151
|
Chen XY, Zhi LJ, Chen J, Li R, Long KL. Research hotspots and future trends in sepsis-associated acute kidney injury: a bibliometric and visualization analysis. Front Med (Lausanne) 2025; 11:1456535. [PMID: 39839617 PMCID: PMC11747655 DOI: 10.3389/fmed.2024.1456535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Objectives Sepsis-associated acute kidney injury (SA-AKI) commonly occurs in critically ill patients and is closely associated with adverse outcomes. A comprehensive analysis of the current research landscape in SA-AKI can help uncover trends and key issues in this field. This study aims to provide a scientific basis for research directions and critical issues through bibliometric analysis. Methods We searched all articles on SA-AKI indexed in the SCI-Expanded of WoSCC up to May 7, 2024, and conducted bibliometric and visual analyses using bibliometric software CiteSpace and VOSviewer. Results Over the past 20 years, there has been a steady increase in literature related to renal repair following AKI. China and the United States contribute over 60% of the publications, driving research in this field. The University of Pittsburgh is the most active academic institution, producing the highest number of publications. J. A. Kellum is both the most prolific and the most cited author in this area. "Shock" and "American Journal of Physiology-Renal Physiology" are the most popular journals, publishing the highest number of articles. Recent high-frequency keywords in this field include "septic AKI," "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage." The terms "mitochondrial dysfunction," "inflammasome," "ferroptosis," and "macrophage" represent current research hotspots and potential targets in this area. Conclusion This is the first comprehensive bibliometric study to summarize the trends and advancements in SA-AKI research in recent years. These findings identify current research frontiers and hot topics, providing valuable insights for scholars studying SA-AKI.
Collapse
Affiliation(s)
- Xing-Yue Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jia Zhi
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun-Lan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
152
|
Chen JY, Chen WJ, Zhu ZY, Xu S, Huang LL, Tan WQ, Zhang YG, Zhao YL. Screening of serum biomarkers in patients with PCOS through lipid omics and ensemble machine learning. PLoS One 2025; 20:e0313494. [PMID: 39775242 PMCID: PMC11706364 DOI: 10.1371/journal.pone.0313494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a primary endocrine disorder affecting premenopausal women involving metabolic dysregulation. We aimed to screen serum biomarkers in PCOS patients using untargeted lipidomics and ensemble machine learning. Serum from PCOS patients and non-PCOS subjects were collected for untargeted lipidomics analysis. Through analyzing the classification of differential lipid metabolites and the association between differential lipid metabolites and clinical indexes, ensemble machine learning, data preprocessing, statistical test pre-screening, ensemble learning method secondary screening, biomarkers verification and evaluation, and diagnostic panel model construction and verification were performed on the data of untargeted lipidomics. Results indicated that different lipid metabolites not only differ between groups but also have close effects on different corresponding clinical indexes. PI (18:0/20:3)-H and PE (18:1p/22:6)-H were identified as candidate biomarkers. Three machine learning models, logistic regression, random forest, and support vector machine, showed that screened biomarkers had better classification ability and effect. In addition, the correlation of candidate biomarkers was low, indicating that the overlap between the selected biomarkers was low, and the combination of panels was more optimized. When the AUC value of the test set of the constructed diagnostic panel model was 0.815, the model's accuracy in the test set was 0.74, specificity was 0.88, and sensitivity was 0.7. This study demonstrated the applicability and robustness of machine learning algorithms to analyze lipid metabolism data for efficient and reliable biomarker screening. PI (18:0/20:3)-H and PE (18:1p/22:6)-H showed great potential in diagnosing PCOS.
Collapse
Affiliation(s)
- Ji-ying Chen
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wu-jie Chen
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zhi-ying Zhu
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Shi Xu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Li-lan Huang
- Department of General Practice, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Wen-qing Tan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yong-gang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yan-li Zhao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
153
|
Engelmann M, Götze J, Baumbach P, Neu C, Settmacher U, Ardelt M, Kissler H, Coldewey SM. Mitochondrial oxygen metabolism as a potential predictor of weight loss after laparoscopic sleeve gastrectomy for class III obesity. Front Endocrinol (Lausanne) 2025; 15:1488175. [PMID: 39839477 PMCID: PMC11746103 DOI: 10.3389/fendo.2024.1488175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
The prevalence of obesity is increasing at an alarming rate in industrialized countries. Obesity is a systemic disease that causes not only macroscopic alterations, but also mitochondrial dysfunction. Laparoscopic sleeve gastrectomy (LSG) poses a potential therapeutic option for patients with severe obesity. In order to ascertain the efficacy of bariatric interventions, it is important to assess not only weight loss, but also changes in body composition. Additionally, the aim of this study was to investigate the association between weight loss and cellular oxygen metabolism, a surrogate for mitochondrial function. We used bioimpedance analysis (BIA) to assess changes in weight and body composition in patients up to one year after LSG. To evaluate mitochondrial oxygen metabolism, we used the Cellular Oxygen Metabolism Monitor (COMET) to non-invasively measure the mitochondrial oxygen tension (mitoPO2), mitochondrial oxygen consumption (mitoVO2) and mitochondrial oxygen delivery (mitoDO2). We compared the values obtained in patients with obesity with those of age- and sex-matched healthy controls and investigated changes up to one year after LSG. 48 patients (46.5 years [35.5-55.3]; 38/48 female (79.2%); BMI 46.7 [42.5-51.0]) completed the study. They showed a significant weight loss and a decrease in relative fat mass after six months. We found no differences in mitochondrial oxygen metabolism between obese patients and healthy controls. MitoPO2, mitoVO2 and mitoDO2 did not change up to one year after surgery. It is noteworthy that patients who exhibited higher mitoPO2, mitoVO2, and mitoDO2 values prior to surgery demonstrated superior weight loss outcomes one year after LSG. This was the first study to investigate the non-invasively measured mitochondrial oxygen metabolism in the long-term course after bariatric surgery. Further studies in larger cohorts are needed to confirm these findings. Clinical trial registration https://www.bfarm.de/DE/Das-BfArM/Aufgaben/Deutsches-Register-Klinischer-Studien/_node.html, identifier DRKS00015891.
Collapse
Affiliation(s)
- Markus Engelmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Juliane Götze
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Philipp Baumbach
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Charles Neu
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Ardelt
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hermann Kissler
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
154
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Sexual Dimorphism in Migraine. Focus on Mitochondria. Curr Pain Headache Rep 2025; 29:11. [PMID: 39760955 DOI: 10.1007/s11916-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF REVIEW Migraine prevalence in females is up to 3 times higher than in males and females show higher frequency, longer duration, and increased severity of headache attacks, but the reason for that difference is not known. This narrative review presents the main aspects of sex dimorphism in migraine prevalence and discusses the role of sex-related differences in mitochondrial homeostasis in that dimorphism. The gender dimension is also shortly addressed. RECENT FINDINGS The imbalance between energy production and demand in the brain susceptible to migraine is an important element of migraine pathogenesis. Mitochondria are the main energy source in the brain and mitochondrial impairment is reported in both migraine patients and animal models of human migraine. However, it is not known whether the observed changes are consequences of primary disturbance of mitochondrial homeostasis or are secondary to the migraine-affected hyperexcitable brain. Sex hormones regulate mitochondrial homeostasis, and several reports suggest that the female hormones may act protectively against mitochondrial impairment, contributing to more effective energy production in females, which may be utilized in the mechanisms responsible for migraine progression. Migraine is characterized by several comorbidities that are characterized by sex dimorphism in their prevalence and impairments in mitochondrial functions. Mitochondria may play a major role in sexual dimorphism in migraine through the involvement in energy production, the dependence on sex hormones, and the involvement in sex-dependent comorbidities. Studies on the role of mitochondria in sex dimorphism in migraine may contribute to precise personal therapeutic strategies.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, 90-647, Lodz, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-420, Plock, Poland.
| |
Collapse
|
155
|
Estato V, Obadia N, Chateaubriand PH, Figueiredo V, Curty M, Costa Silva M, Ferreira RGL, Santa-Ritta J, Campos Baroni M, Aragão A, Neno JOG, Vasconcellos CAM, Costa D'Avila J, Gomes Granja M, Caire de Castro Faria-Neto H. Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome. Diabetol Metab Syndr 2025; 17:2. [PMID: 39754250 PMCID: PMC11699651 DOI: 10.1186/s13098-024-01528-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases. OBJECTIVE This study aimed to evaluate the effects of chronic treatment with a GLP-1 receptor agonist (semaglutide) on cerebral microcirculation and neurovascular unit (NVU) integrity. METHODS C57BL/6 mice were fed a standard normolipidic diet or a high-fat diet (HFD) for 24 weeks and then treated for 4 weeks with semaglutide (HFD SEMA) or saline solution (HFD SAL). At the end of pharmacological treatment, biochemical analyses, immunohistochemistry analysis, and intravital microscopy of the brain microcirculation were carried out to quantify leukocyte-endothelium interactions and to assess structural capillary density, astrocyte coverage on cerebral vessels and microglial activation. RESULTS We observed that SEMA attenuates high-fat diet-induced metabolic alterations in mice fed with HFD for 24 weeks. SEMA also reversed cerebral microcirculation effects of HFD by reducing capillary rarefaction and the interaction of leukocytes in postcapillary brain venules. The HFD-SEMA group exhibited improved astrocyte coverage on vessels. However, SEMA did not reverse microglial activation. CONCLUSIONS Semaglutide can reverse microvascular rarefaction in metabolic syndrome by restoring the integrity of the neurovascular unit. Adverse dietary stimuli can compromise microglial homeostasis that is not reversed by semaglutide.
Collapse
Affiliation(s)
- Vanessa Estato
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.
- Medical School, Estácio-IDOMED, Rio de Janeiro, Brazil.
| | - Nathalie Obadia
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil
- Pharmacy School, Universidade Estácio de Sá, Rio de Janeiro, Brazil
| | | | | | - Marcela Curty
- Medical School, Estácio-IDOMED, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | - Joana Costa D'Avila
- Laboratory of Pre-clinical Research, Iguaçu University, Rio de Janeiro, Brazil
| | - Marcelo Gomes Granja
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil
- Medical School, Estácio-IDOMED, Rio de Janeiro, Brazil
| | - Hugo Caire de Castro Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil
| |
Collapse
|
156
|
Israel A, Raz I, Green I, Golan-Cohen A, Berkovitch M, Magen E, Vinker S, Merzon E. Health disparities in diabetes treatment: The challenge of G6PD deficiency. Diabetes Res Clin Pract 2025; 219:111965. [PMID: 39710070 DOI: 10.1016/j.diabres.2024.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
AIMS To assess the impact of Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an enzymatic deficiency prevalent in individuals of African or Asian descent, on Hemoglobin A1c (HbA1c) levels, diabetes medication purchases, and the cumulative incidence of diabetes related complications. METHODS A large cohort study was conducted within a national health organization, comparing 3,913 G6PD-deficient patients to a matched control group without G6PD deficiency over two decades. The main measures and outcomes were the HbA1c levels, patterns of diabetes medication purchases, and the incidence of severe diabetes-related complications. RESULTS HbA1c levels significantly underestimated blood glucose concentrations in G6PD-deficient individuals. Individuals with diabetes and G6PD deficiency had lower rates of treatment with most diabetes medications, notably GLP-1 receptor agonists and SGLT2 inhibitors. Severe diabetes-related complications were more frequent among G6PD-deficient patients, with adjusted hazards ratios [95% confidence intervals] of 1.44 [1.16-1.81] for severe kidney insufficiency, 1.75 [1.23-2.49] for myocardial infarction, and 1.27 [1.02-1.58] for neuropathy. CONCLUSIONS This research highlights serious gaps in the management of G6PD-deficient patients with diabetes, who suffer from insufficient medication management and higher rates of complications. These findings underscore the need to account for G6PD deficiency in diabetes treatment to ensure equitable and effective healthcare for this vulnerable population.
Collapse
Affiliation(s)
- Ariel Israel
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel-Aviv, Israel.
| | - Itamar Raz
- Diabetes Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Ilan Green
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Department of Family Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Israel
| | - Avivit Golan-Cohen
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Department of Family Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology Unit, Shamir Medical Center, The Andy-Lebach Chair of Clinical Pharmacology and Toxicology, Medical School, Tel-Aviv University, Israel
| | - Eli Magen
- Medicine A Department, Assuta Ashdod University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Shlomo Vinker
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Department of Family Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Israel
| | - Eugene Merzon
- Leumit Research Institute, Leumit Health Services, Tel-Aviv, Israel; Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
157
|
Mao J, Wu C, Zheng L, Li Y, Yang R, Yuan P, Jiang J, Li C, Zhou X. Advances in stimulus-responsive nanomedicine for treatment and diagnosis of atherosclerosis. Colloids Surf B Biointerfaces 2025; 245:114298. [PMID: 39378703 DOI: 10.1016/j.colsurfb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Atherosclerosis (AS), an inflammatory cardiovascular disease driven by lipid deposition, presents global prevalence with high mortality. Effective anti-inflammatory or lipid removal is a promising strategy. However, current conventional drug delivery methods may face challenges in targeting disease sites and are deficient in the treatment of AS because of the nonspecific tissue distribution and uncontrollable release of the drug. In contrast, stimulus-responsive nanodrug delivery systems (NDDSs) can respond to stimulation and achieve controlled drug release rates at specific disease sites owing to the abnormal pathological microenvironment in plaques with low pH, excessive reactive oxygen species (ROS) and enzymes, and high shear stress. As a consequence, the efficacy of treatment is improved, and adverse reactions are reduced. On the other hand, NDDSs can combine exogenous stimulus responses (photothermal, ultrasound, etc.) to precisely control their function in time and space. This review for the first time focuses on the application of stimulus-responsive NDDSs in the treatment and diagnosis of AS in the last five years. In addition, its pivotal challenges and prospects are emphasized, aiming to facilitate its application for AS.
Collapse
Affiliation(s)
- Jingying Mao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China
| | - Chengxi Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lixin Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaoyao Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ronghao Yang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ping Yuan
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Luzhou, Sichuan 646000, China; Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
158
|
Mahdavifard S, Malekzadeh HR. Symbiotic anti-oxidant, anti-glycation, and anti-inflammatory qualities of a combination of thiamine and niacin protected type-2 diabetic male rats against both macro and micro-vascular complications. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:98-104. [PMID: 39877627 PMCID: PMC11771336 DOI: 10.22038/ijbms.2024.77553.16771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/11/2024] [Indexed: 01/31/2025]
Abstract
Objectives Increased nuclear factor (NF-kβ) and carbonyl stress due to decreased glyoxalase-1 activity (Glo-I) contribute significantly to insulin resistance and vascular complications. Therefore, we aimed to study the impact of the combination of thiamine and niacin on hepatic NF-kβ signaling, metabolic profile, and Glo-I activity in male rats with type-2 diabetes (T2DM). Materials and Methods Forty male rats were divided equally into five groups: control, diabetic, diabetic treated with thiamine (180 mg/l in drinking water), niacin (180 mg/l), and a combination of both. The treated groups received the treatments daily in drinking water for two months. T2DM was induced using a combination of nicotinamide and alloxan. Metabolic profile and renal dysfunction parameters were assessed. Additionally, various glycation, oxidative stress, and inflammatory markers were measured. Results The treated group with both vitamins showed the lowest blood sugar and insulin resistance indices, cardiovascular indices, renal dysfunction parameters, hepatic NF-kβ expression, oxidative stress, inflammatory and glycation markers, and the highest anti-oxidant and anti-glycation markers, β cell activity, and insulin sensitivity. Thiamine exhibited more anti-inflammatory activity than niacin in diabetic rats, while niacin demonstrated stronger anti-oxidant activity (P<0.001). Conclusion The combined use of vitamins had a more beneficial impact on macro and microvascular complications in diabetes than each alone, attributed to their higher anti-oxidant, anti-inflammatory, and anti-glycation characteristics. The vitamins also had a more corrective effect on glucose-lipid metabolism, insulin sensitivity, and renal function through a stronger lowering effect on hepatic NF-kβ expression.
Collapse
Affiliation(s)
- Sina Mahdavifard
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | |
Collapse
|
159
|
Sumbul‐Sekerci B, Pasin O, Balkan E, Sekerci A. The Role of Inflammation, Oxidative Stress, Neuronal Damage, and Endothelial Dysfunction in the Neuropathology of Cognitive Complications in Diabetes: A Moderation and Mediation Analysis. Brain Behav 2025; 15:e70225. [PMID: 39829127 PMCID: PMC11743999 DOI: 10.1002/brb3.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Cognitive impairment is increasingly recognized as a complication of diabetes, yet the underlying pathology remains unclear. This study aims to investigate the roles of inflammation, oxidative stress, endothelial dysfunction, and neuronal damage in the neuropathology underlying diabetes related cognitive impairment. METHODS This study assessed 183 participants (54 prediabetes, 71 Type 2 diabetes mellitus [T2DM], and 58 controls) for cognitive performance using the Montreal Cognitive Assessment (MoCA). Blood samples were analyzed for interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), VCAM-1/CD106, and neuron-specific enolase (NSE) using ELISA. Mediation and moderator analysis methods were used to examine the roles of these biomarkers in diabetes-related cognitive impairment. RESULTS After adjusting for age, education, and gender, group comparisons revealed significant cognitive impairment in patients with T2DM, particularly in visuospatial functions, naming, language, and memory performance, compared to the control group. The patients with T2DM and prediabetes exhibited similar performance in cognitive functions, except for language. Significant differences in VCAM-1 and TNF-α levels were observed; however, these biomarkers did not mediate the effect of T2DM and prediabetes on cognitive functions. Nevertheless, VCAM-1 was found to moderate abstraction abilities in T2DM. CONCLUSION Prediabetes represents a transitional stage not only for the pathology of diabetes but also for cognitive complications. Although there were correlations between cognitive performance and various cognitive scores, IL-6, MDA, NSE, VCAM-1, and TNF-α did not play a mediator role in the neuropathology of diabetes-related cognitive impairment.
Collapse
Affiliation(s)
- Betul Sumbul‐Sekerci
- Department of Clinical Pharmacy, Faculty of PharmacyBezmialem Vakıf UniversityIstanbulTurkey
| | - Ozge Pasin
- Department of BiostatisticsFaculty of MedicineBezmialem Vakıf UniversityIstanbulTurkey
| | - Ezgi Balkan
- Department of Medical BiochemistryBezmialem Vakif UniversityIstanbulTurkey
- Health Sciences InstituteBezmialem Vakıf UniversityIstanbulTurkey
| | - Abdusselam Sekerci
- Department of Internal Medicine, Faculty of MedicineBezmialem Vakif UniversityIstanbulTurkey
| |
Collapse
|
160
|
Zhao X, Zhang J, Li C, Kuang W, Deng J, Tan X, Li C, Li S. Mitochondrial mechanisms in Treg cell regulation: Implications for immunotherapy and disease treatment. Mitochondrion 2025; 80:101975. [PMID: 39491776 DOI: 10.1016/j.mito.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining immune homeostasis and preventing autoimmune diseases. Recent advances in immunometabolism have revealed the pivotal role of mitochondrial dynamics and metabolism in shaping Treg functionality. Tregs depend on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to support their suppressive functions and long-term survival. Mitochondrial processes such as fusion and fission significantly influence Treg activity, with mitochondrial fusion enhancing bioenergetic efficiency and reducing reactive oxygen species (ROS) production, thereby promoting Treg stability. In contrast, excessive mitochondrial fission disrupts ATP synthesis and elevates ROS levels, impairing Treg suppressive capacity. Furthermore, mitochondrial ROS act as critical signaling molecules in Treg regulation, where controlled levels stabilize FoxP3 expression, but excessive ROS leads to mitochondrial dysfunction and immune dysregulation. Mitophagy, as part of mitochondrial quality control, also plays an essential role in preserving Treg function. Understanding the intricate interplay between mitochondrial dynamics and Treg metabolism provides valuable insights for developing novel therapeutic strategies to treat autoimmune disorders and enhance immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junmei Zhang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Caifeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China.
| | - Weiying Kuang
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jianghong Deng
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Tan
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chao Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shipeng Li
- Department of Rheumatology, National Centre for Children's Health Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
161
|
Zeng W, Wang L, Wang C, Xiong X, Huang Q, Chen S, Liu C, Liu W, Wang Y, Huang Q. SENP1 prevents high fat diet-induced non-alcoholic fatty liver diseases by regulating mitochondrial dynamics. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167527. [PMID: 39332783 DOI: 10.1016/j.bbadis.2024.167527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Mitochondrial dynamics plays a crucial role in the occurrence and development of non-alcoholic fatty liver diseases (NAFLD). SENP1, a SUMO-specific protease, catalyzes protein de-SUMOylation and involves in various physiological and pathological processes. However, the exact role of SENP1 in NAFLD remains unclear. Therefore, we investigated the regulatory role of SENP1 in mitochondrial dynamics during the progression of NAFLD. In the study, the NAFLD in vivo model induced by high fat diet (HFD) and in vitro model induced by free fatty acids (FFA) were established to investigate the role and underlying mechanism of SENP1 through detecting mitochondrial morphology and dynamics. Our results showed that the down-regulation of SENP1 expression and the mitochondrial dynamics dysregulation occurred in the NAFLD, evidenced as mitochondrial fragmentation, up-regulation of p-Drp1 ser616 and down-regulation of MFN2, OPA1. However, over-expression of SENP1 significantly alleviated the NAFLD, rectified the mitochondrial dynamics disorder, reduced Cyt-c release and ROS levels induced by FFA or HFD; moreover, the over-expression of SENP1 also reduced the SUMOylation levels of Drp1 and prevented the Drp1 translocation to mitochondria. Our findings suggest that the possible mechanisms of SENP1 were through rectifying the mitochondrial dynamics disorder, reducing Cyt-c release and ROS-mediated oxidative stress. The findings would provide a novel target for the prevention and treatment of NALFD.
Collapse
Affiliation(s)
- Wenjing Zeng
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Li Wang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Chaowen Wang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaowei Xiong
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Qianqian Huang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Sheng Chen
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Chen Liu
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Wentao Liu
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Qiren Huang
- Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
162
|
Eshraghi A, Khalesi S, Amini K, Salleh FH, Sharifikia M, Hajmiri MS, Zamanirafe M, Yazdi A, Mehrpooya M. Empagliflozin Ameliorates the Oxidative Stress Profile in Type 2 Diabetic Patients with Heart Failure and Reduced Ejection Fraction: Results of a Randomized, Double-blind, Placebo-controlled Study. Rev Recent Clin Trials 2025; 20:167-179. [PMID: 39779555 DOI: 10.2174/0115748871323540241212060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION In the present study, we evaluated the impact of empagliflozin on serum levels of oxidative stress parameters in individuals with type 2 diabetes (T2DM) who also suffer from heart failure with Reduced Ejection Fraction (HFrEF). METHODS In this prospective, single-center clinical trial, 80 patients with T2DM and HFrEF, stabilized on guideline-directed heart failure therapy and classified as New York Heart Association functional (NYHA) functional classes II or III, were randomized to receive either empagliflozin (10 mg/daily) or a matching placebo for a duration of 12 weeks. Serum levels of malondialdehyde (MDA), along with the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx), were measured at baseline and after the 12-week treatment period. RESULTS The baseline demographic and clinical characteristics of the randomized patients were comparable across the study groups. As anticipated, empagliflozin demonstrated a significant reduction in fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) compared to the placebo after 12 weeks of treatment. Additionally, in comparison to the placebo, empagliflozin significantly increased the antioxidant capacity by elevating serum activity of SOD and GPx, while reducing oxidative damage, as evidenced by diminished MDA levels. Empagliflozin-treated patients also experienced greater improvement in their NYHA functional classes by week 12, though no significant changes in Left Ventricular Ejection Fraction (LVEF) were observed. CONCLUSION The findings of this study shed light on the potential mechanisms through which SGLT2 inhibitors exert their beneficial effects on clinical outcomes in diabetic patients with HFrEF. This provides compelling evidence supporting the cardio-protective of SGLT2 inhibitors in this patient population. CLINICAL TRIAL REGISTRATION NUMBER The trial was registered at the Iranian Registry of Clinical Trials (https://irct.behdasht.gov.ir/trial/72825, identifier code: IRCT20120215009014N484). Registration date: 2022-09-30.
Collapse
Affiliation(s)
- Azadeh Eshraghi
- Department of Clinical Pharmacy, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Khalesi
- Department of Cardiology, Cardiovascular Intervention Research Center, Khorshid Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiumarth Amini
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fahmi Hassan Salleh
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdis Sharifikia
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Minoo Sadat Hajmiri
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Zamanirafe
- Department of Cardiology, Medical faculty, Hamadan University of Medical Science, Hamadan, Iran
| | - Amirhossein Yazdi
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
163
|
Motta AB. Polycystic Ovary Syndrome and Oxidative Stress. Natural Treatments. Curr Med Chem 2025; 32:1457-1468. [PMID: 38549535 DOI: 10.2174/0109298673270372231130071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 05/01/2025]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most frequent endocrinopathology affecting women in their reproductive ages. However, PCOS is also related to metabolic abnormalities such as metabolic syndrome (MS), insulin resistance (IR), and type 2 diabetes, among others. Consequently, an inflammatory and pro-oxidative status is also present in these patients, aggravating the syndrome's symptoms. This work aims to discuss some late treatments that focus on oxidative stress (OS) as a central feature related to primary PCOS abnormalities. Therefore, this review focuses on the evidence of anti-oxidant diets, natural compounds, mineralocorticoids, and combined therapies for PCOS management. Oxidative stress (OS) is important in PCOS pathogenesis. In this regard, increased levels of oxidative oxygen species and decreased levels of anti-oxidant agents’ impact PCOS's reproductive and metabolic features. In the last years, non-pharmacological therapies have been considered a first line of treatment. For these reasons, several natural compounds such as Kelult honey (KH), Foeniculum Vulgare, Calendula officinalis Linn, Eugenia caryophyllus and Myristicafragrans, vitamin C, vitamin E, selenium, zinc, beta-carotene, magnesium, curcumin, mineralocorticoids and melatonin alone or in combination are powerful anti-oxidant agents being used for PCOS management. Data presented here suggest that natural therapies are essential in managing both reproductive and metabolic features in PCOS patients. Due to the results obtained, these incipient therapies deserve further investigation.
Collapse
Affiliation(s)
- Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
164
|
De S, Banerjee S, Rakshit P, Banerjee S, Kumar SKA. Unraveling the Ties: Type 2 Diabetes and Parkinson's Disease - A Nano-Based Targeted Drug Delivery Approach. Curr Diabetes Rev 2025; 21:32-58. [PMID: 38747222 DOI: 10.2174/0115733998291968240429111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 02/26/2025]
Abstract
The link between Type 2 Diabetes (T2DM) and Parkinson's Disease (PD) dates back to the early 1960s, and ongoing research is exploring this association. PD is linked to dysregulation of dopaminergic pathways, neuroinflammation, decreased PPAR-γ coactivator 1-α, increased phosphoprotein enriched in diabetes, and accelerated α-Syn amyloid fibril production caused by T2DM. This study aims to comprehensively evaluate the T2DM-PD association and risk factors for PD in T2DM individuals. The study reviews existing literature using reputable sources like Scopus, ScienceDirect, and PubMed, revealing a significant association between T2DM and worsened PD symptoms. Genetic profiles of T2DM-PD individuals show similarities, and potential risk factors include insulin-resistance and dysbiosis of the gut-brain microbiome. Anti-diabetic drugs exhibit neuroprotective effects in PD, and nanoscale delivery systems like exosomes, micelles, and liposomes show promise in enhancing drug efficacy by crossing the Blood-Brain Barrier (BBB). Brain targeting for PD uses exosomes, micelles, liposomes, dendrimers, solid lipid nanoparticles, nano-sized polymers, and niosomes to improve medication and gene therapy efficacy. Surface modification of nanocarriers with bioactive compounds (such as angiopep, lactoferrin, and OX26) enhances α-Syn conjugation and BBB permeability. Natural exosomes, though limited, hold potential for investigating DM-PD pathways in clinical research. The study delves into the underlying mechanisms of T2DM and PD and explores current therapeutic approaches in the field of nano-based targeted drug delivery. Emphasis is placed on resolved and ongoing issues in understanding and managing both conditions.
Collapse
Affiliation(s)
- Sourav De
- Department of Pharmaceutical Technology, Eminent College of Pharmaceutical Technology, Kolkata, 700126, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, 713301, West Bengal, India
| | - Pallabita Rakshit
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, 713301, West Bengal, India
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
165
|
Zhang D, Yuan C, An X, Guo T, Lu Z, Liu J. Transcriptome and metabolome revealed the effects of hypoxic environment on ovarian development of Tibetan sheep. Genomics 2025; 117:110973. [PMID: 39631551 DOI: 10.1016/j.ygeno.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Many studies on the adaptability of Tibetan sheep to hypoxia have been reported, but little attention has been paid to the reproduction of Tibetan sheep living at an altitude of more than 4000 m. In this study, the ovaries of Alpine Merino sheep (AM) living in middle-high altitude areas (2500 m) and the ovaries of Gangba Tibetan sheep (GB) and Huoba Tibetan sheep (HB) living in ultra-high altitude areas (4400 m or more) were collected. Through morphological, transcriptomics and metabolomics, the effects of ultra-high altitude areas on Tibetan sheep ovarian development and the molecular mechanism of sheep's adaptability to ultra-high altitude environment were explored. The results showed that the number of granulosa cells in AM was significantly higher than that in GB and HB. The transcriptome revealed several genes related to follicular development, such as DAPL1, IGFBP1, C5, GPR12, STRA6, BMPER, etc., which were mainly enriched in related pathways such as cell growth and development. Through metabolomics analysis, it was found that the differential metabolites between the three groups of sheep were mainly lipids and lipid-like small molecules, such as Glycerol 3-Phosphate, PC (16: 0 / 18: 3 (9Z, 12Z, 15Z)), mainly enriched in lipid metabolism and other related pathways. The results of combined analysis showed that Tryptophan metabolism and Steroid hormone biosynthesis may have a significant effect on Tibetan sheep follicular development. Some genes (including HSD17B7, CYP11A1, CYP19, HSD3B1, CYP17, etc.) and some metabolites (including Cortisone, 2-Methoxyestrone, etc.) are enriched in these pathways, regulating ovarian and follicular development by affecting estrogen, progesterone, etc.. The results further revealed the molecular mechanism of Tibetan sheep to adapt to the ultra-high altitude environment and maintain normal ovarian and follicular development through the regulation of genes and metabolites.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
166
|
Samsonov A, Urlacher SS. Oxidative Stress in Children and Adolescents: Insights Into Human Biology. Am J Hum Biol 2025; 37:e24200. [PMID: 39815753 PMCID: PMC11736247 DOI: 10.1002/ajhb.24200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Oxidative stress (OS) is a key biological challenge and selective pressure for organisms with aerobic metabolism. The result of the imbalance between reactive oxygen species production and antioxidant defense, OS can damage proteins, lipids, and nucleic acids and plays an important role in driving variation in biological aging and health. Among humans, OS research has focused overwhelmingly on adults, with demonstrated connections between OS, inflammation, and metabolic and neurodegenerative conditions. Relatively little attention has been given to OS during childhood and adolescence. This lack of early life OS research exists despite clear implications for informing human life history evolution, subadult development, and lifelong health. Here, we review current knowledge on OS during human subadulthood. Our objectives are threefold: (1) To highlight common methods for measuring OS among children and adolescents and to establish typical measurement values; (2) To summarize the evidence linking demographic and ecological factors to variation in subadult OS; (3) To identify avenues for future OS research in human biology. Our review underscores an expanding methodological toolkit for assessing OS among children and adolescents. Subadult OS is considerably elevated compared to OS among adults, a pattern eliciting unknown consequences and likely related to increased early life metabolic demands (e.g., unique human brain development). Factors such as diet, physical activity, infectious disease, and structural neglect also appear to drive subadult OS. Current limitations for research on subadult OS are evident. Future work should emphasize evolutionary, biocultural, and energetic life course perspectives to advance this promising area of human biology.
Collapse
Affiliation(s)
- Anna Samsonov
- Department of AnthropologyBaylor UniversityWacoTexasUSA
| | | |
Collapse
|
167
|
Nikolaou PE, Konijnenberg LS, Kostopoulos IV, Miliotis M, Mylonas N, Georgoulis A, Pavlidis G, Kuster CT, van Reijmersdal VP, Luiken TT, Agapaki A, Roverts R, Orologas N, Grigoriadis D, Pallot G, Boucher P, Kostomitsopoulos N, Pieper MP, Germain S, Loukas Y, Dotsikas Y, Ikonomidis I, Hatzigeorgiou AG, Tsitsilonis O, Zuurbier CJ, Nijveldt R, van Royen N, Andreadou I. Empagliflozin in Acute Myocardial Infarction Reduces No-Reflow and Preserves Cardiac Function by Preventing Endothelial Damage. JACC Basic Transl Sci 2025; 10:43-61. [PMID: 39958474 PMCID: PMC11830260 DOI: 10.1016/j.jacbts.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 02/18/2025]
Abstract
Empagliflozin treatment before acute myocardial infarction mainly targets the endothelial cell transcriptome. Empagliflozin treatment before and after myocardial infarction decreased no reflow and microvascular injury, leading to reduced infiltration of inflammatory cells, reduced infarct size, and improved cardiac function in mice. In diabetic patients receiving empagliflozin after myocardial infarction, perfused boundary region, flow-mediated dilation, and global longitudinal strain were improved.
Collapse
Affiliation(s)
- Panagiota Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Ioannis V. Kostopoulos
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Miliotis
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Nikolaos Mylonas
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Georgoulis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - George Pavlidis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Carolien T.A. Kuster
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Tom T.J. Luiken
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna Agapaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Rona Roverts
- Electron Microscopy Center, Radboud UMC Technology Center, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nikolaos Orologas
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Grigoriadis
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Gaëtan Pallot
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Pierre Boucher
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facilities, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Stéphane Germain
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Yannis Loukas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Yannis Dotsikas
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis G. Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Ourania Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
168
|
Lin Y, Chen J, Lin K. Comment on "A 10-Year Longitudinal Study of Muscle Morphology and Performance in Masters Sprinters" by Hendrickse et al. J Cachexia Sarcopenia Muscle 2025; 16:e13857. [PMID: 40464211 PMCID: PMC12134778 DOI: 10.1002/jcsm.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025] Open
Affiliation(s)
- Yu‐Hsiang Lin
- Department of UrologyLinkou Chang Gung Memorial Hospital, Chang Gung University School of MedicineTaoyuanTaiwan
| | - Jau‐Yuan Chen
- Department of Family MedicineLinkou Chang Gung Memorial Hospital, and School of Medicine, Chang Gung UniversityTaoyuanTaiwan
| | - Kuo‐Jen Lin
- Department of UrologyLinkou Chang Gung Memorial Hospital, Chang Gung University School of MedicineTaoyuanTaiwan
| |
Collapse
|
169
|
Fu Y, Tang M, Duan Y, Pan Y, Liang M, Yuan J, Wang M, Laher I, Li S. MOTS-c regulates the ROS/TXNIP/NLRP3 pathway to alleviate diabetic cardiomyopathy. Biochem Biophys Res Commun 2024; 741:151072. [PMID: 39616938 DOI: 10.1016/j.bbrc.2024.151072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
Chronic low-grade inflammation is a characteristic of diabetes, which often culminates in cardiovascular events including myocardial damage, thereby increasing the risk of debilitating cardiac complications. The mitochondria-derived peptide MOTS-c regulates glucose and lipid metabolism while improving insulin resistance, making it a potential candidate for the treatment of diabetes and cardiovascular diseases. We investigated the impact of MOTS-c on cardiac structure and inflammation in diabetic rats induced by a high-sugar-fat diet combined with low-dose streptozotocin (30 mg/kg, i.p.). Our results confirm that high glucose levels activate the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and increase reactive oxygen species (ROS), ultimately leading to myocardial injury. Furthermore, treatment with MOTS-c (0.5 mg/kg/day, i.p.) for 8 weeks reduced the expression of ROS/TXNIP/NLRP3 pathway proteins to inhibit the diabetic myocardial inflammatory response. These findings suggested that MOTS-c alleviates myocardial damage by inhibiting the ROS/TXNIP/NLRP3 pathway.
Collapse
Affiliation(s)
- Yu Fu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Mi Tang
- School of Physical Education, Xihua University, Chengdu, China
| | - Yimei Duan
- School of Physical Education, Sichuan Normal University, Chengdu, China
| | - Yanrong Pan
- School of Physical Education, Sichuan Minzu College, Kangding, China
| | - Min Liang
- College of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinghan Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Manda Wang
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Medicine, University of British Columbia, Vancouver, Canada
| | - Shunchang Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China.
| |
Collapse
|
170
|
Lu YJ, Wang HK, Lin YH. The interplay between sex hormones, mitochondrial dysfunction, and intervertebral disc degeneration: insights beyond Qiu et al. J Transl Med 2024; 22:1162. [PMID: 39741256 DOI: 10.1186/s12967-024-06026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Affiliation(s)
- Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, 5 Fu-Shing Street, Kweishan, Taoyuan, 333, Taiwan
- School of Medicine, Chang Gung University, Kwei-shan, Tao-Yuan, Taiwan
| | - Hong Kai Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, 5 Fu-Shing Street, Kweishan, Taoyuan, 333, Taiwan
- School of Medicine, Chang Gung University, Kwei-shan, Tao-Yuan, Taiwan
| | - Yu-Hsiang Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, 5 Fu-Shing Street, Kweishan, Taoyuan, 333, Taiwan.
- Department of Urology, Chang Gung Memorial Hospital at Linkou, 5 Fu-Shing Street, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
171
|
Wang Y, Zhang X, Ren M, He S, Bie H, Duan M, Chen Z, Jia Q, Chi B, Gan X, Li C, Fu Y, Zhou H, Zhang S, Zhang Q, An F, Chen X, Jia E. LncRNA LUCAT1 offers protection against human coronary artery endothelial cellular oxidative stress injury through modulating hsa-miR-6776-5p/LRRC25 axis and activating autophagy flux. J Transl Med 2024; 22:1171. [PMID: 39741278 DOI: 10.1186/s12967-024-05966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Coronary artery disease (CAD) has become a dominant economic and health burden worldwide, and the role of autophagy in CAD requires further clarification. In this study, we comprehensively revealed the association between autophagy flux and CAD from multiple hierarchies. We explored autophagy-associated long noncoding RNA (lncRNA) and the mechanisms underlying oxidative stress-induced human coronary artery endothelial cells (HCAECs) injury. METHODS (1) Autophagy-related proteins including LC3, p62, Beclin1, ATG5, and ATG7 were immunohistochemical stained in coronary specimens; (2) The levels and function of autophagy in the HCAEC oxidative stress model were evaluated using western blot (WB), transmission electron microscopy (TEM), and mRFP-GFP-LC3 adenovirus transfection experiments; (3) The competing endogenous RNA (ceRNA) network of lncRNA LUCAT1/hsa-miR-6776-5p/LRRC25 axis was constructed and validated; (4) The expression levels of above autophagy-related RNAs in peripheral blood mononuclear cells (PBMCs) were verified by qPCR, and their diagnostic performance was subsequently analyzed using receiver operating characteristic (ROC) analysis. RESULTS (1) The expression of LC3, Beclin1, ATG5, and ATG7 demonstrated a consistent decline whereas p62 expression exhibited an opposite increase as atherosclerosis progressed; (2) Autophagy levels was significantly elevated in HCAECs under oxidative stress, while inhibition of the initial stage of autophagy with 3-MA exacerbated cellular damage; (3) The lncRNA LUCAT1/hsa-miR-6776-5p/LRRC25 axis was established through bioinformatic prediction and validated by dual-luciferase reporter assay, which resulted in a significant decrease in autophagy levels in HCAECs; (4) In total, p62, ATG7, lncRNA LUCAT1 and LRRC25 were validated as robust diagnostic biomarkers for CAD. CONCLUSIONS Our results delineated the dynamic disruption of the autophagy landscape during the progression of human coronary atherosclerosis and identified the lncRNA LUCAT1/hsa-miR-6776-5p/LRRC25 axis, uncovered through transcriptomic profiling, as a protective mechanism against endothelial cell injury through autophagy activation. Furthermore, we recognized p62, ATG7, lncRNA LUCAT1, and LRRC25 as dependable autophagy-related diagnostic biomarkers in circulating PBMCs, correlating with CAD severity. Collectively, Our findings furnish novel insights into the intricate autophagy landscape at various levels of coronary atherosclerosis and propose potential diagnostic biomarkers, and a theoretical foundation for managing CAD patients.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Xin Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Mengmeng Ren
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Hengjie Bie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Mengyang Duan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Zhiyuan Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Boyu Chi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Sheng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China
| | - Fenghui An
- Department of Critical Care Medicine, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining, 835000, Xinjiang, China.
| | - Xiumei Chen
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
172
|
Bakhsh J, Salvy SJ, Vidmar AP. Intermittent fasting as a treatment for obesity in young people: a scoping review. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:39. [PMID: 39744147 PMCID: PMC11685102 DOI: 10.1038/s44324-024-00041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025]
Abstract
Intermittent fasting focuses on the timing of eating rather than diet quality or energy intake, with evidence supporting its effects on weight loss and improvements in cardiometabolic outcomes in adults with obesity. However, there is limited evidence for its feasibility and efficacy in young people. To address this, a scoping review was conducted to examine intermittent fasting regimens in individuals aged 10 to 25 for the treatment of obesity focusing on methodology, intervention parameters, outcomes, adherence, feasibility, and efficacy. Due to the paucity of evidence in this age group, to adequately assess feasibility and adherence, all published studies of intermittent fasting in this age category, regardless of weight status and treatment intention, were included in the review. The review included 34 studies (28 interventional studies and 6 observational studies) with 893 participants aged 12 to 25. Interventions varied with 9 studies in cohorts with obesity utilizing intermittent fasting as an obesity treatment. Thirteen studies utilized 8-h time-restricted eating. Primary outcomes included cardiometabolic risk factors (7/28), anthropometric measurements (7/28), body composition (5/28), muscular performance (4/28), feasibility (1/28), and others (4/28). All 9 studies conducted in young people with obesity reported some degree of weight loss, although the comparator groups varied significantly. This review underscores the various utilizations of intermittent fasting in this age group and highlights its potential in treating obesity. However, the findings emphasize the need for rigorous studies with standardized frameworks for feasibility to ensure comparability and determine intermittent fasting's practicality in this age group depending on the treatment outcome of interest.
Collapse
Affiliation(s)
- Jomanah Bakhsh
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA USA
- Children’s Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism, Los Angeles, CA USA
| | - Sarah-Jeanne Salvy
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Alaina P. Vidmar
- Children’s Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism, Los Angeles, CA USA
| |
Collapse
|
173
|
Biagetti B, Araujo-Castro M, Marazuela M, Puig-Domingo M. Treatment of acromegaly-induced diabetes: an updated proposal. Pituitary 2024; 28:15. [PMID: 39738706 DOI: 10.1007/s11102-024-01477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/02/2025]
Abstract
Acromegaly-induced diabetes presents unique features due to the direct effects of excess growth hormone (GH) and insulin-like growth factor 1 (IGF-) on glucose metabolism, especially insulin resistance in association to low body fat content and water retention. Increased cardiovascular risk is much higher when acromegaly is complicated with diabetes, thus requiring a holistic management that addresses also these specific characteristics which differ from those of classical type 2 diabetes.The optimal management of diabetes in acromegaly requires not only an effective control of carbohydrate disturbances per se, but also the concurrent control of GH hypersecretion as it will directly impact on glucose control. If surgical treatment is not effective to normalize GH and IGF-1 levels, pharmacologic therapy for acromegaly must consider the metabolic effects that the different drugs may induce, as some of them may worsen carbohydrate metabolism. When treating acromegaly-induced diabetes, a comprehensive approach is essential, incorporating medications that may also protect against acromegaly associated comorbidities. Metformin remains the first-line therapy due to its ability to reduce hepatic glucose production enhance insulin sensitivity and its cost effectiveness. The newer drug classes, such as glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors, offer benefits similar to those seen in type 2 diabetes, but the unique metabolic profile of acromegaly-including an enhanced ketogenic state and the effects of incretins on GH secretion-have to be considered as it may influence outcomes. Understanding the distinct pathophysiology of acromegaly-induced diabetes and the benefits of these newer drug classes for the patient with acromegaly is crucial for optimizing treatment outcomes and improving the quality of life.
Collapse
Affiliation(s)
- Betina Biagetti
- Endocrinology & Nutrition Department, Hospital Universitario Vall de Hebrón. CIBERER U747 (ISCIII), ENDO-ERN, Barcelona, Spain.
| | - Marta Araujo-Castro
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Mónica Marazuela
- Endocrinology & Nutrition Department, Hospital Universitario La Princesa Madrid, Madrid, Spain
| | - Manel Puig-Domingo
- Endocrinology & Nutrition Department, Hospital Universitario Germans Trias i Pujol. CIBERER U747 (ISCIII), Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
174
|
Henney AE, Riley DR, Hydes TJ, Anson M, Ibarburu GH, Frost F, Alam U, Cuthbertson DJ. Comparative estimate of glucose-lowering therapies on risk of incident pneumonia and severe sepsis: an analysis of real-world cohort data. Thorax 2024; 80:32-41. [PMID: 39645259 PMCID: PMC11671942 DOI: 10.1136/thorax-2024-221906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/03/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are treatments for type 2 diabetes (T2D). Beyond glucose-lowering and cardiorenal protection, these drugs may protect against pneumonia and sepsis. AIMS This study assesses the impact of SGLT2i and GLP-1 RAs on the risk of incident pneumonia and severe sepsis. METHODS A retrospective cohort study was conducted using anonymised electronic medical records from TriNetX, a global federated database. Two intention-to-treat analyses were performed, each with two cohorts of adult T2D patients. The first analysis compared individuals prescribed SGLT2i, and the second individuals prescribed GLP-1 RAs, with those prescribed dipeptidyl peptidase-4 inhibitors (DPP-4i). An active comparator new user design was used, with outcomes defined as time-to-incident pneumonia and severe sepsis. Propensity score matching (1:1) was applied to control for potential confounders, and patients were followed for 12 months. Secondary analyses compared SGLT2i and GLP-1 RAs against other glucose-lowering therapies. RESULTS After propensity score matching, 352 687 patients were included in the SGLT2i versus DPP-4i comparison. SGLT2i treatment was associated with a risk reduction in incident pneumonia (HR 0.75 (95% CI 0.73, 0.78)) and severe sepsis (0.75 (0.73, 0.77)). In the GLP-1 RA versus DPP-4i comparison, 331 863 patients were included. GLP-1 RA treatment was associated with a risk reduction in incident pneumonia (0.60 (0.58, 0.62)) and severe sepsis (0.61 (0.59, 0.63)). CONCLUSION SGLT2i and GLP-1 RAs are associated with a reduced risk of incident pneumonia and severe sepsis in patients with T2D. Further research and focused randomised controlled trials are warranted to explore the broader clinical implications of these treatments.
Collapse
Affiliation(s)
- Alex E Henney
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
| | - David R Riley
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
| | - Theresa J Hydes
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Matthew Anson
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | | - Frederick Frost
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Daniel J Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
175
|
Bruno J, Walker JM, Nasserifar S, Upadhyay D, Ronning A, Vanegas SM, Popp CJ, Barua S, Alemán JO. Weight-neutral early time-restricted eating improves glycemic variation and time in range without changes in inflammatory markers. iScience 2024; 27:111501. [PMID: 39759025 PMCID: PMC11699278 DOI: 10.1016/j.isci.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Early time-restricted eating (eTRE) is a dietary strategy that restricts caloric intake to the first 6-8 h of the day and can effect metabolic benefits independent of weight loss. However, the extent of these benefits is unknown. We conducted a randomized crossover feeding study to investigate the weight-independent effects of eTRE on glycemic variation, multiple time-in-range metrics, and levels of inflammatory markers. Ten adults with prediabetes were randomized to eTRE (8-h feeding window, 80% of calories consumed before 14:00 h) or usual feeding (50% of calories consumed after 16:00 h) for 1 week followed by crossover to the other schedule. Using continuous glucose monitoring, we showed that eTRE decreased glycemic variation (mean amplitude of glycemic excursion) and time in hyperglycemia greater than 140 mg/dL without affecting inflammatory markers (erythrocyte sedimentation rate and C-reactive protein). These data implicate eTRE as a candidate dietary intervention for the weight-independent management of dysglycemia in high-risk individuals.
Collapse
Affiliation(s)
- Joanne Bruno
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY 10016, USA
- Holman Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Shabnam Nasserifar
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY 10016, USA
- Holman Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dhairya Upadhyay
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Andrea Ronning
- The Rockefeller University Hospital, New York, NY 10065, USA
| | - Sally M. Vanegas
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Collin J. Popp
- Department of Population Health, Institute for Excellence in Health Equity, New York University Langone Health, New York, NY 10016, USA
| | - Souptik Barua
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - José O. Alemán
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY 10016, USA
- Holman Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
176
|
Chatham JC, Wende AR. The role of protein O-GlcNAcylation in diabetic cardiomyopathy. Biochem Soc Trans 2024; 52:2343-2358. [PMID: 39601777 DOI: 10.1042/bst20240262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
It is well established that diabetes markedly increases the risk of multiple types of heart disease including heart failure. However, despite substantial improvements in the treatment of heart failure in recent decades the relative increased risk associated with diabetes remains unchanged. There is increasing appreciation of the importance of the post translational modification by O-linked-N-acetylglucosamine (O-GlcNAc) of serine and threonine residues on proteins in regulating cardiomyocyte function and mediating stress responses. In response to diabetes there is a sustained increase in cardiac O-GlcNAc levels, which has been attributed to many of the adverse effects of diabetes on the heart. Here we provide an overview of potential mechanisms by which increased cardiac O-GlcNAcylation contributes to the adverse effects on the heart and highlight some of the key gaps in our knowledge.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
177
|
Du T, Su H, Cao D, Meng Q, Zhang M, Liu Z, Li H. Mitochondria-targeted antioxidant mitoquinone mitigates vitrification-induced damage in mouse ovarian tissue by maintaining mitochondrial homeostasis via the p38 MAPK pathway. Eur J Med Res 2024; 29:593. [PMID: 39696534 DOI: 10.1186/s40001-024-02181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Ovarian tissue cryopreservation has become a promising alternative for fertility preservation in cancer patients, allowing ovarian tissue to be stored for future autotransplantation. Oxidative stress damage occurring during the cryopreservation process may impact tissue quality and function. This study aims to investigate the protective effects and potential mechanisms of Mitoquinone (MitoQ), a mitochondria-targeted derivative of the antioxidant ubiquinone, during the vitrification of ovarian tissue in mice. METHODS KGN cells were treated with various concentrations (0.1, 1, 10, and 50 μM) of MitoQ to determine the optimal concentration. Female ICR mice were divided into three groups: control, conventional vitrification, and MitoQ-supplemented vitrification. Ovarian samples were cryopreserved, thawed, and assessed for tissue morphology using Hematoxylin and Eosin (H&E) staining, and mitochondrial changes using immunofluorescence, transmission electron microscopy, and Western blot analysis. RNA sequencing (RNA-seq) was employed to explore potential protective mechanisms. Autotransplantation experiments were conducted, and the long-term effects of MitoQ on ovarian function were evaluated by counting follicle numbers through H&E staining and measuring serum estradiol and AMH levels using ELISA. RESULTS MitoQ at 1 μM was found to be the optimal concentration for maintaining follicular morphology after vitrification. It effectively reduced mitochondrial oxidative damage, preserved mitochondrial morphology, and regulated the expression of mitochondrial dynamics proteins (Drp1 and Mfn2). RNA-seq and Western blot analyses revealed that MitoQ inhibited the p38 MAPK pathway, thereby reducing apoptosis. Additionally, autotransplantation experiments showed that MitoQ treatment significantly increased follicle counts, estradiol (E2), and anti-Müllerian hormone (AMH) levels compared to conventional vitrification. CONCLUSIONS MitoQ effectively mitigates vitrification-induced oxidative damage, maintains mitochondrial homeostasis, and preserves both follicular reserve and endocrine function. These findings suggest that MitoQ is a valuable adjunct in ovarian tissue cryopreservation and could significantly improve fertility preservation outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianqi Du
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Han Su
- Key Laboratory of Reproductive Medicine and Offspring Health, Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhouing, China
- Obstetrics and Gynecology Department, BENQ Medical Center, Nanjing, China
| | - Dan Cao
- Department of Pathology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhouing, China
| | - Qingxia Meng
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Ming Zhang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
- Key Laboratory of Reproductive Medicine and Offspring Health, Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhouing, China
| | - Zhenxing Liu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhouing, China.
| |
Collapse
|
178
|
Lu LL, Liu LZ, Li L, Hu YY, Xian XH, Li WB. Sodium butyrate improves cognitive dysfunction in high-fat diet/ streptozotocin-induced type 2 diabetic mice by ameliorating hippocampal mitochondrial damage through regulating AMPK/PGC-1α pathway. Neuropharmacology 2024; 261:110139. [PMID: 39233201 DOI: 10.1016/j.neuropharm.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Cognitive dysfunction is an important comorbidity of type 2 diabetes mellitus (T2DM). Sodium butyrate (NaB) is a short-chain fatty acid and has an effect improving T2DM-associated cognitive dysfunction. Using a high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM mouse model, the present study investigated the mechanism involved in the beneficial effect of butyrate on diabetic cognitive dysfunction, with a focus on ameliorating mitochondrial damage through regulating the adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1α (AMPK/PGC-1α) pathway considering the important role of mitochondrial impairments in the occurrence of T2DM-associated cognitive dysfunction. We found, based on reconfirmation of the improvement of NaB on cognitive impairment, that NaB treatment improved damaged synaptic structural plasticity including the decrease in dendritic spine density and downregulation in the expression of postsynaptic density protein 95 and synaptophysin in the hippocampus in the model mice. NaB treatment also ameliorated mitochondrial ultrastructural damage, increased mitochondrial membrane potential and adenosine 5'-triphosphate content, and improved mitochondrial biogenesis and dynamics in the model mice. Furthermore, the expression of phosphorylated AMPK and PGC-1α was upregulated after NaB treatment in the model mice. In particular, the above beneficial effects of NaB were blocked by the inhibition of either AMPK or PGC-1α. In conclusion, NaB treatment improved cognitive impairment and damaged synaptic structural plasticity in the hippocampus by ameliorating damage to mitochondrial morphology and function through regulating the AMPK/PGC-1α pathway in HFD/STZ-induced T2DM mice.
Collapse
Affiliation(s)
- Li-Li Lu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China; Department of Pathology, The Third Hospital of Shijiazhuang, 15 Tiyu South Avenue, Shijiazhuang, 050011, PR China
| | - Li-Zhe Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Li Li
- Central Laboratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, PR China
| | - Yu-Yan Hu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Xiao-Hui Xian
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China.
| | - Wen-Bin Li
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China.
| |
Collapse
|
179
|
Tang M, Zhao L, Huang F, Wang T, Wu X, Chen S, Fu J, Jiang C, Wei S, Zeng X, Zhang X, Zhou X, Wei M, Li Z, Xiao G. Liuweizhiji Gegen-Sangshen beverage protects against alcoholic liver disease in mice through the gut microbiota mediated SCFAs/GPR43/GLP-1 pathway. Front Nutr 2024; 11:1495695. [PMID: 39734674 PMCID: PMC11673767 DOI: 10.3389/fnut.2024.1495695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Alcoholic liver disease (ALD) is a pathological state of the liver caused by longterm alcohol consumption. Recent studies have shown that the modulation of the gut microbiota and its metabolic products, specifically the short-chain fatty acids (SCFAs), exert a critical role in the evolution and progression of ALD. The Liuweizhiji Gegen-Sangshen beverage (LGS), as a functional beverage in China, is derived from a traditional Chinese herbal formula and has been clinically applied for ALD treatment, demonstrating significant efficacy. However, the underlying mechanisms of LGS for alleviating ALD involving gut microbiota regulation remain unknown. Methods In this study, an ALD murine model based on the National Institute on Alcohol Abuse and Alcoholism (NIAAA) method was established. Results The results showed that oral LGS treatment dose-dependently alleviated alcoholinduced liver injury and inflammation in mice through decreasing levels of ALT, AST and proinflammatory cytokines (TNF-α, IL-6, IL-1β). LGS significantly improved liver steatosis, enhanced activities of alcohol metabolizing enzymes (ALDH and ADH), and reduced the CYP2E1 activity. Notably, regarding most detected indices, the effect of LGS (particularly at medium and high dose) was comparable to the positive drug MTDX. Moreover, LGS had a favorable effect on maintaining intestinal barrier function through reducing epithelial injury and increasing expression of occludin. 16S rRNA sequencing results showed that LGS remarkably modulated gut microbiota structure in ALD mice via recovering alcohol-induced microbial changes and specifically mediating enrichment of several bacterial genera (Alloprevotella, Monoglobus, Erysipelatoclostridium Parasutterella, Harryflintia and unclassified_c_Clostridia). Further study revealed that LGS increased production of SCFAs of hexanoic acid in cecum, promoted alcohol-mediated reduction of GRP43 expression in ileum, and increased serum GLP-1 level. Discussion Overall, LGS exerts a remarkable protective effect on ALD mice through the gut microbiota mediated specific hexanoic acid production and GPR43/GLP-1 pathway.
Collapse
Affiliation(s)
- Mingyun Tang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Fuchun Huang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Shanshan Chen
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Fu
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chaoli Jiang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Shulin Wei
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuseng Zeng
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoling Zhang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mei Wei
- Department of Hepatobiliary Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guohui Xiao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
180
|
Yang L, Chen J, Miao H, Li N, Bi H, Feng R, Miao C. The landscape of alternative splicing in granulosa cells and a potential novel role of YAP1 in PCOS. PLoS One 2024; 19:e0315750. [PMID: 39671393 PMCID: PMC11642958 DOI: 10.1371/journal.pone.0315750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent yet complex reproductive endocrine disorder affecting 11-13% of women worldwide. Its main symptoms include elevated androgen levels, irregular menstrual cycles, and long-term metabolic and offspring health implications. Despite the disease's multifaceted nature involving genetic, epigenetic, and environmental factors, the role of alternative splicing in ovarian granulosa cells remains relatively unexplored. This study aims to investigate the transcriptional and alternative splicing characteristics of granulosa cells in PCOS patients and to elucidate the potential functional consequences of these changes. Analysis of previous published transcriptome sequencing data identified 491 upregulated and 401 downregulated genes in granulosa cells of PCOS patients, significantly involved in immune-related processes. Additionally, 1250 differential splicing events, predominantly involving exon skipping and affecting 947 genes, were detected. These genes with alternative splicing patterns were found to be enriched in endoplasmic reticulum stress and protein post-translational modification processes, suggesting their role in PCOS pathology. Moreover, the study highlighted that the utilization of different splice isoforms of the YAP1 gene may impact its interaction in the Hippo signaling pathway, influencing the pathogenesis of PCOS. These findings underscore substantial alterations in alternative splicing in granulosa cells of PCOS patients, providing a novel viewpoint for comprehending the molecular underpinnings of PCOS and suggesting potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Jianhua Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Hui Miao
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Na Li
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Huilin Bi
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, China
| | - Congxiu Miao
- Department of Reproductive Genetics, Key Laboratory of Reproduction Engineer of Shanxi Health Committee, Heping Hospital of Changzhi Medical College, Changzhi, China
| |
Collapse
|
181
|
Wang B, Xu T, Qiu C, Yu L, Xu S, Zhao X, Xu C, Tan F, Sheng H, Zhang N. Tenovin-6 exhibits inhibitory effects on the growth of Sonic Hedgehog (SHH) medulloblastoma, as evidenced by both in vitro and in vivo studies. Int Immunopharmacol 2024; 142:113075. [PMID: 39260312 DOI: 10.1016/j.intimp.2024.113075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Within MB, tumors driven by the Sonic Hedgehog (SHH) pathway represent the most heterogeneous subtype, known as SHH subtype medulloblastoma (SHH-MB). Tenovin-6, a recognized p53 activator, has been demonstrated to inhibit autophagy and modulate sirtuin activity, underscoring its potential as a novel therapeutic agent across various malignancies. However, its efficacy in treating SHH-MB remains unexplored. This study aims to investigate the inhibitory effects of tenovin-6 on SHH-MB and elucidate its underlying signaling pathways. We assessed the impact of tenovin-6 on cell proliferation through the CCK-8 and colony formation assays. The scratch and transwell invasion assays were utilized to evaluate the drug's effects on metastasis. Apoptosis and reactive oxygen species (ROS) levels were measured using flow cytometry. Potential signaling pathways were identified via transcriptomics and quantitative PCR (qPCR). Our in vivo studies involved a mouse xenograft model to explore tenovin-6's anticancer efficacy against SHH-MB. The findings indicate that tenovin-6 not only inhibits cell proliferation and metastasis in SHH-MB cell lines but also promotes apoptosis, which is closely linked to its proliferation-inhibiting properties. Additionally, animal experiments confirmed that tenovin-6 suppresses MB growth in vivo. We discovered that tenovin-6 reduces intracellular ROS levels and inhibits autophagy in SHH-MB by disrupting the fusion of autophagosomes with lysosomes, likely through inducing autophagosome formation.
Collapse
Affiliation(s)
- Bohong Wang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tao Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chenjie Qiu
- Pharmacy Department, Zhoushan Woman and Children Hospital, Zhoushan 316200, Zhejiang, China
| | - Lisheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Shangyu Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiangmao Zhao
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chao Xu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Feng Tan
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
182
|
Robles-Rivera RR, Pacheco-Moisés FP, Olvera-Montaño C, Castellanos-González JA, Barley-Villaseñor AL, Cardona-Muñoz EG, Rodríguez-Carrizalez AD. Mitochondrial Function and Oxidative Stress Biomarkers in Diabetic Retinopathy Development: An Analytical Cross-Sectional Study. Int J Mol Sci 2024; 25:13084. [PMID: 39684793 DOI: 10.3390/ijms252313084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
DR is a complex complication of DM with multiple biochemical pathways implicated in its genesis and progression. Circulating OS and mitochondrial function biomarkers represent potential candidates in the DR staging system. We conducted a comparative cross-sectional study comparing the OS biomarkers: TAC, GR, NOS, CARB, and hydroperoxydes, as well as mitochondrial function biomarkers: ATP synthase and ATPase activity in healthy volunteers, DM w/o DR, Moderate and Severe NPDR, and PDR. TAC is progressively diminished the more DR progresses to its proliferative stages. GR and NOS may function as biomarkers to differentiate the progression from S NPDR to PDR. CARB may correlate with the progression from M NPDR to S NPDR. Hydroperoxide levels were higher in patients with DR compared to DM w/o DR expressing OS in the early development of DR. ATPase activity is increasingly augmented the more DR progresses and may function as a biomarker that reflects the difference between N PDR and PDR, and ATP synthesis was lower the more DR progressed, being significantly lower compared to DM w/o DR. The behavior of OS and mitochondrial function in several stages of DR may aid in the staging and the prognosis of DR.
Collapse
Affiliation(s)
- Ricardo Raúl Robles-Rivera
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Centre of Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Cecilia Olvera-Montaño
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Alberto Castellanos-González
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Guadalajara 44349, Jalisco, Mexico
| | - Andre Leonardo Barley-Villaseñor
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Adolfo Daniel Rodríguez-Carrizalez
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
183
|
Wei X, Zhang X, Peng Y, Wu J, Mo H, An Z, Deng X, Peng Y, Liu L, Jiang W, Chen J, Hu Z, Wang Z, Zhuo L. Identification of a novel 10-hydroxyevodiamine prodrug as a potent topoisomerase inhibitor with improved aqueous solubility for treatment of hepatocellular carcinoma. Eur J Med Chem 2024; 279:116807. [PMID: 39243453 DOI: 10.1016/j.ejmech.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Natural product evodiamine (Evo) and its synthetic derivatives represent an attractive dual Topo 1/2 inhibitors with broad-spectrum antitumor efficacy. However, the clinical applications of these compounds have been impeded by their poor aqueous solubility. Herein, a series of water-soluble 10-substituted-N(14)-phenylevodiamine derivatives were designed and synthesized. The most potent compound 45 featuring a quaternary ammonium salt fragment achieved robust aqueous solubility and nanomolar potency against a panel of human hepatoma cell lines Huh7, HepG2, SK-Hep-1, SMMC-7721, and SMMC-7721/DOX (doxorubicin-resistant cell). Further studies revealed that 45 could inhibit Topo 1 and Topo 2, induce apoptosis, arrest the cell cycle at the G2/M stage and inhibit the migration and invasion. Compound 45 exhibited potent antitumor activity (TGI = 51.1 %, 10 mg/kg) in the Huh7 xenograft model with acceptable safety profile. In addition, a 21-day long-term dose toxicity study confirmed that the maximum tolerated dose of compound 45 was 20 mg/kg. Overall, this study presented a promising Evo-derived candidate for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiuzhen Wei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xi Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Junbo Wu
- Department of Colorectal Surgery, Hengyang Central Hospital, Hengyang, Hunan, 421001, China
| | - Hanxuan Mo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhigang An
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinyu Deng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linyi Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jinjin Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zecheng Hu
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, China.
| | - Linsheng Zhuo
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
184
|
Xiang H, Lyu Q, Chen S, Ouyang J, Xiao D, Liu Q, Long H, Zheng X, Yang X, Lu H. PACS2/CPT1A/DHODH signaling promotes cardiomyocyte ferroptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:432. [PMID: 39633391 PMCID: PMC11619700 DOI: 10.1186/s12933-024-02514-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES The pathophysiology of diabetic cardiomyopathy (DCM) is a phenomenon of great interest, but its clinical problems have not yet been effectively addressed. Recently, the mechanism of ferroptosis in the pathophysiology of various diseases, including DCM, has attracted widespread attention. Here, we explored the role of PACS2 in ferroptosis in DCM through its downregulation of PACS2 expression. METHODS AND RESULTS Cardiomyocytes were treated with high glucose and palmitic acid (HGPA), and the detection of cardiomyocyte iron ions, lipid peroxides, and reactive oxygen species (ROS) revealed clear ferroptosis during these treatments. Silencing PACS2 downregulated CPT1A expression and upregulated DHODH expression significantly, reversing HGPA-induced ferroptosis. Further silencing of PACS2 with a CPT1A agonist exacerbated cardiomyocyte ferroptosis while promoting mitochondrial damage in cardiomyocytes. Using a mouse model of type 2 diabetes induced by streptozotocin (STZ) and a high-fat diet (HFD), we found that PACS2 deletion reversed these treatment-induced increases in cellular iron ions, impaired cardiac function, mitochondrial damage and ferroptosis in cardiac muscle tissues. CONCLUSIONS The PACS2/CPT1A/DHODH signalling pathway may be involved in ferroptosis in DCM by regulating cardiomyocyte mitochondrial function.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/genetics
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Signal Transduction
- Carnitine O-Palmitoyltransferase/metabolism
- Carnitine O-Palmitoyltransferase/genetics
- Mice, Inbred C57BL
- Diabetes Mellitus, Experimental/enzymology
- Male
- Mice, Knockout
- Mitochondria, Heart/pathology
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/drug effects
- Reactive Oxygen Species/metabolism
- Palmitic Acid/pharmacology
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Diet, High-Fat
Collapse
Affiliation(s)
- Hong Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Lyu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Quanjun Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - HaiJiao Long
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinru Zheng
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| | - Hongwei Lu
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
185
|
Al-Suhaimi E, AlQuwaie R, AlSaqabi R, Winarni D, Dewi FRP, AlRubaish AA, Shehzad A, Elaissari A. Hormonal orchestra: mastering mitochondria's role in health and disease. Endocrine 2024; 86:903-929. [PMID: 39172335 DOI: 10.1007/s12020-024-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria is a subcellular organelle involved in the pathogenesis of cellular stress, immune responses, differentiation, metabolic disorders, aging, and death by regulating process of fission, fusion, mitophagy, and transport. However, an increased interest in mitochondria as powerhouse for ATP production, the mechanisms of mitochondria-mediated cellular dysfunction in response to hormonal interaction remains unknown. Mitochondrial matrix contains chaperones and proteases that regulate intrinsic apoptosis pathway through pro-apoptotic Bcl-2 family's proteins Bax/Bak, and Cyt C release, and induces caspase-dependent and independent cells death. Energy and growth regulators such as thyroid hormones have profound effect on mitochondrial inner membrane protein and lipid compositions, ATP production by regulating oxidative phosphorylation system. Mitochondria contain cholesterol side-chain cleavage enzyme, P450scc, ferredoxin, and ferredoxin reductase providing an essential site for steroid hormones biosynthesis. In line with this, neurohormones such as oxytocin, vasopressin, and melatonin are correlated with mitochondrial integrity, displaying therapeutic implications for inflammatory and immune responses. Melatonin's also displayed protective role against oxidative stress and mitochondrial synthesis of ROS, suggesting a defense mechanism against aging-related diseases. An imbalance in mitochondrial bioenergetics can cause neurodegenerative disorders, cardiovascular diseases, and cancers. Hormone-induced PGC-1α stimulates mitochondrial biogenesis via activation of NRF1 and NRF2, which in turn triggers mtTFA in brown adipose and cardiac myocytes. Mitochondria can be transferred through cells merging, exosome-mediated transfer, and tunneling through nanotubes. By delineating the underlying molecular mechanism of hormonal mitochondrial interaction, this study reviews the dynamics mechanisms of mitochondria and its effects on cellular level, health, diseases, and therapeutic strategies targeting mitochondrial diseases.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Vice presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
- King Abdulaziz and his Companions Foundation for Giftedness and Creativity "Mawhiba", Riyadh, Saudi Arabia.
| | - Rahaf AlQuwaie
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem AlSaqabi
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Biodiversity Unit, Research Center, Dhofar University, Salalah, Oman
| | | |
Collapse
|
186
|
Pascuali N, Tobias F, Valyi-Nagy K, Salih S, Veiga-Lopez A. Delineating lipidomic landscapes in human and mouse ovaries: Spatial signatures and chemically-induced alterations via MALDI mass spectrometry imaging: Spatial ovarian lipidomics. ENVIRONMENT INTERNATIONAL 2024; 194:109174. [PMID: 39644787 DOI: 10.1016/j.envint.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
This study addresses the critical gap in understanding the ovarian lipidome's abundance, distribution, and vulnerability to environmental disruptors, a largely unexplored field. Leveraging the capabilities of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI), we embarked on a novel exploration of the ovarian lipidome in both mouse and human healthy tissues. Our findings revealed that the obesogenic chemical tributyltin (TBT), at environmentally relevant exposures, exerts a profound and region-specific impact on the mouse ovarian lipidome. TBT exposure predominantly affects lipid species in antral follicles and oocytes, suggesting a targeted disruption of lipid homeostasis in these biologically relevant regions. Our comprehensive approach, integrating advanced lipidomic techniques and bioinformatic analyses, documented the disruptive effects of TBT, an environmental chemical, on the ovarian lipid landscape. Similar to mice, our research also unveiled distinct spatial lipidomic signatures corresponding to specific ovarian compartments in a healthy human ovary that may also be vulnerable to disruption by chemical exposures. Findings from this study not only underscore the vulnerability of the ovarian lipidome to environmental factors but also lay the groundwork for unraveling the molecular pathways underlying ovarian toxicity mediated through lipid dysregulation.
Collapse
Affiliation(s)
- Natalia Pascuali
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Fernando Tobias
- Integrated Molecular Structure Education and Research Center, Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Klara Valyi-Nagy
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Sana Salih
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA; Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
187
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
188
|
Xia YM, Guan YQ, Liang JF, Wu WD. TAK-242 improves sepsis-associated acute kidney injury in rats by inhibiting the TLR4/NF-κB signaling pathway. Ren Fail 2024; 46:2313176. [PMID: 38482886 PMCID: PMC10877656 DOI: 10.1080/0886022x.2024.2313176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/27/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE This study was designed to observe the effect of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway activity on sepsis-associated acute kidney injury (SA-AKI), thereby providing new considerations for the prevention and treatment of SA-AKI. METHODS The rats were divided into Sham, cecal ligation and puncture (CLP), CLP + vehicle, and CLP + TAK-242 groups. Except the Sham group, a model of CLP-induced sepsis was established in other groups. After 24 h, the indicators related to kidney injury in blood samples were detected. The pathological changes in the kidneys were observed by hematoxylin-eosin staining, and tubular damage was scored. Oxidative stress-related factors, mitochondrial dysfunction-related indicators in each group were measured; the levels of inflammatory factors in serum and kidney tissue of rats were examined. Finally, the expression of proteins related to the TLR4/NF-κB signaling pathway was observed by western blot. RESULTS Compared with the CLP + vehicle and CLP + TAK-242 groups, the CLP + TAK-242 group reduced blood urea nitrogen (BUN), creatinine (Cr), cystatin-C (Cys-C), reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory factors levels (p < 0.01), as well as increased superoxide dismutase (SOD) activity of CLP rats (p < 0.01). Additionally, TAK-242 treatment improved the condition of CLP rats that had glomerular and tubular injuries and mitochondrial disorders (p < 0.01). Further mechanism research revealed that TAK-242 can inhibit the TLR4/NF-κB signaling pathway activated by CLP (p < 0.01). Above indicators after TAK-242 treatment were close to those of the Sham group. CONCLUSION TAK-242 can improve oxidative stress, mitochondrial dysfunction, and inflammatory response by inhibiting the activity of TLR4/NF-κB signaling pathway, thereby preventing rats from SA-AKI.
Collapse
Affiliation(s)
- Yan-mei Xia
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| | - Yu-qian Guan
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
| | - Ji-fang Liang
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| | - Wei-dong Wu
- Department of Critical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PRChina
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRChina
| |
Collapse
|
189
|
He Q, Guo X, Lv W, Cui J, Meng J, Gao X, Ma J, Zhou N, Cao Y. Follicular fluid lipidomics analysis reveals altered lipid signatures in patients with polycystic ovary syndrome. J OBSTET GYNAECOL 2024; 44:2378489. [PMID: 39016329 DOI: 10.1080/01443615.2024.2378489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND This research investigates the metabolic profiles of follicular fluid (FF) samples from patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilisation and aims to identify diagnostic and therapeutic biomarkers for PCOS through lipidomic analysis. METHODS We performed non-targeted lipid analysis of FF samples from women with PCOS (n = 6) and normal controls (n = 6) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Differential lipids between the two groups were screened using multidimensional statistical analysis, followed by fold change analysis and t-tests to identify potential PCOS biomarkers. RESULTS Multivariate statistical analysis revealed significant differences in FF lipid levels between the PCOS and control groups. Five different lipids were selected as standards, with p < .05. Phosphatidylcholine (PC), the main differentially expressed lipid, was significantly increased in the FF of the POCS group and was closely related to other lipids. CONCLUSIONS Using ultra-high-performance liquid chromatography-tandem mass spectrometry, we investigated lipid biomarkers based on FF lipidomics to provide useful information for the discovery of diagnostic markers for PCOS. Our study identified five distinct lipids as potential markers of PCOS, with PC being the primary aberrant lipid found in the FF of patients with PCOS.
Collapse
Affiliation(s)
- Qing He
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
- Center for Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Xiaoli Guo
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wenqiang Lv
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junchao Cui
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jing Meng
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Gao
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiachen Ma
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Nan Zhou
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yijuan Cao
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
- Center for Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
190
|
Haghighat L, DeJong C, Teerlink JR. New and future heart failure drugs. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1389-1407. [PMID: 39632985 DOI: 10.1038/s44161-024-00576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
In the past decade, our understanding of heart failure pathophysiology has advanced significantly, resulting in the development of new medications such as angiotensin-neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors and oral soluble guanylate cyclase stimulators. Backed by positive findings from large randomized controlled trials, recommendations for their use were recently included in the 2022 AHA/ACC/HFSA guidelines and 2023 ESC guidelines for management of heart failure. Promising drugs for future heart failure treatment include agents that modulate the neurohormonal system, vasodilators, anti-inflammatory drugs, mitotropes, which improve deranged energy metabolism of the failing heart, and myotropes, which increase cardiac contractility by affecting cardiac sarcomere function. Here, we discuss these new and future heart failure drugs. We explain their mechanisms of action, critically evaluate their performance in clinical trials and summarize the clinical scenarios in which the latest guidelines recommend their use. This Review aims to offer clinicians and researchers a comprehensive overview of novel therapeutic classes in heart failure treatment.
Collapse
Affiliation(s)
- Leila Haghighat
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
- Sutter Health, Palo Alto Medical Foundation, Burlingame, CA, USA
| | - Colette DeJong
- Section of Cardiology, VA Palo Alto Health Care System and School of Medicine, Stanford University, Palo Alto, CA, USA
| | - John R Teerlink
- Section of Cardiology, San Francisco Veterans Affairs Medical Center and School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
191
|
He J, Qin W, Zhang Y, Yan J, Han X, Gao J, Li Q, Jiao K. Upregulated Mitochondrial Dynamics Is Responsible for the Procatabolic Changes of Chondrocyte Induced by α2-Adrenergic Signal Activation. Cartilage 2024; 15:440-452. [PMID: 37646151 PMCID: PMC11520003 DOI: 10.1177/19476035231189841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE Activation of sympathetic tone is important for cartilage degradation in osteoarthritis (OA). Recent studies reported that sympathetic signals can affect the mitochondrial function of target cells. It is unknown whether this effect exits in chondrocytes and affects chondrocyte catabolism. The contribution of mitochondrial dynamics in the activation of α2-adrenergic signal-mediated chondrocyte catabolism was investigated in this study. DESIGN Primary chondrocytes were stimulated with norepinephrine (NE) alone, or pretreated with an α2-adrenergic receptor (Adra2) antagonist (yohimbine) and followed by stimulation with NE. Changes in chondrocyte metabolism and their mitochondrial dynamics were investigated. RESULTS We demonstrated that NE stimulation induced increased gene and protein expressions of matrix metalloproteinase-3 and decreased level of aggrecan by chondrocytes. This was accompanied by upregulated mitochondriogenesis and the number of mitochondria, when compared with the vehicle-treated controls. Mitochondrial fusion and fission, and mitophagy also increased significantly in response to NE stimulation. Inhibition of Adra2 attenuated chondrocyte catabolism and mitochondrial dynamics induced by NE. CONCLUSIONS The present findings indicate that upregulation of mitochondrial dynamics through mitochondriogenesis, fusion, fission, and mitophagy is responsible for activation of α2-adrenergic signal-mediated chondrocyte catabolism. The hypothesis that "α2-adrenergic signal activation promotes cartilage degeneration in temporomandibular joint osteoarthritis (TMJ-OA) by upregulating mitochondrial dynamics in chondrocytes" is validated. This represents a new regulatory mechanism in the chondrocytes of TMJ-OA that inhibits abnormal activation of mitochondrial fusion and fission is a potential regulator for improving mitochondrial function and inhibiting chondrocyte injury and contrives a potentially innovative therapeutic direction for the prevention of TMJ-OA.
Collapse
Affiliation(s)
- Jiaying He
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yusong Zhang
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- The College of Life Sciences, Northwest University, Xi’an, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
192
|
Harmon DC, Levene JA, Rutlen CL, White ES, Freeman IR, Lapidus JA. Preadmission Metformin Use Is Associated with Reduced Mortality in Patients with Diabetes Mellitus Hospitalized with COVID-19. J Gen Intern Med 2024; 39:3253-3260. [PMID: 39299975 PMCID: PMC11618542 DOI: 10.1007/s11606-024-08864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Observational studies have reported an association between metformin and improved outcomes in COVID-19, but most have been small and with significant limitations. OBJECTIVE To evaluate the association between preadmission metformin exposure and mortality in patients with diabetes mellitus hospitalized with coronavirus disease 2019 (COVID-19) infection. DESIGN Retrospective cohort analysis using electronic health records extracted from the American Heart Association COVID-19 Registry. PARTICIPANTS Adults (n = 11,993) with diabetes mellitus but without chronic kidney disease (CKD) or need for hemodialysis who were hospitalized with COVID-19 between January 25, 2020, and February 9, 2022. MAIN MEASURES We used propensity score modeling to address differences between metformin and non-metformin users prior to multivariable log-binomial models to examine the association between metformin use at time of hospital admission for COVID-19 infection and in-hospital death; composite of in-hospital death or discharge to hospice; composite of in-hospital death, discharge to hospice, or ICU admission; and composite of in-hospital death, discharge to hospice, ICU admission, or mechanical ventilation. KEY RESULTS Compared to metformin non-use, pre-admission metformin use was associated with lower risk of in-hospital death (risk ratio (RR) 0.81 [95% CI 0.75-0.90]); composite of in-hospital death or discharge to hospice (RR 0.79 [95% CI 0.74-0.87]); composite of in-hospital death, discharge to hospice, or ICU admission (RR 0.90 [95% CI 0.86-0.95]); and composite of in-hospital death, discharge to hospice, ICU admission, or mechanical ventilation (RR 0.9 [95% CI 0.84-0.98]). Metformin use was also associated with lower risk of death due to respiratory cause (RR 0.86 [95% CI 0.74-0.97]) but not cardiovascular (RR 0.84 [95% CI 0.58-1.2]) or other (RR 0.78 [95% CI 0.60-1.0]) causes. CONCLUSIONS Pre-admission metformin use was associated with lower risk of in-hospital mortality and markers of disease severity among adults with diabetes mellitus without CKD and not requiring hemodialysis who were hospitalized with COVID-19 infection.
Collapse
Affiliation(s)
- David C Harmon
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Jacqueline A Levene
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Christine L Rutlen
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Elizabeth S White
- Oregon Health & Science University - Portland State University (OHSU-PSU) School of Public Health, Portland, OR, USA
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Ilana R Freeman
- Oregon Health & Science University - Portland State University (OHSU-PSU) School of Public Health, Portland, OR, USA
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Jodi A Lapidus
- Oregon Health & Science University - Portland State University (OHSU-PSU) School of Public Health, Portland, OR, USA
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
193
|
Lin YH, Lin KJ, Chen JY. The interplay between aging, testosterone, and mitochondrial dysfunction: Revisiting the role of hormonal regulation in urological health. Biomed Pharmacother 2024; 181:117722. [PMID: 39615167 DOI: 10.1016/j.biopha.2024.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Affiliation(s)
- Yu-Hsiang Lin
- Department of Urology, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, TaoYuan 333, Taiwan.
| | - Kou-Jen Lin
- Department of Urology, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, TaoYuan 333, Taiwan
| | - Jau-Yuan Chen
- School of Medicine, Chang Gung University, TaoYuan 333, Taiwan; Department of Family Medicine, Chang-Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
194
|
Narongkiatikhun P, Choi YJ, Hampson H, Gotzamanis J, Zhang G, van Raalte DH, de Boer IH, Nelson RG, Tommerdahl KL, McCown PJ, Kanter J, Sharma K, Bjornstad P, Saulnier PJ. Unraveling Diabetic Kidney Disease: The Roles of Mitochondrial Dysfunction and Immunometabolism. Kidney Int Rep 2024; 9:3386-3402. [PMID: 39698345 PMCID: PMC11652104 DOI: 10.1016/j.ekir.2024.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are essential for cellular energy production and are implicated in numerous diseases, including diabetic kidney disease (DKD). Current evidence indicates that mitochondrial dysfunction results in alterations in several metabolic pathways within kidney cells, thereby contributing to the progression of DKD. Furthermore, mitochondrial dysfunction can engender an inflammatory milieu, leading to the activation and recruitment of immune cells to the kidney tissue, potentially perturbing intrarenal metabolism. In addition, this inflammatory microenvironment has the potential to modify immune cell metabolism, which may further accentuate the immune-mediated kidney injury. This understanding has led to the emerging field of immunometabolism, which views DKD as not just a metabolic disorder caused by hyperglycemia but also one with significant immune contributions. Targeting mitochondrial function and immunometabolism may offer protective effects for the kidneys, complementing current therapies and potentially mitigating the risk of DKD progression. This comprehensive review examines the impact of mitochondrial dysfunction and the potential role of immunometabolism in DKD. We also discuss tools for investigating these mechanisms and propose avenues for integrating this research with existing therapies. These insights underscore the modulation of mitochondrial function and immunometabolism as a critical strategy for decelerating DKD progression.
Collapse
Affiliation(s)
- Phoom Narongkiatikhun
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ye Ji Choi
- Department of Pediatrics, Section of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hailey Hampson
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jimmy Gotzamanis
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Guanshi Zhang
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Ian H. de Boer
- Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Kalie L. Tommerdahl
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Phillip J. McCown
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jenny Kanter
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kumar Sharma
- Department of Medicine, Section of Nephrology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Petter Bjornstad
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pierre Jean Saulnier
- INSERM Centre d’Investigation Clinique 1402, CHU Poitiers, University of Poitiers, Poitiers, France
| |
Collapse
|
195
|
Cheng Y, Huang P, Zou Q, Tian H, Cheng Q, Ding H. Nicotinamide mononucleotide alleviates seizures via modulating SIRT1-PGC-1α mediated mitochondrial fusion and fission. J Neurochem 2024; 168:3962-3981. [PMID: 38194959 DOI: 10.1111/jnc.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Both human and animal experiments have demonstrated that energy metabolism dysfunction in neurons after seizures is associated with an imbalance in mitochondrial fusion/fission dynamics. Effective neuronal mitochondrial dynamics regulation strategies remain elusive. Nicotinamide mononucleotide (NMN) can ameliorate mitochondrial functional and oxidative stress in age-related diseases. But whether NMN improves mitochondrial energy metabolism to exert anti-epileptic effects is unclear. This study aims to clarify if NMN can protect neurons from pentylenetetrazole (PTZ) or Mg2+-free-induced mitochondrial disorder and apoptosis via animal and cell models. We established a continuous 30-day PTZ (37 mg/kg) intraperitoneal injection-induced epileptic mouse model and a cell model induced by Mg2+-free solution incubation to explore the neuroprotective effects of NMN. We found that NMN treatment significantly reduced the seizure intensity of PTZ-induced epileptic mice, improved their learning and memory ability, and enhanced their motor activity and exploration desire. At the same time, in vitro and in vivo experiments showed that NMN can inhibit neuronal apoptosis and improve the mitochondrial energy metabolism function of neurons. In addition, NMN down-regulated the expression of mitochondrial fission proteins (Drp1 and Fis1) and promoted the expression of mitochondrial fusion proteins (Mfn1 and Mfn2) by activating the SIRT1-PGC-1α pathway, thereby inhibiting PTZ or Mg2+-free extracellular solution-induced mitochondrial dysfunction, cell apoptosis, and oxidative stress. However, combined intervention of SIRT1 inhibitor, Selisistat, and PGC-1α inhibitor, SR-18292, eliminated the regulatory effect of NMN pre-treatment on mitochondrial fusion and fission proteins and apoptosis-related proteins. Therefore, NMN intervention may be a new potential treatment for cognitive impairment and behavioral disorders induced by epilepsy, and targeting the SIRT1-PGC-1α pathway may be a promising therapeutic strategy for seizures.
Collapse
Affiliation(s)
- Yahong Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Puxin Huang
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| | - Qixian Zou
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| | - Hui Tian
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Qingzhou Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Hong Ding
- Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
196
|
Thauerer B, Odrovicsné Tóth A, Salzer A, Steinecker-Frohnwieser B. Success of an Inpatient Rehabilitation Program in Subjects with Type 2 Diabetes Mellitus with or Without Metabolic Syndrome. Biomolecules 2024; 14:1527. [PMID: 39766234 PMCID: PMC11673746 DOI: 10.3390/biom14121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) comprises heterogeneous disorders, which have an increase in blood glucose concentrations in common. Metabolic syndrome (MetS) describes the simultaneous occurrence of several clinical symptoms that increase the risk of cardiovascular disease and T2DM, although T2DM itself is also considered a risk factor for developing MetS. OBJECTIVE This study aimed to identify parameters related to rehabilitation success and relevant to MetS in T2DM patients. METHODS T2DM patients were divided into two subgroups based on the NHLBI/AHA and IDF guidelines for characterizing MetS. Serum samples were analyzed for T2DM-specific parameters, lipid metabolism, oxidative processes, AGE activity (AAct), and uric acid to HDL ratio (UHR) at admission and discharge after a 3-week inpatient rehabilitation stay. Logistic regression and before-after comparisons were performed showing the importance of multidisciplinary rehabilitation. RESULTS Among eighty-six patients, 59.3% had MetS. Significant differences between subgroups were found in fasting glucose (FBS), hemoglobin A1c (HbA1c), high-density lipoprotein cholesterol (HDL), triglycerides (TGLs), soluble receptor for AGE (sRAGE), UHR, and AAct. Rehabilitation-induced changes in disease-related parameters were influenced by the presence of MetS. The predictive capacity from all parameters together could be reduced within the three weeks. CONCLUSION Rehabilitative measures have a major influence on MetS-relevant factors and can change the course of the disease in patients with T2DM. Identifying these factors can be of great importance for future diagnoses and treatments of T2DM and MetS.
Collapse
Affiliation(s)
- Bettina Thauerer
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 5760 Saalfelden, Austria;
| | - Anna Odrovicsné Tóth
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 5760 Saalfelden, Austria;
| | - Andreas Salzer
- Rehabilitation Center Saalfelden of the Pension Insurance Institution, 5760 Saalfelden, Austria;
| | - Bibiane Steinecker-Frohnwieser
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 5760 Saalfelden, Austria;
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 8962 Gröbming, Austria
| |
Collapse
|
197
|
Abad-Jiménez Z, López-Domènech S, Pelechá M, Perea-Galera L, Rovira-Llopis S, Bañuls C, Blas-García A, Apostolova N, Morillas C, Víctor VM, Rocha M. Calorie restriction modulates mitochondrial dynamics and autophagy in leukocytes of patients with obesity. Free Radic Biol Med 2024; 225:677-686. [PMID: 39447993 DOI: 10.1016/j.freeradbiomed.2024.10.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Although it is established that caloric restriction offers metabolic and clinical benefits, the molecular mechanisms underlying these effects remain unclear. Thus, this study aimed to investigate whether caloric restriction can modulate mitochondrial function and remodeling and stimulate autophagic flux in the PBMCs of patients with obesity. METHODS This was an interventional study of 38 obese subjects (BMI >35 kg/m2) who underwent 6 months of dietary therapy, including a 6-week very-low-calorie diet (VLCD) followed by an 18-week low-calorie diet (LCD). We determined clinical variables, mitochondrial function parameters (by fluorescence imaging of mitochondrial ROS and membrane potential), and protein expression of markers of mitochondrial dynamics (MNF1, MFN2, OPA, DRP1 and FIS1) and autophagy (LC3, Beclin, BCL2 and NBR1) by Western blot. RESULTS Caloric restriction induced an improvement in metabolic outcomes that was accompanied by an increase in AMPK expression, a decrease of mitochondrial ROS and mitochondrial membrane potential, which was associated with increased markers of mitochondrial dynamics (MFN2, DRP1 and FIS1) and activation of autophagy as evidenced by augmented LC3 II/I, Beclin1 and NBR1, and a decrease in BCL2. CONCLUSION These findings shed light on the specific molecular mechanisms by which caloric restriction facilitates metabolic improvements, highlighting the relevance of pathways involving energy homeostasis and cell recovery, including mitochondrial function and dynamics and autophagy.
Collapse
Affiliation(s)
- Zaida Abad-Jiménez
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Sandra López-Domènech
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - María Pelechá
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Laura Perea-Galera
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Susana Rovira-Llopis
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Celia Bañuls
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Ana Blas-García
- CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Nadezda Apostolova
- CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain; Department of Pharmacology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain
| | - Carlos Morillas
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain
| | - Víctor Manuel Víctor
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, 46010, Valencia, Spain; CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain.
| | - Milagros Rocha
- Department of Endocrinology and Nutrition University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research (FISABIO), 46017, Valencia, Spain; CIBEREHD (Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas), 28029, Madrid, Spain.
| |
Collapse
|
198
|
Liu C, Xu X, Sun G, Song C, Jiang S, Sun P, Tian J. Targeting DUSP26 to drive cardiac mitochondrial dynamics via FAK-ERK signaling in diabetic cardiomyopathy. Free Radic Biol Med 2024; 225:856-870. [PMID: 39510451 DOI: 10.1016/j.freeradbiomed.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a severe cardiac complication of diabetes mellitus, characterized by structural and functional myocardial abnormalities. The molecular mechanisms underlying DCM, particularly the role of dual-specificity phosphatase 26 (DUSP26), remain insufficiently understood. Our study reveals that DUSP26 expression is markedly downregulated in the cardiomyocytes of diabetic db/db mice and under glucolipotoxic stress. Overexpression of DUSP26 in db/db mice significantly improved cardiac function, as demonstrated by enhanced left ventricular ejection fraction and fractional shortening, alongside reduced myocardial fibrosis and hypertrophy. Mitochondrial analysis indicated that DUSP26 overexpression led to increased ATP production, enhanced mitochondrial fusion, and improved structural integrity. In addition, lipid accumulation was reduced, reflecting enhanced metabolic function. We also discovered that DUSP26 is necessary for regulating the focal adhesion kinase (FAK)-extracellular signal-regulated kinase (ERK) pathway, with pharmacological activation of FAK partially offsetting the benefits of DUSP26 overexpression in rescue experiments. These findings underscore the pivotal role of DUSP26 as a potential therapeutic target, highlighting the importance of developing targeted molecular interventions to address diabetic cardiac complications.
Collapse
MESH Headings
- Animals
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/genetics
- Mice
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Dual-Specificity Phosphatases/metabolism
- Dual-Specificity Phosphatases/genetics
- Mitochondrial Dynamics
- MAP Kinase Signaling System
- Focal Adhesion Kinase 1/metabolism
- Focal Adhesion Kinase 1/genetics
- Male
- Humans
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/complications
- Mitogen-Activated Protein Kinase Phosphatases/metabolism
- Mitogen-Activated Protein Kinase Phosphatases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chong Liu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xiangli Xu
- Department of Ultrasound, The Second Hospital of Harbin City, NO. 38, Weixing Road, Daowai District, Harbin, 150086, China
| | - Guiming Sun
- Department of Ultrasound, Harbin Traditional Chinese Medicine Hospital, NO. 2, Xinglin Road, Daoli District, Harbin, 150086, China
| | - Chengchao Song
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Shuangquan Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China.
| |
Collapse
|
199
|
Tan Y, Liu M, Zhou X, Gao T, Fang J, Wang S, Chen S. Mapping the mitochondrial landscape in T2DM: key findings from 2003-2023. Front Endocrinol (Lausanne) 2024; 15:1474232. [PMID: 39634184 PMCID: PMC11614640 DOI: 10.3389/fendo.2024.1474232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
Backgound T2DM, a chronic metabolic disorder, poses a significant threat to global public health. Mitochondria play a crucial role in the pathogenesis of T2DM. This study intends to investigate the correlation between mitochondria and T2DM over the past two decades (2003-2023) through bibliometric analysis. Its objectives are to pinpoint trends, emphasize research priorities, and establish a foundation for future investigations. Methods A literature search was conducted using the SCI-E database. All recorded results were downloaded in plain text format for further analysis. The following terms were analyzed using Vosviewer 1.6.18, citespace 6.3r1, bibliometrix in RStudio (v.4.4.1), and Microsoft Excel 2021: country, institution, author, journal, references, and keywords. Results From January 1, 2003 to December 31, 2023, a total of 2,732 articles were retrieved. The United States, China, and Italy contributed most of the records. UNIVERSITY OF CALIFORNIA SYSTEM, INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICAL INSERM, and US DEPARTMENT OF VETERANS AFFAIRS were the top 3 most productive institutions. rocha milagros, victor victor m had the most publications, followed by roden michael, and petersen kf had the most citations together. DIABETES published the most articles on research on this topic, followed by AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, DIABETOLOGIA. The key points of this topic are the relationship between mitochondria and T2DM, the skeletal muscle mitochondrial changes observed in T2DM, and the impact of mitochondrial dysfunction on T2DM. Over the past five years, particle dynamics, mitochondrial dysfunction, and mechanism research have emerged as significant focal points in this field. Conclude This paper successfully identified the key areas and emerging trends in the relationship between mitochondria and T2DM, thereby offering valuable insights for future research.
Collapse
Affiliation(s)
- Yi Tan
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mingjun Liu
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xinfeng Zhou
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tianjiao Gao
- The Affliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinxu Fang
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Sixian Wang
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shaotao Chen
- Departments of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
200
|
Choi RH, Karasawa T, Meza CA, Maschek JA, Manuel A, Nikolova LS, Fisher-Wellmen KH, Cox JE, Chaix A, Funai K. Semaglutide-induced weight loss improves mitochondrial energy efficiency in skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623431. [PMID: 39605484 PMCID: PMC11601453 DOI: 10.1101/2024.11.13.623431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Objective Glucagon-like peptide 1 receptor agonists (e.g. semaglutide) potently induce weight loss and thereby reducing obesity-related complications. However, weight regain occurs when treatment is discontinued. An increase in skeletal muscle oxidative phosphorylation (OXPHOS) efficiency upon diet-mediated weight loss has been described, which may contribute to reduced systemic energy expenditure and weight regain. We set out to determine the unknown effect of semaglutide on muscle OXPHOS efficiency. Methods C57BL/6J mice were fed a high-fat diet for 12 weeks before receiving semaglutide or vehicle for 1 or 3 weeks. The rate of ATP production and O2 consumption were measured by a high-resolution respirometry and fluorometry to determine OXPHOS efficiency in skeletal muscle at these 2 timepoints. Results Semaglutide treatment led to significant reductions in fat and lean mass. Semaglutide improved skeletal muscle OXPHOS efficiency, measured as ATP produced per O2 consumed (P/O) in permeabilized muscle fibers. Mitochondrial proteomic analysis revealed changes restricted to two proteins linked to complex III assembly (Lyrm7 and Ttc1, p <0.05 without multiple corrections) without substantial changes in the abundance of OXPHOS subunits. Conclusions These data indicate that weight loss with semaglutide treatment increases skeletal muscle mitochondrial efficiency. Future studies could test whether it contributes to weight regain.
Collapse
Affiliation(s)
- Ran Hee Choi
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Takuya Karasawa
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Research Institute of Sport Science, Nippon Sport Science University, Setagaya, Tokyo, Japan
| | - Cesar A. Meza
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
| | - Allison Manuel
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
| | - Linda S. Nikolova
- Electron Microscopy Core Facility, University of Utah, Salt Lake City, UT, USA
| | - Kelsey H. Fisher-Wellmen
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - James E. Cox
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Mass Spectrometry and Proteomics Core, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Amandine Chaix
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|