101
|
Abstract
PURPOSE OF REVIEW Systemic inflammation increases as a consequence of aging (inflammaging) and contributes to age-related morbidities. Inflammation in people living with HIV is elevated compared with the general population even after prolonged suppression of viremia with anti-retroviral therapy. Mechanisms that contribute to inflammation during aging and in treated HIV disease are potentially interactive, leading to an exaggerated inflammatory phenotype in people with HIV. RECENT FINDINGS Recent studies highlight roles for anti-retroviral therapy, co-infections, immune system alterations, and microbiome perturbations as important contributors to HIV-associated inflammation. These factors likely contribute to increased risk of age-related morbidities in people living with HIV. Understanding mechanisms that exaggerate the inflammaging process in people with HIV may lead to improved intervention strategies, ultimately, extending both lifespan and healthspan.
Collapse
|
102
|
Wu C, Yu P, Sun R. Adipose tissue and age‑dependent insulin resistance: New insights into WAT browning (Review). Int J Mol Med 2021; 47:71. [PMID: 33693956 PMCID: PMC7952244 DOI: 10.3892/ijmm.2021.4904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance (IR) is defined as impaired insulin function, reduced glucose uptake and increased glucose production, which can result in type II diabetes, metabolic syndrome and even bone metabolic disorders. A possible reason for the increasing incidence of IR is population aging. Adipose tissue (AT) is an important endocrine organ that serves a crucial role in whole-body energy homeostasis. AT can be divided into white AT (WAT), beige AT and brown AT (BAT). Several mechanisms have been previously associated with age-dependent IR in WAT. However, BAT, a metabolically active tissue, controls the levels of plasma glucose and triglyceride metabolism. Therefore, the present review aimed to summarize the mechanisms of age-dependent IR induced by AT and to determine the role of WAT browning in achieving positive therapeutic outcomes in age-dependent IR.
Collapse
Affiliation(s)
- Chuanlong Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Pei Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
103
|
Lee KA, Robbins PD, Camell CD. Intersection of immunometabolism and immunosenescence during aging. Curr Opin Pharmacol 2021; 57:107-116. [PMID: 33684669 DOI: 10.1016/j.coph.2021.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Aging is associated with the highest risk for morbidity and mortality to chronic or metabolic diseases, which are present in 50% of the elderly. Improving metabolic and immune function of the elderly would improve quality of life and reduce the risk for all other diseases. Tissue-resident macrophages and the NLRP3 inflammasome are established drivers of inflammaging and metabolic dysfunction. Energy-sensing signaling pathways connect sterile and metabolic inflammation with cellular senescence and tissue dysfunction. We discuss recent advances in the immunometabolism field. Common themes revealed by recent publications include the alterations in metabolic signaling (SIRTUIN, AMPK, or mTOR pathways) in aged immune cells, the impact of senescence on inflammaging and tissue dysfunction, and the age-related changes in metabolic tissues, especially adipose tissue, as an immunological organ. Promising gerotherapeutics are candidates to broadly target nutrient and energy sensing, inflammatory and senescence pathways, and have potential to improve healthspan and treat age-related diseases.
Collapse
Affiliation(s)
- Kyoo-A Lee
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, 4-108 Nils Hasselmo Hall, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, 4-108 Nils Hasselmo Hall, University of Minnesota, Minneapolis, MN, USA
| | - Christina D Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, 4-108 Nils Hasselmo Hall, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
104
|
Denroche HC, Miard S, Sallé-Lefort S, Picard F, Verchere CB. T cells accumulate in non-diabetic islets during ageing. IMMUNITY & AGEING 2021; 18:8. [PMID: 33622333 PMCID: PMC7901217 DOI: 10.1186/s12979-021-00221-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 02/11/2021] [Indexed: 12/25/2022]
Abstract
Background The resident immune population of pancreatic islets has roles in islet development, beta cell physiology, and the pathology of diabetes. These roles have largely been attributed to islet macrophages, comprising 90% of islet immune cells (in the absence of islet autoimmunity), and, in the case of type 1 diabetes, to infiltrating autoreactive T cells. In adipose, tissue-resident and recruited T and B cells have been implicated in the development of insulin resistance during diet-induced obesity and ageing, but whether this is paralleled in the pancreatic islets is not known. Here, we investigated the non-macrophage component of resident islet immune cells in islets isolated from C57BL/6 J male mice during ageing (3 to 24 months of age) and following similar weight gain achieved by 12 weeks of 60% high fat diet. Immune cells were also examined by flow cytometry in cadaveric non-diabetic human islets. Results Immune cells comprised 2.7 ± 1.3% of total islet cells in non-diabetic mouse islets, and 2.3 ± 1.7% of total islet cells in non-diabetic human islets. In 3-month old mice on standard diet, B and T cells each comprised approximately 2–4% of the total islet immune cell compartment, and approximately 0.1% of total islet cells. A similar amount of T cells were present in non-diabetic human islets. The majority of islet T cells expressed the αβ T cell receptor, and were comprised of CD8-positive, CD4-positive, and regulatory T cells, with a minor population of γδ T cells. Interestingly, the number of islet T cells increased linearly (R2 = 0.9902) with age from 0.10 ± 0.05% (3 months) to 0.38 ± 0.11% (24 months) of islet cells. This increase was uncoupled from body weight, and was not phenocopied by a degree similar weight gain induced by high fat diet in mice. Conclusions This study reveals that T cells are a part of the normal islet immune population in mouse and human islets, and accumulate in islets during ageing in a body weight-independent manner. Though comprising only a small subset of the immune cells within islets, islet T cells may play a role in the physiology of islet ageing. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00221-4.
Collapse
Affiliation(s)
- Heather C Denroche
- Canucks for Kids Fund Childhood Diabetes Laboratories, BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stéphanie Miard
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | | | - Frédéric Picard
- Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Québec, Canada.,Faculté de pharmacie, Université Laval, Québec, Québec, Canada
| | - C Bruce Verchere
- Canucks for Kids Fund Childhood Diabetes Laboratories, BC Children's Hospital Research Institute, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada. .,Departments of Surgery and Pathology & Laboratory Medicine, BC Children's Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 950 West 28th Ave, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
105
|
Duong L, Radley HG, Lee B, Dye DE, Pixley FJ, Grounds MD, Nelson DJ, Jackaman C. Macrophage function in the elderly and impact on injury repair and cancer. IMMUNITY & AGEING 2021; 18:4. [PMID: 33441138 PMCID: PMC7805172 DOI: 10.1186/s12979-021-00215-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Older age is associated with deteriorating health, including escalating risk of diseases such as cancer, and a diminished ability to repair following injury. This rise in age-related diseases/co-morbidities is associated with changes to immune function, including in myeloid cells, and is related to immunosenescence. Immunosenescence reflects age-related changes associated with immune dysfunction and is accompanied by low-grade chronic inflammation or inflammageing. This is characterised by increased levels of circulating pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6. However, in healthy ageing, there is a concomitant age-related escalation in anti-inflammatory cytokines such as transforming growth factor-β1 (TGF-β1) and IL-10, which may overcompensate to regulate the pro-inflammatory state. Key inflammatory cells, macrophages, play a role in cancer development and injury repair in young hosts, and we propose that their role in ageing in these scenarios may be more profound. Imbalanced pro- and anti-inflammatory factors during ageing may also have a significant influence on macrophage function and further impact the severity of age-related diseases in which macrophages are known to play a key role. In this brief review we summarise studies describing changes to inflammatory function of macrophages (from various tissues and across sexes) during healthy ageing. We also describe age-related diseases/co-morbidities where macrophages are known to play a key role, focussed on injury repair processes and cancer, plus comment briefly on strategies to correct for these age-related changes.
Collapse
Affiliation(s)
- L Duong
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - H G Radley
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - B Lee
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - D E Dye
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - F J Pixley
- School of Biomedical Sciences, University of Western Australia, 6009, Nedlands, Western Australia, Australia
| | - M D Grounds
- School of Human Sciences, University of Western Australia, 6009, Nedlands, Western Australia, Australia
| | - D J Nelson
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - C Jackaman
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia.
| |
Collapse
|
106
|
Yoon KJ, Ahn A, Park SH, Kwak SH, Kwak SE, Lee W, Yang YR, Kim M, Shin HM, Kim HR, Moon HY. Exercise reduces metabolic burden while altering the immune system in aged mice. Aging (Albany NY) 2021; 13:1294-1313. [PMID: 33406502 PMCID: PMC7834985 DOI: 10.18632/aging.202312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Although several evidence has suggested the impact of exercise on the prevention of aging phenotypes, few studies have been conducted on the mechanism by which exercise alters the immune-cell profile, thereby improving metabolism in senile obesity. In this study, we confirmed that 4-week treadmill exercise sufficiently improved metabolic function, including increased lean mass and decreased fat mass, in 88-week-old mice. The expression level of the senescence marker p16 in the white adipose tissue (WAT) was decreased after 4-weeks of exercise. Exercise induced changes in the profiles of immune-cell subsets, including natural killer (NK) cells, central memory CD8+ T cells, eosinophils, and neutrophils, in the stromal vascular fraction of WAT. In addition, it has been shown through transcriptome analysis of WAT that exercise can activate pathways involved in the interaction between WAT and immune cells, in particular NK cells, in aged mice. These results suggest that exercise has a profound effect on changes in immune-cell distribution and senescent-cell scavenging in WAT of aged mice, eventually affecting overall energy metabolism toward a more youthful state.
Collapse
Affiliation(s)
- Kyeong Jin Yoon
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Aram Ahn
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269,USA
| | - Soo Hong Park
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seung Hee Kwak
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seong Eun Kwak
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wonsang Lee
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.,Institute on Aging, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
107
|
Čížková T, Štěpán M, Daďová K, Ondrůjová B, Sontáková L, Krauzová E, Matouš M, Koc M, Gojda J, Kračmerová J, Štich V, Rossmeislová L, Šiklová M. Exercise Training Reduces Inflammation of Adipose Tissue in the Elderly: Cross-Sectional and Randomized Interventional Trial. J Clin Endocrinol Metab 2020; 105:5903324. [PMID: 32902644 DOI: 10.1210/clinem/dgaa630] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Metabolic disturbances and a pro-inflammatory state associated with aging and obesity may be mitigated by physical activity or nutrition interventions. OBJECTIVE The aim of this study is to assess whether physical fitness/exercise training (ET) alleviates inflammation in adipose tissue (AT), particularly in combination with omega-3 supplementation, and whether changes in AT induced by ET can contribute to an improvement of insulin sensitivity and metabolic health in the elderly. DESIGN, PARTICIPANTS, MAIN OUTCOME MEASURES The effect of physical fitness was determined in cross-sectional comparison of physically active/physically fit (trained) and sedentary/less physically fit (untrained) older women (71 ± 4 years, n = 48); and in double-blind randomized intervention by 4 months of ET with or without omega-3 (Calanus oil) supplementation (n = 55). Physical fitness was evaluated by spiroergometry (maximum graded exercise test) and senior fitness tests. Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. Samples of subcutaneous AT were used to analyze mRNA gene expression, cytokine secretion, and immune cell populations. RESULTS Trained women had lower mRNA levels of inflammation and oxidative stress markers, lower relative content of CD36+ macrophages, and higher relative content of γδT-cells in AT when compared with untrained women. Similar effects were recapitulated in response to a 4-month ET intervention. Content of CD36+ cells, γδT-cells, and mRNA expression of several inflammatory and oxidative stress markers correlated to insulin sensitivity and cardiorespiratory fitness. CONCLUSIONS In older women, physical fitness is associated with less inflammation in AT. This may contribute to beneficial metabolic outcomes achieved by ET. When combined with ET, omega-3 supplementation had no additional beneficial effects on AT inflammatory characteristics.
Collapse
Affiliation(s)
- Terezie Čížková
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Štěpán
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medicine 2, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Klára Daďová
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Barbora Ondrůjová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Sontáková
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Eva Krauzová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medicine 2, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Miloš Matouš
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Gojda
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medicine 2, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Jana Kračmerová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimír Štich
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Medicine 2, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
108
|
Li PH, Zhang R, Cheng LQ, Liu JJ, Chen HZ. Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during ageing. Ageing Res Rev 2020; 64:101165. [PMID: 32898718 DOI: 10.1016/j.arr.2020.101165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The process of ageing includes molecular changes within cells and interactions between cells, eventually resulting in age-related diseases. Although various cells (immune cells, parenchymal cells, fibroblasts and endothelial cells) in tissues secrete proinflammatory signals in age-related diseases, immune cells are the major contributors to inflammation. Many studies have emphasized the role of metabolic dysregulation in parenchymal cells in age-related inflammatory diseases. However, few studies have discussed metabolic modifications in immune cells during ageing. In this review, we introduce the metabolic dysregulation of major nutrients (glucose, lipids, and amino acids) within immune cells during ageing, which leads to dysfunctional NAD + metabolism that increases immune cell senescence and leads to the acquisition of the corresponding senescence-associated secretory phenotype (SASP). We then focus on senescent immune cell interactions with parenchymal cells and the extracellular matrix and their involvement in angiogenesis, which lead to proinflammatory microenvironments in tissues and inflammatory diseases at the systemic level. Elucidating the roles of metabolic modifications in immune cells during ageing will provide new insights into the mechanisms of ageing and therapeutic directions for age-related inflammatory diseases.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Internal Medicine, Peking Union Medical college Hospital, Beijing, China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Zhang
- Buck Institute for Research on Ageing, Novato, United States
| | - Li-Qin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Jing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China.
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
109
|
Zamboni M, Nori N, Brunelli A, Zoico E. How does adipose tissue contribute to inflammageing? Exp Gerontol 2020; 143:111162. [PMID: 33253807 DOI: 10.1016/j.exger.2020.111162] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Across aging, white adipose tissue (WAT) undergoes significant changes in quantity and distribution, with an increase in visceral adipose tissue, ectopic fat deposition and a decline in gluteofemoral subcutaneous depot. In particular, WAT becomes dysfunctional with an increase in production of inflammatory peptides and a decline of those with anti-inflammatory activity and infiltration of inflammatory cells. Moreover, dysfunction of WAT is characterized by preadipocyte differentiation decline, increased oxidative stress and mitochondrial dysfunction, reduction in vascularization and hypoxia, increased fibrosis and senescent cell accumulation. WAT changes represent an important hallmark of the aging process and may be responsible for the systemic pro-inflammatory state ("inflammageing") typical of aging itself, leading to age-related metabolic alterations. This review focuses on mechanisms linking age-related WAT changes to inflammageing.
Collapse
Affiliation(s)
- Mauro Zamboni
- Division of Geriatric Medicine, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, Verona, Italy.
| | - Nicole Nori
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Brunelli
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zoico
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
110
|
Xu L, Ma X, Verma N, Perie L, Pendse J, Shamloo S, Marie Josephson A, Wang D, Qiu J, Guo M, Ping X, Allen M, Noguchi A, Springer D, Shen F, Liu C, Zhang S, Li L, Li J, Xiao J, Lu J, Du Z, Luo J, Aleman JO, Leucht P, Mueller E. PPARγ agonists delay age-associated metabolic disease and extend longevity. Aging Cell 2020; 19:e13267. [PMID: 33219735 PMCID: PMC7681041 DOI: 10.1111/acel.13267] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Aging leads to a number of disorders caused by cellular senescence, tissue damage, and organ dysfunction. It has been reported that anti‐inflammatory and insulin‐sensitizing compounds delay, or reverse, the aging process and prevent metabolic disorders, neurodegenerative disease, and muscle atrophy, improving healthspan and extending lifespan. Here we investigated the effects of PPARγ agonists in preventing aging and increasing longevity, given their known properties in lowering inflammation and decreasing glycemia. Our molecular and physiological studies show that long‐term treatment of mice at 14 months of age with low doses of the PPARγ ligand rosiglitazone (Rosi) improved glucose metabolism and mitochondrial functionality. These effects were associated with decreased inflammation and reduced tissue atrophy, improved cognitive function, and diminished anxiety‐ and depression‐like conditions, without any adverse effects on cardiac and skeletal functionality. Furthermore, Rosi treatment of mice started when they were 14 months old was associated with lifespan extension. A retrospective analysis of the effects of the PPARγ agonist pioglitazone (Pio) on longevity showed decreased mortality in patients receiving Pio compared to those receiving a PPARγ‐independent insulin secretagogue glimepiride. Taken together, these data suggest the possibility of using PPARγ agonists to promote healthy aging and extend lifespan.
Collapse
Affiliation(s)
- Lingyan Xu
- Division of Endocrinology Diabetes and MetabolismNYU Grossman School of Medicine New York NY USA
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Xinran Ma
- Division of Endocrinology Diabetes and MetabolismNYU Grossman School of Medicine New York NY USA
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Narendra Verma
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
| | - Luce Perie
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
| | - Jay Pendse
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
- Medical Service Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Sama Shamloo
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
| | - Anne Marie Josephson
- Department of Orthopedic Surgery NYU Grossman School of Medicine New York NY USA
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Xiaodan Ping
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Michele Allen
- Murine Phenotyping Core facility NHLBI National Institutes of Health Bethesda MD USA
| | - Audrey Noguchi
- Murine Phenotyping Core facility NHLBI National Institutes of Health Bethesda MD USA
| | - Danielle Springer
- Murine Phenotyping Core facility NHLBI National Institutes of Health Bethesda MD USA
| | - Fei Shen
- School of Physical Education & Health Care East China Normal University Shanghai China
| | - Caizhi Liu
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Shiwei Zhang
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Lingyu Li
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences School of Life Science Shanghai University Shanghai China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences School of Life Science Shanghai University Shanghai China
| | - Jian Lu
- School of Physical Education & Health Care East China Normal University Shanghai China
| | - Zhenyu Du
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology Institute of Biomedical Sciences and School of Life Sciences East China Normal University Shanghai China
| | - Jose O. Aleman
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
- Medical Service Veterans Affairs New York Harbor Healthcare System New York NY USA
| | - Philipp Leucht
- Department of Orthopedic Surgery NYU Grossman School of Medicine New York NY USA
| | - Elisabetta Mueller
- Division of Endocrinology Diabetes and MetabolismNYU Grossman School of Medicine New York NY USA
- Division of Endocrinology, Diabetes and Metabolism NYU Grossman School of Medicine New York NY USA
- Cardiac Regeneration and Ageing Lab Institute of Cardiovascular Sciences School of Life Science Shanghai University Shanghai China
| |
Collapse
|
111
|
Chini CCS, Peclat TR, Warner GM, Kashyap S, Espindola-Netto JM, de Oliveira GC, Gomez LS, Hogan KA, Tarragó MG, Puranik AS, Agorrody G, Thompson KL, Dang K, Clarke S, Childs BG, Kanamori KS, Witte MA, Vidal P, Kirkland AL, De Cecco M, Chellappa K, McReynolds MR, Jankowski C, Tchkonia T, Kirkland JL, Sedivy JM, van Deursen JM, Baker DJ, van Schooten W, Rabinowitz JD, Baur JA, Chini EN. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD + and NMN levels. Nat Metab 2020; 2:1284-1304. [PMID: 33199925 PMCID: PMC8752031 DOI: 10.1038/s42255-020-00298-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/10/2020] [Indexed: 11/14/2022]
Abstract
Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.
Collapse
Affiliation(s)
- Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jair Machado Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Guilherme C de Oliveira
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Lilian S Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mariana G Tarragó
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amrutesh S Puranik
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Rheumatology, Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Guillermo Agorrody
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | - Bennett G Childs
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Micaela A Witte
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Paola Vidal
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anna L Kirkland
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marco De Cecco
- Center on the Biology of Aging and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Connor Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - John M Sedivy
- Center on the Biology of Aging and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
112
|
Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing. Int J Mol Sci 2020; 21:ijms21207580. [PMID: 33066461 PMCID: PMC7589147 DOI: 10.3390/ijms21207580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with ageing, but the detailed causal relationship between the two is still unclear. We review the major phenomenological manifestations of mitochondrial age-related dysfunction including biochemical, regulatory and energetic features. We conclude that the complexity of these processes and their inter-relationships are still not fully understood and at this point it seems unlikely that a single linear cause and effect relationship between any specific aspect of mitochondrial biology and ageing can be established in either direction.
Collapse
Affiliation(s)
- Michael Webb
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| | - Dionisia P Sideris
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| |
Collapse
|
113
|
Hall BM, Gleiberman AS, Strom E, Krasnov PA, Frescas D, Vujcic S, Leontieva OV, Antoch MP, Kogan V, Koman IE, Zhu Y, Tchkonia T, Kirkland JL, Chernova OB, Gudkov AV. Immune checkpoint protein VSIG4 as a biomarker of aging in murine adipose tissue. Aging Cell 2020; 19:e13219. [PMID: 32856419 PMCID: PMC7576241 DOI: 10.1111/acel.13219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is recognized as a major source of systemic inflammation with age, driving age-related tissue dysfunction and pathogenesis. Macrophages (Mφ) are central to these changes yet adipose tissue Mφ (ATMs) from aged mice remain poorly characterized. To identify biomarkers underlying changes in aged adipose tissue, we performed an unbiased RNA-seq analysis of ATMs from young (8-week-old) and healthy aged (80-week-old) mice. One of the genes identified, V-set immunoglobulin-domain-containing 4 (VSIG4/CRIg), encodes a Mφ-associated complement receptor and B7 family-related immune checkpoint protein. Here, we demonstrate that Vsig4 expression is highly upregulated with age in perigonadal white adipose tissue (gWAT) in two mouse strains (inbred C57BL/6J and outbred NIH Swiss) independent of gender. The accumulation of VSIG4 was mainly attributed to a fourfold increase in the proportion of VSIG4+ ATMs (13%-52%). In a longitudinal study, VSIG4 expression in gWAT showed a strong correlation with age within a cohort of male and female mice and correlated strongly with physiological frailty index (PFI, a multi-parameter assessment of health) in male mice. Our results indicate that VSIG4 is a novel biomarker of aged murine ATMs. VSIG4 expression was also found to be elevated in other aging tissues (e.g., thymus) and was strongly induced in tumor-adjacent stroma in cases of spontaneous and xenograft lung cancer models. VSIG4 expression was recently associated with cancer and several inflammatory diseases with diagnostic and prognostic potential in both mice and humans. Further investigation is required to determine whether VSIG4-positive Mφ contribute to immunosenescence and/or systemic age-related deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga V. Leontieva
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Marina P. Antoch
- Department of Pharmacology and TherapeuticsRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
| | - Valeria Kogan
- Institute for Translational ResearchAriel UniversityArielIsrael
| | - Igor E. Koman
- Institute for Translational ResearchAriel UniversityArielIsrael
| | - Yi Zhu
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | | | | | - Andrei V. Gudkov
- Everon Biosciences IncBuffaloNYUSA
- Department of Cell Stress BiologyRoswell Park Comprehensive Cancer CenterBuffaloNYUSA
- Genome Protection IncBuffaloNYUSA
| |
Collapse
|
114
|
Spinelli R, Parrillo L, Longo M, Florese P, Desiderio A, Zatterale F, Miele C, Raciti GA, Beguinot F. Molecular basis of ageing in chronic metabolic diseases. J Endocrinol Invest 2020; 43:1373-1389. [PMID: 32358737 PMCID: PMC7481162 DOI: 10.1007/s40618-020-01255-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
AIM Over the last decades, the shift in age distribution towards older ages and the progressive ageing which has occurred in most populations have been paralleled by a global epidemic of obesity and its related metabolic disorders, primarily, type 2 diabetes (T2D). Dysfunction of the adipose tissue (AT) is widely recognized as a significant hallmark of the ageing process that, in turn, results in systemic metabolic alterations. These include insulin resistance, accumulation of ectopic lipids and chronic inflammation, which are responsible for an elevated risk of obesity and T2D onset associated to ageing. On the other hand, obesity and T2D, the paradigms of AT dysfunction, share many physiological characteristics with the ageing process, such as an increased burden of senescent cells and epigenetic alterations. Thus, these chronic metabolic disorders may represent a state of accelerated ageing. MATERIALS AND METHODS A more precise explanation of the fundamental ageing mechanisms that occur in AT and a deeper understanding of their role in the interplay between accelerated ageing and AT dysfunction can be a fundamental leap towards novel therapies that address the causes, not just the symptoms, of obesity and T2D, utilizing strategies that target either senescent cells or DNA methylation. RESULTS In this review, we summarize the current knowledge of the pathways that lead to AT dysfunction in the chronological ageing process as well as the pathophysiology of obesity and T2D, emphasizing the critical role of cellular senescence and DNA methylation. CONCLUSION Finally, we highlight the need for further research focused on targeting these mechanisms.
Collapse
Affiliation(s)
- R Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - L Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - M Longo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - P Florese
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - A Desiderio
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Zatterale
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - C Miele
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - G Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy.
| |
Collapse
|
115
|
Abstract
Integrated immunometabolic responses link dietary intake, energy utilization, and storage to immune regulation of tissue function and is therefore essential for the maintenance and restoration of homeostasis. Adipose-resident leukocytes have non-traditional immunological functions that regulate organismal metabolism by controlling insulin action, lipolysis, and mitochondrial respiration to control the usage of substrates for production of heat versus ATP. Energetically expensive vital functions such as immunological responses might have thus evolved to respond accordingly to dietary surplus and deficit of macronutrient intake. Here, we review the interaction of dietary intake of macronutrients and their metabolism with the immune system. We discuss immunometabolic checkpoints that promote healthspan and highlight how dietary fate and regulation of glucose, fat, and protein metabolism might affect immunity.
Collapse
Affiliation(s)
- Aileen H Lee
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
116
|
Baek KW, Lee DI, Jeong MJ, Kang SA, Choe Y, Yoo JI, Yu HS, Kim JS. Effects of lifelong spontaneous exercise on the M1/M2 macrophage polarization ratio and gene expression in adipose tissue of super-aged mice. Exp Gerontol 2020; 141:111091. [PMID: 32931843 DOI: 10.1016/j.exger.2020.111091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/04/2023]
Abstract
In the adipose tissue (AT), an increase in the M1 macrophage (M1Ø)/M2 macrophage (M2Ø) polarization ratio can be a risk factor enhancing the inflammatory response during aging, as well as increasing the risk of chronic disease, thereby reducing lifespan, or at least reducing "healthy" lifespan. The purpose of this study was to analyze and compare the AT M1Ø/M2Ø polarization ratio at the final lifespan stage in aged and control animals performing lifelong spontaneous wheel running. Based on flow cytometric analysis, the AT ratio of macrophages revealed M2Ø polarization following lifelong spontaneous exercise (LSE) regardless of age. However, for Icam1 and Tnf, the qPCR analysis showed no difference in gene expressions in young mice; Arg1 expression was higher in Young-EXE (exercising) than in Young-CON (control) mice (p < .0001). In Old-EXE, Icam1 (p < .0001) and Tnf (p < .0001) expression were lower than in Old-CON; for Arg1, gene expression in Old-EXE was higher than in Old-CON (p < .0001). LSE prevents deterioration of physical fitness owing to aging, maintaining high M2Ø polarization levels in the AT. Additionally, LSE does not downregulate Icam1 and Tnf in the AT but appears to suppress the increased M1Ø polarization ratio attributed to aging by upregulating Arg1.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, Republic of Korea; Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Da-In Lee
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Mi-Jin Jeong
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Shin Ae Kang
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yongho Choe
- Department of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea..
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
117
|
Gil-Iturbe E, Félix-Soriano E, Sáinz N, Idoate-Bayón A, Castilla-Madrigal R, Moreno-Aliaga MJ, Lostao MP. Effect of aging and obesity on GLUT12 expression in small intestine, adipose tissue, muscle, and kidney and its regulation by docosahexaenoic acid and exercise in mice. Appl Physiol Nutr Metab 2020; 45:957-967. [PMID: 32176854 DOI: 10.1139/apnm-2019-0721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Obesity is characterized by excessive fat accumulation and inflammation. Aging has also been characterized as an inflammatory condition, frequently accompanied by accumulation of visceral fat. Beneficial effects of exercise and n-3 long-chain polyunsaturated fatty acids in metabolic disorders have been described. Glucose transporter 12 (GLUT12) is one of the less investigated members of the GLUT family. Glucose, insulin, and tumor necrosis factor alpha (TNF-α) induce GLUT12 translocation to the membrane in muscle, adipose tissue, and intestine. We aimed to investigate GLUT12 expression in obesity and aging, and under diet supplementation with docosahexaenoic acid (DHA) alone or in combination with physical exercise in mice. Aging increased GLUT12 expression in intestine, kidney, and adipose tissue, whereas obesity reduced it. No changes on the transporter occurred in skeletal muscle. In obese 18-month-old mice, DHA further decreased GLUT12 in the 4 organs. Aerobic exercise alone did not modify GLUT12, but the changes triggered by exercise were able to prevent the DHA-diminishing effect, and almost restored GLUT12 basal levels. In conclusion, the downregulation of metabolism in aging would be a stimulus to upregulate GLUT12 expression. Contrary, obesity, an excessive energy condition, would induce GLUT12 downregulation. The combination of exercise and DHA would contribute to restore basal function of GLUT12. Novelty In small intestine, kidney and adipose tissue aging increases GLUT12 protein expression whereas obesity reduces it. Dietary DHA decreases GLUT12 in small intestine, kidney, adipose tissue and skeletal muscle. Exercise alone does not modify GLUT12 expression, nevertheless exercise prevents the DHA-diminishing effect on GLUT12.
Collapse
Affiliation(s)
- Eva Gil-Iturbe
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Adrián Idoate-Bayón
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
| | | | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Navarra, Spain
- Institute of Health Carlos III (ISCIII), Biomedical Research Networking Center in Physiopathology of Obesity and Nutrition (CIBERobn), 28029 Madrid, Spain
| | - María Pilar Lostao
- Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Navarra, Spain
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Navarra, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Navarra, Spain
| |
Collapse
|
118
|
Porter JW, Barnas JL, Welly R, Spencer N, Pitt J, Vieira-Potter VJ, Kanaley JA. Age, Sex, and Depot-Specific Differences in Adipose-Tissue Estrogen Receptors in Individuals with Obesity. Obesity (Silver Spring) 2020; 28:1698-1707. [PMID: 32734695 PMCID: PMC7483923 DOI: 10.1002/oby.22888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of this study was to examine the effects of sex and menopausal status on depot-specific estrogen signaling in white adipose tissue (AT) in age-matched men and women with morbid obesity. METHODS A total of 28 premenopausal women, 16 postmenopausal women, and 27 age-matched men undergoing bariatric surgery were compared for omental (OM) AT (OMAT) and abdominal subcutaneous (SQ) AT (SQAT) genes and proteins. RESULTS With the exception of fasting nonesterified fatty acids being higher in women (P < 0.01), no differences were found in other indicators of glucose and lipid metabolism. In OMAT, estrogen receptor (ER) beta (ERβ) levels were higher in older women than in younger women and older men (sex-age interaction, P < 0.01), and aromatase expression was higher in older men than in older women (P < 0.05). In SQAT, women had lower expression of ERβ than men (P < 0.05). Protein content of ER alpha and ERβ was highly correlated with the mitochondrial protein uncoupling protein 1 across sexes and ages (P < 0.001). Age increased SQ inflammatory gene expression in both sexes. CONCLUSIONS In morbid obesity, sex and age affect AT ERs, lipid metabolism, mitochondrial uncoupling protein 1, and inflammatory expression in an AT depot-dependent manner. The SQAT immunometabolic profile is heavily influenced by age and menopause status, more so than OMAT.
Collapse
Affiliation(s)
- Jay W Porter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Jillian L Barnas
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Rebecca Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Nicole Spencer
- General Surgery, Columbia Surgical Associates, Columbia, Missouri, USA
| | - James Pitt
- General Surgery, Columbia Surgical Associates, Columbia, Missouri, USA
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
119
|
Frasca D, Blomberg BB. Adipose tissue, immune aging, and cellular senescence. Semin Immunopathol 2020; 42:573-587. [PMID: 32785750 DOI: 10.1007/s00281-020-00812-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Obesity represents a serious health problem as it is rapidly increasing worldwide. Obesity is associated with reduced healthspan and lifespan, decreased responses to infections and vaccination, and increased frequency of inflammatory conditions typical of old age. Obesity is characterized by increased fat mass and remodeling of the adipose tissue (AT). In this review, we summarize published data on the different types of AT present in mice and humans, and their roles as fat storage as well as endocrine and immune tissues. We review the age-induced changes, including those in the distribution of fat in the body, in abundance and function of adipocytes and their precursors, and in the infiltration of immune cells from the peripheral blood. We also show that cells with a senescent-associated secretory phenotype accumulate in the AT of mice and humans with age, where they secrete several factors involved in the establishment and maintenance of local inflammation, oxidative stress, cell death, tissue remodeling, and infiltration of pro-inflammatory immune cells. Not only adipocytes and pre-adipocytes but also immune cells show a senescent phenotype in the AT. With the increase in human lifespan, it is crucial to identify strategies of intervention and target senescent cells in the AT to reduce local and systemic inflammation and the development of age-associated diseases. Several studies have indeed shown that senescent cells can be effectively targeted in the AT by selectively removing them or by inhibiting the pathways that lead to the secretion of pro-inflammatory factors.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
120
|
Brigger D, Riether C, van Brummelen R, Mosher KI, Shiu A, Ding Z, Zbären N, Gasser P, Guntern P, Yousef H, Castellano JM, Storni F, Graff-Radford N, Britschgi M, Grandgirard D, Hinterbrandner M, Siegrist M, Moullan N, Hofstetter W, Leib SL, Villiger PM, Auwerx J, Villeda SA, Wyss-Coray T, Noti M, Eggel A. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat Metab 2020; 2:688-702. [PMID: 32694825 PMCID: PMC7438316 DOI: 10.1038/s42255-020-0228-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/29/2020] [Indexed: 01/06/2023]
Abstract
Adipose tissue eosinophils (ATEs) are important in the control of obesity-associated inflammation and metabolic disease. However, the way in which ageing impacts the regulatory role of ATEs remains unknown. Here, we show that ATEs undergo major age-related changes in distribution and function associated with impaired adipose tissue homeostasis and systemic low-grade inflammation in both humans and mice. We find that exposure to a young systemic environment partially restores ATE distribution in aged parabionts and reduces adipose tissue inflammation. Approaches to restore ATE distribution using adoptive transfer of eosinophils from young mice into aged recipients proved sufficient to dampen age-related local and systemic low-grade inflammation. Importantly, restoration of a youthful systemic milieu by means of eosinophil transfers resulted in systemic rejuvenation of the aged host, manifesting in improved physical and immune fitness that was partially mediated by eosinophil-derived IL-4. Together, these findings support a critical function of adipose tissue as a source of pro-ageing factors and uncover a new role of eosinophils in promoting healthy ageing by sustaining adipose tissue homeostasis.
Collapse
Affiliation(s)
- Daniel Brigger
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Carsten Riether
- Tumor Immunology, Department for BioMedical Reserach, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robin van Brummelen
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Kira I Mosher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Biological Engineering, University of California, Berkeley, CA, USA
| | - Alicia Shiu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Amplitude Analytics Inc., San Francisco, CA, USA
| | - Zhaoqing Ding
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., San Diego, CA, USA
| | - Noemi Zbären
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Gasser
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Guntern
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Hanadie Yousef
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph M Castellano
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Federico Storni
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Markus Britschgi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Magdalena Hinterbrandner
- Tumor Immunology, Department for BioMedical Reserach, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mark Siegrist
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Norman Moullan
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Willy Hofstetter
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Peter M Villiger
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Saul A Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Mario Noti
- Institute of Pathology, Division of Experimental Pathology, University of Bern, Bern, Switzerland.
- Department of Gastrointestinal Health, Immunology, Nestlé Research, Lausanne, Switzerland.
| | - Alexander Eggel
- Department of Rheumatology, Immunology and Allergology, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
121
|
Larrick JW, Mendelsohn AR. Eosinophils and White Fat: Protection from Worms and Inflammaging. Rejuvenation Res 2020; 23:349-352. [PMID: 32718231 DOI: 10.1089/rej.2020.2375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proinflammatory alterations of white adipose tissue (WAT) with increasing age play an important role in mammalian aging. WAT produced eotaxin-1 (CCL11-C-C motif chemokine ligand 11) and monocyte chemoattractant protein 1 (MCP-1) (CCL2) are elevated in old mammals. Obese and old adipose tissues produce excessive proinflammatory cytokines such as interleukin (IL)-6, CCL2, and IL-1-beta that contribute to inflammaging. WAT-based inflammaging involves an altered homeostatic equilibrium between proinflammatory cells such as activated type 1 macrophages, B cells (high IgJ) and T cells, and anti-inflammatory eosinophils and Tregs. Specifically, young and lean individuals exhibit a high eosinophil-to-macrophage ratio with an enrichment of alternative activated tissue macrophages that is reduced in the WAT of aging mice. Eosinophils from young animals adoptively transferred to old mice, home to WAT and reverse many of the immunoinflammatory signatures associated with aging. Whether eosinophil-based therapies for inflammaging could be created remains an open question.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
122
|
The role of adipose tissue senescence in obesity- and ageing-related metabolic disorders. Clin Sci (Lond) 2020; 134:315-330. [PMID: 31998947 DOI: 10.1042/cs20190966] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
Adipose tissue as the largest energy reservoir and endocrine organ is essential for maintenance of systemic glucose, lipid and energy homeostasis, but these metabolic functions decline with ageing and obesity. Adipose tissue senescence is one of the common features in obesity and ageing. Although cellular senescence is a defensive mechanism preventing tumorigenesis, its occurrence in adipose tissue causatively induces defective adipogenesis, inflammation, aberrant adipocytokines production and insulin resistance, leading to adipose tissue dysfunction. In addition to these paracrine effects, adipose tissue senescence also triggers systemic inflammation and senescence as well as insulin resistance in the distal metabolic organs, resulting in Type 2 diabetes and other premature physiological declines. Multiple cell types including mature adipocytes, immune cells, endothelial cells and progenitor cells gradually senesce at different levels in different fat depots with ageing and obesity, highlighting the heterogeneity and complexity of adipose tissue senescence. In this review, we discuss the causes and consequences of adipose tissue senescence, and the major cell types responsible for adipose tissue senescence in ageing and obesity. In addition, we summarize the pharmacological approaches and lifestyle intervention targeting adipose tissue senescence for the treatment of obesity- and ageing-related metabolic diseases.
Collapse
|
123
|
Sebastian-Valverde M, Pasinetti GM. The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells 2020; 9:cells9061552. [PMID: 32604771 PMCID: PMC7348816 DOI: 10.3390/cells9061552] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.
Collapse
Affiliation(s)
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
- Correspondence: ; Tel.: +1-212-241-1952
| |
Collapse
|
124
|
Bloom SI, Tuluca A, Ives SJ, Reynolds TH. High-fat diet induced obesity and age influence the telomere shelterin complex and telomerase gene expression in mouse adipose tissue. Physiol Rep 2020; 8:e14461. [PMID: 32512652 PMCID: PMC7280005 DOI: 10.14814/phy2.14461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity and aging are linked to inflammation and increased risk of chronic disease. Telomeres are the endcaps of chromosomes that are regulated by telomerase, the enzyme that elongates telomeres, as well as a protein complex known as shelterin. Telomere dysfunction is associated with inflammation, aging, and disease. However, the effect of high-fat diet (HFD) induced obesity and advancing age on the shelterin complex and telomerase in adipose tissue is unknown. The present study investigated the effects of obesity and aging on C57BL/6J mice adipose tissue mRNA expression of shelterin complex genes. Young (YG) mice (3 mo) were randomly assigned to be fed either a high-fat diet (YG + HFD; 60% kcal from fat) or a low-fat diet (YG + LFD; 10% kcal from fat). A subset of mice were aged until 16 months. Body weight and epididymal white adipose tissue (EWAT) weight increased with age or a HFD. There was a trend for increased Terf2 expression, as expression was increased in HFD + YG by ~47% and aged mice by ~80%. Pot1b expression was increased in aged mice by ~35%-60% compared to YG, independent of diet. mTert, the gene that codes for the catalytic subunit of telomerase, was significantly elevated in aged mice. Changes in telomere associated gene expression was accompanied by changes in expression of inflammatory markers Mcp1 and Tnfα. These findings suggest obesity and age impact expression of shelterin complex and telomerase related genes in adipose, perhaps altering telomere function in adipose tissue thereby increasing inflammation and risk of chronic disease.
Collapse
Affiliation(s)
- Samuel I. Bloom
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUTUSA
| | - Andrei Tuluca
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
- College of MedicineCentral Michigan UniversityMount PleasantMIUSA
| | - Stephen J. Ives
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| | - Thomas H. Reynolds
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNYUSA
| |
Collapse
|
125
|
Huang J, Liu C, Ming XF, Yang Z. Inhibition of p38mapk Reduces Adipose Tissue Inflammation in Aging Mediated by Arginase-II. Pharmacology 2020; 105:491-504. [PMID: 32454488 DOI: 10.1159/000507635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adipose tissue inflammation occurs not only in obesity but also in aging and is mechanistically linked with age-associated diseases. Studies show that ablation of the l-arginine-metabolizing enzyme arginase-II (Arg-II) reduces adipose tissue inflammation and improves glucose tolerance in obesity. However, the role of Arg-II in aging adipose tissue inflammation is not clear. OBJECTIVE This study investigated the role of Arg-II in age-associated adipose tissue inflammation. METHODS Visceral adipose tissues of young (3-6 months) and old (20-24 months) wild-type (WT) and Arg-II-/- mice were investigated. Immunofluorescence confocal microscopy was performed for analysis of macrophage accumulation and cellular localization of arginase and cytokines; expression of arginase and cytokines was analyzed by qRT-PCR or immunoblotting or ELISA; activation of mitogen-activated protein kinases in adipose tissues was analyzed by immunoblotting; and arginase activity was measured by colorimetric determination of urea production. RESULTS In the old WT mice, there is more macrophage accumulation in the visceral adipose tissues than in Arg-II knockout animals. An age-associated increase in arginase activity and Arg-II expression in adipose tissues of WT mice is observed. Arg-II knockout enhances Arg-I expression and activity, but inhibits interleukin (IL)-6 expression and secretion and reduces active p38mapk in aging adipose tissue macrophages and stromal cells. Treatment of aging adipose tissues of WT mice with a specific p38mapk inhibitor SB203580 reduces IL-6 secretion. CONCLUSIONS Arg-II promotes IL-6 production in aging adipose tissues through p38mapk. The results suggest that targeting Arg-II or inhibiting p38mapk could be beneficial in reducing age-associated adipose tissue inflammation.
Collapse
Affiliation(s)
- Ji Huang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Chang Liu
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Xiu-Fen Ming
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Zhihong Yang
- Cardiovascular and Aging Research, Department of Endocrinology, Metabolism, and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland, .,National Center of Competence in Research "Kidney.CH", Zurich, Switzerland,
| |
Collapse
|
126
|
Commentary on Camell et al., Aging Induces Nlrp3 Inflammasome Dependent Adipose B Cell Expansion to Impair Metabolic Homeostasis. ACTA ACUST UNITED AC 2020; 2. [PMID: 32292596 PMCID: PMC7156147 DOI: 10.20900/immunometab20200011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The burden of aging and obesity is urging extended investigation into the molecular mechanisms that underlie chronic adipose tissue inflammation. B cell-targeted therapies are emerging as novel tools to modulate the immune system and thereby mitigate aging and obesity-related metabolic complications.
Collapse
|
127
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
128
|
Goldberg EL, Shaw AC, Montgomery RR. How Inflammation Blunts Innate Immunity in Aging. Interdiscip Top Gerontol Geriatr 2020; 43:1-17. [PMID: 32294641 PMCID: PMC8063508 DOI: 10.1159/000504480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The collective loss of immune protection during aging leads to poor vaccine responses and an increased severity of infection for the elderly. Here, we review our current understanding of effects of aging on the cellular and molecular dysregulation of innate immune cells as well as the relevant tissue milieu which influences their functions. The innate immune system is composed of multiple cell types which provide distinct and essential roles in tissue surveillance and antigen presentation as well as early responses to infection or injury. Functional defects that arise during aging lead to a reduced dynamic range of responsiveness, altered cytokine dynamics, and impaired tissue repair. Heightened inflammation influences both the dysregulation of innate immune responses as well as surrounding tissue microenvironments which have a critical role in development of a functional immune response. In particular, age-related physical and inflammatory changes in the skin, lung, lymph nodes, and adipose tissue reflect disrupted architecture and spatial organization contributing to diminished immune responsiveness. Underlying mechanisms include altered transcriptional programming and dysregulation of critical innate immune signaling cascades. Further, we identify signaling functions of bioactive lipid mediators which address chronic inflammation and may contribute to the resolution of inflammation to improve innate immunity during aging.
Collapse
Affiliation(s)
- Emily L Goldberg
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert C Shaw
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA,
| |
Collapse
|
129
|
Female adipose tissue has improved adaptability and metabolic health compared to males in aged obesity. Aging (Albany NY) 2020; 12:1725-1746. [PMID: 31983693 PMCID: PMC7053605 DOI: 10.18632/aging.102709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Aging, like obesity, is associated with metabolic and inflammatory alterations within adipose tissue in older individuals. Younger females are protected from adipose inflammation, but older post-menopausal females exhibit exaggerated visceral adiposity correlated with increased disease risk. Obesity accelerates the onset and progression of age-associated diseases, but it is unclear if aging and obesity drive adipose tissue dysfunction in a sexually dimorphic fashion. We investigated adipose tissue metabolism and inflammation in a diet-induced obesity model in young and old mice. We identified age related sex differences in adipose tissue macrophages (ATMs), fibrosis and lipid metabolism in male and female visceral fat depot (GWAT). Although aging normalized body weights between the sexes, females remained protected from proinflammatory ATMs and stimulated lipolysis failed to adversely affect the inflammatory state even with obesity. Older obese males had augmented CD11c+ ATMs and higher insulin levels, while females showed increased visceral adiposity and exaggerated Pparγ, and Pgc1α expression. Obesity in aging demonstrated similar expression of GWAT p53, p16, p21, Timp1 and Tgfβ1 in both sexes. Our studies suggest that even with aging, female GWAT shows an attenuated inflammatory response compared to males due to an efficient oxidative metabolism combined with an active tissue remodeling state.
Collapse
|
130
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
131
|
Mau T, O’Brien M, Ghosh AK, Miller RA, Yung R. Life-span Extension Drug Interventions Affect Adipose Tissue Inflammation in Aging. J Gerontol A Biol Sci Med Sci 2020; 75:89-98. [PMID: 31353414 PMCID: PMC6909899 DOI: 10.1093/gerona/glz177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 02/02/2023] Open
Abstract
The National Institute on Aging (NIA)-sponsored Interventions Testing Program (ITP) has identified a number of dietary drug interventions that significantly extend life span, including rapamycin, acarbose, and 17-α estradiol. However, these drugs have diverse downstream targets, and their effects on age-associated organ-specific changes are unclear (Nadon NL, Strong R, Miller RA, Harrison DE. NIA Interventions Testing Program: investigating putative aging intervention agents in a genetically heterogeneous mouse model. EBioMedicine. 2017;21:3-4. doi:10.1016/j.ebiom.2016.11.038). Potential mechanisms by which these drugs extend life could be through their effect on inflammatory processes often noted in tissues of aging mice and humans. Our study focuses on the effects of three drugs in the ITP on inflammation in gonadal white adipose tissue (gWAT) of HET3 mice-including adiposity, adipose tissue macrophage (ATM) M1/M2 polarization, markers of cellular senescence, and endoplasmic reticulum stress. We found that rapamycin led to a 56% increase of CD45+ leukocytes in gWAT, where the majority of these are ATMs. Interestingly, rapamycin led to a 217% and 106% increase of M1 (CD45+CD64+CD206-) ATMs in females and males, respectively. Our data suggest rapamycin may achieve life-span extension in part through adipose tissue inflammation. Additionally, HET3 mice exhibit a spectrum of age-associated changes in the gWAT, but acarbose and 17-α estradiol do not strongly alter these phenotypes-suggesting that acarbose and 17- α estradiol may not influence life span through mechanisms involving adipose tissue inflammation.
Collapse
Affiliation(s)
- Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
- Graduate Program in Immunology, Program in Biomedical Sciences (PIBS), University of Michigan, Ann Arbor
| | - Martin O’Brien
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Amiya K Ghosh
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Richard A Miller
- Department of Pathology and Glenn Center for Biology of Aging Research, University of Michigan, Ann Arbor
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
- Graduate Program in Immunology, Program in Biomedical Sciences (PIBS), University of Michigan, Ann Arbor
- Department of Pathology and Glenn Center for Biology of Aging Research, University of Michigan, Ann Arbor
- Geriatric Research, Education, and Clinical Care Center (GRECC), VA Ann Arbor Health System, Michigan
| |
Collapse
|
132
|
Lu R, Sampathkumar NK, Benayoun BA. Measuring Phagocytosis in Bone Marrow-Derived Macrophages and Peritoneal Macrophages with Aging. Methods Mol Biol 2020; 2144:161-170. [PMID: 32410033 DOI: 10.1007/978-1-0716-0592-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The majority of age-related diseases share common inflammatory mechanisms, a phenomenon which has been described as "inflamm-aging," and genetic variants in immune and inflammatory genes are significantly associated with exceptional human longevity and/or age-related diseases. Consistently, aging is associated with increased macrophage infiltration into tissues. Macrophages are a key component of the innate immune system and the inflammatory response, which accomplish key tasks such as phagocytosis, antigen presentation, and cytokine production. Phagocytosis is the process by which specialized cells that can clear harmful foreign particles, pathogens, and dead or dying cells. Upon phagocytosis, foreign particles are internalized in vesicles, forming phagosomes. Phagosomes go on to fuse with lysosomes, and the ingested particles are neutralized by lysosomal enzymes. Macrophages have two main origins: tissue-resident macrophages differentiate from specific embryonic progenitors, whereas monocyte-derived macrophages differentiate from bone-marrow progenitors. Because of their key role in inflammation and damage repair, macrophages are a key cell type in age-related inflammatory diseases. Here, we describe an efficient method to quantify the phagocytotic ability of two types of primary macrophages in aging mice: bone marrow-derived macrophages (BMDMs) and tissue-resident peritoneal macrophages.
Collapse
Affiliation(s)
- Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.,Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, USA
| | - Nirmal K Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA, USA. .,USC Stem Cell Initiative, Los Angeles, CA, USA.
| |
Collapse
|
133
|
Khan S, Chan YT, Revelo XS, Winer DA. The Immune Landscape of Visceral Adipose Tissue During Obesity and Aging. Front Endocrinol (Lausanne) 2020; 11:267. [PMID: 32499756 PMCID: PMC7243349 DOI: 10.3389/fendo.2020.00267] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity and aging represent major health burdens to the global adult population. Both conditions promote the development of associated metabolic diseases such as insulin resistance. The visceral adipose tissue (VAT) is a site that becomes dysfunctional during obesity and aging, and plays a significant role during their pathophysiology. The changes in obese and aging VAT are now recognized to be partly driven by a chronic local inflammatory state, characterized by immune cells that typically adopt an inflammatory phenotype during metabolic disease. Here, we summarize the current knowledge on the immune cell landscape of the VAT during lean, obese, and aged conditions, highlighting their similarities and differences. We also briefly discuss possible linked mechanisms that fuel obesity- and age-associated VAT dysfunction.
Collapse
Affiliation(s)
- Saad Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Yi Tao Chan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Xavier S. Revelo
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Xavier S. Revelo
| | - Daniel A. Winer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Daniel A. Winer
| |
Collapse
|
134
|
Li D, Liu Q, Lu X, Li Z, Wang C, Leung CH, Wang Y, Peng C, Lin L. α-Mangostin remodels visceral adipose tissue inflammation to ameliorate age-related metabolic disorders in mice. Aging (Albany NY) 2019; 11:11084-11110. [PMID: 31806859 PMCID: PMC6932911 DOI: 10.18632/aging.102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Low-grade chronic adipose tissue inflammation contributes to the onset and development of aging-related insulin resistance and type 2 diabetes. In the current study, α-mangostin, a xanthone isolated from mangosteen (Garcinia mangostana), was identified to ameliorate lipopolysaccharides-induced acute adipose tissue inflammation in mice, by reducing the expression of pro-inflammatory cytokines and chemokines. In a cohort of young (3 months) and old (18-20 months) mice, α-mangostin mitigated aging-associated adiposity, hyperlipidemia, and insulin resistance. Further study showed that α-mangostin alleviated aging-related adipose tissue inflammation by reducing macrophage content and shifting pro-inflammatory macrophage polarization. Moreover, α-mangostin protected the old mice against liver injury through suppressing the secretion of microRNA-155-5p from macrophages. The above results demonstrated that α-mangostin represents a new scaffold to alleviate adipose tissue inflammation, which might be a novel candidate to treat aging-related metabolic disorders.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Qianyu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuqiang Lu
- Fuqing Branch of Fujian Normal University, Fuzhou, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
135
|
Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. Cell Metab 2019; 30:1024-1039.e6. [PMID: 31735593 PMCID: PMC6944439 DOI: 10.1016/j.cmet.2019.10.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/10/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
During aging, visceral adiposity is often associated with alterations in adipose tissue (AT) leukocytes, inflammation, and metabolic dysfunction. However, the contribution of AT B cells in immunometabolism during aging is unexplored. Here, we show that aging is associated with an expansion of a unique population of resident non-senescent aged adipose B cells (AABs) found in fat-associated lymphoid clusters (FALCs). AABs are transcriptionally distinct from splenic age-associated B cells (ABCs) and show greater expansion in female mice. Functionally, whole-body B cell depletion restores proper lipolysis and core body temperature maintenance during cold stress. Mechanistically, the age-induced FALC formation, AAB, and splenic ABC expansion is dependent on the Nlrp3 inflammasome. Furthermore, AABs express IL-1R, and inhibition of IL-1 signaling reduces their proliferation and increases lipolysis in aging. These data reveal that inhibiting Nlrp3-dependent B cell accumulation can be targeted to reverse metabolic impairment in aging AT.
Collapse
|
136
|
Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res 2019; 29:2088-2103. [PMID: 31754020 PMCID: PMC6886498 DOI: 10.1101/gr.253880.119] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
Aging is a pleiotropic process affecting many aspects of mammalian physiology. Mammals are composed of distinct cell type identities and tissue environments, but the influence of these cell identities and environments on the trajectory of aging in individual cells remains unclear. Here, we performed single-cell RNA-seq on >50,000 individual cells across three tissues in young and old mice to allow for direct comparison of aging phenotypes across cell types. We found transcriptional features of aging common across many cell types, as well as features of aging unique to each type. Leveraging matrix factorization and optimal transport methods, we found that both cell identities and tissue environments exert influence on the trajectory and magnitude of aging, with cell identity influence predominating. These results suggest that aging manifests with unique directionality and magnitude across the diverse cell identities in mammals.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Calico Life Sciences, South San Francisco, California 94080, USA
| | - Lolita Penland
- Calico Life Sciences, South San Francisco, California 94080, USA
| | | | | | - David R Kelley
- Calico Life Sciences, South San Francisco, California 94080, USA
| | - Adam Z Rosenthal
- Calico Life Sciences, South San Francisco, California 94080, USA
| |
Collapse
|
137
|
Yegla B, Foster T. Effect of Systemic Inflammation on Rat Attentional Function and Neuroinflammation: Possible Protective Role for Food Restriction. Front Aging Neurosci 2019; 11:296. [PMID: 31708767 PMCID: PMC6823289 DOI: 10.3389/fnagi.2019.00296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Aging is characterized by subtle cognitive decline, which correlates with increased peripheral inflammation. Acute activation of the peripheral immune system, via lipopolysaccharide (LPS) injection, elicits deficits in hippocampal-dependent spatial memory. Little is known concerning the effect of chronic inflammation on prefrontal cortex (PFC)-dependent vigilance. We examined the impact of repeated LPS injections in young and middle-age rats on the 5-choice serial reaction time task (5-CSRTT), expecting repeated LPS treatment to induce attentional deficits with greater disruption in middle-age. Methods: Male Fischer-344 rats, 4- and 12-months-old, were food restricted and trained on the 5-CSRTT. Once rats reached criterion, they were injected with LPS (1 mg/kg, i.p.) weekly for 4 weeks and testing started 48 h after each injection. To examine the possibility that mild food restriction inherent to the behavioral task influenced inflammation markers, a second group of food-restricted or ad-lib-fed rats was assessed for cytokine changes 48 h after one injection. Results: Performing LPS-treated rats exhibited a sickness response, manifesting as reduced initiated and completed trials during the first week but recovered by the second week of testing. After the first week, LPS-treated rats continued to exhibit longer response latencies, despite no change in food retrieval latency, suggestive of LPS-induced cognitive slowing. Similarly, LPS-induced impairment of attention was observed as increased omissions with heightened cognitive demand and increased age. Repeated LPS-treatment increased the level of PFC IL-1α, and PFC IL-6 was marginally higher in middle-age rats. No effect of age or treatment was observed for plasma cytokines in performing rats. Histological examination of microglia indicated increased colocalization of Iba1+ and CD68+ cells from middle-age relative to young rats. Examination of food restriction demonstrated an attenuation of age- and LPS-related increases in plasma cytokine levels. Conclusions: Systemic inflammation, induced through LPS treatment, impaired attentional function, which was independent of sickness and exacerbated by increased cognitive demand and increased age. Additional studies revealed that food restriction, associated with the task, attenuated markers of neuroinflammation and plasma cytokines. The results emphasize the need for improved methods for modeling low-level chronic systemic inflammation to effectively examine its impact on attention during aging.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
138
|
Uchida M, Horii N, Hasegawa N, Fujie S, Oyanagi E, Yano H, Iemitsu M. Gene Expression Profiles for Macrophage in Tissues in Response to Different Exercise Training Protocols in Senescence Mice. Front Sports Act Living 2019; 1:50. [PMID: 33344973 PMCID: PMC7739569 DOI: 10.3389/fspor.2019.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022] Open
Abstract
Age-induced chronic inflammation is prevented by aerobic and resistance exercise training. However, the effects of the mechanism of exercise on chronic inflammation in each tissue remains unclear. The aim of this study was to investigate the effects of resistance and aerobic training on gene expression profiles for macrophage infiltration and polarization (M1/M2 ratio) with chronic inflammation in various tissues of aged model mice. Male 38-week-old SAMP1 (senescence-accelerated prone mouse 1) mice were randomly divided into three groups—sedentary (Aged-Sed-SAMP1), aerobic training (Aged-AT-SAMP1; voluntary running), and resistance training—for 12 weeks (Aged-RT-SAMP1; climbing ladder). Resistance and aerobic exercise training prevented an increase in circulating TNF-α levels (a marker of systemic inflammation) in aged SAMP1 mice, along with decreases in tissue inflammatory cytokine (TNF-α and IL-1β) mRNA expression in the heart, liver, small intestine, brain, aorta, adipose, and skeletal muscle, but it did not change the levels in the lung, spleen, and large intestine. Moreover, resistance and aerobic exercise training attenuated increases in F4/80 mRNA expression (macrophage infiltration), the ratio of CD11c/CD163 mRNA expression (M1/M2 macrophage polarization), and MCP-1 mRNA expression (chemokine: a regulator of chronic inflammation) in the chronic inflamed tissues of aged SAMP1 mice. These results suggested that resistance and aerobic exercise training-induced changes in gene expression for macrophage infiltration and polarization in various tissues might be involved in the prevention of age-related tissue chronic inflammation, and lead to a reduction of the increase in circulating TNF-α levels, as a marker of systemic inflammation, in aged SAMP1 mice.
Collapse
Affiliation(s)
- Masataka Uchida
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Naoki Horii
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Natsuki Hasegawa
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Shumpei Fujie
- Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Health and Sciences, University of Tsukuba, Tsukuba, Japan
| | - Eri Oyanagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Hiromi Yano
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
139
|
Slusher AL, Zúñiga TM, Acevedo EO. Inflamm-Aging Is Associated with Lower Plasma PTX3 Concentrations and an Impaired Capacity of PBMCs to Express hTERT following LPS Stimulation. Mediators Inflamm 2019; 2019:2324193. [PMID: 31611733 PMCID: PMC6757284 DOI: 10.1155/2019/2324193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022] Open
Abstract
Age-related elevations in proinflammatory cytokines, known as inflamm-aging, are associated with shorter immune cell telomere lengths. Purpose. This study examined the relationship of plasma PTX3 concentrations, a biomarker of appropriate immune function, with telomere length in 15 middle-aged (40-64 years) and 15 young adults (20-31 years). In addition, PBMCs were isolated from middle-aged and young adults to examine their capacity to express a key mechanistic component of telomere length maintenance, human telomerase reverse transcriptase (hTERT), following ex vivo cellular stimulation. Methods. Plasma PTX3 and inflammatory cytokines (i.e., IL-6, IL-10, TGF-β, and TNF-α), PBMC telomere lengths, and PBMC hTERT gene expression and inflammatory protein secretion following exposure to LPS, PTX3, and PTX3+LPS were measured. Results. Aging was accompanied by the accumulation of centrally located visceral adipose tissue, without changes in body weight and BMI, and alterations in the systemic inflammatory milieu (decreased plasma PTX3 and TGF-β; increased TNF-α (p ≤ 0.050)). In addition, shorter telomere lengths in middle-aged compared to young adults (p = 0.011) were negatively associated with age, body fat percentages, and plasma TNF-α (r = -0.404, p = 0.027; r = -0.427, p = 0.019; and r = -0.323, p = 0.041, respectively). Finally, the capacity of PBMCs to increase hTERT gene expression following ex vivo stimulation was impaired in middle-aged compared to young adults (p = 0.033) and negatively associated with telomere lengths (r = 0.353, p = 0.028). Conclusions. Proinflammation and the impaired hTERT gene expression capacity of PBMCs may contribute to age-related telomere attrition and disease.
Collapse
Affiliation(s)
- Aaron L. Slusher
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Tiffany M. Zúñiga
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Edmund O. Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
140
|
Chen G, Yung R. Meta-inflammaging at the crossroad of geroscience. Aging Med (Milton) 2019; 2:157-161. [PMID: 31942529 PMCID: PMC6880720 DOI: 10.1002/agm2.12078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Geroscience posits that selected fundamental biological processes are the foundation of age-related chronic diseases and are responsible for the decline in physical and mental function in old age. Late-life chronic low-grade inflammation ("inflammaging") and altered signal transduction pathways in metabolism have been identified as two of the key themes in the aging process. Age-related changes in the immune and metabolic responses are also recognized as playing a critical pathogenic role in most common chronic medical conditions that plague the elderly. Emerging investigations emphasize the interconnectedness of the immune and metabolic responses in aging, an area of gerontological research that can be termed "meta-inflammaging."
Collapse
Affiliation(s)
- Guobing Chen
- Institute of Geriatric ImmunologySchool of MedicineJinan UniversityGuangzhouChina
- Department of Microbiology and ImmunologySchool of MedicineJinan UniversityGuangzhouChina
| | - Raymond Yung
- Geriatrics Center and Institute of GerontologyUniversity of MichiganAnn ArborMIUSA
- VA Ann Arbor Geriatrics Research, Education and Clinical CenterAnn ArborMIUSA
- Department of Internal MedicineDivision of Geriatric and Palliative MedicineUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
141
|
|
142
|
Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis 2019; 10:367-382. [PMID: 31011483 PMCID: PMC6457053 DOI: 10.14336/ad.2018.0324] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.
Collapse
Affiliation(s)
- Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
- Pathological and Analytical Center, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Sangwoon Chung
- Department of Internal Medicine, Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea.
| | - Arnold Y. Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| | - Young Suk Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Jaewon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea.
| | - Dong Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA.
| |
Collapse
|
143
|
Benayoun BA, Pollina EA, Singh PP, Mahmoudi S, Harel I, Casey KM, Dulken BW, Kundaje A, Brunet A. Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res 2019; 29:697-709. [PMID: 30858345 PMCID: PMC6442391 DOI: 10.1101/gr.240093.118] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Aging is accompanied by the functional decline of tissues. However, a systematic study of epigenomic and transcriptomic changes across tissues during aging is missing. Here, we generated chromatin maps and transcriptomes from four tissues and one cell type from young, middle-aged, and old mice—yielding 143 high-quality data sets. We focused on chromatin marks linked to gene expression regulation and cell identity: histone H3 trimethylation at lysine 4 (H3K4me3), a mark enriched at promoters, and histone H3 acetylation at lysine 27 (H3K27ac), a mark enriched at active enhancers. Epigenomic and transcriptomic landscapes could easily distinguish between ages, and machine-learning analysis showed that specific epigenomic states could predict transcriptional changes during aging. Analysis of data sets from all tissues identified recurrent age-related chromatin and transcriptional changes in key processes, including the up-regulation of immune system response pathways such as the interferon response. The up-regulation of the interferon response pathway with age was accompanied by increased transcription and chromatin remodeling at specific endogenous retroviral sequences. Pathways misregulated during mouse aging across tissues, notably innate immune pathways, were also misregulated with aging in other vertebrate species—African turquoise killifish, rat, and humans—indicating common signatures of age across species. To date, our data set represents the largest multitissue epigenomic and transcriptomic data set for vertebrate aging. This resource identifies chromatin and transcriptional states that are characteristic of young tissues, which could be leveraged to restore aspects of youthful functionality to old tissues.
Collapse
Affiliation(s)
- Bérénice A Benayoun
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elizabeth A Pollina
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Salah Mahmoudi
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Itamar Harel
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ben W Dulken
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.,Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
144
|
Alhamdi JR, Peng T, Al-Naggar IM, Hawley KL, Spiller KL, Kuhn LT. Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings. Biomaterials 2019; 196:90-99. [PMID: 30075952 PMCID: PMC6336526 DOI: 10.1016/j.biomaterials.2018.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/07/2018] [Accepted: 07/08/2018] [Indexed: 12/11/2022]
Abstract
Older adults suffer from weakened and delayed bone healing due to age-related alterations in bone cells and in the immune system. Given the interaction between the immune system and skeletal cells, therapies that address deficiencies in both the skeletal and the immune system are required to effectively treat bone injuries of older patients. The sequence of macrophage activation observed in healthy tissue repair involves a transition from a pro-inflammatory state followed by a pro-reparative state. In older patients, inflammation is slower to resolve and impedes healing. The goal of this study was to design a novel drug delivery system for temporal guidance of the polarization of macrophages using bone grafting materials. A biomimetic calcium phosphate coating (bCaP) physically and temporally separated the pro-inflammatory stimulus interferon-gamma (IFNγ) from the pro-reparative stimulus simvastatin (SIMV). Effective doses were identified using a human monocyte line (THP-1) and testing culminated with bone marrow macrophages obtained from old mice. Sequential M1-to-M2 activation was achieved with both cell types. These results suggest that this novel immunomodulatory drug delivery system holds potential for controlling macrophage activation in bones of older patients.
Collapse
Affiliation(s)
- Jumana R Alhamdi
- Biomedical Engineering, University of Connecticut (UConn) Health, Farmington, CT, USA
| | - Tao Peng
- Biomedical Engineering, University of Connecticut (UConn) Health, Farmington, CT, USA
| | - Iman M Al-Naggar
- Center on Aging, University of Connecticut (UConn) Health, Farmington, CT, USA
| | - Kelly L Hawley
- Department of Pediatrics, University of Connecticut (UConn) Health, Farmington, CT, USA; Division of Infectious Diseases, Connecticut Children's Medical Center, Hartford, CT, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, PA, USA
| | - Liisa T Kuhn
- Biomedical Engineering, University of Connecticut (UConn) Health, Farmington, CT, USA.
| |
Collapse
|
145
|
|
146
|
Submandibular gland-specific inflammaging-induced hyposalivation in the male senescence-accelerated mouse prone -1 line (SAM-P1). Biogerontology 2019; 20:421-432. [PMID: 30684147 DOI: 10.1007/s10522-019-09797-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
Abstract
Aging has pronounced effects on mammalian tissues and cells, but the impacts of aging on salivary gland function are relatively unknown. This study aims to evaluate the effects of aging on submandibular gland (SMG) and parotid gland (PG) functions in the male senescence-accelerated mouse. In vivo analysis at the systemic level revealed that salivary secretion induced by pilocarpine, a muscarinic agonist, from the SMG was significantly decreased in aged mice, whereas salivary secretion from the PG was not affected. To evaluate organ-level function, the SMG was perfused with the muscarinic agonists carbachol and calcium ionophore A23187 ex vivo to induce salivary secretion, and decreased saliva production was also observed in the aged SMG. Histological analysis revealed the presence of CD4-positive lymphocytes infiltrating the aged SMG. Furthermore, real-time PCR revealed that the aged SMG exhibited accelerated cell aging, increased levels of the inflammatory cytokine interleukin-6, and decreased mRNA levels of the water channel protein aquaporin-5 (AQP5). In summary, these results demonstrate that SMG function in aged mice was diminished, and that cell senescence, chronic inflammation, and the decreased gene expression of AQP5 are the likely causes of hyposalivation in the SMG of aged mice.
Collapse
|
147
|
van Beek AA, Van den Bossche J, Mastroberardino PG, de Winther MPJ, Leenen PJM. Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging? Trends Immunol 2019; 40:113-127. [PMID: 30626541 DOI: 10.1016/j.it.2018.12.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Aging is a complex process with an impact on essentially all organs. Declined cellular repair causes increased damage at genomic and proteomic levels upon aging. This can lead to systemic changes in metabolism and pro-inflammatory cytokine production, resulting in low-grade inflammation, or 'inflammaging'. Tissue macrophages, gatekeepers of parenchymal homeostasis and integrity, are prime inflammatory cytokine producers, as well as initiators and regulators of inflammation. In this opinion piece, we summarize intrinsic alterations in macrophage phenotype and function with age. We propose that alternatively activated macrophages (M2-like), which are yet pro-inflammatory, can accumulate in tissues and promote inflammaging. Age-related increases in endoplasmic reticulum stress and mitochondrial dysfunction might be cell-intrinsic forces driving this unusual phenotype.
Collapse
Affiliation(s)
- Adriaan A van Beek
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6709 PG Wageningen, The Netherlands; Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Amsterdam UMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands
| | - Pier G Mastroberardino
- Department of Genetics, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Menno P J de Winther
- Amsterdam UMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam, The Netherlands; Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
148
|
Mancuso P, Bouchard B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Front Endocrinol (Lausanne) 2019; 10:137. [PMID: 30915034 PMCID: PMC6421296 DOI: 10.3389/fendo.2019.00137] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 02/04/2023] Open
Abstract
During the last 40 years, there has been a world-wide increase in both the prevalence of obesity and an increase in the number of persons over the age of 60 due to a decline in deaths from infectious disease and the nutrition transition in low and middle income nations. While the increase in the elderly population indicates improvements in global public health, this population may experience a diminished quality of life due to the negative impacts of obesity on age-associated inflammation. Aging alters adipose tissue composition and function resulting in insulin resistance and ectopic lipid storage. A reduction in brown adipose tissue activity, declining sex hormones levels, and abdominal adipose tissue expansion occur with advancing years through the redistribution of lipids from the subcutaneous to the visceral fat compartment. These changes in adipose tissue function and distribution influence the secretion of adipose tissue derived hormones, or adipokines, that promote a chronic state of low-grade systemic inflammation. Ultimately, obesity accelerates aging by enhancing inflammation and increasing the risk of age-associated diseases. The focus of this review is the impact of aging on adipose tissue distribution and function and how these effects influence the elaboration of pro and anti-inflammatory adipokines.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Peter Mancuso
| | - Benjamin Bouchard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
149
|
Kalathookunnel Antony A, Lian Z, Wu H. T Cells in Adipose Tissue in Aging. Front Immunol 2018; 9:2945. [PMID: 30619305 PMCID: PMC6299975 DOI: 10.3389/fimmu.2018.02945] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Similar to obesity, aging is associated with visceral adiposity and insulin resistance. Inflammation in adipose tissue, mainly evidenced by increased accumulation and proinflammatory polarization of T cells and macrophages, has been well-documented in obesity and may contribute to the associated metabolic dysfunctions including insulin resistance. Studies show that increased inflammation, including inflammation in adipose tissue, also occurs in aging, so-called "inflamm-aging." Aging-associated inflammation in adipose tissue has some similarities but also differences compared to obesity-related inflammation. In particular, conventional T cells are elevated in adipose tissue in both obesity and aging and have been implicated in metabolic functions in obesity. However, the changes and also possibly functions of regulatory T cells (Treg) in adipose tissue are different in aging and obesity. In this review, we will summarize recent advances in research on the changes of these immune cells in adipose tissue with aging and obesity and discuss their possible contributions to metabolism and the potential of these immune cells as novel therapeutic targets for prevention and treatment of metabolic diseases associated with aging or obesity.
Collapse
Affiliation(s)
| | - Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
150
|
l-Carnitine inhibits the senescence-associated secretory phenotype of aging adipose tissue by JNK/p53 pathway. Biogerontology 2018; 20:203-211. [DOI: 10.1007/s10522-018-9787-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
|