101
|
Rayner SG, Howard CC, Mandrycky CJ, Stamenkovic S, Himmelfarb J, Shih AY, Zheng Y. Multiphoton-Guided Creation of Complex Organ-Specific Microvasculature. Adv Healthc Mater 2021; 10:e2100031. [PMID: 33586357 PMCID: PMC8137585 DOI: 10.1002/adhm.202100031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary-scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre-formed microvessels is used to successfully create perfusable and cellularized organ-specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney-specific microvascular structure is achieved, using laser-guided angiogenesis. Finally, proof-of-concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ-on-a-chip devices.
Collapse
Affiliation(s)
- Samuel G. Rayner
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Department of MedicineDivision of PulmonaryCritical Care and Sleep MedicineUniversity of WashingtonSeattleWA98195USA
| | - Caitlin C. Howard
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
| | | | | | - Jonathan Himmelfarb
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Department of MedicineDivision of NephrologyUniversity of WashingtonSeattleWA98195USA
- Kidney Research InstituteSeattleWA98104USA
| | - Andy Y. Shih
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Seattle Children's Research InstituteSeattleWA98101USA
| | - Ying Zheng
- Department of BioengineeringUniversity of Washington850 Republican St.SeattleWA98109USA
- Kidney Research InstituteSeattleWA98104USA
- Institute for Stem Cell and Regenerative MedicineSeattleWA98195USA
| |
Collapse
|
102
|
Bolaamphiphilic Bis-Dehydropeptide Hydrogels as Potential Drug Release Systems. Gels 2021; 7:gels7020052. [PMID: 33946932 PMCID: PMC8162347 DOI: 10.3390/gels7020052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/23/2022] Open
Abstract
The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, four symmetrical bolaamphiphiles based on dehydrodipeptides (phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl or naphthyl linkers (terephthalic acid and 2,6-naphthalenedicarboxylic acid) were prepared, and their self-assembly properties were studied. The results showed that all compounds, with the exception of the bolaamphiphile of tyrosyldehydrophenylalanine and 2,6-naphthalene dicarboxylic acid, gave self-standing hydrogels with critical gelation concentrations of 0.3 wt % and 0.4 wt %, using a pH trigger. The self-assembly of these hydrogelators was investigated using STEM microscopy, which revealed a network of entangled fibers. According to rheology, the dehydrodipeptide bolaamphiphilic hydrogelators are viscoelastic materials with an elastic modulus G′ that falls in the range of native tissue (0.37 kPa brain–4.5 kPa cartilage). In viability and proliferation studies, it was found that these compounds were non-toxic toward the human keratinocyte cell line, HaCaT. In sustained release assays, we studied the effects of the charge present on model drug compounds on the rate of cargo release from the hydrogel networks. Methylene blue (MB), methyl orange (MO), and ciprofloxacin were chosen as cationic, anionic, and overall neutral cargo, respectively. These studies have shown that the hydrogels provide a sustained release of methyl orange and ciprofloxacin, while methylene blue is retained by the hydrogel network.
Collapse
|
103
|
Esmaeel A, Ahmed KIE, FathEl-Bab AMR. Determination of damping coefficient of soft tissues using piezoelectric transducer. Biomed Microdevices 2021; 23:23. [PMID: 33847817 DOI: 10.1007/s10544-021-00558-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 11/25/2022]
Abstract
Measuring viscoelastic properties of soft tissues becomes a new biomarker in the medical diagnosis field. It can help in early diagnosis and related fields, such as minimally-invasive-surgery (MIS) applications and cell mechanics. The current work presents a tactile sensor for measuring the damping coefficient of the soft tissues. The proposed sensor can be miniaturized easily and used in MIS applications. Besides the proposed sensor, a mathematical model, based on Jacobsen's approach, is built to calculate the damping coefficient of the specimens and the surrounding. These damping sources significantly influence the proposed sensor, such as air damping and hysteretic damping. The sensor system principally depends on a piezoelectric transducer, which is cheap, commonly available, and easily integrated into MEMS. To conceptually prove the sensor feasibility, silicon rubber samples with different stiffnesses have been fabricated and tested by the new sensor. The obtained results prove the newly proposed sensor's capability to differentiate the damping coefficients for soft materials effectively.
Collapse
Affiliation(s)
- Abdelhady Esmaeel
- Mechatronics and Robotics Engineering Department, EJUST University, Assiut, Egypt.
| | - Khaled I E Ahmed
- Mechanical Engineering Department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed M R FathEl-Bab
- Mechatronics and Robotics Engineering Department, EJUST University, Assiut, Egypt
| |
Collapse
|
104
|
Palmese LL, Fan M, Scott RA, Tan H, Kiick KL. Multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:635-656. [PMID: 33231137 PMCID: PMC8659393 DOI: 10.1080/09205063.2020.1855392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
The development of hybrid hydrogels has been of great interest over recent decades, especially in the field of biomaterials. Such hydrogels provide various opportunities in tissue engineering, drug delivery, and regenerative medicine due to their ability to mimic cellular environments, sequester and release therapeutic agents, and respond to stimuli. Herein we report the synthesis and characterization of an injectable poly(ethylene glycol) hydrogel crosslinked via thiol-maleimide reactions and containing both chemically crosslinked temperature-sensitive liposomes (TSLs) and matrix metalloproteinase-sensitive peptide crosslinks. Rheological studies demonstrate that the hydrogel is mechanically stable and can be synthesized to achieve a range of physically applicable moduli. Experiments characterizing the in situ drug delivery and degradation of these materials indicate that the TSL gel responds to both thermal and enzymatic stimuli in a local environment. Doxorubicin, a widely used anticancer drug, was loaded in the TSLs with a high encapsulation efficiency and the subsequent release was temperature dependent. Finally, TSLs did not compromise viability and proliferation of human and murine fibroblasts, supporting the use of these hydrogel-linked liposomes as a thermo-responsive drug carrier for controlled release.
Collapse
Affiliation(s)
- Luisa L Palmese
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Ming Fan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Rebecca A Scott
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Huaping Tan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| |
Collapse
|
105
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
106
|
Evaluation of a Model Photo-Caged Dehydropeptide as a Stimuli-Responsive Supramolecular Hydrogel. NANOMATERIALS 2021; 11:nano11030704. [PMID: 33799670 PMCID: PMC8001155 DOI: 10.3390/nano11030704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 01/17/2023]
Abstract
Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels, via self-assembly, in aqueous media. The rheological properties of these readily tunable hydrogels resemble those of the extracellular matrix (ECM) and therefore have potential for various biological applications, such as tissue engineering, biosensors, 3D bioprinting, drug delivery systems and wound dressings. We herein report a new photo-responsive supramolecular hydrogel based on a "caged" dehydropeptide (CNB-Phe-ΔPhe-OH 2), containing a photo-cleavable carboxy-2-nitrobenzyl (CNB) group. We have characterized this hydrogel using a range of techniques. Irradiation with UV light cleaves the pendant aromatic capping group, to liberate the corresponding uncaged model dehydropeptide (H-Phe-ΔPhe-OH 3), a process which was investigated by 1H NMR and HPLC studies. Crucially, this cleavage of the capping group is accompanied by dissolution of the hydrogel (studied visually and by fluorescence spectroscopy), as the delicate balance of intramolecular interactions within the hydrogel structure is disrupted. Hydrogels which can be disassembled non-invasively with temporal and spatial control have great potential for specialized on-demand drug release systems, wound dressing materials and various topical treatments. Both 2 and 3 were found to be non-cytotoxic to the human keratinocyte cell line, HaCaT. The UV-responsive hydrogel system reported here is complementary to previously reported related UV-responsive systems, which are generally composed of peptides formed from canonical amino acids, which are susceptible to enzymatic proteolysis in vivo. This system is based on a dehydrodipeptide structure which is known to confer proteolytic resistance. We have investigated the ability of the photo-activated system to accelerate the release of the antibiotic, ciprofloxacin, as well as some other small model drug compounds. We have also conducted some initial studies towards skin-related applications. Moreover, this model system could potentially be adapted for on-demand "self-delivery", through the uncaging of known biologically active dehydrodipeptides.
Collapse
|
107
|
Lee CT, Gill EL, Wang W, Gerigk M, Terentjev EM, Shery Huang YY. Guided assembly of cancer ellipsoid on suspended hydrogel microfibers estimates multi-cellular traction force. Phys Biol 2021; 18:036001. [PMID: 33412531 DOI: 10.1088/1478-3975/abd9aa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) multi-cellular aggregates hold important applications in tissue engineering and in vitro biological modeling. Probing the intrinsic forces generated during the aggregation process, could open up new possibilities in advancing the discovery of tissue mechanics-based biomarkers. We use individually suspended, and tethered gelatin hydrogel microfibers to guide multicellular aggregation of brain cancer cells (glioblastoma cell line, U87), forming characteristic cancer 'ellipsoids'. Over a culture period of up to 13 days, U87 aggregates evolve from a flexible cell string with cell coverage following the relaxed and curly fiber contour; to a distinct ellipsoid-on-string morphology, where the fiber segment connecting the ellipsoid poles become taut. Fluorescence imaging revealed the fiber segment embedded within the ellipsoidal aggregate to exhibit a morphological transition analogous to filament buckling under a compressive force. By treating the multicellular aggregate as an effective elastic medium where the microfiber is embedded, we applied a filament post-buckling theory to model the fiber morphology, deducing the apparent elasticity of the cancer ellipsoid medium, as well as the collective traction force inherent in the aggregation process.
Collapse
Affiliation(s)
- Cheng-Tai Lee
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | | | | | | | | | | |
Collapse
|
108
|
Lovmo MK, Yemane PT, Bjorkoy A, Hansen R, Cleveland RO, Angelsen BA, de Lange Davies C. Effect of Acoustic Radiation Force on Displacement of Nanoparticles in Collagen Gels. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:416-431. [PMID: 32746200 DOI: 10.1109/tuffc.2020.3006762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Penetration of nanoscale therapeutic agents into the extracellular matrix (ECM) of a tumor is a limiting factor for the sufficient delivery of drugs in tumors. Ultrasound (US) in combination with microbubbles causing cavitation is reported to improve delivery of nanoparticles (NPs) and drugs to tumors. Acoustic radiation force (ARF) could also enhance the penetration of NPs in tumor ECM. In this work, a collagen gel was used as a model for tumor ECM to study the effects of ARF on the penetration of NPs as well as the deformation of collagen gels applying different US parameters (varying pressure and duty cycle). The collagen gel was characterized, and the diffusion of water and NPs was measured. The penetration of NPs into the gel was measured by confocal laser scanning microscopy and numerical simulations were performed to determine the ARF and to estimate the penetration distance and extent of deformation. ARF had no effect on the penetration of NPs into the collagen gels for the US parameters and gel used, whereas a substantial deformation was observed. The width of the deformation on the collagen gel surface corresponded to the US beam. Comparing ARF caused by attenuation within the gel and Langevin pressure caused by reflection at the gel-water surface, ARF was the prevalent mechanism for the gel deformation. The experimental and theoretical results were consistent both with respect to the NP penetration and the gel deformation.
Collapse
|
109
|
Racles C, Asandulesa M, Tiron V, Tugui C, Vornicu N, Ciubotaru BI, Mičušík M, Omastová M, Vasiliu AL, Ciomaga C. Elastic composites with PDMS matrix and polysulfone-supported silver nanoparticles as filler. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
110
|
Wu S, Hua M, Alsaid Y, Du Y, Ma Y, Zhao Y, Lo CY, Wang C, Wu D, Yao B, Strzalka J, Zhou H, Zhu X, He X. Poly(vinyl alcohol) Hydrogels with Broad-Range Tunable Mechanical Properties via the Hofmeister Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007829. [PMID: 33554414 DOI: 10.1002/adma.202007829] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Indexed: 05/26/2023]
Abstract
Hydrogels, exhibiting wide applications in soft robotics, tissue engineering, implantable electronics, etc., often require sophisticately tailoring of the hydrogel mechanical properties to meet specific demands. For examples, soft robotics necessitates tough hydrogels; stem cell culturing demands various tissue-matching modulus; and neuron probes desire dynamically tunable modulus. Herein, a strategy to broadly alter the mechanical properties of hydrogels reversibly via tuning the aggregation states of the polymer chains by ions based on the Hofmeister effect is reported. An ultratough poly(vinyl alcohol) (PVA) hydrogel as an exemplary material (toughness 150 ± 20 MJ m-3 ), which surpasses synthetic polymers like poly(dimethylsiloxane), synthetic rubber, and natural spider silk is fabricated. With various ions, the hydrogel's various mechanical properties are continuously and reversibly in situ modulated over a large window: tensile strength from 50 ± 9 kPa to 15 ± 1 MPa, toughness from 0.0167 ± 0.003 to 150 ± 20 MJ m-3 , elongation from 300 ± 100% to 2100 ± 300%, and modulus from 24 ± 2 to 2500 ± 140 kPa. Importantly, the ions serve as gelation triggers and property modulators only, not necessarily required to remain in the gel, maintaining the high biocompatibility of PVA without excess ions. This strategy, enabling high mechanical performance and broad dynamic tunability, presents a universal platform for broad applications from biomedicine to wearable electronics.
Collapse
Affiliation(s)
- Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mutian Hua
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yousif Alsaid
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yingjie Du
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanfei Ma
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yusen Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chiao-Yueh Lo
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Canran Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dong Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bowen Yao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Hua Zhou
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
111
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
112
|
Veloso SRS, Jervis PJ, Silva JFG, Hilliou L, Moura C, Pereira DM, Coutinho PJG, Martins JA, Castanheira EMS, Ferreira PMT. Supramolecular ultra-short carboxybenzyl-protected dehydropeptide-based hydrogels for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111869. [PMID: 33641890 DOI: 10.1016/j.msec.2021.111869] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023]
Abstract
Self-assembled peptide-based hydrogels are promising materials for biomedical research owing to biocompatibility and similarity to the extracellular matrix, amenable synthesis and functionalization and structural tailoring of the rheological properties. Wider developments of self-assembled peptide-based hydrogels in biomedical research and clinical translation are hampered by limited commercial availability allied to prohibitive costs. In this work a focused library of Cbz-protected dehydrodipeptides Cbz-L-Xaa-Z-ΔPhe-OH (Xaa= Met, Phe, Tyr, Ala, Gly) was synthesised and evaluated as minimalist hydrogels. The Cbz-L-Met-Z-ΔPhe-OH and Cbz-L-Phe-Z-ΔPhe-OH hydrogelators were comprehensively evaluated regarding molecular aggregation and self-assembly, gelation, biocompatibility and as drug carriers for delivery of the natural compound curcumin and the clinically important antitumor drug doxorubicin. Drug release profiles and FRET studies of drug transport into small unilamellar vesicles (as biomembrane models) demonstrated that the Cbz-protected dehydropeptide hydrogels are effective nanocarriers for drug delivery. The expedite and scalable synthesis (in 3 steps), using commercially available reagents and amenable reaction conditions, makes Cbz-protected dehydrodipeptide hydrogels, widely available at affordable cost to the research community.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Peter J Jervis
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana F G Silva
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C Moura
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab. of Pharmacognosy, Dep. of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J A Martins
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Paula M T Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
113
|
Chocarro‐Wrona C, de Vicente J, Antich C, Jiménez G, Martínez‐Moreno D, Carrillo E, Montañez E, Gálvez‐Martín P, Perán M, López‐Ruiz E, Marchal JA. Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications. Bioeng Transl Med 2021; 6:e10192. [PMID: 33532591 PMCID: PMC7823129 DOI: 10.1002/btm2.10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.
Collapse
Affiliation(s)
- Carlos Chocarro‐Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Juan de Vicente
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Applied PhysicsFaculty of Sciences, University of GranadaGranadaSpain
| | - Cristina Antich
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Gema Jiménez
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Daniel Martínez‐Moreno
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Esmeralda Carrillo
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Elvira Montañez
- Biomedical Research Institute of Málaga (IBIMA)Málaga
- Department of Orthopedic Surgery and TraumatologyVirgen de la Victoria University HospitalMálagaSpain
| | - Patricia Gálvez‐Martín
- Department of Pharmacy and Pharmaceutical TechnologySchool of Pharmacy, University of GranadaGranadaSpain
- Advanced Therapies AreaBioibérica S.A.UBarcelonaSpain
| | - Macarena Perán
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Elena López‐Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| |
Collapse
|
114
|
Wang M, Luo Y, Yu Y, Chen F. Bioengineering Approaches to Accelerate Clinical Translation of Stem Cell Therapies Treating Osteochondral Diseases. Stem Cells Int 2020; 2020:8874742. [PMID: 33424981 PMCID: PMC7775142 DOI: 10.1155/2020/8874742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
The osteochondral tissue is an interface between articular cartilage and bone. The diverse composition, mechanical properties, and cell phenotype in these two tissues pose a big challenge for the reconstruction of the defected interface. Due to the availability and inherent regenerative therapeutic properties, stem cells provide tremendous promise to repair osteochondral defect. This review is aimed at highlighting recent progress in utilizing bioengineering approaches to improve stem cell therapies for osteochondral diseases, which include microgel encapsulation, adhesive bioinks, and bioprinting to control the administration and distribution. We will also explore utilizing synthetic biology tools to control the differentiation fate and deliver therapeutic biomolecules to modulate the immune response. Finally, future directions and opportunities in the development of more potent and predictable stem cell therapies for osteochondral repair are discussed.
Collapse
Affiliation(s)
- Meng Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yixuan Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yin Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
115
|
Liu J, Zheng H, Dai X, Poh PSP, Machens HG, Schilling AF. Transparent PDMS Bioreactors for the Fabrication and Analysis of Multi-Layer Pre-vascularized Hydrogels Under Continuous Perfusion. Front Bioeng Biotechnol 2020; 8:568934. [PMID: 33425863 PMCID: PMC7785876 DOI: 10.3389/fbioe.2020.568934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering in combination with stem cell technology has the potential to revolutionize human healthcare. It aims at the generation of artificial tissues that can mimic the original with complex functions for medical applications. However, even the best current designs are limited in size, if the transport of nutrients and oxygen to the cells and the removal of cellular metabolites waste is mainly dependent on passive diffusion. Incorporation of functional biomimetic vasculature within tissue engineered constructs can overcome this shortcoming. Here, we developed a novel strategy using 3D printing and injection molding technology to customize multilayer hydrogel constructs with pre-vascularized structures in transparent Polydimethysiloxane (PDMS) bioreactors. These bioreactors can be directly connected to continuous perfusion systems without complicated construct assembling. Mimicking natural layer-structures of vascular walls, multilayer vessel constructs were fabricated with cell-laden fibrin and collagen gels, respectively. The multilayer design allows functional organization of multiple cell types, i.e., mesenchymal stem cells (MSCs) in outer layer, human umbilical vein endothelial cells (HUVECs) the inner layer and smooth muscle cells in between MSCs and HUVECs layers. Multiplex layers with different cell types showed clear boundaries and growth along the hydrogel layers. This work demonstrates a rapid, cost-effective, and practical method to fabricate customized 3D-multilayer vascular models. It allows precise design of parameters like length, thickness, diameter of lumens and the whole vessel constructs resembling the natural tissue in detail without the need of sophisticated skills or equipment. The ready-to-use bioreactor with hydrogel constructs could be used for biomedical applications including pre-vascularization for transplantable engineered tissue or studies of vascular biology.
Collapse
Affiliation(s)
- Juan Liu
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Huaiyuan Zheng
- Department of Hand Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai, China
| | - Patrina S P Poh
- Julius Wolff Institut, Charité - Universitätsmedizin, Berlin, Germany
| | - Hans-Günther Machens
- Department of Hand Surgery and Plastic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Arndt F Schilling
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
116
|
Morrison KA, Weinreb RH, Dong X, Toyoda Y, Jin JL, Bender R, Mukherjee S, Spector JA. Facilitated self-assembly of a prevascularized dermal/epidermal collagen scaffold. Regen Med 2020; 15:2273-2283. [PMID: 33325258 DOI: 10.2217/rme-2020-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction: Resurfacing complex full thickness wounds requires free tissue transfer which creates donor site morbidity. We describe a method to fabricate a skin flap equivalent with a hierarchical microvascular network. Materials & methods: We fabricated a flap of skin-like tissue containing a hierarchical vascular network by sacrificing Pluronic® F127 macrofibers and interwoven microfibers within collagen encapsulating human pericytes and fibroblasts. Channels were seeded with smooth muscle and endothelial cells. Constructs were topically seeded with keratinocytes. Results: After 28 days in culture, multiphoton microscopy revealed a hierarchical interconnected network of macro- and micro-vessels; larger vessels (>100 μm) were lined with a monolayer endothelial neointima and a subendothelial smooth muscle neomedia. Neoangiogenic sprouts formed in the collagen protodermis and pericytes self-assembled around both fabricated vessels and neoangiogenic sprouts. Conclusion: We fabricated a prevascularized scaffold containing a hierarchical 3D network of interconnected macro- and microchannels within a collagen protodermis subjacent to an overlying protoepidermis with the potential for recipient microvascular anastomosis.
Collapse
Affiliation(s)
- Kerry A Morrison
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY 10021, USA.,Plastic Surgery Resident Physician affiliated with the Hansjorg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ross H Weinreb
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Xue Dong
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Yoshiko Toyoda
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY 10021, USA.,Plastic Surgery Resident Physician affiliated with the Division of Plastic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia L Jin
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ryan Bender
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Sushmita Mukherjee
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 14850, USA
| | - Jason A Spector
- Department of Surgery, Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY 10021, USA.,Nancy E. & Peter C. Meinig School of Bioengineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
117
|
Fang K, Wang R, Zhang H, Zhou L, Xu T, Xiao Y, Zhou Y, Gao G, Chen J, Liu D, Ai F, Fu J. Mechano-Responsive, Tough, and Antibacterial Zwitterionic Hydrogels with Controllable Drug Release for Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52307-52318. [PMID: 33183010 DOI: 10.1021/acsami.0c13009] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acute wounds subject to frequent deformations are difficult to be treated because the healing process was easily interfered by external mechanical forces. Traditional wound dressings have limited efficacy because of their poor mechanical properties and skin adhesiveness and difficulty in the delivery of therapeutic drugs effectively. As such, tough and skin-adhesive wound dressings with sustainable and stimuli-responsive drug release properties for treatment of those wounds are highly desirable. For this purpose, we have developed a mechano-responsive poly(sulfobetaine methacrylate) hydrogel which aims to control the delivery of antibiotic drug upon application of mechanical forces. Diacrylated Pluronic F127 micelles were used as a macro-cross-linker of the hydrogel and loaded with hydrophobic antimicrobial drugs. The micelle-cross-linked hydrogel has excellent mechanical properties, with the ultimate tensile strength and tensile strain of up to 112 kPa and 1420%, respectively, and compressive stress of up to 1.41 MPa. Adhesiveness of the hydrogel to the skin tissue was ∼6 kPa, and it did not decrease significantly after repetitive adhesion cycles. Protein adsorption on the hydrogel was significantly inhibited compared to that on commercial wound dressings. Because of the mechano-responsive deformation of micelles, the release of drug from the hydrogel could be precisely controlled by the extent and cycles of mechanical loading and unloading, endowing the hydrogel with superior antibacterial property against both Gram-positive and Gram-negative bacteria. In addition, drug penetration into the skin tissue was enhanced by mechanical stress applied to the hydrogel. The micelle-cross-linked zwitterionic hydrogel also showed good cell biocompatibility, negligible skin irritation, and healing capacity to acute skin wounds in mice. Such a tough mechano-responsive hydrogel holds great promise as wound dressings for acute wounds subjected to frequent movements.
Collapse
Affiliation(s)
- Kun Fang
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Rong Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Hua Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Linjie Zhou
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Ting Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Ying Xiao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Yang Zhou
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Guorong Gao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Jing Chen
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi, Ningbo 315300, China
| | - Donglei Liu
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
| | - Fanrong Ai
- School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
118
|
Nie J, Fu J, He Y. Hydrogels: The Next Generation Body Materials for Microfluidic Chips? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003797. [PMID: 33103353 DOI: 10.1002/smll.202003797] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Indexed: 05/27/2023]
Abstract
The integration of microfluidics with biomedical research is confronted with considerable limitations due to its body materials. With high content of water, hydrogels own superior biocompatibility and degradability. Can hydrogels become another material choice for the construction of microfluidic chips, particularly biofluidics? The present review aims to systematically establish the concept of hydrogel-based microfluidic chips (HMCs) and address three main concerns: i) why choosing hydrogels? ii) how to fabricate HMCs?, and iii) in which fields to apply HMCs? It is envisioned that hydrogels may be used increasingly as substitute for traditional materials and gradually act as the body material for microfluidic chips. The modifications of conventional process are highlighted to overcome issues arising from the incompatibility between the construction methods and hydrogel materials. Specifically targeting at the "soft and wet" hydrogels, an efficient flowchart of "i) high resolution template printing; ii) damage-free demolding; iii) twice-crosslinking bonding" is proposed. Accordingly, a broader microfluidic chip concept is proposed in terms of form and function. Potential biomedical applications of HMCs are discussed. This review also highlights the challenges arising from the material replacement, as well as the future directions of the proposed concept. Finally, the authors' viewpoints and perspectives for this emerging field are discussed.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
119
|
Johannsmeier S, Nguyen MTT, Hohndorf R, Dräger G, Heinemann D, Ripken T, Heisterkamp A. PEGDMA Hydrogels for Cell Adhesion and Optical Waveguiding. ACS APPLIED BIO MATERIALS 2020; 3:7011-7020. [DOI: 10.1021/acsabm.0c00885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sonja Johannsmeier
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | | | - Ruben Hohndorf
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Dag Heinemann
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Department of Phytophotonics, Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Hannover Centre for Optical Technologies (HOT), Gottfried Wilhelm Leibniz University Hannover, Nienburger Str. 17, 30167 Hannover, Germany
| | - Tammo Ripken
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
| |
Collapse
|
120
|
Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. NANO TODAY 2020; 34:100914. [PMID: 32788923 PMCID: PMC7416836 DOI: 10.1016/j.nantod.2020.100914] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive characteristic is the ability to release one or more drugs (or release drugs along with genes) in a controlled sequence at different times or at different sites. This approach can lengthen gene expression periods, reduce the side effects of drugs, enhance the efficacy of drugs, and induce an anti-proliferative effect on cancer cells due to the synergistic effects of genes and drugs. The key objective of this review is to summarize recent progress in SR-based drug/gene delivery systems for cancer and other diseases.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Faranak Elmi
- Department of Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Department of Biology, Faculty of science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, 06800, Ankara, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, 06830, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
121
|
Zilla P, Deutsch M, Bezuidenhout D, Davies NH, Pennel T. Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Front Cardiovasc Med 2020; 7:159. [PMID: 33033720 PMCID: PMC7509093 DOI: 10.3389/fcvm.2020.00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
The concept of tissue engineering evolved long before the phrase was forged, driven by the thromboembolic complications associated with the early total artificial heart programs of the 1960s. Yet more than half a century of dedicated research has not fulfilled the promise of successful broad clinical implementation. A historical account outlines reasons for this scientific impasse. For one, there was a disconnect between distinct eras each characterized by different clinical needs and different advocates. Initiated by the pioneers of cardiac surgery attempting to create neointimas on total artificial hearts, tissue engineering became fashionable when vascular surgeons pursued the endothelialisation of vascular grafts in the late 1970s. A decade later, it were cardiac surgeons again who strived to improve the longevity of tissue heart valves, and lastly, cardiologists entered the fray pursuing myocardial regeneration. Each of these disciplines and eras started with immense enthusiasm but were only remotely aware of the preceding efforts. Over the decades, the growing complexity of cellular and molecular biology as well as polymer sciences have led to surgeons gradually being replaced by scientists as the champions of tissue engineering. Together with a widening chasm between clinical purpose, human pathobiology and laboratory-based solutions, clinical implementation increasingly faded away as the singular endpoint of all strategies. Moreover, a loss of insight into the healing of cardiovascular prostheses in humans resulted in the acceptance of misleading animal models compromising the translation from laboratory to clinical reality. This was most evident in vascular graft healing, where the two main impediments to the in-situ generation of functional tissue in humans remained unheeded–the trans-anastomotic outgrowth stoppage of endothelium and the build-up of an impenetrable surface thrombus. To overcome this dead-lock, research focus needs to shift from a biologically possible tissue regeneration response to one that is feasible at the intended site and in the intended host environment of patients. Equipped with an impressive toolbox of modern biomaterials and deep insight into cues for facilitated healing, reconnecting to the “user needs” of patients would bring one of the most exciting concepts of cardiovascular medicine closer to clinical reality.
Collapse
Affiliation(s)
- Peter Zilla
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa.,Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Manfred Deutsch
- Karl Landsteiner Institute for Cardiovascular Surgical Research, Vienna, Austria
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Tim Pennel
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
122
|
Kim S, Pan CC, Yang YP. Development of a Dual Hydrogel Model System for Vascularization. Macromol Biosci 2020; 20:e2000204. [PMID: 32790230 DOI: 10.1002/mabi.202000204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/26/2020] [Indexed: 11/08/2022]
Abstract
Numerous hydrogel-based culture systems are used to create in vitro model for prevascularization. Hydrogels used to induce a microenvironment conducive to microvessel formation are typically soft and fast degradable, but often suffer from maintaining a lasting perfusable channel in vitro. Here, a dual hydrogel system that consists of photo-crosslinkable gelatin methacrylate (GelMA) and polyethylene glycol dimethacrylate (PEGDMA) is reported. GelMA hydrogels present soft and rapidly degradable properties and show microporous structures while PEGDMA is relatively stiff, almost nondegradable in vitro, and less porous. The dual hydrogel system is sequentially photo-crosslinked to construct an endothelial cell (EC)-lined perfusable PEGDMA channel and surrounding GelMA for endothelial vascular networks. Such dual hydrogel system exhibits seamless integration of the stiff PEGDMA channel and the surrounding soft GelMA, and facilitates rapid EC sprouting and extensive microvessel formation from a stable endothelium on the PEGDMA channel into the GelMA. Furthermore, diffusivity of biomolecules in the perfusable dual hydrogel system is affected by both the structural and physicochemical properties of the hydrogel system and the microvascular networks formed in the system. The establishment of the dual hydrogel system for vascularization holds great promise as an in vitro angiogenesis model and prevascularization strategy of large tissue constructs.
Collapse
Affiliation(s)
- Sungwoo Kim
- Department of Orthopedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Chi-Chun Pan
- Department of Orthopedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305, USA.,Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
| |
Collapse
|
123
|
Johnson KA, Muzzin N, Toufanian S, Slick RA, Lawlor MW, Seifried B, Moquin P, Latulippe D, Hoare T. Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing. Acta Biomater 2020; 112:101-111. [PMID: 32522716 DOI: 10.1016/j.actbio.2020.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
While the benefits of both hydrogels and drug delivery to enhance wound healing have been demonstrated, the highly hydrophilic nature of hydrogels creates challenges with respect to the effective loading and delivery of hydrophobic drugs beneficial to wound healing. Herein, we utilize pressurized gas expanded liquid (PGX) technology to produce very high surface area (~200 m2/g) alginate scaffolds and describe a method for loading the scaffolds with ibuprofen (via adsorptive precipitation) and crosslinking them (via calcium chelation) to create a hydrogel suitable for wound treatment and hydrophobic drug delivery. The high surface area of the PGX-processed alginate scaffold facilitates >8 wt% loading of ibuprofen into the scaffold and controlled in vitro ibuprofen release over 12-24 h. In vivo burn wound healing assays demonstrate significantly accelerated healing with ibuprofen-loaded PGX-alginate/calcium scaffolds relative to both hydrogel-only and untreated controls, demonstrating the combined benefits of ibuprofen delivery to suppress inflammation as well as the capacity of the PGX-alginate/calcium hydrogel to maintain wound hydration and facilitate continuous calcium release to the wound. The use of PGX technology to produce highly porous scaffolds with increased surface areas, followed by adsorptive precipitation of a hydrophobic drug onto the scaffolds, offers a highly scalable method of creating medicated wound dressings with high drug loadings. STATEMENT OF SIGNIFICANCE: While medicated hydrogel-based wound dressings offer clear advantages in accelerating wound healing, the inherent incompatibility between conventional hydrogels and many poorly water-soluble drugs of relevance in wound healing remains a challenge. Herein, we leveraged supercritical fluids-based strategies to both process and subsequently impregnate alginate, followed by post-crosslinking to form a hydrogel, to create a very high surface area alginate hydrogel scaffold loaded with high hydrophobic drug contents (here, >8 wt% ibuprofen) without the need for any pore-forming additives. The impregnated scaffolds significantly accelerated burn wound healing while also promoting regeneration of the native skin morphology. We anticipate this approach can be leveraged to load clinically-relevant and highly bioavailable dosages of hydrophobic drugs in hydrogels for a broad range of potential applications.
Collapse
Affiliation(s)
- Kelli-Anne Johnson
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Nicola Muzzin
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Samaneh Toufanian
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Rebecca A Slick
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Paul Moquin
- Ceapro, Inc., 7824-51 Avenue NW, Edmonton, AB, Canada
| | - David Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, ON, Canada.
| |
Collapse
|
124
|
Hazur J, Detsch R, Karakaya E, Kaschta J, Teßmar J, Schneidereit D, Friedrich O, Schubert DW, Boccaccini AR. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication 2020; 12:045004. [PMID: 32485692 DOI: 10.1088/1758-5090/ab98e5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many different biofabrication approaches as well as a variety of bioinks have been developed by researchers working in the field of tissue engineering. A main challenge for bioinks often remains the difficulty to achieve shape fidelity after printing. In order to overcome this issue, a homogeneous pre-crosslinking technique, which is universally applicable to all alginate-based materials, was developed. In this study, the Young's Modulus after post-crosslinking of selected hydrogels, as well as the chemical characterization of alginate in terms of M/G ratio and molecular weight, were determined. With our technique it was possible to markedly enhance the printability of a 2% (w/v) alginate solution, without using a higher polymer content, fillers or support structures. 3D porous scaffolds with a height of around 5 mm were printed. Furthermore, the rheological behavior of different pre-crosslinking degrees was studied. Shear forces on cells as well as the flow profile of the bioink inside the printing nozzle during the process were estimated. A high cell viability of printed NIH/3T3 cells embedded in the novel bioink of more than 85% over a time period of two weeks could be observed.
Collapse
Affiliation(s)
- Jonas Hazur
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr.6, 91058, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Scalzone A, Bonifacio MA, Cometa S, Cucinotta F, De Giglio E, Ferreira AM, Gentile P. pH-Triggered Adhesiveness and Cohesiveness of Chondroitin Sulfate-Catechol Biopolymer for Biomedical Applications. Front Bioeng Biotechnol 2020; 8:712. [PMID: 32695771 PMCID: PMC7336602 DOI: 10.3389/fbioe.2020.00712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/08/2020] [Indexed: 01/14/2023] Open
Abstract
Nature provides biomaterials that tend to be effective to control both their adhesive and cohesive properties. A catecholamine motif found in the marine mussels, the mytilus edulis foot protein, can play adhesiveness and cohesiveness. Particularly, acidic pH drives catechol (Cat) to have adhesive function, resulting in surface coating, while basic pH allows to enhance its cohesive properties, resulting in the formation of hydrogels. In this work, we demonstrated the usefulness of Cat-conjugated chondroitin sulfate (CS) as a platform for mesenchymal stem cell culture, utilizing the adhesive property of CS-Cat as coating for different substrates and the cohesive properties as hydrogel for cells encapsulation. To prepare the CS-Cat biopolymer, dopamine (DP) was coupled to the CS by carbodiimide coupling reaction and the Cat content was determined by UV-Vis spectroscopy (4.8 ± 0.6%). To demonstrate the adhesive properties of the biopolymer, PLA, PCL, TiO2, and SiO2 substrates were immersed in CS-Cat solution (pH < 2). Following the coating, the surfaces became highly hydrophilic, exhibiting a contact angle less than 35°. Also, in the presence of an oxidizing agent at pH 8, CS-Cat solution immediately became a hydrogel, as shown by inverted-vial test. Finally, immortalized TERT human mesenchymal stem cells (Y201) confirmed the high cytocompatibility of the biopolymer. The CS-Cat coating significantly enabled the Y201 adhesion onto PLA substrates, while the prepared hydrogel demonstrated to be a suitable environment for the encapsulation of cells as suitable bioink for further bioprinting applications.
Collapse
Affiliation(s)
- Annachiara Scalzone
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Fabio Cucinotta
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elvira De Giglio
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | - Ana M Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
126
|
Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Ann Biomed Eng 2020; 48:1955-1970. [DOI: 10.1007/s10439-020-02537-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
|
127
|
Molina ER, Chim LK, Barrios S, Ludwig JA, Mikos AG. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:249-271. [PMID: 32057288 PMCID: PMC7310212 DOI: 10.1089/ten.teb.2019.0302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Investigations of cancer biology and screening of potential therapeutics for efficacy and safety begin in the preclinical laboratory setting. A staple of most basic research in cancer involves the use of tissue culture plates, on which immortalized cell lines are grown in monolayers. However, this practice has been in use for over six decades and does not account for vital elements of the tumor microenvironment that are thought to aid in initiation, propagation, and ultimately, metastasis of cancer. Furthermore, information gleaned from these techniques does not always translate to animal models or, more crucially, clinical trials in cancer patients. Osteosarcoma (OS) and Ewing sarcoma (ES) are the most common primary tumors of bone, but outcomes for patients with metastatic or recurrent disease have stagnated in recent decades. The unique elements of the bone tumor microenvironment have been shown to play critical roles in the pathogenesis of these tumors and thus should be incorporated in the preclinical models of these diseases. In recent years, the field of tissue engineering has leveraged techniques used in designing scaffolds for regenerative medicine to engineer preclinical tumor models that incorporate spatiotemporal control of physical and biological elements. We herein review the clinical aspects of OS and ES, critical elements present in the sarcoma microenvironment, and engineering approaches to model the bone tumor microenvironment. Impact statement The current paradigm of cancer biology investigation and therapeutic testing relies heavily on monolayer, monoculture methods developed over half a century ago. However, these methods often lack essential hallmarks of the cancer microenvironment that contribute to tumor pathogenesis. Tissue engineers incorporate scaffolds, mechanical forces, cells, and bioactive signals into biological environments to drive cell phenotype. Investigators of bone sarcomas, aggressive tumors that often rob patients of decades of life, have begun to use tissue engineering techniques to devise in vitro models for these diseases. Their efforts highlight how critical elements of the cancer microenvironment directly affect tumor signaling and pathogenesis.
Collapse
Affiliation(s)
- Eric R. Molina
- Department of Bioengineering, Rice University, Houston, Texas
| | - Letitia K. Chim
- Department of Bioengineering, Rice University, Houston, Texas
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, Texas
| | - Joseph A. Ludwig
- Division of Cancer Medicine, Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | | |
Collapse
|
128
|
A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior. Sci Rep 2020; 10:6370. [PMID: 32286364 PMCID: PMC7156444 DOI: 10.1038/s41598-020-62986-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young's modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
Collapse
|
129
|
Ferro MP, Heilshorn SC, Owens RM. Materials for blood brain barrier modeling in vitro. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2020; 140:100522. [PMID: 33551572 PMCID: PMC7864217 DOI: 10.1016/j.mser.2019.100522] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Brain homeostasis relies on the selective permeability property of the blood brain barrier (BBB). The BBB is formed by a continuous endothelium that regulates exchange between the blood stream and the brain. This physiological barrier also creates a challenge for the treatment of neurological diseases as it prevents most blood circulating drugs from entering into the brain. In vitro cell models aim to reproduce BBB functionality and predict the passage of active compounds through the barrier. In such systems, brain microvascular endothelial cells (BMECs) are cultured in contact with various biomaterial substrates. However, BMEC interactions with these biomaterials and their impact on BBB functions are poorly described in the literature. Here we review the most common materials used to culture BMECs and discuss their potential impact on BBB integrity in vitro. We investigate the biophysical properties of these biomaterials including stiffness, porosity and material degradability. We highlight a range of synthetic and natural materials and present three categories of cell culture dimensions: cell monolayers covering non-degradable materials (2D), cell monolayers covering degradable materials (2.5D) and vascularized systems developing into degradable materials (3D).
Collapse
Affiliation(s)
- Magali P. Ferro
- Department of Bioelectronics, Mines Saint-Étienne, 880 route de Mimet, F-13541, Gardanne, France
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, CB30AS, Cambridge, UK
| |
Collapse
|
130
|
Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110740. [PMID: 32204048 DOI: 10.1016/j.msec.2020.110740] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/20/2019] [Accepted: 02/09/2020] [Indexed: 01/31/2023]
Abstract
Three-dimensional (3D) porous structures with controlled pore size and interconnected pores, good mechanical properties and biocompatibility are of great interest for tissue engineering. In this work we propose a new strategy to obtain highly porous 3D structures with improved properties using bacterial cellulose (BC) and eco-friendly additives and processes. Glucose, vanillin and citric acid were used as non-toxic and cheap cross-linkers and γ-aminopropyltriethoxysilane was used to partially replace the surface OH groups of cellulose with amino groups. The efficiency of grafting and cross-linking reactions was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphological investigation of BC sponges revealed a multi-hierarchical organization after functionalization and cross-linking. Micro-computed tomography analysis showed 80-90% open porosity in modified BC sponges. The thermal and mechanical properties of the sponges were influenced by the cross-linker type and concentration. The strength-to-weight ratio of BC sponges cross-linked with glucose and citric acid was 150% and 120% higher compared to that of unmodified BC sponge. In vitro assays revealed that the modified BC sponges are non-cytotoxic and do not trigger an inflammatory response in macrophages. This study provides a simple and green method to obtain highly porous cellulose sponges with hierarchical design, biocompatibility and good mechanical properties.
Collapse
|
131
|
Boutchuen A, Zimmerman D, Arabshahi A, Melnyczuk J, Palchoudhury S. Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:296-309. [PMID: 32117668 PMCID: PMC7034222 DOI: 10.3762/bjnano.11.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) are considered as one of the most promising drug delivery vehicles and a next-generation solution for current medical challenges. In this context, variables related to flow of NPs such as the quantity of NPs lost during transport and flow trajectory greatly affect the clinical efficiency of NP drug delivery systems. Currently, there is little knowledge of the physical mechanisms dominating NP flow inside the human body due to the limitations of available experimental tools for mimicking complex physiological environments at the preclinical stage. Here, we report a coupled experimental and computational fluid dynamics (CFD)-based novel in vitro approach to predict the flow velocity and binding of NP drug delivery systems during transport through vasculature. Poly(hydroxyethyl)methacrylate hydrogels were used to form soft cylindrical constructs mimicking vascular sections as flow channels for synthesized iron oxide NPs in these first-of-its-kind transport experiments. Brownian dynamics and material of the flow channels played key roles in NP flow, based on the measurements of NP flow velocity over seven different mass concentrations. A fully developed laminar flow of the NPs under these conditions was simultaneously predicted using CFD. Results from the mass loss of NPs during flow indicated a diffusion-dominated flow at higher particle concentrations but a flow controlled by the surrounding fluid and Brownian dynamics at the lowest NP concentrations. The CFD model predicted a mass loss of 1.341% and 6.253% for the 4.12 g·mL-1 and 2.008 g·mL-1 inlet mass concentrations of the NPs, in close confirmation with the experimental results. This further highlights the reliability of our new in vitro technique in providing mechanistic insights of NP flow for potential preclinical stage applications.
Collapse
Affiliation(s)
- Armel Boutchuen
- Department of Civil and Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Dell Zimmerman
- Department of Civil and Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Abdollah Arabshahi
- SimCenter, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - John Melnyczuk
- Department of Chemistry, Clark Atlanta University, Georgia 30314, United States
| | - Soubantika Palchoudhury
- Department of Civil and Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| |
Collapse
|
132
|
|
133
|
Veloso SRS, Martins JA, Hilliou L, O Amorim C, Amaral VS, Almeida BG, Jervis PJ, Moreira R, Pereira DM, Coutinho PJG, Ferreira PMT, Castanheira EMS. Dehydropeptide-based plasmonic magnetogels: a supramolecular composite nanosystem for multimodal cancer therapy. J Mater Chem B 2019; 8:45-64. [PMID: 31764934 DOI: 10.1039/c9tb01900f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Supramolecular hydrogels are highly promising candidates as biomedical materials owing to their wide array of properties, which can be tailored and modulated. Additionally, their combination with plasmonic/magnetic nanoparticles to form plasmonic magnetogels further improves their potential in biomedical applications through the combination of complementary strategies, such as photothermia, magnetic hyperthermia, photodynamic therapy and magnetic-guided drug delivery. Here, a new dehydropeptide hydrogelator, Npx-l-Met-Z-ΔPhe-OH, was developed and combined with two different plasmonic/magnetic nanoparticle architectures, i.e., core/shell manganese ferrite/gold nanoparticles and gold-decorated manganese ferrite nanoparticles with ca. 55 nm and 45 nm sizes, respectively. The magnetogels were characterized via HR-TEM, FTIR spectroscopy, circular dichroism and rheological assays. The gels were tested as nanocarriers for a model antitumor drug, the natural compound curcumin. The incorporation of the drug in the magnetogel matrices was confirmed through fluorescence-based techniques (FRET, fluorescence anisotropy and quenching). The curcumin release profiles were studied with and without the excitation of the gold plasmon band. The transport of curcumin from the magnetogels towards biomembrane models (small unilamellar vesicles) was assessed via FRET between the fluorescent drug and the lipid probe Nile Red. The developed magnetogels showed promising results for photothermia and photo-triggered drug release. The magnetogels bearing gold-decorated nanoparticles showed the best photothermia properties, while the ones containing core/shell nanoparticles had the best photoinduced curcumin release.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - J A Martins
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Loic Hilliou
- Institute for Polymers and Composites/I3N, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C O Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - V S Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - B G Almeida
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Peter J Jervis
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal and REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Rute Moreira
- REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - David M Pereira
- REQUIMTE/LAQV, Lab of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo J G Coutinho
- Centro de Física (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | |
Collapse
|
134
|
Adibnia V, Mirbagheri M, Latreille PL, Faivre J, Cécyre B, Robert J, Bouchard JF, Martinez VA, Delair T, David L, Hwang DK, Banquy X. Chitosan hydrogel micro-bio-devices with complex capillary patterns via reactive-diffusive self-assembly. Acta Biomater 2019; 99:211-219. [PMID: 31473363 DOI: 10.1016/j.actbio.2019.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
We present chitosan hydrogel microfluidic devices with self-assembled complex microcapillary patterns, conveniently formed by a diffusion-reaction process. These patterns in chitosan hydrogels are formed by a single-step procedure involving diffusion of a gelation agent into the polymer solution inside a microfluidic channel. By changing the channel geometry, it is demonstrated how to control capillary length, trajectory and branching. Diffusion of nanoparticles (NPs) in the capillary network is used as a model to effectively mimic the transport of nano-objects in vascularized tissues. Gold NPs diffusion is measured locally in the hydrogel chips, and during their two-step transport through the capillaries to the gel matrix and eventually to embedded cell clusters in the gel. In addition, the quantitative analyses reported in this study provide novel opportunities for theoretical investigation of capillary formation and propagation during diffusive gelation of biopolymers. STATEMENT OF SIGNIFICANCE: Hydrogel micropatterning is a challenging task, which is of interest in several biomedical applications. Creating the patterns through self assembly is highly beneficial, because of the accessible and practical preparation procedure. In this study, we introduced complex self-assembled capillary patterns in chitosan hydrogels using a microfluidic approach. To demonstrate the potential application of these capillary patterns, a vascularized hydrogel with microwells occupied by cells was produced, and the diffusion of gold nanoparticles travelling in the capillaries and diffusing in the gel were evaluated. This model mimics a simplified biological tissue, where nanomedicine has to travel through the vasculature, extravasate into and diffuse through the extracellular matrix and eventually reach targeted cells.
Collapse
|
135
|
Cristallini C, Danti S, Azimi B, Tempesti V, Ricci C, Ventrelli L, Cinelli P, Barbani N, Lazzeri A. Multifunctional Coatings for Robotic Implanted Device. Int J Mol Sci 2019; 20:ijms20205126. [PMID: 31623142 PMCID: PMC6829358 DOI: 10.3390/ijms20205126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was the preparation and physico-chemical, mechanical, biological, and functional characterization of a multifunctional coating for an innovative, fully implantable device. The multifunctional coating was designed to have three fundamental properties: adhesion to device, close mechanical resemblance to human soft tissues, and control of the inflammatory response and tissue repair process. This aim was fulfilled by preparing a multilayered coating based on three components: a hydrophilic primer to allow device adhesion, a poly(vinyl alcohol) hydrogel layer to provide good mechanical compliance with the human tissue, and a layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers. The use of biopolymer fibers offered the potential for a long-term interface able to modulate the release of an anti-inflammatory drug (dexamethasone), thus contrasting acute and chronic inflammation response following device implantation. Two copolymers, poly(vinyl acetate-acrylic acid) and poly(vinyl alcohol-acrylic acid), were synthetized and characterized using thermal analysis (DSC, TGA), Fourier transform infrared spectroscopy (FT-IR chemical imaging), in vitro cell viability, and an adhesion test. The resulting hydrogels were biocompatible, biostable, mechanically compatible with soft tissues, and able to incorporate and release the drug. Finally, the multifunctional coating showed a good adhesion to titanium substrate, no in vitro cytotoxicity, and a prolonged and controlled drug release.
Collapse
Affiliation(s)
- Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, c/o Largo Lucio Lazzarino, 56126 Pisa, Italy.
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| | - Serena Danti
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| | - Veronika Tempesti
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| | - Claudio Ricci
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| | - Letizia Ventrelli
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| | - Niccoletta Barbani
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, c/o Largo Lucio Lazzarino, 56126 Pisa, Italy.
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| | - Andrea Lazzeri
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, c/o Largo Lucio Lazzarino, 56126 Pisa, Italy.
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126 Pisa, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
136
|
Kamperman T, Koerselman M, Kelder C, Hendriks J, Crispim JF, de Peuter X, Dijkstra PJ, Karperien M, Leijten J. Spatiotemporal material functionalization via competitive supramolecular complexation of avidin and biotin analogs. Nat Commun 2019; 10:4347. [PMID: 31554812 PMCID: PMC6761202 DOI: 10.1038/s41467-019-12390-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Spatiotemporal control over engineered tissues is highly desirable for various biomedical applications as it emulates the dynamic behavior of natural tissues. Current spatiotemporal biomaterial functionalization approaches are based on cytotoxic, technically challenging, or non-scalable chemistries, which has hampered their widespread usage. Here we report a strategy to spatiotemporally functionalize (bio)materials based on competitive supramolecular complexation of avidin and biotin analogs. Specifically, an injectable hydrogel is orthogonally post-functionalized with desthiobiotinylated moieties using multivalent neutravidin. In situ exchange of desthiobiotin by biotin enables spatiotemporal material functionalization as demonstrated by the formation of long-range, conformal, and contra-directional biochemical gradients within complex-shaped 3D hydrogels. Temporal control over engineered tissue biochemistry is further demonstrated by timed presentation and sequestration of growth factors using desthiobiotinylated antibodies. The method's universality is confirmed by modifying hydrogels with biotinylated fluorophores, peptides, nanoparticles, enzymes, and antibodies. Overall, this work provides a facile, cytocompatible, and universal strategy to spatiotemporally functionalize materials.
Collapse
Affiliation(s)
- Tom Kamperman
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| | - Michelle Koerselman
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Cindy Kelder
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jan Hendriks
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - João F Crispim
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Xandra de Peuter
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Pieter J Dijkstra
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Marcel Karperien
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jeroen Leijten
- Faculty of Science and Technology, Technical Medical Centre, Department of Developmental BioEngineering, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
137
|
Scali M, Veldhoven PAH, Henselmans PWJ, Dodou D, Breedveld P. Design of an ultra-thin steerable probe for percutaneous interventions and preliminary evaluation in a gelatine phantom. PLoS One 2019; 14:e0221165. [PMID: 31483792 PMCID: PMC6726204 DOI: 10.1371/journal.pone.0221165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/31/2019] [Indexed: 01/10/2023] Open
Abstract
Needles with diameter under 1 mm are used in various medical applications to limit the risk of complication and patient discomfort during the procedure. Next to a small diameter, needle steerability is an important property for reaching targets located deep inside the body accurately and precisely. In this paper, we present a 0.5-mm prototype probe which is able to steer in three dimensions (3D) without the need of axial rotation. The prototype consists of three Nitinol wires (each with a diameter of 0.125 mm) with a pre-curved tip. The wires are kept together by a stainless steel tube. Each wire is clamped to a block which translates along a leadscrew, the rotation of the latter being controlled by a wheel connected at the distal end of the leadscrew. The tip bends upon retraction of one or two wires. When pushed through a soft solid structure (e.g., a soft tissue or soft tissue phantom), the probe deflects due to off-axis forces acting on its tip by the surrounding structure. We tested the performance of the prototype into a 10% wt gelatine phantom, in terms of the predictability of the steering direction and the controllability of the final position after steering inside the substrate. The results showed that the probe steered in the direction of the retracted wire and that the final position varied from small deflections from the straight path when the wires were slightly retracted, to sharp curvatures for large wire retraction. The probe could be used in various applications, from cases where only a small correction of the path in one direction is needed to cases where the path to be followed includes obstacles and curves in multiple directions.
Collapse
Affiliation(s)
- Marta Scali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
- * E-mail:
| | - Paulien A. H. Veldhoven
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Paul W. J. Henselmans
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Dimitra Dodou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Paul Breedveld
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
138
|
Heo DN, Hospodiuk M, Ozbolat IT. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomater 2019; 95:348-356. [PMID: 30831326 DOI: 10.1016/j.actbio.2019.02.046] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/17/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023]
Abstract
Stem cell encapsulation in hydrogels has been widely employed in tissue engineering, regenerative medicine, organ-on-a-chip devices and gene delivery; however, fabrication of native-like bone tissue using such a strategy has been a challenge, particularly in vitro, due to the limited cell loading densities resulting in weaker cell-cell interactions and lesser extra-cellular matrix deposition. In particular, scalable bone tissue constructs require vascular network to provide enough oxygen and nutrient supplies to encapsulated cells. To enhance stem cell function and generate pre-vascularized network, we here employed collagen/fibrin hydrogel as an encapsulation matrix for the incorporation of human mesenchymal stem cell/human umbilical vein endothelial cell (MSC/HUVEC) spheroids, and investigated their cellular behavior (including cell viability, morphology, proliferation, and gene expression profile) and compared to that of cell suspension- or MSC spheroids-laden hydrogels. MSC/HUVEC spheroids encapsulated in collagen/fibrin hydrogel showed better cell spreading and proliferation, and up-regulated osteogenic differentiation, and demonstrated pre-vascular network formation. Overall, MSC/HUVEC spheroids-laden hydrogels provided a highly suitable 3D microenvironment for bone tissue formation, which can be utilized in various applications, such as but not limited to tissue engineering, disease modeling and drug screening. STATEMENT OF SIGNIFICANCE: Stem cell encapsulation in hydrogels has been widely used in various areas such as tissue engineering, regenerative medicine, organ-on-a-chip devices and gene delivery; however, fabrication of native-like bone tissue using such an approach has been a challenge, particularly in vitro, due to the limited cell loading densities resulting in weaker cell-cell interactions and lesser extra-cellular matrix deposition. Here in this work, we have encapsulated spheroids of human mesenchymal stems cells (MSCs) in collagen/fibrin hydrogel and evaluated their viability, proliferation, osteogenic differentiation, and bone formation potential in vitro with respect to cell suspension-laden hydrogel samples. We have further incorporated human umbilical vein endothelial cells (HUVECs) into MSC spheroids and demonstrated that the presence of HUVECs in 3D spheroid culture in collagen/fibrin gel induced the formation of pre-vascular network, improved cell viability and proliferation, enhanced the osteogenic differentiation of spheroids, and increased their bone mineral deposition. In sum, MSC/HUVEC spheroids laden hydrogels provided a highly suitable 3D microenvironment for bone tissue formation, which can be utilized in various applications, such as but not limited to tissue engineering and regenerative medicine, disease modeling and drug screening.
Collapse
|
139
|
Gao F, Xu Z, Liang Q, Li H, Peng L, Wu M, Zhao X, Cui X, Ruan C, Liu W. Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900867. [PMID: 31406678 PMCID: PMC6685475 DOI: 10.1002/advs.201900867] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load-bearing as bioscaffolds. Herein, a biodegradable high-strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N-acryloyl 2-glycine) (PACG) and methacrylated gelatin (GelMA) (PACG-GelMA) is successfully constructed by photo-initiated polymerization. Introducing hydrogen bond-strengthened PACG contributes to a significant increase in the mechanical strengths of gelatin hydrogel with a high tensile strength (up to 1.1 MPa), outstanding compressive strength (up to 12.4 MPa), large Young's modulus (up to 320 kPa), and high compression modulus (up to 837 kPa). In turn, the GelMA chemical crosslinking could stabilize the temporary PACG network, showing tunable biodegradability by adjusting ACG/GelMA ratios. Further, a biohybrid gradient scaffold consisting of top layer of PACG-GelMA hydrogel-Mn2+ and bottom layer of PACG-GelMA hydrogel-bioactive glass is fabricated for repair of osteochondral defects by a 3D printing technique. In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic-related and osteogenic-related differentiation of human bone marrow stem cells. Around 12 weeks after in vivo implantation, the biohybrid gradient hydrogel scaffold significantly facilitates concurrent regeneration of cartilage and subchondral bone in a rat model.
Collapse
Affiliation(s)
- Fei Gao
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350China
| | - Ziyang Xu
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350China
| | - Qingfei Liang
- Research Center for Human Tissue and Organs DegenerationInstitute Biomedical and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Haofei Li
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350China
| | - Liuqi Peng
- Research Center for Human Tissue and Organs DegenerationInstitute Biomedical and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Mingming Wu
- Research Center for Human Tissue and Organs DegenerationInstitute Biomedical and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Xiaoli Zhao
- Research Center for Human Tissue and Organs DegenerationInstitute Biomedical and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Xu Cui
- Research Center for Human Tissue and Organs DegenerationInstitute Biomedical and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs DegenerationInstitute Biomedical and BiotechnologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Wenguang Liu
- School of Materials Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin UniversityTianjin300350China
| |
Collapse
|
140
|
Hendley SA, Bollen V, Anthony GJ, Paul JD, Bader KB. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots. Phys Med Biol 2019; 64:145019. [PMID: 31146275 DOI: 10.1088/1361-6560/ab25a6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As a bubble-based ablative therapy, the efficacy of histotripsy has been demonstrated in healthy or acutely diseased models. Chronic conditions associated with stiff tissues may require additional bubble activity prior to histotripsy liquefaction. In this study, histotripsy pulses were generated in agarose phantoms of Young's moduli ranging from 12.3 to 142 kPa, and in vitro clot models with mild and strong platelet-activated retraction. Bubble cloud emissions were tracked with passive cavitation imaging, and the threshold acoustic power associated with phantom liquefaction was extracted with receiver operator characteristic analysis. The power of histotripsy-generated emissions and the degree of liquefaction were tabulated for both clot models. For the agarose phantoms, the acoustic power associated with liquefaction increased with Young's modulus. When grouped based on agarose concentration, only two arms displayed a significant difference in the liquefaction threshold acoustic power (22.1 kPa versus 142 kPa Young's modulus). The bubble cloud dynamics tracked with passive cavitation imaging indicated no strong changes in the bubble dynamics based on the phantom stiffness. For identical histotripsy exposure, the power of acoustic emissions and degree of clot lysis did not vary based on the clot model. Overall, these results indicate that a fixed threshold acoustic power mapped with passive cavitation imaging can be utilized for predicting histotripsy liquefaction over a wide range of tissue stiffness.
Collapse
Affiliation(s)
- Samuel A Hendley
- The University of Chicago, Chicago, IL, United States of America. 5812 S Ellis Ave, IB-016, Chicago, IL 60637, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
141
|
Al-Khateeb R, Prpic J. Hyaluronic Acid: The Reason for Its Variety of Physiological and Biochemical Functional Properties. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2213476x06666190405094637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:Many physicians may be unfamiliar with the importance of hyaluronic acid (HA) and its physiological and biochemical functions at cellular level. Despite the vast number of published studies using HA in medical treatments, it is still difficult for the reader to clearly distinguish the different types of HA employed in different medical applications. In addition, published studies do not mention the exact type of HA used or its biochemical properties. Usually, a study mentions only its molecular weight and concentration, which are insufficient to know its exact designed properties or to make a comparison with other types of HA.Methodology:This article is intended to summarise the information about native and modified HAs with a focus on explaining their different physiological and biochemical functions in the human body, their different commercially available types, and how they affect the associated medical applications. The goal is to provide a basis to researchers and physicians for distinguishing different types of HA and their properties in order to enhance physicians’ clinical practice in terms of application of different types of HA to treatments and to help the international research community to change the reporting of HA characteristics in published papers. This is necessary to enhance future acquisition of data, with the ability to create an HA data bank for further research and as a reference for different HA types and their medical applications.Conclusion:These developments should enhance the scientific and clinical knowledge about HA. Furthermore, the overall approach in this paper can be applied to other similar substances.
Collapse
Affiliation(s)
| | - Jelena Prpic
- School of Dental Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
142
|
Sergeeva A, Vikulina AS, Volodkin D. Porous Alginate Scaffolds Assembled Using Vaterite CaCO 3 Crystals. MICROMACHINES 2019; 10:E357. [PMID: 31146472 PMCID: PMC6630714 DOI: 10.3390/mi10060357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Abstract
Formulation of multifunctional biopolymer-based scaffolds is one of the major focuses in modern tissue engineering and regenerative medicine. Besides proper mechanical/chemical properties, an ideal scaffold should: (i) possess a well-tuned porous internal structure for cell seeding/growth and (ii) host bioactive molecules to be protected against biodegradation and presented to cells when required. Alginate hydrogels were extensively developed to serve as scaffolds, and recent advances in the hydrogel formulation demonstrate their applicability as "ideal" soft scaffolds. This review focuses on advanced porous alginate scaffolds (PAS) fabricated using hard templating on vaterite CaCO3 crystals. These novel tailor-made soft structures can be prepared at physiologically relevant conditions offering a high level of control over their internal structure and high performance for loading/release of bioactive macromolecules. The novel approach to assemble PAS is compared with traditional methods used for fabrication of porous alginate hydrogels. Finally, future perspectives and applications of PAS for advanced cell culture, tissue engineering, and drug testing are discussed.
Collapse
Affiliation(s)
- Alena Sergeeva
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
| | - Anna S Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany.
- School of Science and Technology, Nottingham Trent University, Clifton Lane,Nottingham NG11 8NS, UK.
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane,Nottingham NG11 8NS, UK.
| |
Collapse
|
143
|
Tallá Ferrer C, Vilariño-Feltrer G, Rizk M, Sydow HG, Vallés-Lluch A. Nanocomposites based on poly(glycerol sebacate) with silica nanoparticles with potential application in dental tissue engineering. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1616197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C. Tallá Ferrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - G. Vilariño-Feltrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - M. Rizk
- Department for Preventive Dentistry, Parodontology and Cariology, University Medical Center, Göttingen, Germany
| | - H. G. Sydow
- Institute of Anatomy and Embryology, University Medical Center, Göttingen, Germany
| | - A. Vallés-Lluch
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
- Biomaterials and Nanomedicine (CIBER-BBN), Biomedical Research Networking Centre in Bioengineering, Valencia, Spain
| |
Collapse
|
144
|
Skeldon G, Lucendo-Villarin B, Shu W. Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0224. [PMID: 29786559 DOI: 10.1098/rstb.2017.0224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
Stem cell technology in regenerative medicine has the potential to provide an unlimited supply of cells for drug testing, medical transplantation and academic research. In order to engineer a realistic tissue model using stem cells as an alternative to human tissue, it is essential to create artificial stem cell microenvironment or niches. Three-dimensional (3D) bioprinting is a promising tissue engineering field that offers new opportunities to precisely place stem cells within their niches layer-by-layer. This review covers bioprinting technologies, the current development of 'bio-inks' and how bioprinting has already been applied to stem-cell culture, as well as their applications for human regenerative medicine. The key considerations for bioink properties such as stiffness, stability and biodegradation, biocompatibility and printability are highlighted. Bioprinting of both adult and pluriopotent stem cells for various types of artificial tissues from liver to brain has been reviewed. 3D bioprinting of stem-cell derived tissues for human regenerative medicine is an exciting emerging area that represents opportunities for new research, industries and products as well as future challenges in clinical translation.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Gregor Skeldon
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK.,School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | | | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0NW, UK
| |
Collapse
|
145
|
Ozbolat V, Dey M, Ayan B, Ozbolat IT. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices. Biofabrication 2019; 11:034101. [PMID: 30884470 DOI: 10.1088/1758-5090/ab10ae] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current technologies for manufacturing of microfluidic devices include soft-lithography, wet and dry etching, thermoforming, micro-machining and three-dimensional (3D) printing. Among them, soft-lithography has been the mostly preferred one in medical and pharmaceutical fields due to its ability to generate polydimethylsiloxane (PDMS) devices with resin biocompatibility, throughput and transparency for imaging. It is a multi-step process requiring the preparation of a silicon wafer pattern, which is fabricated using photolithography according to a defined mask. Photolithography is a costly, complicated and time-consuming process requiring a clean-room environment, and the technology is not readily accessible in most of the developing countries. In addition, generated patterns on photolithography-made silicon wafers do not allow building 3D intricate shapes and silicon direct bonding is thus utilized for closed fluid channels and complex 3D structures. 3D Printing of PDMS has recently gained significant interest due to its ability to define complex 3D shapes directly from user-defined designs. In this work, we investigated Carbopol as a sacrificial gel in order to create microfluidic channels in PDMS devices. Our study demonstrated that Carbopol ink possessed a shear-thinning behavior and enabled the extrusion-based printing of channel templates, which were overlaid with PDMS to create microfluidic devices upon curing of PDMS and removal of the sacrificial Carbopol ink. To demonstrate the effectiveness of the fabricated devices, channels were lined up with human umbilical vein endothelial cells (HUVECs) and human bone marrow endothelial cells (BMECs) in separate devices, where both HUVECs and BMECs demonstrated the formation of endothelium with highly aligned cells in the direction of fluid flow. Overall, we here present a highly affordable and practical approach in fabrication of PDMS devices with closed fluid channels, which have great potential in a myriad of applications from cancer treatments to infectious disease diagnostics to artificial organs.
Collapse
Affiliation(s)
- Veli Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, United States of America. The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America. Mechanical Engineering Department, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | | | | | | |
Collapse
|
146
|
Paez-Mayorga J, Hernández-Vargas G, Ruiz-Esparza GU, Iqbal HMN, Wang X, Zhang YS, Parra-Saldivar R, Khademhosseini A. Bioreactors for Cardiac Tissue Engineering. Adv Healthc Mater 2019; 8:e1701504. [PMID: 29737043 DOI: 10.1002/adhm.201701504] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/22/2018] [Indexed: 02/05/2023]
Abstract
The advances in biotechnology, biomechanics, and biomaterials can be used to develop organ models that aim to accurately emulate their natural counterparts. Heart disease, one of the leading causes of death in modern society, has attracted particular attention in the field of tissue engineering. To avoid incorrect prognosis of patients suffering from heart disease, or from adverse consequences of classical therapeutic approaches, as well as to address the shortage of heart donors, new solutions are urgently needed. Biotechnological advances in cardiac tissue engineering from a bioreactor perspective, in which recapitulation of functional, biochemical, and physiological characteristics of the cardiac tissue can be used to recreate its natural microenvironment, are reviewed. Detailed examples of functional and preclinical applications of engineered cardiac constructs and the state-of-the-art systems from a bioreactor perspective are provided. Finally, the current trends and future directions of the field for its translation to clinical settings are discussed.
Collapse
Affiliation(s)
- Jesus Paez-Mayorga
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Gustavo Hernández-Vargas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Microsystems Technologies Laboratories, MIT, Cambridge, MA, 02139, USA
| | - Ali Khademhosseini
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, 90095, USA
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, 143-701, Republic of Korea
- Center for Nanotechnology, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
147
|
Samal P, van Blitterswijk C, Truckenmüller R, Giselbrecht S. Grow with the Flow: When Morphogenesis Meets Microfluidics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805764. [PMID: 30767289 DOI: 10.1002/adma.201805764] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Developmental biology has advanced the understanding of the intricate and dynamic processes involved in the formation of an organism from a single cell. However, many gaps remain in the knowledge of embryonic development, especially regarding tissue morphogenesis. A possible approach to mimic such phenomena uses pluripotent stem cells in in vitro morphogenetic models. Herein, these systems are summarized with emphasis on the ability to better manipulate and control cellular interfaces with either liquid or solid materials using microengineered tools, which is critical for attaining deeper insights into pattern formation and stem cell differentiation during organogenesis. The role of conventional and customized cell-culture systems in supporting important advances in the field of morphogenesis is discussed, and the fascinating role that material sciences and microengineering currently play and are expected to play in the future is highlighted. In conclusion, it is proffered that continued microfluidics innovations when applied to morphogenesis promise to provide important insights to advance many multidisciplinary fields, including regenerative medicine.
Collapse
Affiliation(s)
- Pinak Samal
- Department of Complex Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Roman Truckenmüller
- Department of Complex Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Complex Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
148
|
Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Jindal HM, Hasikin K, Naveen SV, Sekaran SD, Kamarul T. Elastomeric biocomposite of silver-containing mesoporous bioactive glass and poly(1,8-octanediol citrate): Physiochemistry and in vitro antibacterial capacity in tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1022-1033. [PMID: 30812986 DOI: 10.1016/j.msec.2019.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/10/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
Abstract
A novel series of silver-doped mesoporous bioactive glass/poly(1,8-octanediol citrate) (AgMBG/POC) elastomeric biocomposite scaffolds were successfully constructed by a salt-leaching technique for the first time and the effect of inclusion of different AgMBG contents (5, 10, and 20 wt%) on physicochemical and biological properties of pure POC elastomer was evaluated. Results indicated that AgMBG particles were uniformly dispersed in the POC matrix and increasing the AgMBG concentration into POC matrix up to 20 wt% enhanced thermal behaviour, mechanical properties and water uptake ability of the composite scaffolds compared to those from POC. The 20%AgMBG/POC additionally showed higher degradation rate in Tris(hydroxymethyl)-aminomethane-HCl (Tris-HCl) compared with pure POC and lost about 26% of its initial weight after soaking for 28 days. The AgMBG phase incorporation also significantly endowed the resulting composite scaffolds with efficient antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria while preserving their favorable biocompatibility with soft tissue cells (i.e., human dermal fibroblast cells). Taken together, our results suggest that the synergistic effect of both AgMBG and POC make these newly designed AgMBG/POC composite scaffold an attractive candidate for soft tissue engineering applications.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ehsan Zeimaran
- School of Engineering, Monash University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Nicola Gargiulo
- ACLabs - Laboratori di Chimica Applicata, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università Federico II, P.le Tecchio 80, 80125 Napoli, Italy; CeSMA-Centro di Servizi Metrologici e Tecnologici Avanzati, Università Federico II, Corso N. Protopisani, 80146 Napoli, Italy
| | - Hassan Mahmood Jindal
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
149
|
Berry DR, Díaz BK, Durand-Silva A, Smaldone RA. Radical free crosslinking of direct-write 3D printed hydrogels through a base catalyzed thiol-Michael reaction. Polym Chem 2019. [DOI: 10.1039/c9py00953a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D printed micelle-based hydrogels were mechanically stabilized and crosslinked through the base catalyzed thiol-Michael addition in PBS buffer, without the use of potentially cytotoxic radical chemistry.
Collapse
Affiliation(s)
- Danielle R. Berry
- Department of Chemistry and Biochemistry
- The University of Texas at Dallas
- Richardson
- USA
| | - Brisa K. Díaz
- Department of Chemistry and Biochemistry
- The University of Texas at Dallas
- Richardson
- USA
| | | | - Ronald A. Smaldone
- Department of Chemistry and Biochemistry
- The University of Texas at Dallas
- Richardson
- USA
| |
Collapse
|
150
|
Kaushik G, Gil DA, Torr E, Berge ES, Soref C, Uhl P, Fontana G, Antosiewicz-Bourget J, Edington C, Schwartz MP, Griffith LG, Thomson JA, Skala MC, Daly WT, Murphy WL. Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels. Adv Healthc Mater 2019; 8:e1801186. [PMID: 30565891 PMCID: PMC6601624 DOI: 10.1002/adhm.201801186] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Indexed: 12/17/2022]
Abstract
Vascularization is an important strategy to overcome diffusion limits and enable the formation of complex, physiologically relevant engineered tissues and organoids. Self-assembly is a technique to generate in vitro vascular networks, but engineering the necessary network morphology and function remains challenging. Here, autofluorescence multiphoton microscopy (aMPM), a label-free imaging technique, is used to quantitatively evaluate in vitro vascular network morphology. Vascular networks are generated using human embryonic stem cell-derived endothelial cells and primary human pericytes encapsulated in synthetic poly(ethylene glycol)-based hydrogels. Two custom-built bioreactors are used to generate distinct fluid flow patterns during vascular network formation: recirculating flow or continuous flow. aMPM is used to image these 3D vascular networks without the need for fixation, labels, or dyes. Image processing and analysis algorithms are developed to extract quantitative morphological parameters from these label-free images. It is observed with aMPM that both bioreactors promote formation of vascular networks with lower network anisotropy compared to static conditions, and the continuous flow bioreactor induces more branch points compared to static conditions. Importantly, these results agree with trends observed with immunocytochemistry. These studies demonstrate that aMPM allows label-free monitoring of vascular network morphology to streamline optimization of growth conditions and provide quality control of engineered tissues.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Daniel A Gil
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Elizabeth Torr
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Elizabeth S Berge
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Cheryl Soref
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Peyton Uhl
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Gianluca Fontana
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Jessica Antosiewicz-Bourget
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
| | - Collin Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Michael P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - James A Thomson
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
| | - Melissa C Skala
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - William T Daly
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| |
Collapse
|