadmium toxicity by reducing nitric oxide accumulation and IRT1 expression in Chinese cabbage seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15394-15405. [PMID: 33236311 DOI: 10.1007/s11356-020-11689-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/15/2020] [Indexed: 05/07/2023]
Abstract
Melatonin (MT) is reported as a kind of phytohormone, exerts various biological activities, mediating plant growth and development and responding to abiotic stresses. In the present research, we examined the possibility that MT could involve in the alleviation of cadmium (Cd) toxicity by reducing the accumulation of nitric oxide (NO). The research indicated that the addition of MT significantly increased the biomass and photosynthetic parameters of plants compared with the control treated under Cd stress. Besides, we found that compared with the control treatment, MT also reduced the level of Cd-induced nitric oxide, and at the same time, the enzyme activity related to NO synthesis and the expression of related genes were decreased. In addition, MT treatment significantly reduced the Cd content in Chinese cabbage seedlings compared with the control, which was partially reversed by the addition of SNP (NO donor). PTIO (NO scavenger) addition could reduce the Cd content when seedlings were exposed to Cd stress. At the same time, compared with the Cd stress, the concentration of Cd in MT-treated plants decreased significantly, and the expression levels of related transport genes IRT1 also decreased significantly. Taken together, these results further support the idea that under the stress of Cd, NO increases the expression of IRT1, thus further increasing the absorption of Cd and aggravating the stress of Cd in plants, while exogenously added MT can inhibit the synthesis of NO, reduce the content of Cd, and alleviate the stress caused by Cd.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinxue Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ze Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zili Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
102
|
Physiological and Molecular Responses to Acid Rain Stress in Plants and the Impact of Melatonin, Glutathione and Silicon in the Amendment of Plant Acid Rain Stress. Molecules 2021; 26:molecules26040862. [PMID: 33562098 PMCID: PMC7915782 DOI: 10.3390/molecules26040862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Air pollution has been a long-term problem, especially in urban areas, that eventually accelerates the formation of acid rain (AR), but recently it has emerged as a serious environmental issue worldwide owing to industrial and economic growth, and it is also considered a major abiotic stress to agriculture. Evidence showed that AR exerts harmful effects in plants, especially on growth, photosynthetic activities, antioxidant activities and molecular changes. Effectiveness of several bio-regulators has been tested so far to arbitrate various physiological, biochemical and molecular processes in plants under different diverse sorts of environmental stresses. In the current review, we showed that silicon (tetravalent metalloid and semi-conductor), glutathione (free thiol tripeptide) and melatonin (an indoleamine low molecular weight molecule) act as influential growth regulators, bio-stimulators and antioxidants, which improve plant growth potential, photosynthesis spontaneity, redox-balance and the antioxidant defense system through quenching of reactive oxygen species (ROS) directly and/or indirectly under AR stress conditions. However, earlier research findings, together with current progresses, would facilitate the future research advancements as well as the adoption of new approaches in attenuating the consequence of AR stress on crops, and might have prospective repercussions in escalating crop farming where AR is a restraining factor.
Collapse
|
103
|
Yu Y, Teng Z, Mou Z, Lv Y, Li T, Chen S, Zhao D, Zhao Z. Melatonin confers heavy metal-induced tolerance by alleviating oxidative stress and reducing the heavy metal accumulation in Exophiala pisciphila, a dark septate endophyte (DSE). BMC Microbiol 2021; 21:40. [PMID: 33546601 PMCID: PMC7863494 DOI: 10.1186/s12866-021-02098-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background Melatonin (MT), ubiquitous in almost all organisms, functions as a free radical scavenger. Despite several reports on its role as an antioxidant in animals, plants, and some microorganisms, extensive studies in filamentous fungi are limited. Based upon the role of melatonin as an antioxidant, we investigated its role in heavy metal-induced stress tolerance in Exophiala pisciphila, a dark septate endophyte (DSE), by studying the underlying mechanisms in alleviating oxidative stress and reducing heavy metal accumulation. Results A significant decrease in malondialdehyde (MDA) and oxygen free radical (OFR) in E. pisciphila was recorded under Cd, Zn, and Pb stresses as compared to the control. Pretreatment of E. pisciphila with 200.0 μM exogenous melatonin significantly increased the activity of superoxide dismutase (SOD) under Zn and Pb stresses. Pretreatment with 200.0 μM melatonin also lowered Cd, Zn, and Pb concentrations significantly. Melatonin production was enhanced by Cd, Cu, and Zn after 2 d, and melatonin biosynthetic enzyme genes, E. pisciphila tryptophan decarboxylase (EpTDC1) and serotonin N-acetyltransferase (EpSNAT1), were transcriptionally upregulated. The overexpression of EpTDC1 and N-acetylserotonin O-methyltransferase (EpASMT1) in Escherichia coli and Arabidopsis thaliana enhanced its heavy metal-induced stress tolerance. The overexpression of EpTDC1 and EpASMT1 reduced the Cd accumulation in the whole A. thaliana plants, especially in the roots. Conclusions Melatonin conferred heavy metal-induced stress tolerance by alleviating oxidative stress, activating antioxidant enzyme SOD, and reducing heavy metal accumulation in E. pisciphila. Melatonin biosynthetic enzyme genes of E. pisciphila also played key roles in limiting excessive heavy metal accumulation in A. thaliana. These findings can be extended to understand the role of melatonin in other DSEs associated with economically important plants and help develop new strategies in sustainable agriculture practice where plants can grow in soils contaminated with heavy metals. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02098-1.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Zhaowei Teng
- Department of Orthopedics, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Department of Orthopedics, The First people's Hospital of Yunnan Province, Kunming, China
| | - Zongmin Mou
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China.,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yan Lv
- Department of Orthopedics, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunan, China.,Department of Orthopedics, The First people's Hospital of Yunnan Province, Kunming, China
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China.,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China. .,Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China. .,School of Ecology and Environmental Science, Yunnan University, Kunming, China.
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
104
|
Haskirli H, Yilmaz O, Ozgur R, Uzilday B, Turkan I. Melatonin mitigates UV-B stress via regulating oxidative stress response, cellular redox and alternative electron sinks in Arabidopsis thaliana. PHYTOCHEMISTRY 2021; 182:112592. [PMID: 33316594 DOI: 10.1016/j.phytochem.2020.112592] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 11/13/2020] [Indexed: 05/18/2023]
Abstract
Melatonin plays an active role in neutralizing free radicals, especially by triggering the defense system and certain enzymes that work under stress in both mammals and plant systems. Exposure to ultraviolet (UV-B) stress can be deadly for plants since UV-B can induce production of reactive oxygen species and damage nucleic acids. In the present study, to uncover the possible alleviative role of melatonin against UV-B stress, Arabidopsis thaliana plants were treated with melatonin (10 μM) and were exposed to UV-B stress for 90 min and 180 min (46 and 92 kJ m-2 d-1). Plants treated with melatonin had lower lipid peroxidation levels and higher Fv/Fm values at both time points. UV-B stress-induced activities of superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX), but no additional induction was observed in melatonin treated groups. Moreover, melatonin differentially regulated the expression of glutathione peroxidase 2 (GPX2) and GPX7 genes under UV-B stress. Melatonin treatment did not have any effect on glutathione biosynthesis and catabolism genes. However, expression of alternative oxidase 1a (AOX1a) and AOX1d were lower in UV-B + melatonin treated plants when compared to only UV-B treated plants, which indicates lower oxidative load in mitochondria.
Collapse
Affiliation(s)
- Hasan Haskirli
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey
| | - Oguzhan Yilmaz
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, TR-35100, Izmir, Turkey.
| |
Collapse
|
105
|
Akram W, Khan WU, Shah AA, Yasin NA, Li G. Liquiritoside Alleviated Pb Induced Stress in Brassica rapa subsp. Parachinensis: Modulations in Glucosinolate Content and Some Physiochemical Attributes. FRONTIERS IN PLANT SCIENCE 2021; 12:722498. [PMID: 34512701 PMCID: PMC8428967 DOI: 10.3389/fpls.2021.722498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 05/04/2023]
Abstract
Current research was conducted to explore the effects of liquiritoside on the growth and physiochemical features of Chinese flowering cabbage (Brassica rapa subsp. parachinensis) under lead (Pb) stress. Lead stressed B. rapa plants exhibited decreased growth parameters, chlorophyll, and carotenoid contents. Moreover, Pb toxicity escalated the synthesis of malondialdehyde (MDA), hydrogen peroxide (H2O2), flavonoids, phenolics, and proline in treated plants. Nevertheless, foliar application of liquiritoside mitigated Pb toxicity by decreasing oxidative stress by reducing cysteine, H2O2, and MDA contents in applied plants. Liquiritoside significantly increased plant height, shoot fresh weight and dry weight, number of leaves, and marketable value of Chinese flowering cabbage plants exposed to Pb toxicity. This biotic elicitor also enhanced the proline, glutathione, total phenolics, and flavonoid contents in Chinese flowering cabbage plants exposed to Pb stress compared with the control. Additionally, total glucosinolate content, phytochelatins (PCs), and non-protein thiols were effectively increased in plants grown under Pb regimes compared with the control plants. Overall, foliar application of liquiritoside can markedly alleviate Pb stress by restricting Pb translocation in Chinese flowering cabbage.
Collapse
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Waheed Ullah Khan
- Department of Environmental Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Nasim Ahmad Yasin
- RO-II Office, University of the Punjab, Lahore, Pakistan
- *Correspondence: Nasim Ahmad Yasin,
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guihua Li,
| |
Collapse
|
106
|
Xing X, Ding Y, Jin J, Song A, Chen S, Chen F, Fang W, Jiang J. Physiological and Transcripts Analyses Reveal the Mechanism by Which Melatonin Alleviates Heat Stress in Chrysanthemum Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:673236. [PMID: 34630446 PMCID: PMC8493036 DOI: 10.3389/fpls.2021.673236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/24/2021] [Indexed: 05/08/2023]
Abstract
Heat stress limits the growth and development of chrysanthemum seedlings. Although melatonin (MT) has been linked to the heat stress response in plants, research on the underlying molecular mechanisms is scarce. In this study, the regulatory networks of MT on heat stress in chrysanthemum seedlings were explored. Physiological measurements suggested that MT not only reduced malondialdehyde accumulation, hydrogen peroxide content, and superoxide anion free radical generation rate, but also significantly promoted osmotic regulation substance synthesis (proline and soluble protein), antioxidant accumulation (GSH and AsA), and the antioxidant enzyme activities (SOD, POD, CAT, and APX) in chrysanthemum leaves under heat stress. Furthermore, MT increased the fresh weight, dry weight, chlorophyll content, photosynthesis rate, and gas exchange indexes. Further, RNA-seq results revealed 33,497 and 36,740 differentially expressed genes in the S/Con and SMT/ConMT comparisons, respectively. The differences in the comparisons revealed that MT regulated heat shock transcription factors (HSFs) and heat shock proteins (HSPs), and the genes involved in Ca2+ signal transduction (CNGCs and CAM/CMLs), starch and sucrose metabolism (EDGL, BGLU, SuS, and SPS), hormone (PP2Cs, AUX/IAAs, EBFs, and MYC2), chlorophyll metabolism (HEMA and PORA), flavonoid biosynthesis (CHS, DFR, and FNS), and carotenoid biosynthesis (DXPS, GGDP, and PSY). MT effectively improved chrysanthemum seedling heat-resistance. Our study, thus, provides novel evidence of a gene network regulated by MT under heat stress.
Collapse
|
107
|
Sun C, Liu L, Wang L, Li B, Jin C, Lin X. Melatonin: A master regulator of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:126-145. [PMID: 32678945 DOI: 10.1111/jipb.12993] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/16/2020] [Indexed: 05/18/2023]
Abstract
Melatonin is a pleiotropic molecule with multiple functions in plants. Since the discovery of melatonin in plants, numerous studies have provided insight into the biosynthesis, catabolism, and physiological and biochemical functions of this important molecule. Here, we describe the biosynthesis of melatonin from tryptophan, as well as its various degradation pathways in plants. The identification of a putative melatonin receptor in plants has led to the hypothesis that melatonin is a hormone involved in regulating plant growth, aerial organ development, root morphology, and the floral transition. The universal antioxidant activity of melatonin and its role in preserving chlorophyll might explain its anti-senescence capacity in aging leaves. An impressive amount of research has focused on the role of melatonin in modulating postharvest fruit ripening by regulating the expression of ethylene-related genes. Recent evidence also indicated that melatonin functions in the plant's response to biotic stress, cooperating with other phytohormones and well-known molecules such as reactive oxygen species and nitric oxide. Finally, great progress has been made towards understanding how melatonin alleviates the effects of various abiotic stresses, including salt, drought, extreme temperature, and heavy metal stress. Given its diverse roles, we propose that melatonin is a master regulator in plants.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luxuan Wang
- Department of Agriculture and Environment, McGill University, Montreal, Quebec, H9X 3V9, Canada
| | - Baohai Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
108
|
Tousi S, Zoufan P, Ghahfarrokhie AR. Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111403. [PMID: 33011513 DOI: 10.1016/j.ecoenv.2020.111403] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 05/26/2023]
Abstract
The present work was aimed to study the effect of melatonin pretreatments on growth, oxidative stress modulation, cadmium (Cd) accumulation, and tolerance in mallow (Malva parviflora, Malvaceae) plants under the hydroponic system. Application of substances that can modulate the harmful effects of Cd on plant yield and reduce its accumulation in the edible parts is of particular importance. Therefore, the mallow plants pretreated with 15, 50, and 100 µM of melatonin were exposed to 50 µM Cd. Our results showed that melatonin, especially at 15 and 50 µM, led to positive effects on Cd tolerance, including a significant increase in growth, photosynthetic pigments, and soluble protein content. Exogenous melatonin could improve relative water content (RWC) and stomatal conductance in the plants treated with Cd, probably through an increase in proline. Further, lower concentrations of melatonin led to a decrease in Cd translocation to the shoots. Based on the results, melatonin considerably increased catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (GPX) activities as well as the production of phenols. The increased activity of antioxidant enzymes led to a decrease in electrolyte leakage (EL), lipid peroxidation, and H2O2 content in the plants exposed to Cd stress. Under Cd stress, the increased phenols content in melatonin-pretreated plants could be due to the induction of phenylalanine ammonia-lyase (PAL) activity and an increase in shoot soluble carbohydrates. The results showed that the use of melatonin could reduce oxidative stress and improve biomass in the plants exposed to Cd. At least in our experimental conditions, this information appears to be useful for healthy food production.
Collapse
Affiliation(s)
- Saham Tousi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Parzhak Zoufan
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afrasyab Rahnama Ghahfarrokhie
- Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
109
|
Role of Melatonin in Plant Tolerance to Soil Stressors: Salinity, pH and Heavy Metals. Molecules 2020; 25:molecules25225359. [PMID: 33212772 PMCID: PMC7696660 DOI: 10.3390/molecules25225359] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022] Open
Abstract
Melatonin (MT) is a pleiotropic molecule with diverse and numerous actions both in plants and animals. In plants, MT acts as an excellent promotor of tolerance against abiotic stress situations such as drought, cold, heat, salinity, and chemical pollutants. In all these situations, MT has a stimulating effect on plants, fomenting many changes in biochemical processes and stress-related gene expression. Melatonin plays vital roles as an antioxidant and can work as a free radical scavenger to protect plants from oxidative stress by stabilization cell redox status; however, MT can alleviate the toxic oxygen and nitrogen species. Beyond this, MT stimulates the antioxidant enzymes and augments antioxidants, as well as activates the ascorbate–glutathione (AsA–GSH) cycle to scavenge excess reactive oxygen species (ROS). In this review, we examine the recent data on the capacity of MT to alleviate the effects of common abiotic soil stressors, such as salinity, alkalinity, acidity, and the presence of heavy metals, reinforcing the general metabolism of plants and counteracting harmful agents. An exhaustive analysis of the latest advances in this regard is presented, and possible future applications of MT are discussed.
Collapse
|
110
|
Vidal C, Ruiz A, Ortiz J, Larama G, Perez R, Santander C, Ferreira PAA, Cornejo P. Antioxidant Responses of Phenolic Compounds and Immobilization of Copper in Imperata Cylindrica, a Plant with Potential Use for Bioremediation of Cu Contaminated Environments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1397. [PMID: 33092309 PMCID: PMC7589974 DOI: 10.3390/plants9101397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
This work examined the capability of Imperata cylindrica to respond, tolerate and accumulate Cu when growing at high Cu concentration (300 mg kg-1 of substrate) at different times of exposure (2, 14 and 21 days). The Cu accumulation in plants was examined by atomic absorption spectroscopy (AAS) and Cu localized by Scanning Electron Microscopy-Energy Dispersive X-Ray spectroscopy. Additionally, the phenolic compound identifications and concentrations were determined using liquid chromatography coupled to mass spectrometry. Our results showed that root biomass decreased significantly at high Cu levels, with a greater decrease at 21 days (39.8% less biomass in comparison to control). The root showed 328 mg Cu kg-1 dry weight at 21 days of exposure to Cu, being the tissue that accumulates most of the Cu. Lipid peroxidation was a clear indicator of Cu stress, principally in shoots. The exposure to Cu significantly increased the synthesis of phenolic compounds in shoots of plants exposed 21 days to Cu, where 5-caffeoylquinic acid reached the highest concentrations. Our results support that I. cylindrica is a Cu accumulator plant in root organs with a medium level of accumulation (between 200-600 mg Cu kg-1 biomass), which can tolerate the exposure to high Cu levels by means of increasing the synthesis of phenolic compound in shoots, suggesting a potential use as phytoremediation tool in Cu polluted environments.
Collapse
Affiliation(s)
- Catalina Vidal
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile
| | - Antonieta Ruiz
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
| | - Javier Ortiz
- Laboratorio de Biorremediación, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile;
| | - Giovanni Larama
- Centro de Modelación y Computación Científica, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile;
| | - Rodrigo Perez
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile
| | - Christian Santander
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
| | | | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avda. Francisco Salazar, 01145 Temuco, Chile; (C.V.); (A.R.); (R.P.); (C.S.)
| |
Collapse
|
111
|
Khan TA, Fariduddin Q, Nazir F, Saleem M. Melatonin in business with abiotic stresses in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1931-1944. [PMID: 33088040 PMCID: PMC7548266 DOI: 10.1007/s12298-020-00878-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 05/27/2023]
Abstract
Melatonin (MEL) is the potential biostimulator molecule, governing multiple range of growth and developmental processes in plants, particularly under different environmental constrains. Mainly, its role is considered as an antioxidant molecule that copes with oxidative stress through scavenging of reactive oxygen species and modulation of stress related genes. It also enhances the antioxidant enzyme activities and thus helps in regulating the redox hemostasis in plants. Apart from its broad range of antioxidant functions, it is involved in the regulation of various physiological processes such as germination, lateral root growth and senescence in plants. Moreover this multifunctional molecule takes much interest due to its recent identification and characterization of receptorCandidate G-protein-Coupled Receptor 2/Phytomelatonin receptor(CAND2/PMTR1) in Arabidopsis thaliana. In this compiled work, different aspects of melatonin in plants such as melatonin biosynthesis and detection in plants, signaling pathway, modulation of stress related genes and physiological role of melatonin under different environmental stresses have been dissected in detail.
Collapse
Affiliation(s)
- Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Faroza Nazir
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| | - Mohd Saleem
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
112
|
Xiao Q, Wang Y, Lü Q, Wen H, Han B, Chen S, Zheng X, Lin R. Responses of glutathione and phytochelatins biosysthesis in a cadmium accumulator of Perilla frutescens (L.) Britt. under cadmium contaminated conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110805. [PMID: 32540618 DOI: 10.1016/j.ecoenv.2020.110805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Screening new accumulators of heavy metal and identifying their tolerance, enrichment capacity of heavy metals are currently hot issues in phytoremediation research. A series of hydroponic experiments were conducted to analyze the effects of glutathione and phytochelatins in roots, stems, and leaves of Perilla frutescens under cadmium stress. The results showed that the non-protein thiols in roots and stems mainly existed in the form of GSH, PC2, PC3, and PC4 under Cd stress condition, while in leaves they existed in the form of GSH, PC2, and PC3. Furthermore, the contents of GSH and PCs positively correlated with Cd, but negatively correlated with root vigor and chlorophyll content under Cd stress conditions. After 21 days of treatments, the contents of Cd in different parts of the plant were 1465.2-3092.9 mg· kg-1 in the roots, 199.6-478.4 mg·kg-1 in the stems and 61.3-96.9 mg· kg-1 in the leaves at 2, 5, 10 mg·L-1 Cd levels respectively, and the amount of Cd uptakes were up to 3547.7-5701.7 μg·plant-1. Therefore, P. frutescens performed high capacity in Cd accumulation, and PCs played a key role in Cd tolerance. The application prospect of the plant in phytoremediation Cd polluted soil was also discussed.
Collapse
Affiliation(s)
- Qingtie Xiao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yujie Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qixin Lü
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huanhuan Wen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bolun Han
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shen Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyu Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ruiyu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
113
|
Goodarzi A, Namdjoyan S, Soorki AA. Effects of exogenous melatonin and glutathione on zinc toxicity in safflower (Carthamus tinctorius L.) seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110853. [PMID: 32563160 DOI: 10.1016/j.ecoenv.2020.110853] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 05/03/2023]
Abstract
The phytotoxicity caused by 500 μM ZnSO4.7H2O and its detoxifying by co-application of 100 μM of MT melatonin (MT) and glutathione (GSH) in 6-week-old safflower plants have been investigated. Reduced biomass production and total chlorophyll content on the one hand and increased content of hydrogen peroxide (H2O2), malondialdehyde (MDA) with increase in lipoxygenase activity, on the other hand, showed Zn- induced oxidative damage in safflower seedlings. When MT, GSH and especially MT + GSH exogenously were applied to Zn-stressed seedlings, the content of H2O2, MDA and the activity of lipoxygenase considerably decreased. In Zn- treated seedlings, the application of these signaling molecules led to a considerable increment in ascorbate (ASC), GSH and phytochelatin (PC) contents along with the induction of activity of antioxidant enzymes including ascorbate-glutathione cycle enzymes when compared with the plants stressed with Zn only. In Zn-stressed safflower seedlings treated with MT, GSH and MT + GSH, decreased activity of enzymes involved in glyoxalase system may be associated with the role of MT and GSH in reducing Zn uptake and reducing Zn-induced toxicity and subsequently, lower plant's defense responses. The data showed that the effects of MT and GSH, in particular, the combination of these two molecules in reducing Zn uptake and diminishing its accumulation in the shoots of safflower seedlings, and also the participation of MT and GSH on increasing plant ability to tolerate high amount of Zn through stimulation of various antioxidant defense systems suggest them as suitable candidates to better the survival of safflower in soils contaminated with Zn excess.
Collapse
Affiliation(s)
- Asiyeh Goodarzi
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Namdjoyan
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Abolhasani Soorki
- ACECR-Research Institute of Applied Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
114
|
Bawa G, Feng L, Shi J, Chen G, Cheng Y, Luo J, Wu W, Ngoke B, Cheng P, Tang Z, Pu T, Liu J, Liu W, Yong T, Du J, Yang W, Wang X. Evidence that melatonin promotes soybean seedlings growth from low-temperature stress by mediating plant mineral elements and genes involved in the antioxidant pathway. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:815-824. [PMID: 32553087 DOI: 10.1071/fp19358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/03/2020] [Indexed: 05/14/2023]
Abstract
Melatonin (MT) regulates several physiological activities in plants. However, information on how MT regulates soybean growth under low-temperature (LT) stress is lacking. To better understand how MT promotes plant growth and development under LT stress, we designed this study to evaluate the role of MT pretreatment on soybean seedlings exposed to LT stress. Our results showed that LT stress increased oxidative damage by increasing reactive oxygen species (ROS) accumulation, which affected the growth and development of soybean seedlings. However, the application of 5 µmol L-1 MT significantly decreased the oxidative damage by increasing plant mineral element concentrations and the transcript abundance of antioxidant related genes, which enhanced the decrease in ROS accumulation. These results collectively suggest the involvement of MT in improving LT stress tolerance of soybean seedlings by mediating plant mineral elements and the expression of genes involved in the antioxidant pathway.
Collapse
Affiliation(s)
- George Bawa
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Lingyang Feng
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jianyi Shi
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Guopeng Chen
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yajiao Cheng
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jie Luo
- College of Veterinary Medicine, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, China
| | - Weishu Wu
- College of Veterinary Medicine, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, China
| | - Bancy Ngoke
- College of Veterinary Medicine, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District,Chengdu 611130, China
| | - Ping Cheng
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Zhongqin Tang
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Tian Pu
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jiang Liu
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Weiguo Liu
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Taiwen Yong
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Junbo Du
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaochun Wang
- Sichuan Engineering Research Centre for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu 611130, China; and Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu 611130, China; and College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu 611130, China; and Corresponding author.
| |
Collapse
|
115
|
Xu L, Zhang F, Tang M, Wang Y, Dong J, Ying J, Chen Y, Hu B, Li C, Liu L. Melatonin confers cadmium tolerance by modulating critical heavy metal chelators and transporters in radish plants. J Pineal Res 2020; 69:e12659. [PMID: 32323337 DOI: 10.1111/jpi.12659] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Cadmium (Cd) is an environmental pollutant that causes health hazard to living organisms. Melatonin (MT) has emerged as a ubiquitous pleiotropic molecule capable of coordinating heavy metal (HM) stresses in plants. However, it remains unclear how melatonin mediates Cd homeostasis and detoxification at transcriptional and/or post-transcriptional levels in radish. Herein, the activities of five key antioxidant enzymes were increased, while root and shoot Cd contents were dramatically decreased by melatonin. A combined small RNA and transcriptome sequencing analysis showed that 14 differentially expressed microRNAs (DEMs) and 966 differentially expressed genes (DEGs) were shared between the Cd and Cd + MT conditions. In all, 23 and ten correlated miRNA-DEG pairs were identified in Con vs. Cd and Con vs. Cd + MT comparisons, respectively. Several DEGs encoding yellow stripe 1-like (YSL), heavy metal ATPases (HMA), and ATP-binding cassette (ABC) transporters were involved in Cd transportation and sequestration in radish. Root exposure to Cd2+ induced several specific signaling molecules, which consequently trigger some HM chelators, transporters, and antioxidants to achieve reactive oxygen species (ROS) scavenging and detoxification and eliminate Cd toxicity in radish plants. Notably, transgenic analysis revealed that overexpression of the RsMT1 (Metallothionein 1) gene could enhance Cd tolerance of tobacco plants, indicating that the exogenous melatonin confers Cd tolerance, which might be attributable to melatonin-mediated upregulation of RsMT1 gene in radish plants. These results could contribute to dissecting the molecular basis governing melatonin-mediated Cd stress response in plants and pave the way for high-efficient genetically engineering low-Cd-content cultivars in radish breeding programs.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yinglong Chen
- School of Agriculture and Environment, The UWA's Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Bing Hu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
116
|
Liu M, Liu X, Kang J, Korpelainen H, Li C. Are males and females of Populus cathayana differentially sensitive to Cd stress? JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122411. [PMID: 32114141 DOI: 10.1016/j.jhazmat.2020.122411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
This study clarifies the mechanisms of Cd uptake, translocation and detoxification in Populus cathayana Rehder females and males, and reveals a novel strategy for dioecious plants to cope with Cd contamination. Females exhibited a high degree of Cd uptake and root-to-shoot translocation, while males showed extensive Cd accumulation in roots, elevated antioxidative capacity, and effective cellular and bark Cd sequestration. Our study also found that Cd is largely located in epidermal and cortical tissues of male roots and leaves, while in females, more Cd was present in vascular tissues of roots and leaves, as well as in leaf mesophyll. In addition, the distributions of sulphur (S) and phosphorus (P) were very similar as that of Cd in males, but the associations were weak in females. Scanning electron microscopy and energy spectroscopy analyses suggested that the amounts of tissue Cd were positively correlated with P and S amounts in males, but not in females (a weak correlation between S and Cd). Transcriptional data suggested that Cd stress promoted the upregulation of genes related to Cd uptake and translocation in females, and that of genes related to cell wall biosynthesis, metal tolerance and secondary metabolism in males. Our results indicated that coordinated physiological, microstructural and transcriptional responses to Cd stress endowed superior Cd tolerance in males compared with females, and provided new insights into mechanisms underlying sexually differential responses to Cd stress.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xingxing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jieyu Kang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
117
|
Sami A, Shah FA, Abdullah M, Zhou X, Yan Y, Zhu Z, Zhou K. Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:679-690. [PMID: 32003103 DOI: 10.1111/plb.13093] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/21/2020] [Indexed: 05/03/2023]
Abstract
Melatonin has emerged as an essential molecule in plants, due to its role in defence against metal toxicity. Aluminium (Al) and cadmium (Cd) toxicity inhibit rapeseed seedling growth. In this study, we applied different doses of melatonin (50 and 100 µm) to alleviate Al (25 µm) and Cd (25 µm) stress in rapeseed seedlings. Results show that Al and Cd caused toxicity in rapeseed seedling, as evidenced by a decrease in height, biomass and antioxidant enzyme activity. Melatonin increased the expression of melatonin biosynthesis-related Brassica napus genes for caffeic acid O-methyl transferase (BnCOMT) under Al and Cd stress. The genes BnCOMT-1, BnCOMT-5 and BnCOMT-8 showed up-regulated expression, while BnCOMT-4 and BnCOMT-6 were down-regulated during incubation in water. Melatonin application increased the germination rate, shoot length, root length, fresh and dry weight of seedlings. Melatonin supplementation under Al and Cd stress increased superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, proline, chlorophyll and anthocyanin content, as well as photosynthesis rate. Both Cd and Al treatments significantly increased hydrogen peroxide and malondialdehyde levels in rapeseed seedlings, which were strictly counterbalanced by melatonin. Analysis of Cd and Al in different subcellular compartments showed that melatonin enhanced cell wall and soluble fractions, but reduced the vacuolar and organelle fractions in Al- and Cd-treated seedlings. These results suggest that melatonin-induced improvements in antioxidant potential, biomass, photosynthesis rate and successive Cd and Al sequestration play a pivotal role in plant tolerance to Al and Cd stress. This mechanism may have potential implications in safe food production.
Collapse
Affiliation(s)
- A Sami
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - F A Shah
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - M Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - X Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Y Yan
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Z Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - K Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
118
|
Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, Ahammed GJ, Kabir K, Roy R. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110593. [PMID: 32294596 DOI: 10.1016/j.ecoenv.2020.110593] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 05/20/2023]
Abstract
Arable land contamination with nickel (Ni) has become a major threat to worldwide crop production. Recently, melatonin has appeared as a promising stress-relief substance that can alleviate heavy metal-induced phytotoxicity in plants. However, the plausible underlying mechanism of melatonin function under Ni stress has not been fully substantiated in plants. Herein, we conducted an experiment that unveiled critical mechanisms in favor of melatonin-mediated Ni-stress tolerance in tomato. Ni stress markedly inhibited growth and biomass by impairing the photosynthesis, photosystem function, mineral homeostasis, root activity, and osmotic balance. In contrast, melatonin application notably reinforced the plant growth traits, increased photosynthesis efficiency in terms of chlorophyll content, upregulation of chlorophyll synthesis genes, i.e. POR, CAO, CHL G, gas exchange parameters, and PSII maximum efficiency (Fv/Fm), decreased Ni accumulation and increased mineral nutrient homeostasis. Moreover, melatonin efficiently restricted the hydrogen peroxide (H2O2) and superoxide radical production and increased RBOH expression and restored cellular integrity (less malondialdehyde and electrolyte leakage) through triggering the antioxidant enzyme activities and modulating AsA-GSH pools. Notably, oxidative stress was effectively mitigated by upregulation of several defense genes (SOD, CAT, APX, GR, GST, MDHAR, DHAR) and melatonin biosynthesis-related genes (TDC, T5S, SNAT, ASMT). Besides, melatonin treatment enhanced secondary metabolites (phenols, flavonoids, and anthocyanin) contents along with their encoding genes (PAL, CHS) expression, and these metabolites potentially restricted excess H2O2 accumulation. In conclusion, our findings deciphered the potential functions of melatonin in alleviating Ni-induced phytotoxicity in tomato through boosting the biomass production, photosynthesis, nutrient uptake, redox balance, and secondary metabolism.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Abdul Raziq Baloch
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Khairul Kabir
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Rana Roy
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| |
Collapse
|
119
|
Seleiman MF, Ali S, Refay Y, Rizwan M, Alhammad BA, El-Hendawy SE. Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil. CHEMOSPHERE 2020; 250:126239. [PMID: 32088619 DOI: 10.1016/j.chemosphere.2020.126239] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 05/27/2023]
Abstract
Melatonin and metal resistant microbes can enhance plant defense responses against various abiotic stresses, but little is known about the combined effects of melatonin and chromium (Cr) resistant microbes on reducing Cr toxicity in wheat (Triticum aestivum L.). In current study, we examined the effects of combined application of melatonin (0, 1, 2 mM) and Bacillus subtilis (with and without inoculation) on wheat physio-biochemical responses and Cr uptake under different levels of Cr (0, 25, 50 and 100 mg Cr kg-1 DM soil). Chromium stress decreased the wheat growth, biomass, chlorophyll and relative water contents by causing oxidative damage in the form of overproduction of electrolyte leakage, hydrogen peroxide and malondialdehyde. However, foliar application of melatonin enhanced the plant growth, biomass and photosynthesis by alleviating the oxidative damage and Cr accumulation by plants. Melatonin significantly increased the enzymatic and non-enzymatic antioxidant activities as compared with respective control. Inoculation with microbes further enhanced the positive impacts of melatonin on wheat growth and reduced the Cr uptake by plants. Compared with non-inoculation and melatonin treatment, the inoculation with B. subtilis increased cholorophyll a by 27%, cholorophyll b by 49%, ascorbic acid in leaves by 50% and soluble proteins by 72% in wheat grwon with 50 mg Cr kg-1 DM soil. The application of B. subtilis reduced oxidative stress and Cr toxicity by transforming the Cr6+ to Cr3+ in shoots and roots of wheat. Furthermore, B. subtilis reduced the Cr6+ uptake by wheat plants. The result of the present study revealed that the combined application of melatonin and B. subtilis might be a feasible approach aiming to reduce the Cr toxicity and its accumulation by wheat and probably in other plants.
Collapse
Affiliation(s)
- Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Crop Sciences, Faculty of Agriculture, Menoufia University, 32514, Shibin El-kom, Egypt.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University (CMU), Taiwan
| | - Yahya Refay
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000, Faisalabad, Pakistan
| | - Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Salah E El-Hendawy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia; Department of Agronomy, Faculty of Agriculture, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
120
|
Melatonin Suppressed the Heat Stress-Induced Damage in Wheat Seedlings by Modulating the Antioxidant Machinery. PLANTS 2020; 9:plants9070809. [PMID: 32605176 PMCID: PMC7412093 DOI: 10.3390/plants9070809] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/27/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that plays a crucial role in the regulation of various environmental stresses, including heat stress (HS). In this study, a 100 μM melatonin (MT) pretreatment followed by exposure to heat stress for different time periods was found to efficiently reduce oxidative stress by preventing the over-accumulation of hydrogen peroxide (H2O2), lowering the lipid peroxidation content (malondialdehyde (MDA) content), and increasing proline (Pro) biosynthesis. Moreover, the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were increased substantially in MT-pretreated wheat seedlings. The presence of MT significantly improved the heat tolerance of wheat seedlings by modulating their antioxidant defense system, activating the ascorbate–glutathione (AsA–GSH) cycle comprising ascorbate peroxidase (APX), and increasing glutathione reductase (GR) activities. It also held the photosynthetic machinery stable by increasing the chlorophyll content. Enhancement in the endogenous MT contents was also observed in the MT+HS-treated plants. Furthermore, the expression of reactive oxygen species (ROS)-related genes TaSOD, TaPOD, and TaCAT, and anti-stress responsive genes, such as TaMYB80, TaWRKY26, and TaWRKY39, was also induced in MT-treated seedlings. Due to these notable changes, an improvement in stress resistance was observed in MT-treated seedlings compared with control. Taken together, our findings suggest that MT can play a key role in boosting the stress tolerance of plants by modulating the antioxidant defense system and regulating the transcription of stress-responsive genes.
Collapse
|
121
|
He J, Zhuang X, Zhou J, Sun L, Wan H, Li H, Lyu D. Exogenous melatonin alleviates cadmium uptake and toxicity in apple rootstocks. TREE PHYSIOLOGY 2020; 40:746-761. [PMID: 32159805 PMCID: PMC7107249 DOI: 10.1093/treephys/tpaa024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/17/2023]
Abstract
To examine the potential roles of melatonin in cadmium (Cd) uptake, accumulation and detoxification in Malus plants, we exposed two different apple rootstocks varying greatly in Cd uptake and accumulation to either 0 or 30 μM Cd together with 0 or 100 μM melatonin. Cadmium stress stimulated endogenous melatonin production to a greater extent in the Cd-tolerant Malus baccata Borkh. than in the Cd-susceptible Malus micromalus 'qingzhoulinqin'. Melatonin application attenuated Cd-induced reductions in growth, photosynthesis and enzyme activity, as well as reactive oxygen species (ROS) and malondialdehyde accumulation. Melatonin treatment more effectively restored photosynthesis, photosynthetic pigments and biomass in Cd-challenged M. micromalus 'qingzhoulinqin' than in Cd-stressed M. baccata. Exogenous melatonin lowered root Cd2+ uptake, reduced leaf Cd accumulation, decreased Cd translocation factors and increased root, stem and leaf melatonin contents in both Cd-exposed rootstocks. Melatonin application increased both antioxidant concentrations and enzyme activities to scavenge Cd-induced ROS. Exogenous melatonin treatment altered the mRNA levels of several genes regulating Cd uptake, transport and detoxification including HA7, NRAMP1, NRAMP3, HMA4, PCR2, NAS1, MT2, ABCC1 and MHX. Taken together, these results suggest that exogenous melatonin reduced aerial parts Cd accumulation and mitigated Cd toxicity in Malus plants, probably due to the melatonin-mediated Cd allocation in tissues, and induction of antioxidant defense system and transcriptionally regulated key genes involved in detoxification.
Collapse
Affiliation(s)
- Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
| | - Xiaolei Zhuang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
| | - Jiangtao Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, 125100, People’s Republic of China
| | - Luyang Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
| | - Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an, 271000, People’s Republic of China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People’s Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, 110866, People’s Republic of China
- Corresponding author. Name: Deguo Lyu, Telephone: 0086-24-88487219, E-mail: Deguo Lyu ()
| |
Collapse
|
122
|
Qiao Y, Ren J, Yin L, Liu Y, Deng X, Liu P, Wang S. Exogenous melatonin alleviates PEG-induced short-term water deficiency in maize by increasing hydraulic conductance. BMC PLANT BIOLOGY 2020; 20:218. [PMID: 32410579 PMCID: PMC7227339 DOI: 10.1186/s12870-020-02432-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/05/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Water deficiency is likely to become more frequent and intense as a result of global climate change, which may severely impact agricultural production in the world. The positive effects of melatonin (MEL) on alleviation drought or osmotic stress-induced water deficiency in plants has been well reported. However, the underlying mechanism of MEL on the detailed process of plant water uptake and transport under water deficiency condition remains largely unknown. RESULTS Application of 1 μM MEL led to enhanced tolerance to water deficiency stress in maize seedlings, as evidenced by maintaining the higher photosynthetic parameters, leaf water status and plant transpiration rate. The relatively higher whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lpr) in MEL-treated seedlings suggest that exogenous MEL alleviated water deficiency stress by promoting root water absorption. HgCl2 (aquaporin inhibitor) treatment inhibit the transpiration rate in MEL-treated plants greater than those of MEL-untreated; after recovery by dithiothreitol (DTT, anti-inhibitor), the transpiration rate in MEL-treated plants increased much higher than those of untreated plants. Moreover, under water deficiency, the transcription level of aquaporin genes was up-regulated by MEL application, and the H2O2 was less accumulated in MEL-treated root. CONCLUSIONS Exogenous MEL promoted aquaporin activity, which contributed to the maintaining of Lpr and Kplant under short-term water deficiency. The increased water uptake and transport lead to improved water status and thus increased tolerance to PEG-induced short-term water deficiency in maize seedlings.
Collapse
Affiliation(s)
- Yujie Qiao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jianhong Ren
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, 712100 Shaanxi China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yijian Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, 712100 Shaanxi China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian, 271018 China
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100 Shaanxi China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, 712100 Shaanxi China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
123
|
Qureshi FF, Ashraf MA, Rasheed R, Ali S, Hussain I, Ahmed A, Iqbal M. Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137061. [PMID: 32036143 DOI: 10.1016/j.scitotenv.2020.137061] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/30/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
There is limited information available on changes in the uptake of essential nutrients and secondary metabolites accumulation in castor bean under Cr toxicity. Besides, the role of organic chelates (EDTA and citric acid) mediated improvement in Cr uptake by castor bean is mostly unknown. Three independent experiments (sand, hydroponics, and soil) were executed to determine the Cr phytoextraction potential of Ricinus communis L. In the sand experiment, optimum doses of organic chelates (EDTA and citric acid) were selected. These optimum doses of chelates were used in the hydroponics and soil experiments. The results of hydroponics and soil experiments manifested a significant decrease in growth characteristics and leaf pigments in response to Cr stress applied as K2Cr2O7 (a source of Cr6+). The application of organic chelates (2.5 and 5 mM) showed a noticeable improvement in oxidative defense and secondary metabolites accumulation that might have decreased oxidative injury reflected as lower hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. Moreover, chelates improved the uptake of essential nutrients (K+, Ca2+, Mg2+, Fe2+ and P) alongside significant enhancement in total Cr contents of plants. Our results advocated that chelates application resulted in greater endogenous levels of Cr3+ in plants compared with Cr6+ which is more toxic. In nutshell, organic chelates improved growth by regulating Cr species, ion homeostasis and secondary metabolites accumulation in Ricinus communis L.
Collapse
Affiliation(s)
- Freeha Fatima Qureshi
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences & Engineering, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University (CMU), Taiwan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Aftab Ahmed
- Institute of Home and Food Sciences Government College University, Faisalabad, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
124
|
Kanwar MK, Xie D, Yang C, Ahammed GJ, Qi Z, Hasan MK, Reiter RJ, Yu JQ, Zhou J. Melatonin promotes metabolism of bisphenol A by enhancing glutathione-dependent detoxification in Solanum lycopersicum L. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121727. [PMID: 31796366 DOI: 10.1016/j.jhazmat.2019.121727] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 05/17/2023]
Abstract
Bisphenol A (BPA), a widely distributed organic compound, is toxic to animals and plants. Here we show the mechanism of BPA detoxification by melatonin (MEL) in tomato, which is otherwise poorly understood in plants. BPA treatment decreased the quantum yield of photosystem II (Fv/Fm) and increased the membrane lipid peroxidation and reactive oxygen species (ROS) accumulation dose-dependently, whereas exogenous MEL alleviated the BPA effects on Fv/Fm, lipid peroxidation, ROS accumulation and BPA uptake. Furthermore, BPA elevated the glutathione (GSH) content, activities of glutathione S-transferase (GST), and glutathione reductase (GR), and the transcript levels of GSH1, GR1, GST1 and MEL biosynthesis genes (COMT, T5H, and SNAT), whereas BPA + MEL showed even a more profound induction. Silencing GSH1, GR1 and GST1 genes compromised the BPA detoxification potential of tomato plants as revealed by an increased level of ROS, lipid peroxidation and BPA uptake, and a decreased Fv/Fm and GST activity; these changes were alleviated by MEL application. Under in vitro conditions, BPA was glutathionylated by GSH, which was further catalyzed by GST to cysteine and N-acetylcysteine conjugates. These findings suggest a crucial role for MEL in BPA detoxification via GSH and GST, and can be useful to reduce BPA residue for food safety.
Collapse
Affiliation(s)
- Mukesh Kumar Kanwar
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Dongling Xie
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Chen Yang
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Md Kamrul Hasan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China; Department of Agricultural Chemistry, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jing-Quan Yu
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China.
| |
Collapse
|
125
|
Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B. Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136675. [PMID: 32019031 DOI: 10.1016/j.scitotenv.2020.136675] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 05/18/2023]
Abstract
The Chinese hickory (Carya cathayensis) is an economically important tree species popular for its nuts. However, the tree requires a long time to reach the nut-producing phase. To overcome this problem, grafting is widely used to reduce the time from the vegetative to the reproductive phase. This tree species also faces many environmental challenges due to climate change; drought is an important factor affecting growth and development. Here, we designed an experiment to assess the protective efficiency of melatonin in grafted Chinese hickory plants under drought stress. The results revealed that exogenously applied melatonin successfully recovered the growth of grafted Chinese hickory plants and improved photosynthetic efficiency. Exogenously applied melatonin also boosted the antioxidative defense system of the plants under drought stress, resulting in enhanced reactive oxygen species (ROS) scavenging. The accumulation of compatible solutes such as total soluble sugars and proline was also triggered by melatonin. Moreover, the analyses using metabolomics revealed that drought-stressed plants treated with melatonin regulated key metabolic pathways such as phenylpropanoid, chlorophyll and carotenoid biosynthesis, carbon fixation, and sugar metabolism. To further validate the physiological, biochemical, and metabolomic factors, we studied the molecular mechanisms by analyzing the expression of key genes involved in chlorophyll metabolism (chlorophyllase, CHLASE), antioxidative defense (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; peroxidase, POD), and phenylalanine ammonia-lyase (PAL). Exogenously applied melatonin significantly regulated the transcript levels of key genes involved in the biological processes mentioned above. Melatonin also showed crosstalk with other hormones (zeatin, gibberellin A14, 24-epibrassinolide, jasmonic acid, and abscisic acid) to regulate the physiological processes. The results of this study show that melatonin regulates biological processes at the metabolic and molecular levels to resist drought stress.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Junfeng Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Shenchen Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Sunli Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhen Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China.
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
126
|
Shah FA, Wei X, Wang Q, Liu W, Wang D, Yao Y, Hu H, Chen X, Huang S, Hou J, Lu R, Liu C, Ni J, Wu L. Karrikin Improves Osmotic and Salt Stress Tolerance via the Regulation of the Redox Homeostasis in the Oil Plant Sapium sebiferum. FRONTIERS IN PLANT SCIENCE 2020; 11:216. [PMID: 32265947 PMCID: PMC7105677 DOI: 10.3389/fpls.2020.00216] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
Karrikins are reported to stimulate seed germination, regulate seedling growth, and increase the seedling vigor in abiotic stress conditions in plants. Nevertheless, how karrikins alleviate abiotic stress remains largely elusive. In this study, we found that karrikin (KAR1) could significantly alleviate both drought and salt stress in the important oil plant Sapium sebiferum. KAR1 supplementation in growth medium at a nanomolar (nM) concentration was enough to recover seed germination under salt and osmotic stress conditions. One nanomolar of KAR1 improved seedling biomass, increased the taproot length, and increased the number of lateral roots under abiotic stresses, suggesting that KAR1 is a potent alleviator of abiotic stresses in plants. Under abiotic stresses, KAR1-treated seedlings had a higher activity of the key antioxidative enzymes, such as superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, in comparison with the control, which leads to a lower level of hydrogen peroxide, malondialdehyde, and electrolyte leakage. Moreover, the metabolome analysis showed that KAR1 treatment significantly increased the level of organic acids and amino acids, which played important roles in redox homeostasis under stresses, suggesting that karrikins might alleviate abiotic stresses via the regulation of redox homeostasis. Under abiotic stresses, applications of karrikins did not increase the endogenous abscisic acid level but altered the expression of several ABA signaling genes, such as SNF1-RELATED PROTEIN KINASE2.3, SNF1-RELATED PROTEIN KINASE2.6, ABI3, and ABI5, suggesting potential interactions between karrikins and ABA signaling in the stress responses. Conclusively, we not only provided the physiological and molecular evidence to clarify the mechanism of karrikins in the regulation of stress adaptation in S. sebiferum but also showed the potential value of karrikins in agricultural practices, which will lay a foundation for further studies about the role of karrikins in abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xiao Wei
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Qiaojian Wang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenbo Liu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dongdong Wang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yuanyuan Yao
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hao Hu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xue Chen
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Shengwei Huang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jinyan Hou
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ruiju Lu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun Ni
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lifang Wu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Taihe Experimental Station, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Taihe, China
| |
Collapse
|
127
|
Shah AA, Ahmed S, Ali A, Yasin NA. 2-Hydroxymelatonin mitigates cadmium stress in cucumis sativus seedlings: Modulation of antioxidant enzymes and polyamines. CHEMOSPHERE 2020; 243:125308. [PMID: 31722261 DOI: 10.1016/j.chemosphere.2019.125308] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 05/18/2023]
Abstract
Cadmium level is continuously increasing in agricultural soils mainly due to anthropogenic activities. Cadmium is one of the most phytotoxic metals in the soils. The present study investigates the possible role of 2-hydroxymelatonin (2-OHMT) in assuagement of Cd-toxicity in cucumber (Cucumis sativus L.) plants. 2-OHMT is an important metabolite produced through interaction of melatonin with oxygenated compounds. Cadmium stress decreased the activity of antioxidant enzymes and polyamines. However, exogenously applied 2-OHMT enhanced plant growth attributes including photosynthetic rate, intercellular CO2 concentration, stomatal conductance and transpiration rate in treated plants. In addition, 2-OHMT induced enhancement of the activity of PAs biosynthesizing enzymes (putrescine, spermidine and spermine) in conjunction with reduction in activity of polyamine oxidase (PAO). 2-OHMT mitigated Cd stress through up-regulation in expression of stress related CS-ERS gene along with the amplified activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in treated seedlings. The improved activity of antioxidant scavengers played central role in reduction of hydrogen peroxide (H2O2), electrolyte leakage (EL) and malondialdehyde (MDA) in plants under Cd stress. Recent findings also advocate the positive correlation between PAs and ethylene, as both possess common precursor. The current study reveals that priming seeds with 2-OHMT reduces Cd-toxicity and makes it possible to cultivate cucumber in Cd-contaminated areas. Future experiments will perhaps help in elucidation of 2-OHMT intervened stress mitigation procedure in C. sativus crop. Furthermore, research with reference to potential of 2-OHMT for stress alleviation in other horticultural and agronomic crops will assist in enhancement of crop productivity.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Garden, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
128
|
Nabaei M, Amooaghaie R. Melatonin and nitric oxide enhance cadmium tolerance and phytoremediation efficiency in Catharanthus roseus (L.) G. Don. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6981-6994. [PMID: 31883077 DOI: 10.1007/s11356-019-07283-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, a pot experiment was performed to evaluate the effects of foliar spray with sodium nitroprusside (200 μM SNP) and melatonin (100 μM) singly and in combination on tolerance and accumulation of cadmium (Cd) in Catharanthus roseus (L.) G. Don plants exposed to different levels of cadmium (0, 50, 100, and 200 mg Cd kg-1 soil). The results showed that 50 mg kg-1 Cd had no significant effect on the fresh and dry weight of roots and shoots and content of chlorophyll (Chl) a and b, but the higher levels of Cd (100 and 200 mg kg-1) significantly reduced these attributes and induced an increase in the level of leaf electrolyte leakage and disrupted nutrient homeostasis. The activities of catalase (CAT) and peroxidase (POD) in leaves were increased under lower Cd concentrations (50 and 100 mg kg-1) but decreased under 200 mg kg-1 Cd. However, foliar spray with melatonin and/or SNP increased shoot biomass and the content of Chl a and b, augmented activities of POD and CAT, lowered electrolyte leakage (EL), and improved essential cations homeostasis in leaves. Cadmium content in shoots of C. roseus was less than roots and TF (transfer factor) was < 1. Interestingly, foliar spray with SNP and/or melatonin increased Cd accumulation and bioconcentration factor (BCF) in both roots and shoots and elevated the Cd transport from roots to shoot, as TF values increased in these treatments. The co-application of melatonin and SNP further than their separate usage augmented Cd tolerance through increasing activities of antioxidant enzymes and regulating mineral homeostasis in C. roseus. Furthermore, co-treatment of SNP and melatonin increased Cd phytoremediation efficiency in C. roseus through increasing biomass and elevating uptake and translocation of Cd from root to shoot.
Collapse
Affiliation(s)
- Masoomeh Nabaei
- Plant Sciences Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
| | - Rayhaneh Amooaghaie
- Plant Sciences Department, Science Faculty, Shahrekord University, Shahrekord, Iran
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
129
|
Shah AA, Ahmed S, Yasin NA. 2-Hydroxymelatonin induced nutritional orchestration in Cucumis sativus under cadmium toxicity: modulation of non-enzymatic antioxidants and gene expression. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:497-507. [PMID: 31703532 DOI: 10.1080/15226514.2019.1683715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
2-Hydroxymelatonin (2-OHMT) is an important metabolite produced through melatonin interaction with oxygenated compounds. 2-OHMT pretreated seeds (50 µM, 100 µM, and 150 µM) were grown in soil contaminated with 50 mg kg-1 cadmium. Cadmium imposed stress reduced seed germination, growth, biomass production, and chlorophyll (Chl) content in Cucumis sativus seedlings. 2-OHMT application emphatically revamped germination, shoot length, root length, and plant biomass production. The 2-OHMT pretreatment modulated expression levels of plasma membrane H+-ATPase genes of C. sativus including CsHA2, CsHA3, CsHA4, CsHA8, and CsHA9. This biomolecule amplified the accumulation of antioxidants such as glutathione, proline, phenolics, and flavonoids. The reduced Cd-uptake in 2-OHMT treated C. sativus seedlings encouraged uptake of essential plant nutrients. Furthermore, conjugated increase of indole acetic acid contents and ethylene production rate were observed in 2-OHMT treated seedlings in a dose-dependent manner. The improved nutritional content in 2-OHMT applied seedlings was ascribed to enhanced expression of H+-ATPase regulating genes besides increased amount of non-enzymatic antioxidants in Cd-stressed plants. The present novel study elucidates the potential of 2-OHMT in improving nutritional content in cucumber plants by modulation of non-enzymatic antioxidants and gene expression.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Department of Botany, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
130
|
Namdjoyan S, Soorki AA, Elyasi N, Kazemi N, Simaei M. Melatonin alleviates lead-induced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:108-118. [PMID: 31838660 DOI: 10.1007/s10646-019-02136-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 05/22/2023]
Abstract
Application of signaling molecules has gained immense importance in improving the phytoremediative capacity of plants. This study investigated the possible role of melatonin (MEL) as a signaling molecule in ameliorating lead (Pb)-induced oxidative injury in safflower seedlings. Pot grown 10-day-old safflower seedlings were exposed to 50 μM Pb (NO3)2 alone and in combination with different MEL concentrations (0-300 μM). Exposure to Pb, resulted in a severe oxidative stress, which was indicated by reducing biomass production and enhancing the level of oxidative stress markers (e.g. MDA and H2O2). Addition of exogenous MEL considerably decreased Pb uptake and its root-to-shoot translocation while, biomass production of roots, stems and leaves increased significantly. With MEL application a marked increase in reduced glutathione (GSH) content in leaves and roots was noted as compared with Pb treatment alone. In leaves the activity of enzymes involved in glyoxalase system increased markedly by adding MEL to Pb-sressed plants. In response to increasing MEL treatments, the phytochelatin content of leaves increased substantially in comparison with Pb treatment alone. These findings confirmed that MEL can alleviate Pb toxicity by reducing Pb uptake and its root-to-shoot translocation along with modulating different antioxidant systems. The results also showed that despite the insignificant effect of melatonin on the improvement of Pb phytoremediation potential, the application of this signaling molecule can improve the survival of safflower in Pb-contaminated soils by stimulating antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Shahram Namdjoyan
- Department of Biology, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Abolhasani Soorki
- ACECR-Research Institute of Applied Sciences, Shahid Beheshti University, Tehran, Iran
| | - Nazli Elyasi
- Department of Statistic, Trade Planing Office, Trade Promotion Organization, Tehran, Iran
| | - Nader Kazemi
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehdi Simaei
- Department of Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| |
Collapse
|
131
|
Zaid A, Mohammad F, Fariduddin Q. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint ( Mentha arvensis L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:25-39. [PMID: 32158118 PMCID: PMC7036404 DOI: 10.1007/s12298-019-00715-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 09/16/2019] [Indexed: 05/02/2023]
Abstract
Menthol mint (Mentha arvensis L.) cultivation is significantly affected by the heavy metals like cadmium (Cd) which also imposes severe health hazards. Two menthol mint cultivars namely Kosi and Kushal were evaluated under Cd stress conditions. Impact of plant growth regulators (PGRs) like salicylic acid (SA), gibberellic acid (GA3) and triacontanol (Tria) on Cd stress tolerance was assessed. Reduced growth, photosynthetic parameters, mineral nutrient concentration, and increased oxidative stress biomarkers like electrolyte leakage, malondialdehyde, and hydrogen peroxide contents were observed under Cd stress. Differential upregulation of proline content and antioxidant activities under Cd stress was observed in both the cultivars. Interestingly, low electrolyte leakage, lipid peroxidation, hydrogen peroxide and Cd concentration in leaves were observed in Kushal compared to Kosi. Among all the PGRs tested, SA proved to be the best in improving Cd-stress tolerance in both the cultivars but Kushal responded better than Kosi.
Collapse
Affiliation(s)
- Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Firoz Mohammad
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
132
|
Dong X, Yang F, Yang S, Yan C. Subcellular distribution and tolerance of cadmium in Canna indica L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109692. [PMID: 31585391 DOI: 10.1016/j.ecoenv.2019.109692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Canna indica L. is a promising species for heavy metal phytoremediation due to its fast growth rate and large biomass. However, few studies have investigated cadmium (Cd) tolerance mechanisms. In the present study, Canna plants were cultivated under hydroponic conditions with increasing Cd concentrations (0, 5, 10, 15 mg/L). We found that the plants performed well under 5 mg/L Cd2+ stress, but damage was observed under higher Cd exposure, such as leaf chlorosis, growth inhibition, a decreased chlorophyll content, and destruction of the ultrastructure of leaf cells. Additionally, Canna alleviated Cd toxicity to a certain extent. After Canna was exposed to 5, 10 and 15 mg/L Cd2+ for 45 d, the highest Cd concentration was exhibited in roots, which was almost 17-47 times the Cd concentration in leaves and 8-20 times that in stems. At the subcellular level, cellular debris and heat-stable proteins (HSPs) were the main binding sites for Cd, and the proportion of Cd in the two subcellular fractions accounted for 71.4-94.2% of the total Cd. Furthermore, we found that granules could participate in the detoxification process when Cd stress was enhanced. Our results indicated that Canna indica L. can tolerate Cd toxicity by sequestering heavy metals in root tissues, fencing out by cell wall, and binding with biologically detoxified fractions (granules and HSPs).
Collapse
Affiliation(s)
- Xiaoxia Dong
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; China Everbright International Limited, 26/F, Block A, Orientel Xintiandi Plaza, No.1003, Shennan Avenue, Futian District, Shenzhen, China
| | - Fan Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shuping Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
133
|
Abstract
Phytoremediation is a green technology that aims to take up pollutants from soil or water. Metals are one of the targets of these techniques due to their high toxicity in biological systems, including plants and animals. Their elimination or, at least, decrease will help keep them from being incorporated in the trophic chain and thus reaching animal and human food. The metal removal efficiency of plants is closely related to their growth rate, tolerance, and their adaptability to different environments. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in animals, plants, fungi, and bacteria. In plants, it plays an important role related to antioxidant activity, but also as an important redox network regulator. Thus, melatonin has been defined as a biostimulator of plant growth, especially under environmental stress conditions, whether abiotic (water deficit and waterlogging, extreme temperature, UV radiation, salinity, alkalinity, specific mineral deficit/excess, metals and other toxic compounds, etc.) or biotic (bacteria, fungi, and viruses). Exogenous melatonin treated plants have been seen to have a high tolerance to stressors, minimizing possible harmful effects through the control of reactive oxygen species (ROS) levels and activating antioxidative responses. Furthermore, important gene expression changes in stress specific transcription factors have been demonstrated. Melatonin is capable of mobilizing toxic metals, through phytochelatins, transporting this, while sequestration adds to the biostimulator effect of melatonin on plants, improving plant tolerance against toxic pollutants. Furthermore, melatonin improves the uptake of nitrogen (N), phosphorus (P), and sulfur (S) in stress situations, enhancing cell metabolism. In light of the above, the application of melatonin seems to be a useful option for clearing toxic pollutants from the environment by improving phytoremediation. Interestingly, a variety of stressors induce melatonin biosynthesis in plants, and the study of this endogenous response in hyperaccumulator plants may be even more interesting as a natural response of the phytoremediation of diverse plants.
Collapse
|
134
|
Ulhassan Z, Huang Q, Gill RA, Ali S, Mwamba TM, Ali B, Hina F, Zhou W. Protective mechanisms of melatonin against selenium toxicity in Brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery. BMC PLANT BIOLOGY 2019; 19:507. [PMID: 31752690 PMCID: PMC6869276 DOI: 10.1186/s12870-019-2110-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/31/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The ubiquitous signaling molecule melatonin (N-acetyl-5-methoxytryptamine) (MT) plays vital roles in plant development and stress tolerance. Selenium (Se) may be phytotoxic at high concentrations. Interactions between MT and Se (IV) stress in higher plants are poorly understood. The aim of this study was to evaluate the defensive roles of exogenous MT (0 μM, 50 μM, and 100 μM) against Se (IV) (0 μM, 50 μM, 100 μM, and 200 μM) stress based on the physiological and biochemical properties, thiol biosynthesis, and antioxidant system of Brassica napus plants subjected to these treatments. RESULTS Se (IV) stress inhibited B. napus growth and biomass accumulation, reduced pigment content, and lowered net photosynthetic rate (Pn) and PSII photochemical efficiency (Fv/Fm) in a dose-dependent manner. All of the aforementioned responses were effectively alleviated by exogenous MT treatment. Exogenous MT mitigated oxidative damage and lipid peroxidation and protected the plasma membranes from Se toxicity by reducing Se-induced reactive oxygen species (ROS) accumulation. MT also alleviated osmotic stress by restoring foliar water and sugar levels. Relative to standalone Se treatment, the combination of MT and Se upregulated the ROS-detoxifying enzymes SOD, APX, GR, and CAT, increased proline, free amino acids, and the thiol components GSH, GSSG, GSH/GSSG, NPTs, PCs, and cys and upregulated the metabolic enzymes γ-ECS, GST, and PCS. Therefore, MT application attenuates Se-induce oxidative damage in plants. MT promotes the accumulation of chelating agents in the roots, detoxifies Se there, and impedes its further translocation to the leaves. CONCLUSIONS Exogenous MT improves the physiological traits, antioxidant system, and thiol ligand biosynthesis in B. napus subjected to Se stress primarily by enhancing Se detoxification and sequestration especially at the root level. Our results reveal better understanding of Se-phytotoxicity and Se-stress alleviation by the adequate supply of MT. The mechanisms of MT-induced plant tolerance to Se stress have potential implications in developing novel strategies for safe crop production in Se-rich soils.
Collapse
Affiliation(s)
- Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Rafaqat Ali Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Theodore Mulembo Mwamba
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Faiza Hina
- Lab of Systematic & Evolutionary Botany and Biodiversity, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
135
|
Jahan MS, Shu S, Wang Y, Chen Z, He M, Tao M, Sun J, Guo S. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC PLANT BIOLOGY 2019; 19:414. [PMID: 31590646 PMCID: PMC6781414 DOI: 10.1186/s12870-019-1992-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/27/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Melatonin is a pleiotropic signaling molecule that plays multifarious roles in plants stress tolerance. The polyamine (PAs) metabolic pathway has been suggested to eliminate the effects of environmental stresses. However, the underlying mechanism of how melatonin and PAs function together under heat stress largely remains unknown. In this study, we investigated the potential role of melatonin in regulating PAs and nitric oxide (NO) biosynthesis, and counterbalancing oxidative damage induced by heat stress in tomato seedlings. RESULTS Heat stress enhanced the overproduction of reactive oxygen species (ROS) and damaged inherent defense system, thus reduced plant growth. However, pretreatment with 100 μM melatonin (7 days) followed by exposure to heat stress (24 h) effectively reduced the oxidative stress by controlling the overaccumulation of superoxide (O2•-) and hydrogen peroxide (H2O2), lowering the lipid peroxidation content (as inferred based on malondialdehyde content) and less membrane injury index (MII). This was associated with increased the enzymatic and non-enzymatic antioxidants activities by regulating their related gene expression and modulating the ascorbate-glutathione cycle. The presence of melatonin induced respiratory burst oxidase (RBOH), heat shock transcription factors A2 (HsfA2), heat shock protein 90 (HSP90), and delta 1-pyrroline-5-carboxylate synthetase (P5CS) gene expression, which helped detoxify excess ROS via the hydrogen peroxide-mediated signaling pathway. In addition, heat stress boosted the endogenous levels of putrescine, spermidine and spermine, and increased the PAs contents, indicating higher metabolic gene expression. Moreover, melatonin-pretreated seedlings had further increased PAs levels and upregulated transcript abundance, which coincided with suppression of catabolic-related genes expression. Under heat stress, exogenous melatonin increased endogenous NO content along with nitrate reductase- and NO synthase-related activities, and expression of their related genes were also elevated. CONCLUSIONS Melatonin pretreatment positively increased the heat tolerance of tomato seedlings by improving their antioxidant defense mechanism, inducing ascorbate-glutathione cycle, and reprogramming the PAs metabolic and NO biosynthesis pathways. These attributes facilitated the scavenging of excess ROS and increased stability of the cellular membrane, which mitigated heat-induced oxidative stress.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207 Bangladesh
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Zheng Chen
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Mingming He
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Meiqi Tao
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
136
|
Hasan MK, Ahammed GJ, Sun S, Li M, Yin H, Zhou J. Melatonin Inhibits Cadmium Translocation and Enhances Plant Tolerance by Regulating Sulfur Uptake and Assimilation in Solanum lycopersicum L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10563-10576. [PMID: 31487171 DOI: 10.1021/acs.jafc.9b02404] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sulfur (S) metabolism plays a vital role in Cd detoxification, but the collaboration between melatonin biosynthesis and S metabolism under Cd stress remains unaddressed. Using exogenous melatonin, melatonin-deficient tomato plants with a silenced caffeic acid O-methyltransferase (COMT) gene, and COMT-overexpressing plants with cosuppression of sulfate transporter (SUT)1 and SUT2 genes, we found that melatonin deficiency decreased S accumulation and aggravated Cd phytotoxicity, whereas exogenous melatonin or overexpression of COMT increased S uptake and assimilation, resulting in an improved plant growth and Cd tolerance. Melatonin deficiency promoted Cd translocation from root to shoot, but COMT overexpression caused the opposite effect. COMT overexpression failed to compensate the functional hierarchy of S when its uptake was inhibited by cosilencing of transporter SUT1 and SUT2. Our study provides genetic evidence that melatonin-mediated tolerance to Cd is closely associated with the efficient regulation of S metabolism, redox homeostasis, and Cd translocation in tomato plants.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
| | - Golam Jalal Ahammed
- College of Forestry , Henan University of Science and Technology , Luoyang 471023 , China
| | - Shuchang Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
| | - Mengqi Li
- Zhejiang Institute of Geological Survey , Xiaojin Road 508 , Hangzhou 311203 , China
| | - Hanqin Yin
- Zhejiang Institute of Geological Survey , Xiaojin Road 508 , Hangzhou 311203 , China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture , Zhejiang University , Yuhangtang Road 866 , Hangzhou 310058 , China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement , Agricultural Ministry of China , 866 Yuhangtang Road , Hangzhou 310058 , China
| |
Collapse
|
137
|
Melatonin as a Chemical Substance or as Phytomelatonin Rich-Extracts for Use as Plant Protector and/or Biostimulant in Accordance with EC Legislation. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100570] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in animals and plants, and also in bacteria and fungi. In plants, it has an important regulatory and protective role in the face of different stress situations in which it can be involved, mainly due to its immobility. Both in the presence of biotic and abiotic stressors, melatonin exerts protective action in which, through significant changes in gene expression, it activates a stress tolerance response. Its anti-stress role, along with other outstanding functions, suggests its possible use in active agricultural management. This review establishes considerations that are necessary for its possible authorization. The particular characteristics of this substance and its categorization as plant biostimulant are discussed, and also the different legal aspects within the framework of the European Community. The advantages and disadvantages are also described of two of its possible applications, as a plant protector or biostimulant, in accordance with legal provisions.
Collapse
|
138
|
Kaya C, Okant M, Ugurlar F, Alyemeni MN, Ashraf M, Ahmad P. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. CHEMOSPHERE 2019; 225:627-638. [PMID: 30901656 DOI: 10.1016/j.chemosphere.2019.03.026] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 05/03/2023]
Abstract
Two independent trials were conducted to examine the involvement of nitric oxide (NO) in MT-mediated tolerance to Cd toxicity in wheat plants. Cadmium toxicity considerably led to a decrease in plant growth, total chlorophyll, PSII maximum efficiency (Fv/Fm), leaf water potential, potassium (K+) and calcium (Ca2+). Simultaneously, it caused an increase in levels of leaf malondialdehyde (MDA), hydrogen peroxide (H2O2), electron leakage (EL), cadmium (Cd) and nitric oxide (NO) compared to those in control plants. Both MT (50 or 100 μM) treatments increased plant growth attributes and leaf Ca2+ and K+ in the leaves, but reduced MDA, H2O2 as well as leaf Cd content compared to those in Cd-stressed plants. A further experiment was designed to understand whether or not NO played a role in alleviation of Cd stress in wheat seedlings by melotonin using a scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) combined with the MT treatments. Melatonin-enhanced tolerance to Cd stress was completely reversed by the supply of cPTIO, which in turn considerably reduced the levels of endogenous NO. The results evidently showed that MT enhanced tolerance of wheat seedlings to Cd toxicity by triggering the endogenous NO. This was reinforced by the rise in the levels of MDA and H2O2, and decrease in the activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC. 1.11.1.6) and peroxidase (POD; EC. 1.11.1.7). The cPTO supply along with that of MT caused growth inhibition and a considerable increase in leaf Cd. So, both MT and NO together enhanced Cd tolerance in wheat.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Mustafa Okant
- Field Crops, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460 Riyadh 11451, Saudi Arabia
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460 Riyadh 11451, Saudi Arabia; Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
139
|
Xalxo R, Keshavkant S. Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L. CHEMOSPHERE 2019; 221:1-10. [PMID: 30634143 DOI: 10.1016/j.chemosphere.2019.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 05/15/2023]
Abstract
Lead and acid rain are important abiotic stress factors that limit the growth, development, metabolic activity and yield of the crops. Melatonin (MT; an indoleamine molecule), glutathione (GSH; free thiol tripeptide) and thiourea (TU; non physiological thiol based ROS scavenger) have been known to mediate several physiological, biochemical and molecular processes in plants under different kinds of environmental threats. However, the roles of MT, GSH and TU in stress tolerance against combined effect of lead and simulated acid rain (SAR) remains inexpressible. In this study, we investigated the response of Trigonella foenum graecum L. (Fenugreek) to combined application of lead (1200 ppm) and SAR (pH 3.5), and the potential roles of MT (50 μM), GSH (1 mM) and TU (3 mM) in enhancing lead and SAR stress tolerance of Fenugreek. The results showed that co-application of each MT, GSH and TU along with lead and SAR improved the growth and development of seedlings. Moreover, MT, GSH and TU treatments stabilized the cell membrane integrity, reduced ROS accumulation [superoxide radical (O2-) and hydrogen peroxide (H2O2)], malondialdehyde (MDA) content, lipoxygenase (LOX) activity and, enhanced protein accumulation and up-regulated the gene expressions of catalase (CAT) and superoxide dismutase (SOD) significantly. Furthermore, the present work provides strong evidence regarding protective roles of MT, GSH and TU against oxidative stress resulted from lead and SAR stress in Fenugreek. Considering these observations, MT, GSH and TU can be utilized as efficient ROS scavengers, for improving growth and increasing antioxidant capacity in lead and SAR stressed seedlings.
Collapse
Affiliation(s)
- R Xalxo
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India.
| |
Collapse
|
140
|
Cao YY, Qi CD, Li S, Wang Z, Wang X, Wang J, Ren S, Li X, Zhang N, Guo YD. Melatonin Alleviates Copper Toxicity via Improving Copper Sequestration and ROS Scavenging in Cucumber. PLANT & CELL PHYSIOLOGY 2019; 60:562-574. [PMID: 30496548 DOI: 10.1093/pcp/pcy226] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 11/20/2018] [Indexed: 05/17/2023]
Abstract
Melatonin plays an important role in stress tolerance in plants. In this study, exogenous melatonin significantly alleviated the dwarf phenotype and inhibited the decrease of plant fresh weight induced by excess copper (Cu2+). Our results indicated that melatonin alleviated Cu2+ toxicity by improving Cu2+ sequestration, carbon metabolism and ROS (reactive oxygen species) scavenging, rather than by influencing the Cu2+ uptake under excess Cu2+ conditions. Transcriptome analysis showed that melatonin broadly altered gene expression under Cu2+ stress. Melatonin increased the levels of glutathione and phytochelatin to chelate excess Cu2+ and promoted cell wall trapping, thus keeping more Cu2+ in the cell wall and vacuole. Melatonin inhibited ROS production and enhanced antioxidant systems at the transcriptional level and enzyme activities, thus building a line of defense in response to excess Cu2+. The distribution of nutrient elements was recovered by melatonin which was disturbed by Cu2+. In addition, melatonin activated carbon metabolism, especially glycolysis and the pentose phosphate pathway, to generate more ATP, an intermediate for biosynthesis. Taken together, melatonin alleviated Cu2+ toxicity in cucumber via multiple mechanisms. These results will help to resolve the toxic effects of Cu2+ stress on plant growth and development. These results can be used for new strategies to solve problems associated with Cu2+ stress.
Collapse
Affiliation(s)
- Yun-Yun Cao
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation, China Agricultural University, Beijing, China
| | - Chuan-Dong Qi
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation, China Agricultural University, Beijing, China
| | - Shuangtao Li
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation, China Agricultural University, Beijing, China
| | - Zhirong Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation, China Agricultural University, Beijing, China
| | - Xiaoyun Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation, China Agricultural University, Beijing, China
| | - Jinfang Wang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation, China Agricultural University, Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, VA, USA
| | - Xingsheng Li
- Shandong Provincial Key Laboratory of Cucurbitaceae Vegetable Biological Breeding, Shandong Huasheng Agriculture Co. Ltd, Shandong, China
| | - Na Zhang
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, Beijing Key Laboratory of Growth and Developmental Regulation, China Agricultural University, Beijing, China
| |
Collapse
|
141
|
Ashfaque F, Inam A. Interactive effect of potassium and flyash: a soil conditioner on metal accumulation, physiological and biochemical traits of mustard (Brassica juncea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7847-7862. [PMID: 30675712 DOI: 10.1007/s11356-019-04243-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
At present plants continuously bare to various environmental stresses due to the rapid climate change that adversely affects the growth and nutrient status of the soil and plant. Application of flyash (FA) in combination with potassium (K) fertilizer amendment improves soil physico-chemical characteristics, growth and yield of plants. Mustard grown in combination with FA (0, 20, 40 or 60 t ha-1) and K (0, 30 or 60 kg ha-1) treated soil was used to evaluate the effect on heavy metals (Cd, Cr and Pb) concentration and antioxidant system. The experiment was conducted in a net house of the Department of Botany, Aligarh Muslim University, Aligarh. Sampling was done at 70 DAS. The results showed that concentration of metals was found maximum in roots than the leaf and seeds. FA60 accompanied by K30 and K60 cause oxidative stress through lipid peroxidation and showed reduced levels of photosynthesis and enzymatic activity. Proline and ascorbate content increases with increasing flyash doses to combat stress. However, flyash at the rate of 40 t ha-1 together with K60 followed by K30 significantly boosted crop growth by enhancing antioxidant activity which plays a critical role in ameliorating the oxidative stress. Graphical abstract.
Collapse
Affiliation(s)
- Farha Ashfaque
- Department of Botany, Environmental Plant Physiology section, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| | - Akhtar Inam
- Department of Botany, Environmental Plant Physiology section, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
142
|
Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D. Melatonin Mediates Enhancement of Stress Tolerance in Plants. Int J Mol Sci 2019; 20:E1040. [PMID: 30818835 PMCID: PMC6429401 DOI: 10.3390/ijms20051040] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a multifunctional signaling molecule, ubiquitously distributed in different parts of plants and responsible for stimulating several physiological responses to adverse environmental conditions. In the current review, we showed that the biosynthesis of melatonin occurred in plants by themselves, and accumulation of melatonin fluctuated sharply by modulating its biosynthesis and metabolic pathways under stress conditions. Melatonin, with its precursors and derivatives, acted as a powerful growth regulator, bio-stimulator, and antioxidant, which delayed leaf senescence, lessened photosynthesis inhibition, and improved redox homeostasis and the antioxidant system through a direct scavenging of reactive oxygen species (ROS) and reactive nitrogen species (RNS) under abiotic and biotic stress conditions. In addition, exogenous melatonin boosted the growth, photosynthetic, and antioxidant activities in plants, confirming their tolerances against drought, unfavorable temperatures, salinity, heavy metals, acid rain, and pathogens. However, future research, together with recent advancements, would support emerging new approaches to adopt strategies in overcoming the effect of hazardous environments on crops and may have potential implications in expanding crop cultivation against harsh conditions. Thus, farming communities and consumers will benefit from elucidating food safety concerns.
Collapse
Affiliation(s)
- Biswojit Debnath
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- Department of Horticulture, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Waqar Islam
- College of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Min Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yueting Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaocao Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Sangeeta Mitra
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mubasher Hussain
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
143
|
Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA. Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings. Int J Mol Sci 2019; 20:E353. [PMID: 30654468 PMCID: PMC6358940 DOI: 10.3390/ijms20020353] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Melatonin, a natural agent, has multiple functions in animals as well as in plants. However, its possible roles in plants under abiotic stress are not clear. Nowadays, soil salinity is a major threat to global agriculture because a high soil salt content causes multiple stresses (hyperosmotic, ionic, and oxidative). Therefore, the aim of the present study was to explore: (1) the involvement of melatonin in biosynthesis of photosynthetic pigments and in regulation of photosynthetic enzymes, such as carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco); (2) the role of melatonin in osmoregulation by proline and carbohydrate metabolism; and (3) the function of melatonin in the antioxidant defense system under salinity. Outcomes of the study reveal that under non-saline conditions, application of melatonin (20 and 50 µM) improved plant growth, viz. shoot length, root length, shoot fresh weight (FW), root FW, shoot dry weight (DW), root DW and leaf area and physio-biochemical parameters [chlorophyll (Chl) a and b, proline (Pro) and total soluble carbohydrates (TSC) content, and increased the activity of CA and Rubisco]. However, tomato seedlings treated with NaCl exhibited enhanced Chl degradation, electrolyte leakage (EL), malondialdehyde (MDA) and reactive oxygen species (ROS; superoxide and hydrogen peroxide). ROS were detected in leaf and root. Interestingly, application of melatonin improved plant growth and reduced EL, MDA and ROS levels through upregulation of photosynthesis enzymes (CA, Rubisco), antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase and ascorbate reductase) and levels of non-enzymatic antioxidants [ascorbate (ASC) and reduced glutathione (GSH)], as well as by affecting the ASC-GSH cycle. Additionally, exogenous melatonin also improved osmoregulation by increasing the content of TSC, Pro and Δ¹-pyrroline-5-carboxylate synthetase activity. These results suggest that melatonin has beneficial effects on tomato seedlings growth under both stress and non-stress conditions. Melatonin's role in tolerance to salt stress may be associated with the regulation of enzymes involved in photosynthesis, the antioxidant system, metabolism of proline and carbohydrate, and the ASC-GSH cycle. Also, melatonin could be responsible for maintaining the high ratios of GSH/GSSG and ASC/DHA.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Mutahhar Y Al-Khaishany
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - M Nasir Khan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Abdullah Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| | - Abdulaziz A Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 2455, Saudi Arabia.
| |
Collapse
|
144
|
Ahmed B, Rizvi A, Zaidi A, Khan MS, Musarrat J. Understanding the phyto-interaction of heavy metal oxide bulk and nanoparticles: evaluation of seed germination, growth, bioaccumulation, and metallothionein production. RSC Adv 2019; 9:4210-4225. [PMID: 35520185 PMCID: PMC9060428 DOI: 10.1039/c8ra09305a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/20/2019] [Indexed: 11/21/2022] Open
Abstract
The fast-growing use of nano-based products without proper care has led to a major public health concern. Nanomaterials contaminating the environment pose serious threat to the productivity of plants and via food chain to human health. Realizing these, four vegetable crops, radish, cucumber, tomato, and alfalfa, were exposed to varying concentrations of heavy metal oxide (TiO2, ZnO, Al2O3 and CuO) submicron or bulk (BPs) and nanoparticles (NPs) to assess their impact on relative seed germination (RSG), seed surface adsorption, root/shoot tolerance index (RTI/STI), bioaccumulation, and metallothioneins (MTs) production. The results revealed a clear inhibition of RSG, RTI, and STI, which, however, varied between species of metal-specific nanoparticles and plants. SEM and EDX analyses showed significant adsorption of MONP agglomerates on seed surfaces. The concentration of metals detected by EDX differed among vegetables. Among the metals, Al, Cu, Ti, and Zn were found maximum in alfalfa (12.46%), tomato (23.2%), cucumber (6.32%) and radish (21.74%). Of the four metal oxides, ZnO was found most inhibitory to all vegetables and was followed by CuO. The absorption/accumulation of undesirable levels of MONPs in seeds and seedlings differed with variation in dose rates, and was found to be maximum (1748–2254 μg g−1 dry weight) in ZnO-NPs application. Among MONPs, the uptake of TiO2 was minimum (2 to 140 μg g−1) in radish seedlings. The concentration of MTs induced by ZnO-NPs, ZnO-BPs, and CuO-NPs ranged between 52 and 136 μ mol MTs g−1 FW in vegetal organs. Conclusively, the present findings indicated that both the nanosize and chemical composition of MONPs are equally dangerous for vegetable production. Hence, the accumulation of MONPs, specifically ZnO and CuO, in edible plant organs in reasonable amounts poses a potential environmental risk which, however, requires urgent attention to circumvent such toxic problems. Phyto-interaction of heavy metal oxide nano and bulk particles with agriculturally important crops.![]()
Collapse
Affiliation(s)
- Bilal Ahmed
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Asfa Rizvi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Almas Zaidi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Javed Musarrat
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
145
|
Arnao MB, Hernández-Ruiz J. Melatonin: A New Plant Hormone and/or a Plant Master Regulator? TRENDS IN PLANT SCIENCE 2019; 24:38-48. [PMID: 30446305 DOI: 10.1016/j.tplants.2018.10.010] [Citation(s) in RCA: 391] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 05/18/2023]
Abstract
Melatonin is a pleiotropic molecule with many diverse actions in plants. It is considered primarily an antioxidant with important actions in the control of reactive oxygen and nitrogen species (ROS and RNS), among other free radicals, and harmful oxidative molecules present in plant cells. In addition, plant melatonin is involved in multiple physiological actions, such as growth, rooting, seed germination, photosynthesis, and protection against abiotic and/or biotic stressors. The recent identification of the first plant melatonin receptor opened the door to this regulatory molecule being considered a new plant hormone. However, due to the diversity of its actions, melatonin has also been proposed as a plant master regulator. Here, we discuss the most recent data in respect to both perspectives.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain.
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
146
|
Xu T, Chen Y, Kang H. Melatonin Is a Potential Target for Improving Post-Harvest Preservation of Fruits and Vegetables. FRONTIERS IN PLANT SCIENCE 2019; 10:1388. [PMID: 31737014 PMCID: PMC6831725 DOI: 10.3389/fpls.2019.01388] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 05/03/2023]
Abstract
Melatonin is a ubiquitous molecule distributed in nature and not only plays an important role in animals and humans but also has extensive functions in plants, such as delaying senescence, exerting antioxidant effects, regulating growth and development, and facilitating plant adaption to stress conditions. Endogenous melatonin is widespread in fruits and vegetables and plays prominent roles in the ripening and post-harvest process of fruits and vegetables. Exogenous application of melatonin removes excess reactive oxygen species from post-harvest fruits and vegetables by increasing antioxidant enzymes, non-enzymatic antioxidants, and enzymes related to oxidized protein repair. Moreover, exogenous application of melatonin can increase endogenous melatonin to augment its effects on various physiological processes. Many previous reports have demonstrated that application of exogenous melatonin improves the post-harvest preservation of fruits and vegetables. Although overproduction of melatonin in plants via transgenic approaches could be a potential means for improving the post-harvest preservation of fruits and vegetables, efforts to increase endogenous melatonin in plants are limited. In this review, we summarize the recent progress revealing the role and action mechanisms of melatonin in post-harvest fruits and vegetables and provide future directions for the utilization of melatonin to improve the post-harvest preservation of fruits and vegetables.
Collapse
Affiliation(s)
- Tao Xu
- Key Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- *Correspondence: Tao Xu, ; Hunseung Kang,
| | - Yao Chen
- Key Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- *Correspondence: Tao Xu, ; Hunseung Kang,
| |
Collapse
|
147
|
Kanwar MK, Yu J, Zhou J. Phytomelatonin: Recent advances and future prospects. J Pineal Res 2018; 65:e12526. [PMID: 30256447 DOI: 10.1111/jpi.12526] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
Abstract
Melatonin (MEL) has been revealed as a phylogenetically conserved molecule with a ubiquitous distribution from primitive photosynthetic bacteria to higher plants, including algae and fungi. Since MEL is implicated in numerous plant developmental processes and stress responses, the exploration of its functions in plant has become a rapidly progressing field with the new paradigm of involvement in plants growth and development. The pleiotropic involvement of MEL in regulating the transcripts of numerous genes confirms its vital involvement as a multi-regulatory molecule that architects many aspects of plant development. However, the cumulative research in plants is still preliminary and fragmentary in terms of its established functions compared to what is known about MEL physiology in animals. This supports the need for a comprehensive review that summarizes the new aspects pertaining to its functional role in photosynthesis, phytohormonal interactions under stress, cellular redox signaling, along with other regulatory roles in plant immunity, phytoremediation, and plant microbial interactions. The present review covers the latest advances on the mechanistic roles of phytomelatonin. While phytomelatonin is a sovereign plant growth regulator that can interact with the functions of other plant growth regulators or hormones, its qualifications as a complete phytohormone are still to be established. This review also showcases the yet to be identified potentials of phytomelatonin that will surely encourage the plant scientists to uncover new functional aspects of phytomelatonin in plant growth and development, subsequently improving its status as a potential new phytohormone.
Collapse
Affiliation(s)
- Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
148
|
Huang F, Wen XH, Cai YX, Cai KZ. Silicon-Mediated Enhancement of Heavy Metal Tolerance in Rice at Different Growth Stages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102193. [PMID: 30297625 PMCID: PMC6210271 DOI: 10.3390/ijerph15102193] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Abstract
Silicon (Si) plays important roles in alleviating heavy metal stress in rice plants. Here we investigated the physiological response of rice at different growth stages under the silicon-induced mitigation of cadmium (Cd) and zinc (Zn) toxicity. Si treatment increased the dry weight of shoots and roots and reduced the Cd and Zn concentrations in roots, stems, leaves and grains. Under the stress of exposure to Cd and Zn, photosynthetic parameters including the chlorophyll content and chlorophyll fluorescence decreased, while the membrane permeability and malondialdehyde (MDA) increased. Catalase (CAT) and peroxidase (POD) activities increased under heavy metals stress, but superoxide dismutase (SOD) activities decreased. The magnitude of these Cd- and Zn-induced changes was mitigated by Si-addition at different growth stages. The available Cd concentration increased in the soil but significantly decreased in the shoots, which suggested that Si treatment prevents Cd accumulation through internal mechanisms by limiting Cd2+ uptake by the roots. Overall, the phenomena of Si-mediated alleviation of Cd and excess Zn toxicity in two rice cultivars could be due to the limitation of metal uptake and transport, resulting in an improvement in cell membrane integrity, photosynthetic performance and anti-oxidative enzyme activities after Si treatment.
Collapse
Affiliation(s)
- Fei Huang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Hui Wen
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Xia Cai
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Kun-Zheng Cai
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
149
|
Yu Y, Lv Y, Shi Y, Li T, Chen Y, Zhao D, Zhao Z. The Role of Phyto-Melatonin and Related Metabolites in Response to Stress. Molecules 2018; 23:E1887. [PMID: 30060559 PMCID: PMC6222801 DOI: 10.3390/molecules23081887] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/29/2022] Open
Abstract
Plant hormone candidate melatonin has been widely studied in plants under various stress conditions, such as heat, cold, salt, drought, heavy metal, and pathogen attack. Under stress, melatonin usually accumulates sharply by modulating its biosynthesis and metabolic pathways. Beginning from the precursor tryptophan, four consecutive enzymes mediate the biosynthesis of tryptamine or 5-hydroxytryptophan, serotonin, N-acetylserotonin or 5-methoxytryptamine, and melatonin. Then, the compound is catabolized into 2-hydroxymelatonin, cyclic-3-hydroxymelatonin, and N¹-acetyl-N²-formyl-5-methoxyknuramine through 2-oxoglutarate-dependent dioxygenase catalysis or reaction with reactive oxygen species. As an ancient and powerful antioxidant, melatonin directly scavenges ROS induced by various stress conditions. Furthermore, it confreres stress tolerance by activating the plant's antioxidant system, alleviating photosynthesis inhibition, modulating transcription factors that are involved with stress resisting, and chelating and promoting the transport of heavy metals. Melatonin is even proven to defense against pathogen attacks for the plant by activating other stress-relevant hormones, like salicylic acid, ethylene, and jasmonic acid. Intriguingly, other precursors and metabolite molecules involved with melatonin also can increase stress tolerance for plant except for unconfirmed 5-methoxytryptamine, cyclic-3-hydroxymelatonin, and N¹-acetyl-N²-formyl-5-methoxyknuramine. Therefore, the precursors and metabolites locating at the whole biosynthesis and catabolism pathway of melatonin could contribute to plant stress resistance, thus providing a new perspective for promoting plant stress tolerance.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Yan Lv
- School of Agriculture, Yunnan University, Kunming 650504, China.
| | - Yana Shi
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Yanchun Chen
- School of Agriculture, Yunnan University, Kunming 650504, China.
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming 650504, China.
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming 650504, China.
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| |
Collapse
|
150
|
Hasan MK, Liu CX, Pan YT, Ahammed GJ, Qi ZY, Zhou J. Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci Rep 2018; 8:10182. [PMID: 29976982 PMCID: PMC6033901 DOI: 10.1038/s41598-018-28561-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Despite involvement of melatonin (MT) in plant growth and stress tolerance, its role in sulfur (S) acquisition and assimilation remains unclear. Here we report that low-S conditions cause serious growth inhibition by reducing chlorophyll content, photosynthesis and biomass accumulation. S deficiency evoked oxidative stress leading to the cell structural alterations and DNA damage. In contrast, MT supplementation to the S-deprived plants resulted in a significant diminution in reactive oxygen species (ROS) accumulation, thereby mitigating S deficiency-induced damages to cellular macromolecules and ultrastructures. Moreover, MT promoted S uptake and assimilation by regulating the expression of genes encoding enzymes involved in S transport and metabolism. MT also protected cells from ROS-induced damage by regulating 2-cysteine peroxiredoxin and biosynthesis of S-compounds. These results provide strong evidence that MT can enhance plant tolerance to low-S-induced stress by improving S uptake, metabolism and redox homeostasis, and thus advocating beneficial effects of MT on increasing the sulfur utilization efficiency.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China.,Department of Agricultural Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Chen-Xu Liu
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Yan-Ting Pan
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhen-Yu Qi
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China. .,Agricultural Experiment Station, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China.
| | - Jie Zhou
- Department of Horticulture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China. .,Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China.
| |
Collapse
|