151
|
Vlasov IN, Alieva AK, Novosadova EV, Arsenyeva EL, Rosinskaya AV, Partevian SA, Grivennikov IA, Shadrina MI. Transcriptome Analysis of Induced Pluripotent Stem Cells and Neuronal Progenitor Cells, Derived from Discordant Monozygotic Twins with Parkinson's Disease. Cells 2021; 10:3478. [PMID: 34943986 PMCID: PMC8700621 DOI: 10.3390/cells10123478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's Disease (PD) is a widespread severe neurodegenerative disease that is characterized by pronounced deficiency of the dopaminergic system and disruption of the function of other neuromodulator systems. Although heritable genetic factors contribute significantly to PD pathogenesis, only a small percentage of sporadic cases of PD can be explained using known genetic risk factors. Due to that, it could be inferred that changes in gene expression could be important for explaining a significant percentage of PD cases. One of the ways to investigate such changes, while minimizing the effect of genetic factors on experiment, are the study of PD discordant monozygotic twins. In the course of the analysis of transcriptome data obtained from IPSC and NPCs, 20 and 1906 differentially expressed genes were identified respectively. We have observed an overexpression of TNF in NPC cultures, derived from twin with PD. Through investigation of gene interactions and gene involvement in biological processes, we have arrived to a hypothesis that TNF could play a crucial role in PD-related changes occurring in NPC derived from twins with PD, and identified INHBA, WNT7A and DKK1 as possible downstream effectors of TNF.
Collapse
Affiliation(s)
- Ivan N. Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Anelya Kh. Alieva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Ekaterina V. Novosadova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Elena L. Arsenyeva
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Anna V. Rosinskaya
- State Public Health Institution Primorsk Regional Clinical Hospital No. 1, 57 Aleutskaya St., 690091 Vladivostok, Russia;
| | - Suzanna A. Partevian
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, 2 Kurchatova Sq., 123182 Moscow, Russia; (A.K.A.); (E.V.N.); (E.L.A.); (S.A.P.); (I.A.G.); (M.I.S.)
| |
Collapse
|
152
|
Menozzi E, Macnaughtan J, Schapira AHV. The gut-brain axis and Parkinson disease: clinical and pathogenetic relevance. Ann Med 2021; 53:611-625. [PMID: 33860738 PMCID: PMC8078923 DOI: 10.1080/07853890.2021.1890330] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal disorders are one of the most significant non-motor problems affecting people with Parkinson disease (PD). Pathogenetically, the gastrointestinal tract has been proposed to be the initial site of pathological changes in PD. Intestinal inflammation and alterations in the gut microbiota may contribute to initiation and progression of pathology in PD. However, the mechanisms underlying this "gut-brain" axis in PD remain unclear. PD patients can display a large variety of gastrointestinal symptoms, leading to reduced quality of life and psychological distress. Gastrointestinal disorders can also limit patients' response to medications, and consequently negatively impact on neurological outcomes. Despite an increasing research focus, gastrointestinal disorders in PD remain poorly understood and their clinical management often suboptimal. This review summarises our understanding of the relevance of the "gut-brain" axis to the pathogenesis of PD, discusses the impact of gastrointestinal disorders in patients with PD, and provides clinicians with practical guidance to their management.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jane Macnaughtan
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
153
|
Systematic analysis of the molecular mechanisms mediated by coffee in Parkinson’s disease based on network pharmacology approach. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
154
|
Kurnik-Łucka M, Pasieka P, Łączak P, Wojnarski M, Jurczyk M, Gil K. Gastrointestinal Dopamine in Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2021; 22:12932. [PMID: 34884737 PMCID: PMC8657776 DOI: 10.3390/ijms222312932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND an increased prevalence of gastro-duodenal ulceration was described almost sixty years ago as prodromal to idiopathic Parkinson's disease, while duodenal ulcers have been rarely diagnosed in patients with schizophrenia. The cytoprotective role of dopamine in animal models of gastrointestinal ulcerations has also been described. Interestingly, Parkinson's disease (PD) might share common pathophysiological links with inflammatory bowel disease (IBD) as epidemiological and genetic links already suggest. Thus, the aim of our study was to review the existing literature on the role of the gastrointestinal dopaminergic system in IBD pathogenesis and progression. METHODS a systematic search was conducted according to the PRISMA methodology. RESULTS twenty-four studies satisfied the predetermined criteria and were included in our qualitative analysis. Due to different observations (cross-sectional studies) as well as experimental setups and applied methodologies (in vivo and in vitro studies) a meta-analysis could not be performed. No ongoing clinical trials with dopaminergic compounds in IBD patients were found. CONCLUSIONS the impairment of the dopaminergic system seems to be a significant, yet underestimated, feature of IBD, and more in-depth observational studies are needed to further support the existing preclinical data.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; (P.P.); (P.Ł.); (M.W.); (M.J.); (K.G.)
| | | | | | | | | | | |
Collapse
|
155
|
Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener 2021; 10:47. [PMID: 34814947 PMCID: PMC8609261 DOI: 10.1186/s40035-021-00271-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is an incurable, devastating disorder that is characterized by pathological protein aggregation and neurodegeneration in the substantia nigra. In recent years, growing evidence has implicated the gut environment and the gut-brain axis in the pathogenesis and progression of PD, especially in a subset of people who exhibit prodromal gastrointestinal dysfunction. Specifically, perturbations of gut homeostasis are hypothesized to contribute to α-synuclein aggregation in enteric neurons, which may spread to the brain over decades and eventually result in the characteristic central nervous system manifestations of PD, including neurodegeneration and motor impairments. However, the mechanisms linking gut disturbances and α-synuclein aggregation are still unclear. A plethora of research indicates that toll-like receptors (TLRs), especially TLR2 and TLR4, are critical mediators of gut homeostasis. Alongside their established role in innate immunity throughout the body, studies are increasingly demonstrating that TLR2 and TLR4 signalling shapes the development and function of the gut and the enteric nervous system. Notably, TLR2 and TLR4 are dysregulated in patients with PD, and may thus be central to early gut dysfunction in PD. To better understand the putative contribution of intestinal TLR2 and TLR4 dysfunction to early α-synuclein aggregation and PD, we critically discuss the role of TLR2 and TLR4 in normal gut function as well as evidence for altered TLR2 and TLR4 signalling in PD, by reviewing clinical, animal model and in vitro research. Growing evidence on the immunological aetiology of α-synuclein aggregation is also discussed, with a focus on the interactions of α-synuclein with TLR2 and TLR4. We propose a conceptual model of PD pathogenesis in which microbial dysbiosis alters the permeability of the intestinal barrier as well as TLR2 and TLR4 signalling, ultimately leading to a positive feedback loop of chronic gut dysfunction promoting α-synuclein aggregation in enteric and vagal neurons. In turn, α-synuclein aggregates may then migrate to the brain via peripheral nerves, such as the vagal nerve, to contribute to neuroinflammation and neurodegeneration typically associated with PD.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Biological Science, University of Western Australia, Crawley, WA, Australia.
- Neurodegenerative Disorders Research Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Ralph and Patricia Sarich Neuroscience Research Institute, Curtin University, Nedlands, WA, Australia
| | - Ryan S Anderton
- Faculty of Medicine, Nursing and Midwifery and Faculty of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
156
|
Willemsen J, Neuhoff MT, Hoyler T, Noir E, Tessier C, Sarret S, Thorsen TN, Littlewood-Evans A, Zhang J, Hasan M, Rush JS, Guerini D, Siegel RM. TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that support inflammatory arthritis. Cell Rep 2021; 37:109977. [PMID: 34758308 DOI: 10.1016/j.celrep.2021.109977] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases.
Collapse
Affiliation(s)
- Joschka Willemsen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland.
| | - Marie-Therese Neuhoff
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Thomas Hoyler
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Emma Noir
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Clemence Tessier
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Sophie Sarret
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Tara N Thorsen
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | | | - Juan Zhang
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Maroof Hasan
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - James S Rush
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Danilo Guerini
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| | - Richard M Siegel
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4002, Switzerland
| |
Collapse
|
157
|
Villanueva EB, Tresse E, Liu Y, Duarte JN, Jimenez-Duran G, Ejlerskov P, Kretz O, Loreth D, Goldmann T, Prinz M, Issazadeh-Navikas S. Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice. Ann Neurol 2021; 90:789-807. [PMID: 34476836 DOI: 10.1002/ana.26209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) manifests in motor dysfunction, non-motor symptoms, and eventual dementia (PDD). Neuropathological hallmarks include nigrostriatal neurodegeneration, Lewy body (LB) pathology, and neuroinflammation. Alpha-synuclein (α-syn), a primary component of LBs, is implicated in PD pathogenesis, accumulating, and aggregating in both familial and sporadic PD. However, as α-syn pathology is often comorbid with amyloid-beta (Aβ) plaques and phosphorylated tau (pTau) tangles in PDD, it is still unclear whether α-syn is the primary cause of neurodegeneration in sporadic PDD. We aimed to determine how the absence of α-syn would affect PDD manifestation. METHODS IFN-β knockout (Ifnb-/- ) mice spontaneously develop progressive behavior abnormalities and neuropathology resembling PDD, notably with α-syn+ LBs. We generated Ifnb/Snca double knockout (DKO) mice and evaluated their behavior and neuropathology compared with wild-type (Wt), Ifnb-/- , and Snca-/- mice using immunohistochemistry, electron microscopy, immunoblots, qPCR, and modification of neuronal signaling. RESULTS Ifnb/Snca DKO mice developed all clinical PDD-like behavioral manifestations induced by IFN-β loss. Independently of α-syn expression, lack of IFN-β alone induced Aβ plaques, pTau tangles, and LB-like Aβ+ /pTau+ inclusion bodies and neuroinflammation. IFN-β loss caused significant elevated glial and neuronal TNF-α and neuronal TNFR1, associated with neurodegeneration. Restoring neuronal IFN-β signaling or blocking TNFR1 rescued caspase 3/t-BID-mediated neuronal-death through upregulation of c-FLIPS and lowered intraneuronal Aβ and pTau accumulation. INTERPRETATION These findings increase our understanding of PD pathology and suggest that targeting α-syn alone is not sufficient to mitigate disease. Targeting specific aspects of neuroinflammation, such as aberrant neuronal TNF-α/TNFR1 or IFN-β/IFNAR signaling, may attenuate disease. ANN NEUROL 2021;90:789-807.
Collapse
Affiliation(s)
- Erika B Villanueva
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Tresse
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yawei Liu
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - João N Duarte
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gisela Jimenez-Duran
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Ejlerskov
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Kretz
- Department of Internal Medicine III, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Goldmann
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiberg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiberg, Germany
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
158
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
159
|
Yoon SY, Heo SJ, Kim YW, Yang SN, Moon HI. Ankylosing Spondylitis: A Risk Factor for Parkinsonism-A Nationwide Population-Based Study. JOURNAL OF PARKINSONS DISEASE 2021; 12:353-360. [PMID: 34602503 DOI: 10.3233/jpd-212878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is an immune-mediated, chronic inflammatory rheumatic disorder. The etiology of Parkinson's disease (PD) is multifactorial; however, inflammation is receiving an increasing amount of attention as an underlying cause of the neurodegenerative process of PD. OBJECTIVE We performed a nationwide longitudinal, population-based matched cohort study to assess the association with the later development of parkinsonism in Korea. METHODS This study was conducted using records from the Health Insurance Review and Assessment Service database. The cumulative incidence rate of PD was estimated. Fine-Gray subdistribution hazard models were used to identify hazards associated with PD development based on the presence of AS. Exposure to anti-inflammatory drugs was measured and analyzed to determine the protective effect of these medications. Additionally, the hazard ratio (HR) for atypical parkinsonism was estimated. RESULTS The results of the Fine-Gray subdistribution hazard model revealed that the HR for PD development in the AS group was 1.82 (95%confidence interval [CI], 1.38-2.39, p < 0.001). A significant decrease in PD development was observed in patients with AS taking non-steroidal anti-inflammatory drugs (NSAIDs). The HR for atypical parkinsonism in the AS group was 3.86 (95%CI, 1.08-13.78, p < 0.05). CONCLUSION We found that AS was associated with an increased risk of PD and atypical parkinsonism. NSAIDs used for AS control have some protective effects against PD. Further studies assessing whether biological treatment mitigates PD risk in patients with high activity are warranted.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department of Physical Medicine & Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Seok-Jae Heo
- Department of Biostatistics and Computing, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Nam Yang
- Department of Physical Medicine & Rehabilitation, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hyun-Im Moon
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
160
|
Sanchez A, Morales I, Rodriguez-Sabate C, Sole-Sabater M, Rodriguez M. Astrocytes, a Promising Opportunity to Control the Progress of Parkinson's Disease. Biomedicines 2021; 9:biomedicines9101341. [PMID: 34680458 PMCID: PMC8533570 DOI: 10.3390/biomedicines9101341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
At present, there is no efficient treatment to prevent the evolution of Parkinson’s disease (PD). PD is generated by the concurrent activity of multiple factors, which is a serious obstacle for the development of etio-pathogenic treatments. Astrocytes may act on most factors involved in PD and the promotion of their neuroprotection activity may be particularly suitable to prevent the onset and progression of this basal ganglia (BG) disorder. The main causes proposed for PD, the ability of astrocytes to control these causes, and the procedures that can be used to promote the neuroprotective action of astrocytes will be commented upon, here.
Collapse
Affiliation(s)
- Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Clara Rodriguez-Sabate
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Department of Psychiatry, Getafe University Hospital, 28905 Madrid, Spain
| | - Miguel Sole-Sabater
- Department of Neurology, La Candelaria University Hospital, 38010 Tenerife, Spain;
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, 38200 Tenerife, Spain; (A.S.); (I.M.); (C.R.-S.)
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-922-319361; Fax: +34-922-319397
| |
Collapse
|
161
|
Espinosa-Oliva AM, García-Miranda P, Alonso-Bellido IM, Carvajal AE, González-Rodríguez M, Carrillo-Jiménez A, Temblador AJ, Felices-Navarro M, García-Domínguez I, Roca-Ceballos MA, Vázquez-Carretero MD, García-Revilla J, Santiago M, Peral MJ, Venero JL, de Pablos RM. Galectin-3 Deletion Reduces LPS and Acute Colitis-Induced Pro-Inflammatory Microglial Activation in the Ventral Mesencephalon. Front Pharmacol 2021; 12:706439. [PMID: 34483912 PMCID: PMC8416309 DOI: 10.3389/fphar.2021.706439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease is a highly prevalent neurological disorder for which there is currently no cure. Therefore, the knowledge of risk factors as well as the development of new putative molecular targets is mandatory. In this sense, peripheral inflammation, especially the originated in the colon, is emerging as a predisposing factor for suffering this disease. We have largely studied the pleiotropic roles of galectin-3 in driving microglia-associated immune responses. However, studies aimed at elucidating the role of galectin-3 in peripheral inflammation in terms of microglia polarization are lacking. To achieve this, we have evaluated the effect of galectin-3 deletion in two different models of acute peripheral inflammation: intraperitoneal injection of lipopolysaccharide or gut inflammation induced by oral administration of dextran sodium sulfate. We found that under peripheral inflammation the number of microglial cells and the expression levels of pro-inflammatory mediators take place specifically in the dopaminergic system, thus supporting causative links between Parkinson’s disease and peripheral inflammation. Absence of galectin-3 highly reduced neuroinflammation in both models, suggesting an important central regulatory role of galectin-3 in driving microglial activation provoked by the peripheral inflammation. Thus, modulation of galectin-3 function emerges as a promising strategy to minimize undesired microglia polarization states.
Collapse
Affiliation(s)
- Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Pablo García-Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Isabel María Alonso-Bellido
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Ana E Carvajal
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Melania González-Rodríguez
- Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, CRIB, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Alejandro Carrillo-Jiménez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Arturo J Temblador
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Manuel Felices-Navarro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Irene García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - María Angustias Roca-Ceballos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | | | - Juan García-Revilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - María J Peral
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de, Sevilla, Spain
| |
Collapse
|
162
|
Houser MC, Caudle WM, Chang J, Kannarkat GT, Yang Y, Kelly SD, Oliver D, Joers V, Shannon KM, Keshavarzian A, Tansey MG. Experimental colitis promotes sustained, sex-dependent, T-cell-associated neuroinflammation and parkinsonian neuropathology. Acta Neuropathol Commun 2021; 9:139. [PMID: 34412704 PMCID: PMC8375080 DOI: 10.1186/s40478-021-01240-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background The etiology of sporadic Parkinson’s disease (PD) remains uncertain, but genetic, epidemiological, and physiological overlap between PD and inflammatory bowel disease suggests that gut inflammation could promote dysfunction of dopamine-producing neurons in the brain. Mechanisms behind this pathological gut-brain effect and their interactions with sex and with environmental factors are not well understood but may represent targets for therapeutic intervention. Methods We sought to identify active inflammatory mechanisms which could potentially contribute to neuroinflammation and neurological disease in colon biopsies and peripheral blood immune cells from PD patients. Then, in mouse models, we assessed whether dextran sodium sulfate-mediated colitis could exert lingering effects on dopaminergic pathways in the brain and whether colitis increased vulnerability to a subsequent exposure to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We assessed the involvement of inflammatory mechanisms identified in the PD patients in colitis-related neurological dysfunction in male and female mice, utilizing mice lacking the Regulator of G-Protein Signaling 10 (RGS10)—an inhibitor of nuclear factor kappa B (NFκB)—to model enhanced NFκB activity, and mice in which CD8+ T-cells were depleted. Results High levels of inflammatory markers including CD8B and NFκB p65 were found in colon biopsies from PD patients, and reduced levels of RGS10 were found in immune cells in the blood. Male mice that experienced colitis exhibited sustained reductions in tyrosine hydroxylase but not in dopamine as well as sustained CD8+ T-cell infiltration and elevated Ifng expression in the brain. CD8+ T-cell depletion prevented colitis-associated reductions in dopaminergic markers in males. In both sexes, colitis potentiated the effects of MPTP. RGS10 deficiency increased baseline intestinal inflammation, colitis severity, and neuropathology. Conclusions This study identifies peripheral inflammatory mechanisms in PD patients and explores their potential to impact central dopaminergic pathways in mice. Our findings implicate a sex-specific interaction between gastrointestinal inflammation and neurologic vulnerability that could contribute to PD pathogenesis, and they establish the importance of CD8+ T-cells in this process in male mice. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40478-021-01240-4.
Collapse
|
163
|
Günther C, Rothhammer V, Karow M, Neurath M, Winner B. The Gut-Brain Axis in Inflammatory Bowel Disease-Current and Future Perspectives. Int J Mol Sci 2021; 22:ijms22168870. [PMID: 34445575 PMCID: PMC8396333 DOI: 10.3390/ijms22168870] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The gut–brain axis is a bidirectional communication system driven by neural, hormonal, metabolic, immunological, and microbial signals. Signaling events from the gut can modulate brain function and recent evidence suggests that the gut–brain axis may play a pivotal role in linking gastrointestinal and neurological diseases. Accordingly, accumulating evidence has suggested a link between inflammatory bowel diseases (IBDs) and neurodegenerative, as well as neuroinflammatory diseases. In this context, clinical, epidemiological and experimental data have demonstrated that IBD predisposes a person to pathologies of the central nervous system (CNS). Likewise, a number of neurological disorders are associated with changes in the intestinal environment, which are indicative for disease-mediated gut–brain inter-organ communication. Although this axis was identified more than 20 years ago, the sequence of events and underlying molecular mechanisms are poorly defined. The emergence of precision medicine has uncovered the need to take into account non-intestinal symptoms in the context of IBD that could offer the opportunity to tailor therapies to individual patients. The aim of this review is to highlight recent findings supporting the clinical and biological link between the gut and brain, as well as its clinical significance for IBD as well as neurodegeneration and neuroinflammation. Finally, we focus on novel human-specific preclinical models that will help uncover disease mechanisms to better understand and modulate the function of this complex system.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Correspondence: (C.G.); (B.W.); Tel.: +49-(0)9131-85-45240 (C.G.); +49-(0)9131-85-39301 (B.W.)
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: (C.G.); (B.W.); Tel.: +49-(0)9131-85-45240 (C.G.); +49-(0)9131-85-39301 (B.W.)
| |
Collapse
|
164
|
Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N. The Prion-Like Spreading of Alpha-Synuclein in Parkinson's Disease: Update on Models and Hypotheses. Int J Mol Sci 2021; 22:8338. [PMID: 34361100 PMCID: PMC8347623 DOI: 10.3390/ijms22158338] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson's disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.
Collapse
Affiliation(s)
- Asad Jan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nádia Pereira Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Christian Bjerggaard Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| |
Collapse
|
165
|
Thaler A, Omer N, Giladi N, Gurevich T, Bar-Shira A, Gana-Weisz M, Goldstein O, Kestenbaum M, Shirvan JC, Cedarbaum JM, Orr-Urtreger A, Regev K, Shenhar-Tsarfaty S, Mirelman A. Mutations in GBA and LRRK2 Are Not Associated with Increased Inflammatory Markers. JOURNAL OF PARKINSONS DISEASE 2021; 11:1285-1296. [PMID: 33998549 PMCID: PMC8461659 DOI: 10.3233/jpd-212624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Inflammation is an integral part of neurodegeneration including in Parkinson’s disease (PD). Ashkenazi Jews have high rates of genetic PD with divergent phenotypes among GBA-PD and LRRK2-PD. The role of inflammation in the prodromal phase of PD and the association with disease phenotype has yet to be elucidated. Objective: To assess central and peripheral cytokines among PD patients with mutations in the LRRK2 and GBA genes and among non-manifesting carriers (NMC) of these mutations in order to determine the role of inflammation in genetic PD. Methods: The following cytokines were assessed from peripheral blood and cerebrospinal fluid (CSF): TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10 and INF- γ. A comprehensive intake including general medical conditions, use of anti-inflammatory treatments, motor and cognitive assessments and additional laboratory measures were recorded, enabling the construction of the MDS probable prodromal score. Results: Data from 362 participants was collected: 31 idiopathic PD (iPD), 30 LRRK2-PD, 77 GBA-PD, 3 homozygote GBA-PD, 3 GBA-LRRK2-PD, 67 LRRK2-NMC, 105 GBA-NMC, 14 LRRK2-GBA-NMC, and 32 healthy controls. No between-group differences in peripheral or CSF cytokines were detected. No correlation between disease characteristics or risk for prodromal PD could be associated with any inflammatory measure. Conclusion: In this study, we could not detect any evidence on dysregulated immune response among GBA and LRRK2 PD patients and non-manifesting mutation carriers.
Collapse
Affiliation(s)
- Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Bar-Shira
- Genetic Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Mali Gana-Weisz
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Orly Goldstein
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Meir Kestenbaum
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Neurology Department, Meir Hospital, Kfar-Saba, Israel
| | | | - Jesse M Cedarbaum
- Biogen Inc, Cambridge, MA, USA.,Coeruleus Clinical Sciences LLC, Woodbridge, CT, USA
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Keren Regev
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Neuroimmunology Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Shani Shenhar-Tsarfaty
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Internal Medicine "C", "D", and "E", Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| |
Collapse
|
166
|
Hot Topics in Recent Parkinson's Disease Research: Where We are and Where We Should Go. Neurosci Bull 2021; 37:1735-1744. [PMID: 34313916 DOI: 10.1007/s12264-021-00749-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease, is clinically characterized by both motor and non-motor symptoms. Although overall great achievements have been made in elucidating the etiology and pathogenesis of PD, the exact mechanisms of this complicated systemic disease are still far from being clearly understood. Consequently, most of the currently-used diagnostic tools and therapeutic options for PD are symptomatic. In this perspective review, we highlight the hot topics in recent PD research for both clinicians and researchers. Some of these hot topics, such as sleep disorders and gut symptoms, have been neglected but are currently emphasized due to their close association with PD. Following these research directions in future PD research may help understand the nature of the disease and facilitate the discovery of new strategies for the diagnosis and therapy of PD.
Collapse
|
167
|
Yan Z, Yang W, Wei H, Dean MN, Standaert DG, Cutter GR, Benveniste EN, Qin H. Dysregulation of the Adaptive Immune System in Patients With Early-Stage Parkinson Disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1036. [PMID: 34301818 PMCID: PMC8299515 DOI: 10.1212/nxi.0000000000001036] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/05/2021] [Indexed: 01/25/2023]
Abstract
Objective To determine the activation status and cytokine profiles of CD4+ T cells, CD8+ T cells, and CD19+ B cells from patients with early-stage Parkinson disease (PD) compared with healthy controls (HCs). Methods Peripheral blood samples from 41 patients with early-stage PD and 40 HCs were evaluated. Peripheral blood mononuclear cells were analyzed by flow cytometry for surface markers and intracellular cytokine production. Correlations of immunologic changes and clinical parameters were analyzed. Results Adaptive immunity plays a role in the pathogenesis of PD, yet the contribution of T cells and B cells, especially cytokine production by these cells, is poorly understood. We demonstrate that naive CD4+ and naive CD8+ T cells are significantly decreased in patients with PD, whereas central memory CD4+ T cells are significantly increased in patients with PD. Furthermore, IL-17–producing CD4+ Th17 cells, IL-4–producing CD4+ Th2 cells, and IFN-γ–producing CD8+ T cells are significantly increased in patients with PD. Regarding B cells, we observed a decrease in naive B cells and an increase in nonswitched memory and double-negative B cells. As well, TNF-α–producing CD19+ B cells were significantly increased in patients with PD. Notably, some of the changes observed in CD4+ T cells and B cells were associated with clinical motor disease severity. Conclusions These findings suggest that alterations in the adaptive immune system may promote clinical disease in PD by skewing to a more proinflammatory state in the early-stage PD patient cohort. Our study may shed light on potential immunotherapies targeting dysregulated CD4+ T cells, CD8+ T cells, and CD19+ B cells in patients with PD.
Collapse
Affiliation(s)
- Zhaoqi Yan
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Wei Yang
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Hairong Wei
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Marissa N Dean
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - David G Standaert
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Gary R Cutter
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Etty N Benveniste
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham
| | - Hongwei Qin
- From the Department of Cell, Developmental and Integrative Biology (Z.Y., W.Y., H.W., E.N.B., H.Q.), Department of Neurology (M.N.D., D.G.S.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham.
| |
Collapse
|
168
|
Liang CS, Bai YM, Hsu JW, Huang KL, Chu CS, Yeh TC, Tsai SJ, Chen TJ, Chen MH. The Risk of Alzheimer's Disease After Acute Appendicitis With or Without Appendectomy. J Am Med Dir Assoc 2021; 23:601-607.e2. [PMID: 34265267 DOI: 10.1016/j.jamda.2021.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Previous epidemiologic studies have suggested an association between appendectomy and Parkinson's disease. The aim of the current study was to examine the risk of Alzheimer's disease (AD) and other types of dementia following appendicitis or appendectomy for appendicitis. DESIGN Population-based cohort study. SETTING AND PARTICIPANTS We used claims data from the Taiwan National Health Insurance Research Database. Participants aged ≥45 years with acute appendicitis or who received appendectomy for appendicitis were enrolled and followed up for more than 15 years. Cases and controls underwent 1:1 matching by age, sex, index date, and dementia-related comorbidities. METHODS The primary outcome was AD, and secondary outcomes included other dementia types. Adjusted hazard ratios (aHRs) were calculated, and a competing risk regression model was created. The E value for causality of evidence was calculated. RESULTS Patients developing appendicitis (0.6% vs 0.1%, P = .005) and those receiving appendectomy for appendicitis (0.4% vs 0.1%, P = .003) had higher incidences of AD than the controls during the follow-up period. A Cox regression analysis with adjustment for potential confounders showed that patients with appendicitis [aHR 6.68, 95% confidence interval (CI) 1.84-24.48] and those receiving appendectomy for appendicitis (aHR 5.01, 95% CI 1.33-18.85) were more likely to develop AD than the controls. These 2 groups also had higher risks for unspecified dementia and all types of dementia but not for vascular dementia than the controls. The age at dementia diagnosis was 88.51 years in the controls; however, among people who developed dementia following appendicitis, the mean age at diagnosis was 70.18 years, and dementia occurred 5.84 years after appendicitis. The competing risk regression models and the E values support the study findings. CONCLUSIONS AND IMPLICATIONS After recovery from appendicitis, these patients should be followed up for signs of AD.
Collapse
Affiliation(s)
- Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Center for Geriatric and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
169
|
How Shing Koy E, Labauge P, Baillet A, Prati C, Marotte H, Pers YM. Immunomodulation with IL-17 and TNF-α in spondyloarthritis: focus on the eye and the central nervous system. Ther Adv Musculoskelet Dis 2021; 13:1759720X211025894. [PMID: 34290832 PMCID: PMC8273400 DOI: 10.1177/1759720x211025894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) are two pro-inflammatory cytokines involved in the pathophysiology of spondyloarthritis (SpA). Therapies targeting TNF-α or IL-17 are used as a second line among SpA patients failing non-steroidal anti-inflammatory drugs. The choice of such treatment has to take into account the patient’s comorbidities. Neurologic diseases are common and their association with SpA deserves to be studied. Therefore, the role of TNF-α and IL-17 cytokines is worth investigating in these neuropsychiatric diseases. This review aimed to explore the role of TNF-α and IL-17 in the pathogenesis of uveitis, multiple sclerosis, neuromyelitis optica, Alzheimer’s disease, Parkinson’s disease and depression. This update is critical to guide the therapeutic management of these co-morbidities in SpA patients.
Collapse
Affiliation(s)
- Elsa How Shing Koy
- Department of Rheumatology, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France
| | - Pierre Labauge
- MS Unit, Department of Neurology, Montpellier University Hospital, Montpellier Cedex 5, France
| | - Athan Baillet
- Université Grenoble-Alpes, GREPI TIMC, UMR 5525, Grenoble France
| | - Clément Prati
- Department of Rheumatology, CHRU de BESANCON, University Teaching Hospital, Besançon, France
| | - Hubert Marotte
- Department of Rheumatology, Hôpital Nord, CHU Saint-Etienne, Saint-Etienne, France
| | - Yves-Marie Pers
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
170
|
Potential Effects of Leukotriene Receptor Antagonist Montelukast in Treatment of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22115606. [PMID: 34070609 PMCID: PMC8198163 DOI: 10.3390/ijms22115606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where misfolded alpha-synuclein-enriched aggregates called Lewy bodies are central in pathogenesis. No neuroprotective or disease-modifying treatments are currently available. Parkinson’s disease is considered a multifactorial disease and evidence from multiple patient studies and animal models has shown a significant immune component during the course of the disease, highlighting immunomodulation as a potential treatment strategy. The immune changes occur centrally, involving microglia and astrocytes but also peripherally with changes to the innate and adaptive immune system. Here, we review current understanding of different components of the PD immune response with a particular emphasis on the leukotriene pathway. We will also describe evidence of montelukast, a leukotriene receptor antagonist, as a possible anti-inflammatory treatment for PD.
Collapse
|
171
|
Li W, Luo Y, Xu H, Ma Q, Yao Q. Imbalance between T helper 1 and regulatory T cells plays a detrimental role in experimental Parkinson's disease in mice. J Int Med Res 2021; 49:300060521998471. [PMID: 33853440 PMCID: PMC8053775 DOI: 10.1177/0300060521998471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective Parkinson’s disease (PD) is a degenerative disorder characterized by steady motor function loss. PD pathogenesis remains inconclusive, but aberrant immune responses might play important roles. We hypothesized that imbalance between T helper (Th) 1 and regulatory T (Treg) cells was essential in experimental PD. Methods Th1 and Treg cells from the blood of patients with PD and healthy volunteer blood were measured by flow cytometry. Experimental PD was induced in mice by peritoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Experimental PD severity was measured by open field test behavior assessments (distance moved, rearing, and grooming). Mice were administered neutralizing anti-tumor necrosis factor (TNF) α to inhibit Th1 effects. Treg cells were depleted by anti-CD25 neutralizing antibodies or isolated and transferred to experimental PD mice. Results Patients with PD had fewer Treg and more Th1 cells than healthy volunteers. Experimental PD mice exhibited fewer Treg and more Th1 cells. Treg cell depletion exacerbated experimental PD, whereas TNFα neutralization attenuated PD in mice. Treg transfer to experimental PD mice reduced PD severity. Mechanistically, anti-TNFα antibody administration and Treg transfer increased Treg and reduced Th1 cell abundance in the brain. Conclusion Th1 and Treg cell imbalance plays an essential role in mouse experimental PD pathogenesis.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Geriatrics, Ningbo First Hospital, Ningbo, China
| | - Yuan Luo
- Department of Geriatrics, Ningbo First Hospital, Ningbo, China
| | - Hongyu Xu
- Department of Geriatrics, Ningbo First Hospital, Ningbo, China
| | - Qianqian Ma
- Department of Geriatrics, Ningbo First Hospital, Ningbo, China
| | - Qi Yao
- Department of Geriatrics, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
172
|
Thome AD, Atassi F, Wang J, Faridar A, Zhao W, Thonhoff JR, Beers DR, Lai EC, Appel SH. Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:41. [PMID: 33986285 PMCID: PMC8119976 DOI: 10.1038/s41531-021-00188-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a pathological hallmark of Parkinson's disease (PD). Chronic pro-inflammatory responses contribute to the loss of neurons in the neurodegenerative process. The present study was undertaken to define the peripheral innate and adaptive immune contributions to inflammation in patients with PD. Immunophenotyping revealed a shift of peripheral myeloid and lymphoid cells towards a pro-inflammatory phenotype. Regulatory T cells (Tregs) were reduced in number, and their suppression of T responder proliferation decreased. The PD Tregs did not suppress activated pro-inflammatory myeloid cells. Ex vivo expansion of Tregs from patients with PD restored and enhanced their suppressive functions while expanded Tregs displayed increased expression of foxp3, il2ra (CD25), nt5e (CD73), il10, il13, ctla4, pdcd1 (PD1), and gzmb. Collectively, these findings documented a shift towards a pro-inflammatory peripheral immune response in patients with PD; the loss of Treg suppressive functions may contribute significantly to this response, supporting PD as a disorder with extensive systemic pro-inflammatory responses. The restoration and enhancement of Treg suppressive functions following ex vivo expansion may provide a potential cell therapeutic approach for patients with PD.
Collapse
Affiliation(s)
- Aaron D. Thome
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Farah Atassi
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Jinghong Wang
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Alireza Faridar
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Weihua Zhao
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Jason R. Thonhoff
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - David R. Beers
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Eugene C. Lai
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Stanley H. Appel
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| |
Collapse
|
173
|
Sharma P, Agrawal A. Does modern research validate the ancient wisdom of gut flora and brain connection? A literature review of gut dysbiosis in neurological and neurosurgical disorders over the last decade. Neurosurg Rev 2021; 45:27-48. [PMID: 33904013 DOI: 10.1007/s10143-021-01516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022]
Abstract
The connection between gastrointestinal microbiota and the brain has been described in ancient medical texts and is now well established by research. It is a bidirectional communication which plays a critical role in regulating not only the gastrointestinal homeostasis but has also been linked to higher emotional and cognitive functions. Recent studies have sought to expand on this concept by providing concrete evidence of the influence of gut microbiome on a wide array of diseases and disorders of the central nervous system. This article reviews the most recent literature published on this subject, over the previous decade and aims to establish the role of a healthy gut microbiome and probiotics as an effective adjunct in health and management of diseases of the nervous system. A literature search on PubMed database was conducted using keywords including "gut brain-axis," "gut dysbiosis," "neuropsychiatric disorders," "neurodegenerative disorders," "probiotic," and "traumatic brain injury." The search was performed without any publication date restrictions. Both animal and human studies evaluating the role of gut dysbiosis on various neurological and neurosurgical diseases, published in peer-reviewed journals, were reviewed. Current studies do not provide conclusive evidence of a direct origin of CNS disorders from gut dysbiosis, but a possible modulatory role of gut microbiota in certain neurological disorders has been implicated. An understanding of this connection can aid in finding novel therapeutic strategies for the management of neurological disorders associated with memory dysfunctions and brain and spinal cord injuries.
Collapse
Affiliation(s)
- Pranati Sharma
- Department of Neurosurgery, Sri Aurobindo Institute of Medical Sciences, Indore, India.,Department of Surgical Gastroenterology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, 249203, India
| | - Abhishek Agrawal
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, 249203, India.
| |
Collapse
|
174
|
Prasuhn J, Brüggemann N. Genotype-driven therapeutic developments in Parkinson's disease. Mol Med 2021; 27:42. [PMID: 33874883 PMCID: PMC8056568 DOI: 10.1186/s10020-021-00281-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Remarkable advances have been reached in the understanding of the genetic basis of Parkinson's disease (PD), with the identification of monogenic causes (mPD) and a plethora of gene loci leading to an increased risk for idiopathic PD. The expanding knowledge and subsequent identification of genetic contributions fosters the understanding of molecular mechanisms leading to disease development and progression. Distinct pathways involved in mitochondrial dysfunction, oxidative stress, and lysosomal function have been identified and open a unique window of opportunity for individualized treatment approaches. These genetic findings have led to an imminent progress towards pathophysiology-targeted clinical trials and potentially disease-modifying treatments in the future. MAIN BODY OF THE MANUSCRIPT In this review article we will summarize known genetic contributors to the pathophysiology of Parkinson's disease, the molecular mechanisms leading to disease development, and discuss challenges and opportunities in clinical trial designs. CONCLUSIONS The future success of clinical trials in PD is mainly dependent on reliable biomarker development and extensive genetic testing to identify genetic cases. Whether genotype-dependent stratification of study participants will extend the potential application of new drugs will be one major challenge in conceptualizing clinical trials. However, the latest developments in genotype-driven treatments will pave the road to individualized pathophysiology-based therapies in the future.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
175
|
Avasarala J, Guduru Z, McLouth CJ, Wilburn A, Talbert J, Sutton P, Sokola BS. Use of anti-TNF-α therapy in Crohn's disease is associated with increased incidence of multiple sclerosis. Mult Scler Relat Disord 2021; 51:102942. [PMID: 33933908 DOI: 10.1016/j.msard.2021.102942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We investigated if anti-tumor necrosis factor-α (anti-TNF-α) drugs used in the treatment of inflammatory bowel disease (IBD) alter the incidence of MS and if so, to understand the magnitude of such an effect. METHODS This is a retrospective cohort study of data from Truven Health Market Scan administrative claims database. The patients included in the study had to be ≥ 18 years of age. The presence of IBD was based on at least 2 claims of International Classification of Diseases (ICD-9 or 10) diagnosis codes. The IBD diagnosis index date had to precede the MS diagnosis index date for inclusion in the study. The diagnosis of multiple sclerosis (MS) was defined as having at least 2 claims for the disease (ICD 9, 340 and ICD 10 codes, G35) and at least one prescription claim for any of the drugs that were defined as MS therapy. RESULTS Patients with IBD had 1.32 times the risk of MS incidence compared to healthy controls (adjusted incidence rate ratio (IRR): 1.32; 95% CI: 1.03 - 1.71; p = .0312). Patients with IBD exposed to anti-TNF-α therapies had a 43% increase in the incidence of MS compared to those with IBD without exposure (adjusted incidence rate: 1.43; 95% CI: .062 - 3.32; p = .3989). Among CD patients treated anti-TNF-α medications an increase in the incidence of MS, compared to CD patients not exposed to such medications was observed (IRR = 2.62; 95% CI: 1.00 to 6.83; p = 0.049), statistically significant. After adjusting for age/gender, patients with CD using anti-TNF-α agents had an increase of incidence in MS (adjusted IRR: 2.24; 95% CI: 0.85 - 5.94; p = .1035) but it was not statistically significant. CONCLUSIONS Use of anti-TNF-α drugs in CD was associated with a statistically significant increase in the incidence of MS but this effect was lost when controlled for age/gender.
Collapse
Affiliation(s)
- Jagannadha Avasarala
- Department of Neurology, University of Kentucky Medical Center, Kentucky Neuroscience Institute, 740 S Limestone Dr, Lexington, KY 40536, USA.
| | - Zain Guduru
- Department of Neurology, University of Kentucky Medical Center, Kentucky Neuroscience Institute, 740 S Limestone Dr, Lexington, KY 40536, USA
| | - Christopher J McLouth
- Department of Behavioral Science, University of Kentucky Medical Center, Medical Behavioral Science Building, Lexington, KY 40536, USA
| | - Amanda Wilburn
- University of Kentucky Health Sciences, 740 S Limestone Dr, Lexington, KY 40536, USA
| | - Jeffrey Talbert
- Department of Pharmacy Practice and Science and Biomedical Informatics, University of Kentucky College of Pharmacy, 185 Todd Building, 789 S Limestone St., Lexington KY 40536, USA
| | - Paige Sutton
- Department of Neurology, University of Kentucky Medical Center, Kentucky Neuroscience Institute, 740 S Limestone Dr, Lexington, KY 40536, USA
| | - Brent S Sokola
- University Hospitals Specialty Pharmacy, 4510 Richmond Road, Warrensville Heights, OH 44128, USA
| |
Collapse
|
176
|
Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathol 2021; 141:527-545. [PMID: 33555429 PMCID: PMC7952334 DOI: 10.1007/s00401-021-02268-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where alpha-synuclein plays a central role in the death and dysfunction of neurons, both, in central, as well as in the peripheral nervous system. Besides the neuronal events observed in patients, PD also includes a significant immune component. It is suggested that the PD-associated immune response will have consequences on neuronal health, thus opening immunomodulation as a potential therapeutic strategy in PD. The immune changes during the disease occur in the brain, involving microglia, but also in the periphery with changes in cells of the innate immune system, particularly monocytes, as well as those of adaptive immunity, such as T-cells. This realization arises from multiple patient studies, but also from data in animal models of the disease, providing strong evidence for innate and adaptive immune system crosstalk in the central nervous system and periphery in PD. Here we review the data showing that alpha-synuclein plays a crucial role in the activation of the innate and adaptive immune system. We will also describe the studies suggesting that inflammation in PD includes early changes in innate and adaptive immune cells that develop dynamically through time during disease, contributing to neuronal degeneration and symptomatology in patients. This novel finding has contributed to the definition of PD as a multisystem disease that should be approached in a more integratory manner rather than a brain-focused classical approach.
Collapse
Affiliation(s)
- Ashley S Harms
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara A Ferreira
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
177
|
Jung YJ, Tweedie D, Scerba MT, Kim DS, Palmas MF, Pisanu A, Carta AR, Greig NH. Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Front Neurosci 2021; 15:656921. [PMID: 33854417 PMCID: PMC8039148 DOI: 10.3389/fnins.2021.656921] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, United States
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Michael T Scerba
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Dong Seok Kim
- AevisBio, Inc., Gaithersburg, MD, United States
- Aevis Bio, Inc., Daejeon, South Korea
| | | | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
178
|
Bonte MA, El Idrissi F, Gressier B, Devos D, Belarbi K. Protein network exploration prioritizes targets for modulating neuroinflammation in Parkinson's disease. Int Immunopharmacol 2021; 95:107526. [PMID: 33756233 DOI: 10.1016/j.intimp.2021.107526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disease associated with a loss of dopaminergic neurons in the substantia nigra of the brain. Neuroinflammation, another hallmark of the disease, is thought to play an important role in the neurodegenerative process. While mitigating neuroinflammation could prove beneficial for Parkinson's disease, identifying the most relevant biological processes and pharmacological targets as well as drugs to modulate them remains highly challenging. The present study aimed to better understand the protein network behind neuroinflammation in Parkinson's disease and to prioritize possible targets for its pharmacological modulation. We first used text-mining to systematically collect the proteins significantly associated to Parkinson's disease neuroinflammation over the scientific literature. The functional interaction network formed by these proteins was then analyzed by integrating functional enrichment, network topology analysis and drug-protein interaction analysis. We identified 57 proteins significantly associated to neuroinflammation in Parkinson's disease. Toll-like Receptor Cascades as well as Interleukin 4, Interleukin 10 and Interleukin 13 signaling appeared as the most significantly enriched biological processes. Protein network analysis using STRING and CentiScaPe identified 8 proteins with the highest ability to control these biological processes underlying neuroinflammation, namely caspase 1, heme oxygenase 1, interleukin 1beta, interleukin 4, interleukin 6, interleukin 10, tumor necrosis factor alpha and toll-like receptor 4. These key proteins were indexed to be targetable by a total of 38 drugs including 27 small compounds 11 protein-based therapies. In conclusion, our study highlights key proteins in Parkinson's disease neuroinflammation as well as pharmacological compounds acting on them. As such, it may facilitate the prioritization of biomarkers for the development of diagnostic, target-engagement assessment and therapeutic tools against Parkinson's disease.
Collapse
Affiliation(s)
- Marie-Amandine Bonte
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Fatima El Idrissi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, F-59000 Lille, France; Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France.
| | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, F-59000 Lille, France; Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France.
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, F-59000 Lille, France; Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France.
| | - Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, F-59000 Lille, France; Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France.
| |
Collapse
|
179
|
Herrick MK, Tansey MG. Is LRRK2 the missing link between inflammatory bowel disease and Parkinson's disease? NPJ Parkinsons Dis 2021; 7:26. [PMID: 33750819 PMCID: PMC7943592 DOI: 10.1038/s41531-021-00170-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Links that implicate the gastrointestinal system in Parkinson's disease (PD) pathogenesis and progression have become increasingly common. PD shares several similarities with Crohn's disease (CD). Intestinal inflammation is common in both PD and CD and is hypothesized to contribute to PD neuropathology. Mutations in leucine-rich repeat kinase 2 (LRRK2) are one of the greatest genetic contributors to PD. Variants in LRRK2 have also been associated with increased incidence of CD. Since its discovery, LRRK2 has been studied intensely in neurons, despite multiple lines of evidence showing that LRRK2 is highly expressed in immune cells. Based on the fact that higher levels of LRRK2 are detectable in inflamed colonic tissue from CD patients and in peripheral immune cells from sporadic PD patients relative to matched controls, we posit that LRRK2 regulates inflammatory processes. Therefore, LRRK2 may sit at a crossroads whereby gut inflammation and higher LRRK2 levels in CD may be a biomarker of increased risk for sporadic PD and/or may represent a tractable therapeutic target in inflammatory diseases that increase risk for PD. Here we will focus on reviewing how PD and CD share overlapping phenotypes, particularly in terms of LRRK2 in the context of the immune system, that could be targeted in future therapies.
Collapse
Affiliation(s)
- Mary K Herrick
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease at The University of Florida College of Medicine, Gainesville, FL, USA
| | - Malú G Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease at The University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
180
|
Wang Q, Zhang B, Yue Z. Disentangling the Molecular Pathways of Parkinson's Disease using Multiscale Network Modeling. Trends Neurosci 2021; 44:182-188. [PMID: 33358606 PMCID: PMC10942661 DOI: 10.1016/j.tins.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder. The identification of genetic variants has shed light on the molecular pathways for inherited PD, while the disease mechanism for idiopathic PD remains elusive, partly due to a lack of robust tools. The complexity of PD arises from the heterogeneity of clinical symptoms, pathologies, environmental insults contributing to the disease, and disease comorbidities. Molecular networks have been increasingly used to identify molecular pathways and drug targets in complex human diseases. Here, we review recent advances in molecular network approaches and their application to PD. We discuss how network modeling can predict functions of PD genetic risk factors through network context and assist in the discovery of network-based therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029-6501, USA; Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029-6501, USA.
| | - Zhenyu Yue
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY 10029, USA.
| |
Collapse
|
181
|
Gundersen V. Parkinson's Disease: Can Targeting Inflammation Be an Effective Neuroprotective Strategy? Front Neurosci 2021; 14:580311. [PMID: 33716638 PMCID: PMC7946840 DOI: 10.3389/fnins.2020.580311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
The reason why dopamine neurons die in Parkinson’s disease remains largely unknown. Emerging evidence points to a role for brain inflammation in neurodegeneration. Essential questions are whether brain inflammation happens sufficiently early so that interfering with this process can be expected to slow down neuronal death and whether the contribution from inflammation is large enough so that anti-inflammatory agents can be expected to work. Here I discuss data from human PD studies indicating that brain inflammation is an early event in PD. I also discuss the role of T-lymphocytes and peripheral inflammation for neurodegeneration. I critically discuss the failure of clinical trials targeting inflammation in PD.
Collapse
Affiliation(s)
- Vidar Gundersen
- Section for Movement Disorders, Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
182
|
Kang X, Ploner A, Pedersen NL, Bandres-Ciga S, Noyce AJ, Wirdefeldt K, Williams DM. Tumor Necrosis Factor Inhibition and Parkinson Disease: A Mendelian Randomization Study. Neurology 2021; 96:e1672-e1679. [PMID: 33608417 PMCID: PMC8032365 DOI: 10.1212/wnl.0000000000011630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
Objective To evaluate the effects of long-term tumor necrosis factor (TNF) inhibition on the risk and age at onset of Parkinson disease (PD), we performed a 2-sample Mendelian randomization study using genome-wide association studies (GWAS) summary statistics. Methods Genetic variants in the vicinity of TNFRSF1A, the gene encoding TNF receptor 1 (TNFR1), were identified as predictive of pharmacologic blockade of TNFR1 signaling by anti-TNF therapy, based on genetic associations with lower circulating C-reactive protein (CRP; GWAS n = 204,402). The effects of TNF-TNFR1 inhibition were estimated for PD risk (ncases/controls = 37,688/981,372) and age at PD onset (n = 28,568) using GWAS data from the International Parkinson's Disease Genomics Consortium and 23andMe, Inc. To validate variants as proxies of long-term anti-TNF treatment, we also assessed whether variant associations reflected anticipated effects of TNFR1 inhibition on Crohn disease, ulcerative colitis, and multiple sclerosis risk (n = 38,589-45,975). Results TNF-TNFR1 signaling inhibition was not estimated to affect PD risk (odds ratio [OR] per 10% lower circulating CRP = 0.99; 95% confidence interval [CI] 0.91–1.08) or age at onset (0.13 years later onset; 95% CI −0.66 to 0.92). In contrast, genetically indexed TNF-TNFR1 signaling blockade predicted reduced risk of Crohn disease (OR 0.75; 95% CI 0.65–0.86) and ulcerative colitis (OR 0.84; 95% CI 0.74–0.97) and increased multiple sclerosis risk (OR 1.57; 95% CI 1.36–1.81). Findings were consistent across models using different genetic instruments and Mendelian randomization estimators. Conclusions Our findings do not imply that TNF-TNFR1 signaling inhibition will prevent or delay PD onset. Classification of Evidence This study provides Class II evidence that TNF-TNFR1 signaling inhibition is not associated with the risk or age at onset of PD.
Collapse
Affiliation(s)
- Xiaoying Kang
- From the Departments of Medical Epidemiology and Biostatistics (X.K., A.P., N.L.P., K.W., D.M.W.) and Clinical Neuroscience (K.W.), Karolinska Institutet, Stockholm, Sweden; Laboratory of Neurogenetics (S.B.-C.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Instituto de Investigación Biosanitaria de Granada (S.B.-C.), Spain; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Clinical and Movement Neurosciences (A.J.N.), UCL Institute of Neurology, London; and MRC Unit for Lifelong Health and Ageing (D.M.W.), University College London, UK
| | - Alexander Ploner
- From the Departments of Medical Epidemiology and Biostatistics (X.K., A.P., N.L.P., K.W., D.M.W.) and Clinical Neuroscience (K.W.), Karolinska Institutet, Stockholm, Sweden; Laboratory of Neurogenetics (S.B.-C.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Instituto de Investigación Biosanitaria de Granada (S.B.-C.), Spain; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Clinical and Movement Neurosciences (A.J.N.), UCL Institute of Neurology, London; and MRC Unit for Lifelong Health and Ageing (D.M.W.), University College London, UK
| | - Nancy L Pedersen
- From the Departments of Medical Epidemiology and Biostatistics (X.K., A.P., N.L.P., K.W., D.M.W.) and Clinical Neuroscience (K.W.), Karolinska Institutet, Stockholm, Sweden; Laboratory of Neurogenetics (S.B.-C.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Instituto de Investigación Biosanitaria de Granada (S.B.-C.), Spain; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Clinical and Movement Neurosciences (A.J.N.), UCL Institute of Neurology, London; and MRC Unit for Lifelong Health and Ageing (D.M.W.), University College London, UK
| | - Sara Bandres-Ciga
- From the Departments of Medical Epidemiology and Biostatistics (X.K., A.P., N.L.P., K.W., D.M.W.) and Clinical Neuroscience (K.W.), Karolinska Institutet, Stockholm, Sweden; Laboratory of Neurogenetics (S.B.-C.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Instituto de Investigación Biosanitaria de Granada (S.B.-C.), Spain; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Clinical and Movement Neurosciences (A.J.N.), UCL Institute of Neurology, London; and MRC Unit for Lifelong Health and Ageing (D.M.W.), University College London, UK
| | - Alastair J Noyce
- From the Departments of Medical Epidemiology and Biostatistics (X.K., A.P., N.L.P., K.W., D.M.W.) and Clinical Neuroscience (K.W.), Karolinska Institutet, Stockholm, Sweden; Laboratory of Neurogenetics (S.B.-C.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Instituto de Investigación Biosanitaria de Granada (S.B.-C.), Spain; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Clinical and Movement Neurosciences (A.J.N.), UCL Institute of Neurology, London; and MRC Unit for Lifelong Health and Ageing (D.M.W.), University College London, UK
| | - Karin Wirdefeldt
- From the Departments of Medical Epidemiology and Biostatistics (X.K., A.P., N.L.P., K.W., D.M.W.) and Clinical Neuroscience (K.W.), Karolinska Institutet, Stockholm, Sweden; Laboratory of Neurogenetics (S.B.-C.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Instituto de Investigación Biosanitaria de Granada (S.B.-C.), Spain; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Clinical and Movement Neurosciences (A.J.N.), UCL Institute of Neurology, London; and MRC Unit for Lifelong Health and Ageing (D.M.W.), University College London, UK
| | - Dylan M Williams
- From the Departments of Medical Epidemiology and Biostatistics (X.K., A.P., N.L.P., K.W., D.M.W.) and Clinical Neuroscience (K.W.), Karolinska Institutet, Stockholm, Sweden; Laboratory of Neurogenetics (S.B.-C.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Instituto de Investigación Biosanitaria de Granada (S.B.-C.), Spain; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Clinical and Movement Neurosciences (A.J.N.), UCL Institute of Neurology, London; and MRC Unit for Lifelong Health and Ageing (D.M.W.), University College London, UK.
| |
Collapse
|
183
|
Lee SYH, Yates NJ, Tye SJ. Inflammatory Mechanisms in Parkinson's Disease: From Pathogenesis to Targeted Therapies. Neuroscientist 2021; 28:485-506. [PMID: 33586516 DOI: 10.1177/1073858421992265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inflammation is a critical factor contributing to the progressive neurodegenerative process observed in Parkinson's disease (PD). Microglia, the immune cells of the central nervous system, are activated early in PD pathogenesis and can both trigger and propagate early disease processes via innate and adaptive immune mechanisms such as upregulated immune cells and antibody-mediated inflammation. Downstream cytokines and gene regulators such as microRNA (miRNA) coordinate later disease course and mediate disease progression. Biomarkers signifying the inflammatory and neurodegenerative processes at play within the central nervous system are of increasing interest to clinical teams. To be effective, such biomarkers must achieve the highest sensitivity and specificity for predicting PD risk, confirming diagnosis, or monitoring disease severity. The aim of this review was to summarize the current preclinical and clinical evidence that suggests that inflammatory processes contribute to the initiation and progression of neurodegenerative processes in PD. In this article, we further summarize the data about main inflammatory biomarkers described in PD to date and their potential for regulation as a novel target for disease-modifying pharmacological strategies.
Collapse
Affiliation(s)
- Stellina Y H Lee
- Queensland Brain Institute, The University of Queensland, Saint Lucia, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Nathanael J Yates
- Queensland Brain Institute, The University of Queensland, Saint Lucia, Queensland, Australia.,School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Saint Lucia, Queensland, Australia.,Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
184
|
Wang T, Shi C, Luo H, Zheng H, Fan L, Tang M, Su Y, Yang J, Mao C, Xu Y. Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies. Neuroscientist 2021; 28:364-381. [PMID: 33576313 DOI: 10.1177/1073858421991066] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease involving multiple etiologies and pathogenesis, in which neuroinflammation is a common factor. Both preclinical experiments and clinical studies provide evidence for the involvement of neuroinflammation in the pathophysiology of PD, although there are a number of key issues related to neuroinflammatory processes in PD that remain to be addressed. In this review, we highlight the relationship between the common pathological mechanisms of PD and neuroinflammation, including aggregation of α-synuclein, genetic factors, mitochondrial dysfunction, and gut microbiome dysbiosis. We also describe the two positive feedback loops initiated in PD after the immune system is activated, and their role in the pathogenesis of PD. In addition, the interconnections and differences between the central and peripheral immune systems are discussed. Finally, we review the latest progress in immunotherapy research for PD patients, and propose future directions for clinical research.
Collapse
Affiliation(s)
- Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
185
|
Lee HS, Lobbestael E, Vermeire S, Sabino J, Cleynen I. Inflammatory bowel disease and Parkinson's disease: common pathophysiological links. Gut 2021; 70:408-417. [PMID: 33067333 DOI: 10.1136/gutjnl-2020-322429] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease and Parkinson's disease are chronic progressive disorders that mainly affect different organs: the gut and brain, respectively. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the 'gut-brain axis'. Moreover, recent population-based studies have shown that inflammatory bowel disease might increase the risk of Parkinson's disease. Although the precise mechanisms underlying gut-brain interactions remain elusive, some of the latest findings have begun to explain the link. Several genetic loci are shared between both disorders with a similar direction of effect on the risk of both diseases. The most interesting example is LRRK2 (leucine-rich repeat kinase 2), initially identified as a causal gene in Parkinson's disease, and recently also implicated in Crohn's disease. In this review, we highlight recent findings on the link between these seemingly unrelated diseases with shared genetic susceptibility. We discuss supporting and conflicting data obtained from epidemiological and genetic studies along with remaining questions and concerns. In addition, we discuss possible biological links including the gut-brain axis, microbiota, autoimmunity, mitochondrial function and autophagy.
Collapse
Affiliation(s)
- Ho-Su Lee
- Department of Human Genetics, KU Leuven, Leuven, Belgium.,Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - João Sabino
- Department of Chronic diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
186
|
Cho J, Park YJ, Gonzales-Portillo B, Saft M, Cozene B, Sadanandan N, Borlongan CV. Gut dysbiosis in stroke and its implications on Alzheimer's disease-like cognitive dysfunction. CNS Neurosci Ther 2021; 27:505-514. [PMID: 33464726 PMCID: PMC8025625 DOI: 10.1111/cns.13613] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Various neurological disorders, such as stroke and Alzheimer's disease (AD), involve neuroinflammatory responses. The advent of the gut‐brain axis enhances our understanding of neurological disease progression and secondary cell death. Gut microbiomes, especially those associated with inflammation, may reflect the dysbiosis of both the brain and the gut, opening the possibility to utilize inflammatory microbiomes as biomarkers and therapeutic targets. The gut‐brain axis may serve as a contributing factor to disease pathology and offer innovative approaches in cell‐based regenerative medicine for the treatment of neurological diseases. In reviewing the pathogenesis of stroke and AD, we also discuss the effects of gut microbiota on cognitive decline and brain pathology. Although the underlying mechanism of primary cell death from either disease is clearly distinct, both may be linked to gut‐microbial dysfunction as a consequential aberration that is unique to each disease. Targeting peripheral cell death pathways that exacerbate disease symptoms, such as those arising from the gut, coupled with conventional central therapeutic approach, may improve stroke and AD outcomes.
Collapse
Affiliation(s)
- Justin Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
187
|
Mertsalmi TH, But A, Pekkonen E, Scheperjans F. Irritable Bowel Syndrome and Risk of Parkinson's Disease in Finland: A Nationwide Registry-Based Cohort Study. JOURNAL OF PARKINSON'S DISEASE 2021; 11:641-651. [PMID: 33646176 PMCID: PMC8150653 DOI: 10.3233/jpd-202330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/31/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The gastrointestinal tract is considered as a potential origin of Parkinson's disease (PD) pathology. Besides constipation, appendectomy and inflammatory bowel disease have also been associated with a higher PD-risk, but findings have been inconsistent. To date, there is only one previous study suggesting that irritable bowel syndrome (IBS) is associated with an increased risk of PD. OBJECTIVE To evaluate whether IBS is associated with a higher risk of PD. METHODS In this retrospective registry-based cohort study, we identified 28,150 patients that were diagnosed with IBS (IBS+) during the years 1998-2014, using data from the Finnish Care Register for Health Care. In addition, 98,789 IBS-free reference subjects (IBS-) of same age and gender and living in the same municipality were included. The study subjects were followed until the end of the year 2014 to analyze the incidence of PD. The association between IBS and PD was assessed by a Cox proportional hazards model. RESULTS Diagnosis of IBS was associated with a higher hazard of PD with an adjusted hazard ratio (aHR) of 1.70 (95% CI 1.27-2.26). However, the ratio of hazard rates for PD between IBS+ and IBS- subjects was not constant over time. The Cox model with time-varying coefficient for IBS status showed that the hazard of PD was significantly higher in IBS patients only during the first two years of follow-up (aHR 2.96, 95% CI 1.78-4.92). CONCLUSION Our findings indicate that the association between IBS and PD is likely explained by reverse causation and detection bias. It remains open whether IBS is an actual risk factor or a prodromal symptom of PD.
Collapse
Affiliation(s)
- Tuomas H. Mertsalmi
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Anna But
- Biostatistics consulting, Department of Public Health, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
188
|
Grathwohl S, Quansah E, Maroof N, Steiner JA, Spycher L, Benmansour F, Duran-Pacheco G, Siebourg-Polster J, Oroszlan-Szovik K, Remy H, Haenggi M, Stawiski M, Selhausen M, Mailver P, Wolfert A, Emrich T, Madaj Z, Su A, Escobar Galvis ML, Mueller C, Herrmann A, Brundin P, Britschgi M. Specific immune modulation of experimental colitis drives enteric alpha-synuclein accumulation and triggers age-related Parkinson-like brain pathology. FREE NEUROPATHOLOGY 2021; 2:13. [PMID: 37284635 PMCID: PMC10209908 DOI: 10.17879/freeneuropathology-2021-3326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/08/2021] [Indexed: 06/08/2023]
Abstract
Background: In some people with Parkinson's disease (PD), α-synuclein (αSyn) accumulation may begin in the enteric nervous system (ENS) decades before development of brain pathology and disease diagnosis. Objective: To determine how different types and severity of intestinal inflammation could trigger αSyn accumulation in the ENS and the subsequent development of αSyn brain pathology. Methods: We assessed the effects of modulating short- and long-term experimental colitis on αSyn accumulation in the gut of αSyn transgenic and wild type mice by immunostaining and gene expression analysis. To determine the long-term effect on the brain, we induced dextran sulfate sodium (DSS) colitis in young αSyn transgenic mice and aged them under normal conditions up to 9 or 21 months before tissue analyses. Results: A single strong or sustained mild DSS colitis triggered αSyn accumulation in the submucosal plexus of wild type and αSyn transgenic mice, while short-term mild DSS colitis or inflammation induced by lipopolysaccharide did not have such an effect. Genetic and pharmacological modulation of macrophage-associated pathways modulated the severity of enteric αSyn. Remarkably, experimental colitis at three months of age exacerbated the accumulation of aggregated phospho-Serine 129 αSyn in the midbrain (including the substantia nigra), in 21- but not 9-month-old αSyn transgenic mice. This increase in midbrain αSyn accumulation is accompanied by the loss of tyrosine hydroxylase-immunoreactive nigral neurons. Conclusions: Our data suggest that specific types and severity of intestinal inflammation, mediated by monocyte/macrophage signaling, could play a critical role in the initiation and progression of PD.
Collapse
Affiliation(s)
- Stefan Grathwohl
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Emmanuel Quansah
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, USAUnited States
| | - Nazia Maroof
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Jennifer A. Steiner
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, USAUnited States
| | - Liz Spycher
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Fethalla Benmansour
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Gonzalo Duran-Pacheco
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Juliane Siebourg-Polster
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Krisztina Oroszlan-Szovik
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Helga Remy
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Markus Haenggi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Marc Stawiski
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Matthias Selhausen
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Pierre Mailver
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Andreas Wolfert
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, GermanyGermany
| | - Thomas Emrich
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, GermanyGermany
| | - Zachary Madaj
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, USAUnited States
| | - Arel Su
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Martha L. Escobar Galvis
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, USAUnited States
| | - Christoph Mueller
- Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, SwitzerlandSwitzerland
| | - Annika Herrmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| | - Patrik Brundin
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, USAUnited States
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, SwitzerlandSwitzerland
| |
Collapse
|
189
|
Bacelis J, Compagno M, George S, Pospisilik JA, Brundin P, Naluai ÅT, Brundin L. Decreased Risk of Parkinson's Disease After Rheumatoid Arthritis Diagnosis: A Nested Case-Control Study with Matched Cases and Controls. JOURNAL OF PARKINSON'S DISEASE 2021; 11:821-832. [PMID: 33682730 PMCID: PMC8150472 DOI: 10.3233/jpd-202418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) and the genetic risk landscape of autoimmune disorders and Parkinson's disease (PD) overlap. Additionally, anti-inflammatory medications used to treat RA might influence PD risk. OBJECTIVE To use a population-based approach to determine if there is an association between pre-occurring rheumatoid arthritis (RA) and later-life risk of PD. METHODS The study population was 3.6 million residents of Sweden, who were alive during part or all of the follow-up period; 1997-2016. We obtained diagnoses from the national patient registry and identified 30,032 PD patients, 8,256 of whom each was matched to ten controls based on birth year, sex, birth location, and time of follow-up. We determined the risk reduction for PD in individuals previously diagnosed with RA. We also determined if the time (in relation to the index year) of the RA diagnosis influenced PD risk and repeated the analysis in a sex-stratified setting. RESULTS Individuals with a previous diagnosis of RA had a decreased risk of later developing PD by 30-50% compared to individuals without an RA diagnosis. This relationship was strongest in our conservative analysis, where the first PD diagnosis occurred close to the earliest PD symptoms (odds ratio 0.47 (CI 95% 0.28-0.75, p = 0.0006); with the greatest risk reduction in females (odds ratio 0.40 (CI 95% 0,19-0.76, p = 0.002). DISCUSSION Our findings provide evidence that individuals diagnosed with RA have a significantly lower risk of developing PD than the general population. Our data should be considered when developing or repurposing therapies aimed at modifying the course of PD.
Collapse
Affiliation(s)
- Jonas Bacelis
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Michele Compagno
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Lund, Sweden
| | - Sonia George
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Åsa Torinsson Naluai
- Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Department of Psychiatry West, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
190
|
Clark I, Vissel B. Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. J Alzheimers Dis 2021; 79:931-948. [PMID: 33459706 PMCID: PMC7990436 DOI: 10.3233/jad-201186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.
Collapse
Affiliation(s)
- I.A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B. Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, Australia
| |
Collapse
|
191
|
Süβ P, Lana AJ, Schlachetzki JCM. Chronic peripheral inflammation: a possible contributor to neurodegenerative diseases. Neural Regen Res 2021; 16:1711-1714. [PMID: 33510059 PMCID: PMC8328777 DOI: 10.4103/1673-5374.306060] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The contribution of chronic peripheral inflammation to the pathogenesis of neurodegenerative diseases is an outstanding question. Sustained activation of the peripheral innate and adaptive immune systems occurs in the context of a broad array of disorders ranging from chronic infectious diseases to autoimmune and metabolic diseases. In addition, progressive systemic inflammation is increasingly recognized during aging. Peripheral immune cells could potentially modulate the cellular brain environment via the secretion of soluble molecules. There is an ongoing debate whether peripheral immune cells have the potential to migrate into the brain under certain permissive circumstances. In this perspective, we discuss the possible contribution of chronic peripheral inflammation to the pathogenesis of age-related neurodegenerative diseases with a focus on microglia, the resident immune cells of the brain parenchyma.
Collapse
Affiliation(s)
- Patrick Süβ
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Addison J Lana
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
192
|
Bhattacharyya D, Bhunia A. Gut-Brain axis in Parkinson's disease etiology: The role of lipopolysaccharide. Chem Phys Lipids 2020; 235:105029. [PMID: 33338469 DOI: 10.1016/j.chemphyslip.2020.105029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Recent studies highlight the initiation of Parkinson's disease (PD) in the gastrointestinal tract, decades before the manifestations in the central nervous system (CNS). This gut-brain axis of neurodegenerative diseases defines the critical role played by the unique microbial composition of the "second brain" formed by the enteric nervous system (ENS). Compromise in the enteric wall can result in the translocation of gut-microbiota along with their metabolites into the system that can affect the homeostatic machinery. The released metabolites can associate with protein substrates affecting several biological pathways. Among these, the bacterial endotoxin from Gram-negative bacteria, i.e., Lipopolysaccharide (LPS), has been implicated to play a definite role in progressive neurodegeneration. The molecular interaction of the lipid metabolites can have a direct neuro-modulatory effect on homeostatic protein components that can be transported to the CNS via the vagus nerve. α-synuclein (α-syn) is one such partner protein, the molecular interactions with which modulate its overall fibrillation propensity in the system. LPS interaction has been shown to affect the protein's aggregation kinetics in an alternative inflammatory pathway of PD pathogenesis. Several other lipid contents from the bacterial membranes could also be responsible for the initiation of α-syn amyloidogenesis. The present review will focus on the intermolecular interactions of α-syn with bacterial lipid components, particularly LPS, with a definite clinical manifestation in PD pathogenesis. However, deconvolution of the sequence of interaction events from the ENS to its propagation in the CNS is not easy or obvious. Nevertheless, the characterization of these lipid-mediated structures is a step towards realizing the novel targets in the pre-emptive diagnoses of PD. This comprehensive description should prompt the correlation of potential risk of amyloidogenesis upon detection of specific paradigm shifts in the microbial composition of the gut.
Collapse
Affiliation(s)
- Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700054, India.
| |
Collapse
|
193
|
New Insights into Immune-Mediated Mechanisms in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21239302. [PMID: 33291304 PMCID: PMC7730912 DOI: 10.3390/ijms21239302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The immune system has been increasingly recognized as a major contributor in the pathogenesis of Parkinson’s disease (PD). The double-edged nature of the immune system poses a problem in harnessing immunomodulatory therapies to prevent and slow the progression of this debilitating disease. To tackle this conundrum, understanding the mechanisms underlying immune-mediated neuronal death will aid in the identification of neuroprotective strategies to preserve dopaminergic neurons. Specific innate and adaptive immune mediators may directly or indirectly induce dopaminergic neuronal death. Genetic factors, the gut-brain axis and the recent identification of PD-specific T cells may provide novel mechanistic insights on PD pathogenesis. Future studies to address the gaps in the identification of autoantibodies, variability in immunophenotyping studies and the contribution of gut dysbiosis to PD may eventually provide new therapeutic targets for PD.
Collapse
|
194
|
Fardell C, Schiöler L, Nissbrandt H, Torén K, Åberg M. The erythrocyte sedimentation rate in male adolescents and subsequent risk of Parkinson's disease: an observational study. J Neurol 2020; 268:1508-1516. [PMID: 33277665 PMCID: PMC7990830 DOI: 10.1007/s00415-020-10324-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Systemic inflammation may be implicated in the pathophysiology of Parkinson’s disease (PD). Since PD occurs usually in later life, most studies of causal factors are conducted in older populations, so potentially important influences from early life cannot be adequately captured. We investigated whether the erythrocyte sedimentation rate (ESR) in early adulthood is associated with the subsequent development of PD in men. As part of Swedish national conscription testing conducted from 1968 through 1983 (N = 716,550), the erythrocyte sedimentation rate, as a measure of inflammation, was measured in 659,278 young men. The cohort was observed for subsequent PD events (N = 1513) through December 2016. Cox proportional hazards models were used to estimate the hazard ratios (HR) with 95% CI with adjustment for potential confounders. Individuals with higher ESRs were significantly less likely to be diagnosed with PD, as ESR was linearly and inversely associated with PD risk. The magnitude of the association between ESR and PD risk was similar for increases up to 15 mm/h, leveled off thereafter, and was non-significant for ESR values > 20 mm/h. The HR for PD with basic adjustments (age at conscription, year of conscription, test center and erythrocyte volume fraction) was 0.94 (95% CI 0.89–0.99, P = 0.02) per log2 increase in ESR, corresponding to a two-fold increase in ESR. Further adjustments for potential confounders (parental education, systolic and diastolic blood pressures, and IQ) scarcely altered the HR. The results suggest a prospective association between high ESR and reduced risk for PD.
Collapse
Affiliation(s)
- Camilla Fardell
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus Schiöler
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria Åberg
- School of Public Health and Community Medicine/Primary Health Care, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 454, 405 30, Gothenburg, Sweden. .,Region Västra Götaland, Regionhälsan, Gothenburg, Sweden.
| |
Collapse
|
195
|
Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson's Disease. Int J Mol Sci 2020; 21:E8421. [PMID: 33182554 PMCID: PMC7697354 DOI: 10.3390/ijms21228421] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut-brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.
Collapse
Affiliation(s)
- Chrysoula Marogianni
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Maria Sokratous
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | | | - Dimitrios Bogdanos
- Department of Internal Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| |
Collapse
|
196
|
Cannon T, Sinha A, Trudeau LE, Maurice CF, Gruenheid S. Characterization of the intestinal microbiota during Citrobacter rodentium infection in a mouse model of infection-triggered Parkinson's disease. Gut Microbes 2020; 12:1-11. [PMID: 33064969 PMCID: PMC7575009 DOI: 10.1080/19490976.2020.1830694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that has been shown to be influenced by the intestinal milieu. The gut microbiota is altered in PD patients, and murine studies have begun suggesting a causative role for the gut microbiota in progression of PD. We have previously shown that repeated infection with the intestinal murine pathogen Citrobacter rodentium resulted in the development of PD-like pathology in Pink1-/- mice compared to wild-type littermates. This addendum aims to expand this work by characterizing the gut microbiota during C. rodentium infection in our Pink1-/- PD model. We observed little disturbance to the fecal microbiota diversity both between infection timepoints and between Pink1-/- and wild-type control littermates. However, the level of short-chain fatty acids appeared to be altered over the course of infection with butyric acid significantly increasing in Pink1-/- mice and isobutyric acid increasing in wild-type mice.
Collapse
Affiliation(s)
- Tyler Cannon
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anshul Sinha
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Department of Neuroscience, GRSNC, Université de Montréal, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada,CONTACT Samantha Gruenheid Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
197
|
Abstract
In a striking display of trans-kingdom symbiosis, gut bacteria cooperate with their animal hosts to regulate the development and function of the immune, metabolic and nervous systems through dynamic bidirectional communication along the 'gut-brain axis'. These processes may affect human health, as certain animal behaviours appear to correlate with the composition of gut bacteria, and disruptions in microbial communities have been implicated in several neurological disorders. Most insights about host-microbiota interactions come from animal models, which represent crucial tools for studying the various pathways linking the gut and the brain. However, there are complexities and manifest limitations inherent in translating complex human disease to reductionist animal models. In this Review, we discuss emerging and exciting evidence of intricate and crucial connections between the gut microbiota and the brain involving multiple biological systems, and possible contributions by the gut microbiota to neurological disorders. Continued advances from this frontier of biomedicine may lead to tangible impacts on human health.
Collapse
|
198
|
Harms AS, Kordower JH, Sette A, Lindestam Arlehamn CS, Sulzer D, Mach RH. Inflammation in Experimental Models of α-Synucleinopathies. Mov Disord 2020; 36:37-49. [PMID: 33009855 DOI: 10.1002/mds.28264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has long been associated with central nervous system pathology in α-synucleinopathy disorders including Parkinson's disease and multiple system atrophy. In the past decade, research-focused efforts in preclinical and experimental models have rallied around this idea, and considerable effort has been made to delineate critical neuroinflammatory processes. In this article, we discuss challenges in preclinical research, notably the use of animal models to recapitulate and dissect disease phenotypes as well as the need for more sensitive, reliable radiotracers to detect on-target efficacy of immunomodulatory treatments in both human Parkinson's disease as well as preclinical models. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, New York, USA.,Department of Psychiatry, Columbia University Medical Center, New York, New York, USA.,Department of Pharmacology, Columbia University Medical Center, New York, New York, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
199
|
Brown EG, Goldman SM. Modulation of the Microbiome in Parkinson's Disease: Diet, Drug, Stool Transplant, and Beyond. Neurotherapeutics 2020; 17:1406-1417. [PMID: 33034846 PMCID: PMC7851230 DOI: 10.1007/s13311-020-00942-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiome is altered in Parkinson's disease and likely plays a key role in its pathophysiology, affecting symptoms and response to therapy and perhaps modifying progression or even disease initiation. Gut dysbiosis therefore has a significant potential as a therapeutic target in Parkinson's disease, a condition elusive to disease-modifying therapy thus far. The gastrointestinal environment hosts a complex ecology, and efforts to modulate the relative abundance or function of established microorganisms are still in their infancy. Still, these techniques are being rapidly developed and have important implications for our understanding of Parkinson's disease. Currently, modulation of the microbiome can be achieved through non-pharmacologic means such as diet, pharmacologically through probiotic, prebiotic, or antibiotic use and procedurally through fecal transplant. Novel techniques being explored include the use of small molecules or genetically engineered organisms, with vast potential. Here, we review how some of these approaches have been used to date, important areas of ongoing research, and how microbiome modulation may play a role in the clinical management of Parkinson's disease in the future.
Collapse
Affiliation(s)
- Ethan G Brown
- Division of Movement Disorders and Neuromodulation, Weill Institute of Neurology, University of California, San Francisco, CA, USA.
| | - Samuel M Goldman
- Division of Movement Disorders and Neuromodulation, Weill Institute of Neurology, University of California, San Francisco, CA, USA
- Division of Occupational and Environmental Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
200
|
Deuel LM, Seeberger LC. Complementary Therapies in Parkinson Disease: a Review of Acupuncture, Tai Chi, Qi Gong, Yoga, and Cannabis. Neurotherapeutics 2020; 17:1434-1455. [PMID: 32785848 PMCID: PMC7851283 DOI: 10.1007/s13311-020-00900-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson disease (PD) is a progressive neurodegenerative condition characterized by bradykinesia, rigidity, resting tremor, and postural instability. Non-motor symptoms, including pain, fatigue, insomnia, anxiety, and depression to name a few, are increasingly recognized and often just as disabling at motor symptoms. The mainstay of treatment is dopamine replacement; however, the beneficial effects tend to wane over time with disease progression, and patients often experience motor fluctuations and medication side effects. The lack of a disease-modifying intervention and the shortcomings of traditional symptomatic medications have led many patients to pursue complementary therapies to alleviate motor and non-motor symptoms associated with PD. The term complementary implies that the therapy is used along with conventional medicine and may include supplements, manipulative treatments (chiropractic, massage), exercise-based programs, and mind-body practices. As these practices become more widespread in Western medicine, there is a growing interest in evaluating their effects on a number of medical conditions, PD included. In this review, we provide an update on clinical trials that have evaluated the effectiveness of complementary treatments for patients with PD, specifically focusing on acupuncture, Tai Chi, Qi Gong, yoga, and cannabis.
Collapse
Affiliation(s)
- Lisa M Deuel
- Department of Neurology, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Lauren C Seeberger
- Department of Neurology, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|