151
|
Haller D. Molecular Interactions of Commensal Enteric Bacteria with the Intestinal Epithelium and the Mucosal Immune System. Biosci Microflora 2008. [DOI: 10.12938/bifidus.27.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Dirk Haller
- Chair for Biofunctionality, Nutrition and Food Research Centre, Technical University of Munich
| |
Collapse
|
152
|
NF-κB activated by ER calcium release inhibits Aβ-mediated expression of CHOP protein: Enhancement by AD-linked mutant presenilin 1. Exp Neurol 2007; 208:169-76. [DOI: 10.1016/j.expneurol.2007.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 04/19/2007] [Accepted: 04/24/2007] [Indexed: 02/03/2023]
|
153
|
Rodriguez PL, Sahay S, Olabisi OO, Whitehead IP. ROCK I-mediated activation of NF-kappaB by RhoB. Cell Signal 2007; 19:2361-9. [PMID: 17728102 PMCID: PMC2084080 DOI: 10.1016/j.cellsig.2007.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/23/2007] [Indexed: 01/28/2023]
Abstract
RhoB is a short-lived protein whose expression is increased by a variety of extra-cellular stimuli including UV irradiation, epidermal growth factor (EGF) and transforming growth factor beta (TGF-beta). Whereas most Rho proteins are modified by the covalent attachment of a geranylgeranyl group, RhoB is unique in that it can exist in either a geranylgeranylated (RhoB-GG) or a farnesylated (RhoB-F) form. Although each form is proposed to have different cellular functions, the signaling events that underlie these differences are poorly understood. Here we show that RhoB can activate NF-kappaB signaling in multiple cell types. Whereas RhoB-F is a potent activator of NF-kappaB, much weaker activation is observed for RhoB-GG, RhoA, and RhoC. NF-kappaB activation by RhoB is not associated with increased nuclear translocation of RelA/p65, but rather, by modification of the RelA/p65 transactivation domain. Activation of NF-kappaB by RhoB is dependent upon ROCK I but not PRK I. Thus, ROCK I cooperates with RhoB to activate NF-kappaB, and suppression of ROCK I activity by genetic or pharmacological inhibitors blocks NF-kappaB activation. Suppression of RhoB activity by dominant-inhibitory mutants, or siRNA, blocks NF-kappaB activation by Bcr, and TSG101, but not by TNFalpha or oncogenic Ras. Collectively, these observations suggest the existence of an endosome-associated pathway for NF-kappaB activation that is preferentially regulated by the farnesylated form of RhoB.
Collapse
Affiliation(s)
- Pedro L. Rodriguez
- Department of Microbiology and Molecular Genetics and New Jersey Medical School -University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709
| | - Sutapa Sahay
- Department of Microbiology and Molecular Genetics and New Jersey Medical School -University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709
| | - Oyenike O. Olabisi
- Department of Microbiology and Molecular Genetics and New Jersey Medical School -University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709
| | - Ian P. Whitehead
- Department of Microbiology and Molecular Genetics and New Jersey Medical School -University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101-1709
| |
Collapse
|
154
|
Clavel T, Haller D. Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: implications for chronic inflammation. Inflamm Bowel Dis 2007; 13:1153-64. [PMID: 17476679 DOI: 10.1002/ibd.20174] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genetic predisposition to deregulated mucosal immune responses and the concurrent prevalence of certain environmental triggers in developed countries are strong etiologic factors for the development of inflammatory bowel diseases in human subjects, including Crohn's disease and ulcerative colitis. Numerous clinical and experimental studies have shown that the intestinal microbes are critical for the initiation and progression of chronic intestinal inflammation. Activation of pattern recognition receptor signaling via members of the Toll-like receptor (TLR) and the nucleotide-binding oligomerization domain (NOD)-like families initiates inflammatory defense mechanisms that are required to alert and protect the host. Key inflammatory mechanisms such as nuclear transcription factor kappaB (NF-kappaB) activation and endoplasmic reticulum stress responses are controlled by a complex network of pathways that includes intrinsic feedback effectors and is targeted by immunosuppressive cytokines such as interleukin 10 (IL-10) and transforming growth factor (TGF)-beta. In the absence or after functional loss of these antiinflammatory feedback signals, physiological defense mechanisms may turn into pathological responses. The data discussed in the present review suggest that disturbances in the homeostasis between bacteria- and host-derived signals at the epithelial cell level lead to a break in the intestinal barrier function and to the development of mucosal immune disorders in genetically susceptible hosts.
Collapse
Affiliation(s)
- Thomas Clavel
- Technical University of Munich, Experimental Nutritional Medicine, Else Kröner-Fresenius-Center, Freising-Weihenstephan, Germany
| | | |
Collapse
|
155
|
Lawless MW, Mankan AK, White M, O'Dwyer MJ, Norris S. Expression of hereditary hemochromatosis C282Y HFE protein in HEK293 cells activates specific endoplasmic reticulum stress responses. BMC Cell Biol 2007; 8:30. [PMID: 17650303 PMCID: PMC1947972 DOI: 10.1186/1471-2121-8-30] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/24/2007] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hereditary Hemochromatosis (HH) is a genetic disease associated with iron overload, in which individuals homozygous for the mutant C282Y HFE associated allele are at risk for the development of a range of disorders particularly liver disease. Conformational diseases are a class of disorders associated with the expression of misfolded protein. HFE C282Y is a mutant protein that does not fold correctly and consequently is retained in the Endoplasmic Reticulum (ER). In this context, we sought to identify ER stress signals associated with mutant C282Y HFE protein expression, which may have a role in the molecular pathogenesis of HH. RESULTS Vector constructs of Wild type HFE and Mutant C282Y HFE were made and transfected into HEK293 cell lines. We have shown that expression of C282Y HFE protein triggers both an unfolded protein response (UPR), as revealed by the increased GRP78, ATF6 and CHOP expression, and an ER overload response (EOR), as indicated by NF-kappaB activation. Furthermore, C282Y HFE protein induced apoptotic responses associated with activation of ER stress. Inhibition studies demonstrated that tauroursodeoxycholic acid, an endogenous bile acid, downregulates these events. Finally, we found that the co-existence of both C282Y HFE and Z alpha 1-antitrypsin protein (the protein associated with the liver disease of Z alpha 1-antitrypsin deficiency) expression on ER stress responses acted as potential disease modifiers with respect to each other. CONCLUSION Our novel observations suggest that both the ER overload response (EOR) and the unfolded protein response (UPR) are activated by mutant C282Y HFE protein.
Collapse
Affiliation(s)
- Matthew W Lawless
- Hepatology Research Division and Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James Hospital, Dublin, Ireland
| | - Arun K Mankan
- Hepatology Research Division and Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James Hospital, Dublin, Ireland
| | - Mary White
- Hepatology Research Division and Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James Hospital, Dublin, Ireland
| | - Michael J O'Dwyer
- Hepatology Research Division and Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James Hospital, Dublin, Ireland
| | - Suzanne Norris
- Hepatology Research Division and Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St. James Hospital, Dublin, Ireland
| |
Collapse
|
156
|
Mulgrew AT, Taggart CC, McElvaney NG. Alpha-1-Antitrypsin Deficiency: Current Concepts. Lung 2007; 185:191-201. [PMID: 17562108 DOI: 10.1007/s00408-007-9009-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2006] [Indexed: 01/17/2023]
Abstract
Since the condition was first described four decades ago, alpha-1-antitrypsin (A1AT) deficiency has served as a model for other disease processes. A1AT is the archetypal serpin designed to ensnare proteases, a process that involves significant conformational change within the molecule. Mutations in the A1AT gene lead to misfolding of the protein and accumulation within the endoplasmic reticulum of hepatocytes resulting in two different pathologic processes. First, the accumulation of mutant A1AT protein has a directly toxic effect on the liver, resulting in hepatitis and cirrhosis. Second, the resultant decrease in circulating A1AT results in protease-antiprotease imbalance at the lung surface and emphysema ensues. A1AT deficiency therefore can be seen as two distinct disease processes: a conformational disease of the liver and a protease-antiprotease imbalance of the lung. This two-stage model of disease in A1AT deficiency is elegant in its simplicity and goes a long way to explaining the clinical manifestations that occur in patients with the condition. However, some aspects of the disease are not readily explained. Recent findings suggest that there is more to the lung damage in A1AT deficiency than simple proteolytic insult and that the presence of the mutant protein itself is proinflammatory and may indeed cause chronic injury to the cells that produce it. This review discusses some of the emerging concepts in alpha-1-antitrypsin research and outlines the implications these new ideas may have for treatment of this condition.
Collapse
Affiliation(s)
- Alan T Mulgrew
- Respiratory Division, University of British Columbia, Diamond Health Centre, 2775 Laurel St, Vancouver, BC, Canada, V5Z1M9.
| | | | | |
Collapse
|
157
|
Werner T, Haller D. Intestinal epithelial cell signalling and chronic inflammation: From the proteome to specific molecular mechanisms. Mutat Res 2007; 622:42-57. [PMID: 17628614 DOI: 10.1016/j.mrfmmm.2007.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Advancing knowledge regarding the cellular mechanisms of intestinal inflammation has led to a better understanding of the disease pathology in patients with inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis. It has become clear from numerous studies that enteric bacteria are a critical component in the development and prevention/treatment of chronic intestinal inflammation. An emerging new paradigm suggests that changes in the homeostasis of bacteria- and host-derived signal transduction at the intestinal epithelial cell (IEC) level may lead to a break in barrier function and the development of adaptive immune disturbances. The functional loss of anti-inflammatory host-derived signals in the gut including the immunosuppressive cytokines Interleukin 10 (IL-10) and transforming growth factor (TGF)-beta are of high relevance to the pathogenesis of IBD. The development of analytical tools including two-dimensional (2D) high-resolution protein separation techniques and peptide mass fingerprinting via high-sensitivity mass-spectrometers (MS) allows the quantitative assessment of protein expression changes in disease-relevant cell types. By using these advanced methods, the characterization of the epithelial cell proteome from murine models of experimental colitis and human IBD patients identified novel disease-related mechanisms with respect to the regulation of the glucose-regulated endoplasmic reticulum stress response protein 78 (grp-78). In conclusion, the identification and functional analysis of differentially expressed proteins in purified intestinal target cell types will help to add important insights to the understanding of the molecular pathogenesis of these immune-mediated chronic intestinal disorders.
Collapse
Affiliation(s)
- Tanja Werner
- Technical University of Munich, Experimental Nutritional Medicine, Else-Kroener-Fresenius-Center, Am Forum 5, 85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
158
|
Hosoi T, Hyoda K, Okuma Y, Nomura Y, Ozawa K. Akt up- and down-regulation in response to endoplasmic reticulum stress. Brain Res 2007; 1152:27-31. [PMID: 17434462 DOI: 10.1016/j.brainres.2007.03.052] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 02/18/2007] [Accepted: 03/11/2007] [Indexed: 11/16/2022]
Abstract
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of CNS diseases such as Alzheimer's disease, Parkinson's disease, and cerebral ischemia. In the present study, we found that Akt activation is regulated dually by ER stress in primary cultured glial cells. We observed that Akt activation was increased by short-term exposure to ER stress but was down-regulated by long-term exposure to ER stress. ER stress-induced Akt activation was mediated through phosphatidylinositol 3-kinase (PI3K) because the PI3K inhibitors, LY294002 and wortmannin, inhibited Akt activation. Moreover, Akt was localized in the ER, as assessed by immunohistochemistry, and ER stress increased microsomally localized Akt activation. These results suggest that Akt plays an important role in stress conditions, which impair ER function.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|
159
|
Cenci S, Sitia R. Managing and exploiting stress in the antibody factory. FEBS Lett 2007; 581:3652-7. [PMID: 17475256 DOI: 10.1016/j.febslet.2007.04.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/13/2007] [Accepted: 04/18/2007] [Indexed: 11/18/2022]
Abstract
Like us, our cells have evolved strategies to cope with, and sometimes utilize, stress. Molecular analyses of plasma cell biogenesis, lifestyle and death suggest that protein synthesis-dependent stress is utilised to integrate differentiation, function and lifespan control. Plasma cells are short-lived professional secretory cells, each of them capable of releasing several thousands antibodies per second. Their differentiation from B lymphocytes entails the spectacular enlargement of the endoplasmic reticulum (ER), finalized to sustain massive Ig production. Nonetheless, symptoms of ER stress are evident, and the UPR-related transcription factor XBP-1 is essential for differentiation. Surprisingly, the development of such an efficient factory is matched by a decrease in proteasomes. The unbalanced load/capacity ratio leads to accumulation of polyubiquitinated molecules and predisposes plasma cells to apoptosis. Exuberant antibody secretion imposes considerable stress on metabolic and redox homeostasis. Collectively, these stressful conditions may link plasma cell death to antibody production, providing a molecular counter for secreted molecules, as well as an explanation for the peculiar sensitivity of myeloma cells towards proteasome inhibitors.
Collapse
Affiliation(s)
- Simone Cenci
- Department of Biology and Technology, DiBiT, San Raffaele Scientific Institute, Universitá Vita-Salute San Raffaele, Milan, Italy
| | | |
Collapse
|
160
|
Frenette AJ, Perreault MM, Lam S, Williamson DR. Thiopental-Induced Neutropenia in Two Patients with Severe Head Trauma. Pharmacotherapy 2007; 27:464-71. [PMID: 17316158 DOI: 10.1592/phco.27.3.464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thiopental has been used for decades in the treatment of refractory intracranial hypertension in patients with traumatic and nontraumatic head injuries. Commonly reported adverse effects include hypotension, hypokalemia, respiratory complications, and hepatic dysfunction. Neutropenia has rarely been reported as an adverse effect of thiopental. We witnessed probable thiopental-induced neutropenia in two patients with traumatic brain injuries who developed increased intracranial hypertension that was refractory to standard therapy. Based on a MEDLINE search of published case reports and literature, we propose two mechanisms by which thiopental-related neutropenia might be explained. The first is inhibition of inflammatory mediator nuclear factor-kappa B (NF-kappa B), leading to granulocyte apoptosis. The second mechanism involves inhibition of calcineurin. Although the precise link between these two mechanisms has not been elucidated, calcineurin is known to regulate NF-kappa B activity. Development of neutropenia does not appear to be correlated with time but may correlate with plasma concentrations of thiopental. The optimum management of drug-induced neutropenia is unclear. The decision to discontinue thiopental in patients who develop neutropenia should be made by weighing the risks versus benefits. Broad-spectrum antibiotics may be required in the presence of fever. The role of hematopoietic growth factors such as granulocyte colony-stimulating factor is not yet defined. Given the adverse infectious consequences of neutropenia, it is essential to closely monitor neutrophil counts in patients receiving thiopental.
Collapse
Affiliation(s)
- Anne Julie Frenette
- Department of Pharmacy Services, Hôpital du Sacré-Coeur de Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|
161
|
Erkel G, Wisser G, Anke T. Influence of the fungal NF-kappaB inhibitor panepoxydone on inflammatory gene expression in MonoMac6 cells. Int Immunopharmacol 2007; 7:612-24. [PMID: 17386409 DOI: 10.1016/j.intimp.2007.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 12/27/2022]
Abstract
The fungal secondary metabolite panepoxydone has been recently described as an inhibitor of NF-kappaB activation which is a pivotal regulator of the inflammatory and immune response. These findings have led to propose that panepoxydone may be useful as anti-inflammatory agent. In this study we investigated for the first time the effects of panepoxydone on inflammatory gene expression in the monocytic cell line MonoMac6, stimulated with lipopolysaccharide (LPS) and the phorbolester 12-O-tetradecanoylphorbol-13-acetate (TPA). DNA microarray analysis of 110 human genes known to be strongly regulated during inflammation, combined with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) revealed that low micromolar concentrations (12-24 microM) of panepoxydone strongly inhibited the expression of thirty-three NF-kappaB dependent pro-inflammatory genes such as the chemokines CCL3, CCL4, CCL8; CXCL8, CXCL10, CXCL20, the cytokines IL-1, IL-6, TNF-alpha, pro-inflammatory enzymes like COX-2, and components of the REL/NF-kappaB/IkappaB family without significant effects on the expression of house-keeping genes. Panepoxydone strongly inhibited hTNF-alpha, IL-8 and NF-kappaB promoter activity in LPS/TPA stimulated MonoMac6 cells with IC(50) values of 0.5-1 microg/ml by blocking the phosphorylation of IkappaB and subsequent binding of the activated NF-kappaB transcription factor to the DNA. From our data, panepoxydone may serve as lead structure for the development of transcription-based inhibitors of pro-inflammatory gene expression.
Collapse
Affiliation(s)
- G Erkel
- Department of Biotechnology, University of Kaiserslautern, Paul-Ehrlich-Str. 23, D-67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
162
|
Alvira CM, Abate A, Yang G, Dennery PA, Rabinovitch M. Nuclear factor-kappaB activation in neonatal mouse lung protects against lipopolysaccharide-induced inflammation. Am J Respir Crit Care Med 2007; 175:805-15. [PMID: 17255561 PMCID: PMC1899293 DOI: 10.1164/rccm.200608-1162oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Injurious agents often cause less severe injury in neonates as compared with adults. OBJECTIVE We hypothesized that maturational differences in lung inflammation induced by lipopolysaccharide (LPS) may be related to the nature of the nuclear factor (NF)-kappaB complex activated, and the profile of target genes expressed. METHODS Neonatal and adult mice were injected with intraperitoneal LPS. Lung inflammation was assessed by histology, and apoptosis was determined by TUNEL (terminal deoxynucleotidyl transferase UTP nick-end labeling). The expression of candidate inflammatory and apoptotic mediators was evaluated by quantitative real-time polymerase chain reaction and Western immunoblot. RESULTS Neonates demonstrated reduced inflammation and apoptosis, 24 hours after LPS exposure, as compared with adults. This difference was associated with persistent activation of NF-kappaB p65p50 heterodimers in the neonates in contrast to early, transient activation of p65p50 followed by sustained activation of p50p50 in the adults. Adults had increased expression of a panel of inflammatory and proapoptotic genes, and repression of antiapoptotic targets, whereas no significant changes in these mediators were observed in the neonates. Inhibition of NF-kappaB activity in the neonates decreased apoptosis, but heightened inflammation, with increased expression of the same inflammatory genes elevated in the adults. In contrast, inhibition of NF-kappaB in the adults resulted in partial suppression of the inflammatory response. CONCLUSIONS NF-kappaB activation in the neonatal lung is antiinflammatory, protecting against LPS-mediated lung inflammation by repressing similar inflammatory genes induced in the adult.
Collapse
Affiliation(s)
- Cristina M Alvira
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5162, USA
| | | | | | | | | |
Collapse
|
163
|
Shkoda A, Ruiz PA, Daniel H, Kim SC, Rogler G, Sartor RB, Haller D. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 2007; 132:190-207. [PMID: 17241871 DOI: 10.1053/j.gastro.2006.10.030] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 10/05/2006] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS The initiation of endoplasmic reticulum (ER)-mediated stress responses in intestinal epithelial cells (IEC) may contribute to the pathogenesis of chronic intestinal inflammation. The aim of the study was to use functional epithelial cell proteomics to characterize anti-inflammatory mechanisms of interleukin 10 (IL-10). METHODS Primary IEC were isolated from Enterococcus faecalis-monoassociated IL-10-deficient (IL-10-/-) and wild-type mice to perform 2D-gel sodium-dodecyl-sulfate polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. In addition, IEC from 6 patients with active Crohn's disease, ulcerative colitis, and sigmoid diverticulitis as well as noninflamed controls were purified. Molecular protective mechanisms of IL-10 were characterized in tumor necrosis factor (TNF)-stimulated IL-10 receptor (IL-10R) reconstituted epithelial cells. RESULTS Primary IEC from IL-10-/- mice as well as inflammatory bowel disease patients revealed increased expression levels of the glucose-regulated ER stress protein (grp)-78 under conditions of chronic inflammation. Consistent with the observation that TNF induced ER stress responses through grp-78 redistribution from the ER lumen to the cytoplasmic IkappaB kinase complex, grp-78 knockdown completely abolished TNF-induced nuclear factor-kappaB RelA phosphorylation in epithelial cell cultures. Interestingly, IL-10 inhibited grp-78 protein and messenger RNA expression in IL-10R reconstituted IEC. Chromatin immunoprecipitation analysis and immunofluorescence microscopy revealed that IL-10-mediated p38 signaling inhibited TNF-induced recruitment of the ER-derived activating transcription factor (ATF)-6 to the grp-78 promoter likely through the blockade of ATF-6 nuclear translocation. CONCLUSIONS Primary IEC from inflamed IL-10-/- mice and inflammatory bowel disease patients revealed activated ER stress responses in the intestinal epithelium. IL-10 inhibits inflammation-induced ER stress response mechanisms by modulating ATF-6 nuclear recruitment to the grp-78 gene promoter.
Collapse
Affiliation(s)
- Anna Shkoda
- Else-Kroener-Fresenius Center for Experimental Nutritional Medicine, Technical University of Munich, 85350 Freising-Weihenstephan, Germany
| | | | | | | | | | | | | |
Collapse
|
164
|
Nogalska A, Wojcik S, Engel WK, McFerrin J, Askanas V. Endoplasmic reticulum stress induces myostatin precursor protein and NF-kappaB in cultured human muscle fibers: relevance to inclusion body myositis. Exp Neurol 2006; 204:610-8. [PMID: 17261282 PMCID: PMC1909753 DOI: 10.1016/j.expneurol.2006.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/14/2006] [Accepted: 12/17/2006] [Indexed: 11/21/2022]
Abstract
Sporadic-inclusion body myositis (s-IBM) is the most common progressive muscle disease of older persons. It leads to pronounced muscle fiber atrophy and weakness, and there is no successful treatment. We have previously shown that myostatin precursor protein (MstnPP) and myostatin (Mstn) dimer are increased in biopsied s-IBM muscle fibers, and proposed that MstnPP/Mstn increase may contribute to muscle fiber atrophy and weakness in s-IBM patients. Mstn is known to be a negative regulator of muscle fiber mass. It is synthesized as MstnPP, which undergoes posttranslational processing in the muscle fiber to produce mature, active Mstn. To explore possible mechanisms involved in Mstn abnormalities in s-IBM, in the present study we utilized primary cultures of normal human muscle fibers and experimentally modified the intracellular micro-environment to induce endoplasmic-reticulum (ER)-stress, thereby mimicking an important aspect of the s-IBM muscle fiber milieu. ER stress was induced by treating well-differentiated cultured muscle fibers with either tunicamycin or thapsigargin, both well-established ER stress inducers. Our results indicate for the first time that the ER stress significantly increased MstnPP mRNA and protein. The results also suggest that in our system ER stress activates NF-kappaB, and we suggest that MstnPP increase occurred through the ER-stress-activated NF-kappaB. We therefore propose a novel mechanism leading to the Mstn increase in s-IBM. Accordingly, interfering with pathways inducing ER stress, NF-kappaB activation or its action on the MstnPP gene promoter might prevent Mstn increase and provide a new therapeutic approach for s-IBM and, possibly, for muscle atrophy in other neuromuscular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Valerie Askanas
- *Corresponding author: Valerie Askanas, MD, PhD, USC Neuromuscular Center, Good Samaritan Hospital, 637 S. Lucas Ave, Los Angeles, CA 90017. Tel. 213-975-9950. Fax.213-975-9955. e-mail:
| |
Collapse
|
165
|
Abstract
The extracellular space is an environment hostile to unmodified polypeptides. For this reason, many eukaryotic proteins destined for exposure to this environment through secretion or display at the cell surface require maturation steps within a specialized organelle, the endoplasmic reticulum (ER). A complex homeostatic mechanism, known as the unfolded protein response (UPR), has evolved to link the load of newly synthesized proteins with the capacity of the ER to mature them. It has become apparent that dysfunction of the UPR plays an important role in some human diseases, especially those involving tissues dedicated to extracellular protein synthesis. Diabetes mellitus is an example of such a disease, since the demands for constantly varying levels of insulin synthesis make pancreatic beta-cells dependent on efficient UPR signaling. Furthermore, recent discoveries in this field indicate that the importance of the UPR in diabetes is not restricted to the beta-cell but is also involved in peripheral insulin resistance. This review addresses aspects of the UPR currently understood to be involved in human disease, including their role in diabetes mellitus, atherosclerosis, and neoplasia.
Collapse
Affiliation(s)
- Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
166
|
Faitova J, Krekac D, Hrstka R, Vojtesek B. Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 2006; 11:488-505. [PMID: 16977377 PMCID: PMC6275750 DOI: 10.2478/s11658-006-0040-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Accepted: 06/22/2006] [Indexed: 12/30/2022] Open
Abstract
Cell death is an essential event in normal life and development, as well as in the pathophysiological processes that lead to disease. It has become clear that each of the main cellular organelles can participate in cell death signalling pathways, and recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. In cells, the ER functions as the organelle where proteins mature, and as such, is very responsive to extracellular-intracellular changes of environment. This short overview focuses on the known pathways of programmed cell death triggering from or involving the ER.
Collapse
Affiliation(s)
- Jitka Faitova
- Department of Pathology and Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Daniel Krekac
- Department of Pathology and Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Roman Hrstka
- Department of Pathology and Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Department of Pathology and Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
167
|
Gould DB, Reedy M, Wilson LA, Smith RS, Johnson RL, John SWM. Mutant myocilin nonsecretion in vivo is not sufficient to cause glaucoma. Mol Cell Biol 2006; 26:8427-36. [PMID: 16954374 PMCID: PMC1636791 DOI: 10.1128/mcb.01127-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glaucoma is a leading cause of blindness, affecting over 70 million people worldwide. Vision loss is the result of death of the retinal ganglion cells. The best-known risk factor for glaucoma is an elevated intraocular pressure (IOP); however, factors leading to IOP elevation are poorly understood. Mutations in the MYOC gene are an important cause of open-angle glaucoma. Over 70 MYOC mutations have been identified, and they lead to approximately 5% of all primary open-angle glaucoma cases. Nevertheless, the pathogenic mechanisms by which these mutations elevate IOP are presently unclear. Data suggest that a dominant interfering effect of misfolded mutant MYOC molecules may be pathogenic. To test this hypothesis, we have generated mice carrying a mutant allele of Myoc that is analogous to a human mutation that leads to aggressive glaucoma in patients. We show that mutant MYOC is not secreted into the aqueous humor. Instead of being secreted, mutant MYOC accumulates within the iridocorneal angle of the eye, consistent with the behavior of abnormally folded protein. Surprisingly, the accumulated mutant protein does not activate the unfolded protein response and lead to elevated intraocular pressure or glaucoma in aged mice of different strains. These data suggest that production, apparent misfolding, and nonsecretion of mutant MYOC are not, by themselves, sufficient to cause glaucoma in vivo.
Collapse
|
168
|
Oh-hashi K, Kaneyama M, Hirata Y, Kiuchi K. ER calcium discharge stimulates GDNF gene expression through MAPK-dependent and -independent pathways in rat C6 glioblastoma cells. Neurosci Lett 2006; 405:100-5. [PMID: 16831515 DOI: 10.1016/j.neulet.2006.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/09/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a neurotrophic and differentiation factor, is expressed under several pathophysiological conditions but its regulatory signals have not yet been clarified. Here, we found that endoplasmic reticulum (ER) Ca(2+) discharge by thapsigargin induced GDNF mRNA as well as COX2 and GRP78 expression in rat C6 glioblastoma cells. GDNF mRNA was immediately induced and peaked at 2h by thapsigargin, and the alternative transcript consisting of exon 3 and exon 4 appeared to be most inducible. In spite of intracellular Ca(2+) perturbation, Ca(2+)-dependent PKC was not responsible for this induction. Instead, a PKCdelta-specific inhibitor, rottlerin, suppressed the thapsigargin-induced GDNF mRNA expression. On the other hand, thapsigargin transiently enhanced phosphorylation status of mitogen-activated protein kinase (MAPK) pathway, including extracellular signal-regulated kinase (Erk), p38 MAPK and c-JUN amino-terminal kinase1 (JNK1) simultaneously; whereas specific inhibitors against MEK1 and JNK only reduced the thapsigargin-induced GDNF mRNA expression. In addition, a pan-PKC inhibitor (Ro-31-8220) attenuated the thapsigargin-enhanced phosphorylation levels of Erk1/2 and JNK1, whereas rottlerin did not. Thus, the present study demonstrated that the thapsigargin-stimulated ER Ca(2+) discharge up-regulated GDNF gene expression through both MAPK-dependent and -independent pathways in C6 glioblastoma cells.
Collapse
Affiliation(s)
- Kentaro Oh-hashi
- Department of Biomolecular Science, Faculty of Engineer, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | |
Collapse
|
169
|
Liu M, Vakharia VN. Nonstructural protein of infectious bursal disease virus inhibits apoptosis at the early stage of virus infection. J Virol 2006; 80:3369-77. [PMID: 16537604 PMCID: PMC1440369 DOI: 10.1128/jvi.80.7.3369-3377.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 01/03/2006] [Indexed: 12/29/2022] Open
Abstract
Infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, carries a small nonstructural protein (NS). This protein has been implicated to play a role in the induction of apoptosis. In this study, we investigate the kinetics of viral replication during a single round of viral replication and examine the mechanism of IBDV-induced apoptosis. Our results show that it is caspase dependent and activates caspases 3 and 9. Nuclear factor kappa B (NF-kappaB) is also activated and is required for IBDV-induced apoptosis. The NF-kappaB inhibitor MG132 completely inhibited IBDV-induced DNA fragmentation, caspase 3 activation, and NF-kappaB activation. To study the function of the NS protein in this context, we generated the recombinant rGLS virus and an NS knockout mutant, rGLSNSdelta virus, using reverse genetics. Comparisons of the replication kinetics and markers for virally induced apoptosis indicated that the NS knockout mutant virus induces earlier and increased DNA fragmentation, caspase activity, and NF-kappaB activation. These results suggest that the NS protein has an antiapoptotic function at the early stage of virus infection.
Collapse
Affiliation(s)
- Meihong Liu
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| | | |
Collapse
|
170
|
Hyoda K, Hosoi T, Horie N, Okuma Y, Ozawa K, Nomura Y. PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells. Biochem Biophys Res Commun 2006; 340:286-90. [PMID: 16375864 DOI: 10.1016/j.bbrc.2005.12.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/03/2005] [Indexed: 12/01/2022]
Abstract
Stress signals that impair the function of the endoplasmic reticulum (ER) can lead to an accumulation of unfolded proteins in the ER causing cell death. Recent studies have indicated that ER stress contributes to several diseases such as neurodegenerative disorders or diabetes. In the present study, we found that Akt down-regulation is important for inducing CHOP expression, an ER stress-induced transcription factor. Treatment with tunicamycin or thapsigargin, ER stress inducers, caused dephosphorylation of Akt from 12 to 24 h and induced cell death. Interestingly, treatment with a PI3K inhibitor alone induced CHOP expression and caused cell death. However, a MEK1 inhibitor induced neither CHOP expression nor cell death. These results indicate that the inactivation of Akt by ER stress induces CHOP expression and causes cell death. Therefore, Akt plays an important role in ER stressed condition and may have important implications for understanding ER stress-related diseases.
Collapse
Affiliation(s)
- Kanae Hyoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
171
|
Ito K, Kiyosawa N, Kumagai K, Manabe S, Matsunuma N, Yamoto T. Molecular mechanism investigation of cycloheximide-induced hepatocyte apoptosis in rat livers by morphological and microarray analysis. Toxicology 2006; 219:175-86. [PMID: 16368179 DOI: 10.1016/j.tox.2005.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 12/31/2022]
Abstract
Male F344 rats were intravenously treated with 6 mg/kg cycloheximide (CHX), and microarray analysis was conducted on their livers 1, 2 and 6h after the CHX treatment. The histopathological examination and serum chemistry results indicated a mild hepatic cell death 2 and 6h after the CHX treatment, respectively. Multi-focal hepatocellular necrosis with slight neutrophil infiltration was observed 6h after the CHX treatment. The TUNEL staining results showed that the number of apoptotic hepatocytes was the highest 2h after the CHX treatment. Dramatic increases in the mRNA levels of ATF3 and CHOP genes, both of which were reported to play roles in the ER stress-mediated apoptosis pathway, were observed from 1h after the CHX treatment. In addition, increase of GADD45, p21 and p53 mRNA levels also suggested a time course-related stimulation of hepatocellular apoptotic signals. These results suggest that the hepatocyte apoptosis induced by the CHX treatment is triggered by ER stress. The hepatic mRNA levels of proinflammatory genes, such as TNFalpha, IL-1alpha and beta, were also increased 1 and 2h after the CHX treatment, supposedly mediated by the activated Kupffer cells engulfing the apoptotic hepatocytes.
Collapse
Affiliation(s)
- Kazumi Ito
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan. ,jp
| | | | | | | | | | | |
Collapse
|
172
|
Kos O, Castro V, Murillo R, Poveda L, Merfort I. Ent-kaurane glycosides and sesquiterpene lactones of the hirsutinolide type from Vernonia triflosculosa. PHYTOCHEMISTRY 2006; 67:62-9. [PMID: 16129464 DOI: 10.1016/j.phytochem.2005.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 07/11/2005] [Indexed: 05/04/2023]
Abstract
Investigation of the aerial parts of Vernonia triflosculosa afforded three hirsutinolides of which 8alpha-(4alpha-hydroxymethacryloyloxy)-10alpha-hydroxy-1,13-dimethoxy-hirsutinolide is new, three ent-kaurane diterpenes, among which the 19-[alpha-L-arabinopyranosyl-(1-->2)-beta-D-glucopyranosyl] esters of 16beta-hydroxy-ent-kauran-19-oic acid and of 16beta,17-hydroxy-ent-kauran-19-oic acid are also new. Diterpenes are reported here for the first time in the large genus Vernonia. Their structures were elucidated using 1D and 2D NMR measurement as well as ESI, CIMS, and HRMS analysis. Two hirsutinolides were studied for their NF-kappaB DNA binding activity in HaCaT cells (a human cell line similar to keratinocytes) and for their inhibition on IL-8 production in HeLa cells.
Collapse
Affiliation(s)
- Olha Kos
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University of Freiburg, Stefan-Meier-Street 19, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
173
|
Abstract
In the endoplasmic reticulum (ER), secretory and transmembrane proteins fold into their native conformation and undergo posttranslational modifications important for their activity and structure. When protein folding in the ER is inhibited, signal transduction pathways, which increase the biosynthetic capacity and decrease the biosynthetic burden of the ER to maintain the homeostasis of this organelle, are activated. These pathways are called the unfolded protein response (UPR). In this review, we briefly summarize principles of protein folding and molecular chaperone function important for a mechanistic understanding of UPR-signaling events. We then discuss mechanisms of signal transduction employed by the UPR in mammals and our current understanding of the remodeling of cellular processes by the UPR. Finally, we summarize data that demonstrate that UPR signaling feeds into decision making in other processes previously thought to be unrelated to ER function, e.g., eukaryotic starvation responses and differentiation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
174
|
Kuang E, Wan Q, Li X, Xu H, Liu Q, Qi Y. ER Ca2+ depletion triggers apoptotic signals for endoplasmic reticulum (ER) overload response induced by overexpressed reticulon 3 (RTN3/HAP). J Cell Physiol 2005; 204:549-59. [PMID: 15799019 DOI: 10.1002/jcp.20340] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perturbance of endoplasmic reticulum (ER) function, either by the mutant proteins not folding correctly, or by an excessive accumulation of proteins in the organelle, will lead to the unfolded protein response (UPR) or ER overload response (EOR). The signal-transducing pathways for UPR have been identified, whereas the pathway for EOR remains to be elucidated. Our previous study demonstrated that the overexpression of reticulon 3 (RTN3, also named HAP, homologue of ASY protein) caused apoptosis with the depletion of ER Ca(2+) stores. In present research, we characterized RTN3 as a novel EOR-induced protein, triggering the apoptotic signals through the release of ER Ca(2+) and the elevation of cytosolic Ca(2+). Our studies showed that overexpressed RTN3 induced EOR, eliciting ER-specific apoptosis with activation of caspase-12 and mitochondrial dysfunction through ER Ca(2+) depletion and the sustained elevation of cytosolic Ca(2+). Furthermore, we demonstrated that overexpressed RTN3 and stimuli that activate both EOR and UPR, not UPR only, were able to induce up-regulation of inducible nitric oxide synthase (iNOS) in HeLa cells through ER Ca(2+) release and reactive oxygen intermediates (ROIs), resulting in endogenous calcium-dependent nitric oxide protecting cells against ER specific apoptosis, which suggested that the nitric oxide and iNOS represented a likely protective response to EOR, not the UPR. These results supported that the release of ER Ca(2+) stores triggered the initial signal-transducing pathways for EOR induced by overexpressed RTN3.
Collapse
Affiliation(s)
- Ersheng Kuang
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
175
|
Qian Y, Zheng Y, Ramos KS, Tiffany-Castiglioni E. The involvement of copper transporter in lead-induced oxidative stress in astroglia. Neurochem Res 2005; 30:429-38. [PMID: 16076012 DOI: 10.1007/s11064-005-2677-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lead (Pb), depositing primarily in astroglia in the brain, is a well-known neurotoxicant and a risk factor for neurologic disorders. Pb has been reported to induce oxidative stress by probably the disturbance of copper (Cu) homeostasis in astroglia. Thus, we hypothesized that Pb-induced oxidative stress is initiated by interfering with Cu transporter in astroglia. In this study, we observed Pb-induced oxidative stress as indicated by reactive oxygen species (ROS) augmentation and GRP78 and GRP94 protein induction, and it was parallel to Cu accumulation intracellularly by Pb. To further address Cu transporter as a potential Pb target, a heavy metal-binding (HMB) domain of Cu-transporting ATPase (Atp7a) was overexpressed and purified. Evidence showed that one molecule of HMB chelated 11 Pb ions or seven Cu ions and that Pb competed with Cu for binding to HMB. These findings suggest that Pb-induced oxidative stress results from the impairment of Cu metabolism by Pb targeting of Atp7a.
Collapse
Affiliation(s)
- Yongchang Qian
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | | | | | | |
Collapse
|
176
|
Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttilä M, Contreras R. Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 2005; 71:2910-24. [PMID: 15932985 PMCID: PMC1151825 DOI: 10.1128/aem.71.6.2910-2924.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe isolation and characterization of the gene encoding the glucosidase II alpha subunit (GIIalpha) of the industrially important fungus Trichoderma reesei. This subunit is the catalytic part of the glucosidase II heterodimeric enzyme involved in the structural modification within the endoplasmic reticulum (ER) of N-linked oligosaccharides present on glycoproteins. The gene encoding GIIalpha (gls2alpha) in the hypercellulolytic strain Rut-C30 contains a frameshift mutation resulting in a truncated gene product. Based on the peculiar monoglucosylated N-glycan pattern on proteins produced by the strain, we concluded that the truncated protein can still hydrolyze the first alpha-1,3-linked glucose residue but not the innermost alpha-1,3-linked glucose residue from the Glc2Man9GlcNAc2 N-glycan ER structure. Transformation of the Rut-C30 strain with a repaired T. reesei gls2alpha gene changed the glycosylation profile significantly, decreasing the amount of monoglucosylated structures and increasing the amount of high-mannose N-glycans. Full conversion to high-mannose carbohydrates was not obtained, and this was probably due to competition between the endogenous mutant subunit and the introduced wild-type GIIalpha protein. Since glucosidase II is also involved in the ER quality control of nascent polypeptide chains, its transcriptional regulation was studied in a strain producing recombinant tissue plasminogen activator (tPA) and in cultures treated with the stress agents dithiothreitol (DTT) and brefeldin A (BFA), which are known to block protein transport and to induce the unfolded protein response. While the mRNA levels were clearly upregulated upon tPA production or BFA treatment, no such enhancement was observed after DTT addition.
Collapse
Affiliation(s)
- Steven Geysens
- Fundamental and Applied Molecular Biology, Department for Molecular Biomedical Research, Ghent University and VIB (Flemish Interuniversity Institute for Biotechnology), Ghent-Zwijnaarde, Belgium
| | | | | | | | | | | |
Collapse
|
177
|
Kaneko M, Takahashi T, Niinuma Y, Nomura Y. Manganese superoxide dismutase is induced by endoplasmic reticulum stress through IRE1-mediated nuclear factor (NF)-kappaB and AP-1 activation. Biol Pharm Bull 2005; 27:1202-6. [PMID: 15305022 DOI: 10.1248/bpb.27.1202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is an antioxidative enzyme that scavenges superoxide radicals and is localized in the mitochondrial matrix. MnSOD is induced by a variety of stimuli through nuclear factor (NF)-kappaB and AP-1 activation. We investigated the expression of MnSOD in HeLa cells exposed to various agents interfering with endoplasmic reticulum (ER) functions. All agents caused an increase in the mRNA and protein levels of MnSOD. Although ER stress-responsive genes often are up-regulated by ATF6, IRE1 and XBP1, which are ER stress-related transcription factors/transducers, the overexpression of neither molecule affected the levels of MnSOD mRNA and protein. Furthermore, we showed that ER stress reagents induced NF-kappaB and AP-1 activation that were inhibited by a dominant-negative IRE1 mutant. We finally demonstrated that ER stress-induced MnSOD expression was reduced by the IRE1 mutant. These results suggest that the MnSOD expression is controlled by ER stress through IRE1-mediated NF-kappaB and AP-1 activation.
Collapse
Affiliation(s)
- Masayuki Kaneko
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
178
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1314] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
179
|
Abstract
Surfactant protein C (SP-C) is a hydrophobic 35-amino acid peptide that co-isolates with the phospholipid fraction of lung surfactant. SP-C represents a structurally and functionally challenging protein for the alveolar type 2 cell, which must synthesize, traffic, and process a 191-197-amino acid precursor protein through the regulated secretory pathway. The current understanding of SP-C biosynthesis considers the SP-C proprotein (proSP-C) as a hybrid molecule that incorporates structural and functional features of both bitopic integral membrane proteins and more classically recognized luminal propeptide hormones, which are subject to post-translational processing and regulated exocytosis. Adding to the importance of a detailed understanding of SP-C biosynthesis has been the recent association of mutations in the proSP-C sequence with chronic interstitial pneumonias in children and adults. Many of these mutations involve either missense or deletion mutations located in a region of the proSP-C molecule that has structural homology to the BRI family of proteins linked to inherited degenerative dementias. This review examines the current state of SP-C biosynthesis with a focus on recent developments related to molecular and cellular mechanisms implicated in the emerging role of SP-C mutations in the pathophysiology of diffuse parenchymal lung disease.
Collapse
Affiliation(s)
- Michael F Beers
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA.
| | | |
Collapse
|
180
|
Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding HP, Ron D. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 2005; 24:10161-8. [PMID: 15542827 PMCID: PMC529034 DOI: 10.1128/mcb.24.23.10161-10168.2004] [Citation(s) in RCA: 511] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2alpha), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2alpha phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-kappaB) and that eIF2alpha phosphorylation is required for NF-kappaB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2alpha kinase) to uncouple eIF2alpha phosphorylation from stress and found that phosphorylation of eIF2alpha is both necessary and sufficient to activate both NF-kappaB DNA binding and an NF-kappaB reporter gene. eIF2alpha phosphorylation-dependent NF-kappaB activation correlated with decreased levels of the inhibitor IkappaBalpha protein. Unlike canonical signaling pathways that promote IkappaBalpha phosphorylation and degradation, eIF2alpha phosphorylation did not increase phosphorylated IkappaBalpha levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IkappaBalpha translation plays an important role in NF-kappaB activation in cells experiencing high levels of eIF2alpha phosphorylation. These studies suggest a direct role for eIF2alpha phosphorylation-dependent translational control in activating NF-kappaB during ER stress.
Collapse
Affiliation(s)
- Jing Deng
- New York University Medical Center, SI 3-10, 540 First Ave., New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Scolari F, Caridi G, Rampoldi L, Tardanico R, Izzi C, Pirulli D, Amoroso A, Casari G, Ghiggeri GM. Uromodulin storage diseases: Clinical aspects and mechanisms. Am J Kidney Dis 2004; 44:987-99. [PMID: 15558519 DOI: 10.1053/j.ajkd.2004.08.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The recent discovery of mutations in the uromodulin gene ( UMOD ) in patients with medullary cystic kidney disease type 2 (MCKD2), familial juvenile hyperuricemic nephropathy (FJHN), and glomerulocystic kidney disease (GCKD) provides the opportunity for a revision of pathogenic aspects and puts forth the basis for a renewed classification. This review focuses on clinical, pathological, and cell biology advances in UMOD -related pathological states, including a review of the associated clinical conditions described to date in the literature. Overall, 31 UMOD mutations associated with MCKD2 and FJHN (205 patients) and 1 mutation associated with GCKD (3 patients) have been described, with a cluster at exons 4 and 5. Most are missense mutations causing a cysteine change in uromodulin sequence. No differences in clinical symptoms between carriers of cysteine versus polar residue changes have been observed; clinical phenotypes invariably are linked to classic MCKD2/FJHN. A common motif among all reports is that many overlapping symptoms between MCKD2 and FJHN are present, and a separation between these 2 entities seems unwarranted or redundant. Cell experiments with mutant variants indicated a delay in intracellular maturation and export dynamics, with consequent uromodulin storage within the endoplasmic reticulum (ER). Patchy uromodulin deposits in tubule cells were found by means of immunohistochemistry, and electron microscopy showed dense fibrillar material in the ER. Mass spectrometry showed only unmodified uromodulin in urine of patients with UMOD mutations. Lack of uromodulin function(s) is associated with impairments in tubular function, particularly the urine-concentrating process, determining water depletion and hyperuricemia. Intracellular uromodulin trapping within the ER probably has a major role in determining tubulointerstitial fibrosis and renal failure. We propose the definition of uromodulin storage diseases for conditions with proven UMOD mutations.
Collapse
|
182
|
Nakagomi T, Kitada O, Kuribayashi K, Yoshikawa H, Ozawa K, Ogawa S, Matsuyama T. The 150-kilodalton oxygen-regulated protein ameliorates lipopolysaccharide-induced acute lung injury in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1279-88. [PMID: 15466393 PMCID: PMC1618642 DOI: 10.1016/s0002-9440(10)63387-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 150-kd oxygen-regulated protein is a novel stress protein that is located in the endoplasmic reticulum and contributes to cell survival when this organelle is under stress. Expression of this protein was strongly increased in alveolar macrophages and alveolar epithelial cells from mice with acute lung injury induced by lipopolysaccharide. Transgenic mice overexpressing the 150-kd protein showed decreased histological severity of this lung injury, accompanied by lower total protein concentrations, and lactate dehydrogenase activity in bronchoalveolar lavage fluid. As indicated by nick end-labeling, lipopolysaccharide induced apoptosis in fewer alveolar wall cells in transgenic than in wild-type mice. Transgenic mice also showed increased survival after lipopolysaccharide injection (a log-rank test). Thus, the 150-kd protein, an endoplasmic reticulum-related molecular chaperone, is pivotal in resisting acute lung injury from lipopolysaccharide.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
183
|
Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, Huang W, Chang WC, Chang YS, Chen CC, Lai MD. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase. J Biol Chem 2004; 279:46384-92. [PMID: 15319438 DOI: 10.1074/jbc.m403568200] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Expression of mutant proteins or viral infection may interfere with proper protein folding activity in the endoplasmic reticulum (ER). Several pathways that maintain cellular homeostasis were activated in response to these ER disturbances. Here we investigated which of these ER stress-activated pathways induce COX-2 and potentially oncogenesis. Tunicamycin and brefeldin A, two ER stress inducers, increased the expression of COX-2 in ML-1 or MCF-7 cells. Nuclear translocation of NF-kappaB and activation of pp38 MAPK were observed during ER stress. IkappaBalpha kinase inhibitor Bay 11-7082 or IkappaBalpha kinase dominant negative mutant significantly inhibited the induction of COX-2. pp38 MAPK inhibitor SB203580 or eIF2alpha phosphorylation inhibitor 2-aminopurine attenuated the nuclear NF-kappaB DNA binding activity and COX-2 induction. Expression of mutant hepatitis B virus (HBV) large surface proteins, inducers of ER stress, enhanced the expression of COX-2 in ML-1 and HuH-7 cells. Transgenic mice showed higher expression of COX-2 protein in liver and kidney tissue expressing mutant HBV large surface protein in vivo. Similarly, increased expression of COX-2 mRNA was observed in human hepatocellular carcinoma tissue expressing mutant HBV large surface proteins. In ML-1 cells expressing mutant HBV large surface protein, anchorage-independent growth was enhanced, and the enhancement was abolished by the addition of specific COX-2 inhibitors. Thus, ER stress due either to expression of viral surface proteins or drugs can stimulate the expression of COX-2 through the NF-kappaB and pp38 kinase pathways. Our results provide important insights into cellular carcinogenesis associated with latent endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biochemistry, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci 2004; 1010:186-94. [PMID: 15033718 DOI: 10.1196/annals.1299.032] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The labyrinth of the endoplasmic reticulum (ER) interweaves the cytosol and connects to the nucleus, mitochondria, and the plasma membrane. In the lumen of the ER, the essential function of lipid synthesis, Ca(2+) storage, folding, and maturation of proteins take place. Therefore, the tight regulation and maintenance of ER homeostasis is vital. Disturbance of the Ca(2+) homeostasis during hypoxia, or imbalance between the demand and capacity of the protein-folding apparatus, initiates an adaptive response of the cell, termed the unfolded protein response (UPR, ER stress response). As a result, ER-localized chaperones are induced, protein synthesis is slowed down, and a protein degrading system is initiated. However, if the ER stress cannot be alleviated, it culminates in apoptosis. This paper reviews the newly outlined signaling pathways of the unfolded protein response and describes the central role of caspase-12 in the initiation of cell death. The complex role of the ER and its signaling pathways provides a novel angle on apoptosis research and may offer a key to apoptosis-associated diseases.
Collapse
Affiliation(s)
- Eva Szegezdi
- Cell Stress and Apoptosis Research Group, Department of Biochemistry, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
185
|
Corrigall VM, Bodman-Smith MD, Brunst M, Cornell H, Panayi GS. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. ACTA ACUST UNITED AC 2004; 50:1164-71. [PMID: 15077298 DOI: 10.1002/art.20134] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The stress protein and endoplasmic reticulum chaperone, immunoglobulin binding protein (BiP), is an autoantigen in rheumatoid arthritis (RA). Stress proteins, however, may have extracellular functions, mediated via cell surface receptors, that may include immunomodulatory functions. We sought to determine whether cell-free BiP is present in the synovial fluid (SF) of patients with RA and to further investigate the possible extracellular antiinflammatory and immunomodulatory properties of BiP in peripheral blood mononuclear cells (PBMCs) in vitro. METHODS The presence of BiP in SF was established by Western blotting. PBMCs were stimulated with exogenous recombinant human BiP, and cytokine production and cell proliferation were measured in the presence and absence of cell signaling inhibitors or neutralizing anti-interleukin-10 (anti-IL-10) monoclonal antibody. Cytokine levels were quantified by enzyme-linked immunosorbent assay, cell proliferation by tritiated thymidine uptake, and cell surface molecule expression by flow cytometry. RESULTS PBMCs responded to BiP with secretion of an antiinflammatory profile of cytokines. Although BiP stimulated the early production of tumor necrosis factor alpha (TNF alpha), the major cytokine induced was IL-10. Soluble TNF receptor II and IL-1 receptor antagonist secretion was also increased. Addition of SB203580, the MAPK p38 pathway inhibitor, partially inhibited the production of IL-10 and TNF alpha, whereas they were unaffected by the MAPK ERK-1/2 inhibitor PD98059. BiP also inhibited the recall antigen response by PBMCs to tuberculin purified protein derivative. Further investigation showed that incubation of monocytes in the presence of either BiP or IL-10 down-regulated CD86 and HLA-DR expression. The effect observed with IL-10 was transient compared with the long-lasting reduction induced by BiP. CONCLUSION Extracellular BiP may stimulate immunomodulatory and antiinflammatory pathways, which are only partly due to the production of IL-10. These properties may be of relevance for the treatment of diseases such as RA.
Collapse
Affiliation(s)
- Valerie M Corrigall
- Department of Rheumatology, Guy's, King's, and St. Thomas' School of Medicine, Guy's Hospital, King's College London, London, UK.
| | | | | | | | | |
Collapse
|
186
|
Lawless MW, Greene CM, Mulgrew A, Taggart CC, O'Neill SJ, McElvaney NG. Activation of Endoplasmic Reticulum-Specific Stress Responses Associated with the Conformational Disease Z α1-Antitrypsin Deficiency. THE JOURNAL OF IMMUNOLOGY 2004; 172:5722-6. [PMID: 15100318 DOI: 10.4049/jimmunol.172.9.5722] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conformational diseases are a class of disorders associated with aberrant protein accumulation in tissues and cellular compartments. Z alpha1-antitrypsin (A1AT) deficiency is a genetic disease associated with accumulation of misfolded A1AT in the endoplasmic reticulum (ER) of hepatocytes. We sought to identify intracellular events involved in the molecular pathogenesis of Z A1AT-induced liver disease using an in vitro model system of Z A1AT ER accumulation. We investigated ER stress signals induced by Z A1AT and demonstrated that both the ER overload response and the unfolded protein response were activated by mutant Z A1AT, but not wild-type M A1AT. Interestingly, activation of the unfolded protein response pathway required an additional insult, whereas NF-kappa B activation, a hallmark of the ER overload response, was constitutive. These findings have important implications for the design of future therapeutics for Z A1AT liver disease and may also impact on drug design for other conformational diseases.
Collapse
Affiliation(s)
- Matthew W Lawless
- Respiratory Research Division, Royal College of Surgeons in Ireland, Education and Research Center, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
187
|
Saloheimo M, Wang H, Valkonen M, Vasara T, Huuskonen A, Riikonen M, Pakula T, Ward M, Penttilä M. Characterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions. Appl Environ Microbiol 2004; 70:459-67. [PMID: 14711675 PMCID: PMC321314 DOI: 10.1128/aem.70.1.459-467.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genes involved in protein secretion, encoding the Rab protein YPT1/YPTA and the general fusion factor NSFI/NSFA, were characterized from two filamentous fungi, Trichoderma reesei and Aspergillus niger var. awamori. The isolated genes showed a high level of conservation with their Saccharomyces cerevisiae and mammalian counterparts, and T. reesei ypt1 was shown to complement yeast Ypt1p depletion. The transcriptional regulation of the T. reesei ypt1, nsf1, and sar1 genes, involved in protein trafficking, was studied with mycelia treated with the folding inhibitor dithiothreitol (DTT) and with brefeldin A, which inhibits membrane traffic between the endoplasmic reticulum and Golgi complex. The well-known inducer of the yeast and T. reesei unfolded protein response (UPR), DTT, induced the nsf1 gene and the protein disulfide isomerase gene, pdi1, in both of the experiments, and sar1 mRNA increased in only one experiment under strong UPR induction. The ypt1 mRNA did not show a clear increase during DTT treatment. Brefeldin A strongly induced pdi1 and all of the intracellular trafficking genes studied. These results suggest the possibility that the whole secretory pathway of T. reesei could be induced at the transcriptional level by stress responses caused by protein accumulation in the secretory pathway.
Collapse
Affiliation(s)
- Markku Saloheimo
- VTT Biotechnology, Espoo, Finland. Genencor International, Inc., Palo Alto, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
The role of stress proteins in immunity and their feasibility as vaccine vehicles against infectious disease have been the focus of intensive examination. Endoplasmic reticulum (ER)-resident stress proteins in particular are interesting model proteins as they perform crucial functions in an organelle that responds promptly to cell stress. We describe transcriptional regulation of ER-resident stress proteins, their involvement in the cellular response to infection and discuss their potential as vaccine candidates against infectious diseases.
Collapse
Affiliation(s)
- Ulrike K Rapp
- Max Planck Institute for Infection Biology, Schumannstrasse 21-22, 10117 Berlin, Germany.
| | | |
Collapse
|
189
|
Baeza-Raja B, Muñoz-Cánoves P. p38 MAPK-induced nuclear factor-kappaB activity is required for skeletal muscle differentiation: role of interleukin-6. Mol Biol Cell 2004; 15:2013-26. [PMID: 14767066 PMCID: PMC379295 DOI: 10.1091/mbc.e03-08-0585] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
p38 MAPK and nuclear factor-kappaB (NF-kappaB) signaling pathways have been implicated in the control of skeletal myogenesis. However, although p38 is recognized as a potent activator of myoblast differentiation, the role of NF-kappaB remains controversial. Here, we show that p38 is activated only in differentiating myocytes, whereas NF-kappaB activity is present both in proliferation and differentiation stages. NF-kappaB activation was found to be dependent on p38 activity during differentiation, being NF-kappaB an effector of p38, thus providing a novel mechanism for the promyogenic effect of p38. Activation of p38 in C2C12 cells induced the activity of NF-kappaB, in a dual way: first, by reducing IkappaBalpha levels and inducing NF-kappaB-DNA binding activity and, second, by potentiating the transactivating activity of p65-NF-kappaB. Finally, we show that interleukin (IL)-6 expression is induced in C2C12 differentiating myoblasts, in a p38- and NF-kappaB-dependent manner. Interference of IL-6 mRNA reduced, whereas its overexpression increased, the extent of myogenic differentiation; moreover, addition of IL-6 was able to rescue significantly the negative effect of NF-kappaB inhibition on this process. This study provides the first evidence of a crosstalk between p38 MAPK and NF-kappaB signaling pathways during myogenesis, with IL-6 being one of the effectors of this promyogenic mechanism.
Collapse
Affiliation(s)
- Bernat Baeza-Raja
- Center for Genomic Regulation, Program on Differentiation and Cancer, E-08003 Barcelona, Spain
| | | |
Collapse
|
190
|
Szczesna-Skorupa E, Chen CD, Liu H, Kemper B. Gene expression changes associated with the endoplasmic reticulum stress response induced by microsomal cytochrome p450 overproduction. J Biol Chem 2004; 279:13953-61. [PMID: 14718536 DOI: 10.1074/jbc.m312170200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of drug-metabolizing microsomal cytochromes p450 (p450s) results in a striking proliferation of the smooth endoplasmic reticulum (ER). Overexpression of P450s in yeast and cultured cells produces a similar response. The signals mediating this process are not known but probably involve signal transduction pathways involved in the unfolded protein response (UPR) or the ER overload response (EOR). We have examined the temporal response of specific genes in these pathways and genes globally to overexpression of p450 in cultured cells. Activity of NFkappaB, an EOR component, was substantially increased by overexpression of full-length p450 2C2 or a chimera with the 28-amino acid signal anchor sequence of p450 2C2 in HepG2 cells, and the activation correlated temporally with the accumulation of p450 in the cells. In the UPR pathway, activation of the transcription factor XBP1 by IRE1 also correlated with the accumulation of p450 in the cells, and in contrast, maximum activation of the BiP/grp78 promoter preceded the accumulation. Differential effects of expression of p450 on apoptosis were observed in nonhepatic COS1 and hepatic HepG2 cells. In COS1 cells, apoptosis was induced, and this correlated with sustained activation of the pro-apoptotic JNK pathway, induction of CHOP, and an absence of the increased NFkappaB activity. In HepG2 cells, JNK was only transiently activated, and CHOP expression was not induced. As assessed by DNA microarray analysis, up-regulation of signaling genes was predominant including those involved in anti-apoptosis and ER stress. These results suggest that both the EOR and UPR pathways are involved in the cellular response to induction of p450 expression and that in hepatic cells genes are also induced to block apoptosis, which may be a physiologically relevant response to prevent cell death during xenobiotic induced expression of p450 in the liver.
Collapse
Affiliation(s)
- Elzbieta Szczesna-Skorupa
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
191
|
Abstract
The outcome of virus infection depends on viral and host factors. The interactions between flaviviruses and their target cells must be investigated if we are to understood the pathogenicity of these RNA viruses. Host cells are thought to respond to viral infection by initiation of apoptotic cell death. Apoptosis is an active process of cellular self-destruction with distinctive morphological and biochemical features. There is mounting evidence that dengue (DEN) virus can trigger the host cell to undergo apoptosis in a cell-dependent manner. Virally induced apoptosis contributes directly to the cytopathogenic effects of DEN virus in cultured cells. The induction of apoptosis involves the activation of intracellular signaling systems. Although the underlying molecular processes that trigger apoptosis are not well characterized, our knowledge regarding the cellular mechanisms and viral determinants of the outcome of DEN virus infection of target cells is improving. The cellular factors that regulate cell death, such as Bcl-2 family members, can modulate the outcome of DEN virus infection in cultured cells. Apoptosis inhibitors delay DEN virus-induced apoptosis, thereby providing a suitable environment for the virus. During DEN virus infection, cell death is also modulated by the virulence of the infecting strains. The purpose of this review is to present recent information on the cellular mechanisms and viral proteins associated with apoptosis in response to DEN virus. This knowledge may provide new insights into the viral pathogenicity.
Collapse
Affiliation(s)
- Marie-Pierre Courageot
- Unité Postulante des Interactions Moléculaires Flavivirus-Hôtes, Virology Department, Pasteur Institute, 75724 Paris, France
| | | | | |
Collapse
|
192
|
Sun S, Han J, Ralph WM, Chandrasekaran A, Liu K, Auborn KJ, Carter TH. Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones 2004. [DOI: 10.1379/1466-1268(2004)009<0076:ersaac>2.0.co;2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
193
|
Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res 2004; 119:139-73. [PMID: 15164877 DOI: 10.1007/1-4020-7847-1_8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Shishir Shishodia
- Department of Bioimmunotherapy, The University of Texas M. D. Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
194
|
Wang HC, Wu HC, Chen CF, Fausto N, Lei HY, Su IJ. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:2441-9. [PMID: 14633616 PMCID: PMC1892360 DOI: 10.1016/s0002-9440(10)63599-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ground glass hepatocyte (GGH) represents a histological hallmark of chronic hepatitis B virus infection and contains surface antigens in the endoplasmic reticulum (ER). Several types of GGHs are recognized at different hepatitis B virus replicative stages. The recent identification of pre-S mutants from GGHs encourages us to investigate whether different GGHs may harbor specific mutants and exhibit differential biological activities. In this study, we applied laser capture microdissection to isolate specific GGHs from a total of 50 samples on eight resected liver specimens. The surface genes in two major types of GGHs were analyzed. Type I GGHs expressed an inclusion-like pattern of hepatitis B surface antigens and harbored mutants with deletions over pre-S1 region, whereas type II GGHs, distributed in clusters and emerged at late replicative phase, contained mutants with deletions over pre-S2 region that defines a cytotoxic T lymphocyte (CTL) immune epitope, and may represent an immune escape mutant. Transfection of pre-S mutants in Huh7 revealed decreased syntheses of middle and small S proteins with accumulation of large surface antigen in ER, which in turn led to the activation of ER stress response with differential activities for different mutants. This study therefore demonstrates that different GGHs may contain specific mutants and exhibit differential biological activities.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institutes of Basic Medical Sciences, Molecular Medicine, and Immunology and Microbiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
195
|
Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttilä M. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem 2003; 278:45011-20. [PMID: 12941955 DOI: 10.1074/jbc.m302372200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the mechanisms of protein secretion as well as the cellular responses to impaired protein folding and transport in filamentous fungi, we have analyzed Trichoderma reesei cultures treated with chemical agents that interfere with these processes, dithiothreitol, brefeldin A, and the Ca(2+)-ionophore A23187. The effects of the drugs on the kinetics of protein synthesis and transport were characterized using metabolic labeling of synthesized proteins. Cellobiohydrolase I (CBHI, Cel7A), the major secreted cellulase, was analyzed as a model protein. Northern analysis showed that under conditions where protein transport was inhibited (treatments with dithiothreitol or brefeldin A) the unfolded protein response pathway was activated. The active form of the hac1 mRNA that mediates unfolded protein response signaling was induced, followed by induction of the foldase and chaperone genes pdi1 and bip1. Concomitant with the activation of the unfolded protein response pathway, the transcript levels of genes encoding secreted proteins, like cellulases and xylanases, were drastically decreased, suggesting a novel type of feedback mechanism activated in response to impairment in protein folding or transport (repression under secretion stress (RESS)). By studying expression of the reporter gene lacZ under cbh1 promoters of different length, it was shown that the feedback response was mediated through the cellulase promoter.
Collapse
Affiliation(s)
- Tiina M Pakula
- VTT Biotechnology, P. O. Box 1500, 02044 VTT, Espoo, Finland.
| | | | | | | | | | | |
Collapse
|
196
|
Conte I, Labriola C, Cazzulo JJ, Docampo R, Parodi AJ. The interplay between folding-facilitating mechanisms in Trypanosoma cruzi endoplasmic reticulum. Mol Biol Cell 2003; 14:3529-40. [PMID: 12972544 PMCID: PMC196547 DOI: 10.1091/mbc.e03-04-0228] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 05/15/2003] [Accepted: 05/22/2003] [Indexed: 11/11/2022] Open
Abstract
Lectin (calreticulin [CRT])-N-glycan-mediated quality control of glycoprotein folding is operative in trypanosomatid protozoa but protein-linked monoglucosylated N-glycans are exclusively formed in these microorganisms by UDP-Glc:glycoprotein glucosyltransferase (GT)-dependent glucosylation. The gene coding for this enzyme in the human pathogen Trypanosoma cruzi was identified and sequenced. Even though several of this parasite glycoproteins have been identified as essential components of differentiation and mammalian cell invasion processes, disruption of both GT-encoding alleles did not affect cell growth rate of epimastigote form parasites and only partially affected differentiation and mammalian cell invasion. The cellular content of one of the already identified T. cruzi glycoprotein virulence factors (cruzipain, a lysosomal proteinase) only showed a partial (5-20%) decrease in GT null mutants in spite of the fact that >90% of all cruzipain molecules interacted with CRT during their folding process in wild-type cells. Although extremely mild cell lysis and immunoprecipitation procedures were used, no CRT-cruzipain interaction was detected in GT null mutants but secretion of the proteinase was nevertheless delayed because of a lengthened interaction with Grp78/BiP probably caused by the detected induction of this chaperone in GT null mutants. This result provides a rationale for the absence of a more drastic consequence of GT absence. It was concluded that T. cruzi endoplasmic reticulum folding machinery presents an exquisite plasticity that allows the parasite to surmount the absence of the glycoprotein-specific folding facilitation mechanism.
Collapse
Affiliation(s)
- Ianina Conte
- Institute for Biotechnological Research, University of San Martin, CC30, (1650) San Martin, Argentina
| | | | | | | | | |
Collapse
|
197
|
Lawrence de Koning AB, Werstuck GH, Zhou J, Austin RC. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem 2003; 36:431-41. [PMID: 12951169 DOI: 10.1016/s0009-9120(03)00062-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Numerous epidemiological studies have demonstrated that hyperhomocysteinemia (HHcy) is a strong and independent risk factor for cardiovascular disease. HHcy can result from a deficiency in the enzymes or vitamin cofactors required for homocysteine metabolism. Several hypotheses have been proposed to explain the cellular mechanisms by which HHcy promotes cardiovascular disease, including oxidative stress, endoplasmic reticulum (ER) stress and the activation of pro-inflammatory factors. Studies using genetic- and diet-induced animal models of HHcy have now demonstrated a direct causal relationship between HHcy, endothelial dysfunction and accelerated atherosclerosis. These recently established animal models of HHcy provide investigators with important in vivo tools to (i) further understand the cellular mechanisms by which HHcy contributes to endothelial dysfunction and atherosclerosis, and (ii) develop therapeutic agents useful in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- A B Lawrence de Koning
- Department of Pathology and Molecular Medicine, McMaster University and the Henderson Research Centre, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
198
|
Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 2003; 23:5651-63. [PMID: 12897138 PMCID: PMC166326 DOI: 10.1128/mcb.23.16.5651-5663.2003] [Citation(s) in RCA: 343] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor kappaB (NF-kappaB) serves to coordinate the transcription of genes in response to diverse environmental stresses. In this report we show that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2) is fundamental to the process by which many stress signals activate NF-kappaB. Phosphorylation of this translation factor is carried out by a family of protein kinases that each respond to distinct stress conditions. During impaired protein folding and assembly in the endoplasmic reticulum (ER), phosphorylation of eIF2alpha by PEK (Perk or EIF2AK3) is essential for induction of NF-kappaB transcriptional activity. The mechanism by which NF-kappaB is activated during ER stress entails the release, but not the degradation, of the inhibitory protein IkappaB. During amino acid deprivation, phosphorylation of eIF2alpha by GCN2 (EIF2AK4) signals the activation of NF-kappaB. Furthermore, inhibition of general translation or transcription by cycloheximide and actinomycin D, respectively, elicits the eIF2alpha phosphorylation required for induction of NF-kappaB. Together, these studies suggest that eIF2alpha kinases monitor and are activated by a range of stress conditions that affect transcription and protein synthesis and assembly, and the resulting eIFalpha phosphorylation is central to activation of the NF-kappaB. The absence of NF-kappaB-mediated transcription and its antiapoptotic function provides an explanation for why eIF2alpha kinase deficiency in diseases such as Wolcott-Rallison syndrome leads to cellular apoptosis and disease.
Collapse
Affiliation(s)
- Hao-Yuan Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
199
|
Kaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 2003; 26:931-5. [PMID: 12843613 DOI: 10.1248/bpb.26.931] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conditions that perturb the function of the endoplasmic reticulum (ER) lead to an accumulation of proteins and subsequent induction of several responses, such as an increased expression of ER-resident chaperones involved in protein folding and activation of c-jun N-terminal kinase (JNK). These responses are mediated by a transmembrane kinase/ribonuclease, IRE1, which transduces the signal from the ER lumen to the cytosol. Although nuclear transcription factor-kappaB (NF-kappaB) is also activated by ER stress, whether this response depends on IRE1 is unknown. In this study, we show that IRE1 is involved in the activation of NF-kappaB induced by ER stress. NF-kappaB was activated by ER stress-inducing agents, thapsigargin and tunicamycin. The activation was inhibited by a dominant-negative IRE1. In addition, a dominant-negative TRAF2 also suppressed the activation of NF-kappaB by ER stress. These results suggest that ER stress-induced NF-kappaB activation is also mediated by the IRE1-TRAF2 pathway, as well as JNK activation.
Collapse
Affiliation(s)
- Masayuki Kaneko
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
200
|
Charalambous MP, Maihöfner C, Bhambra U, Lightfoot T, Gooderham NJ. Upregulation of cyclooxygenase-2 is accompanied by increased expression of nuclear factor-kappa B and I kappa B kinase-alpha in human colorectal cancer epithelial cells. Br J Cancer 2003; 88:1598-604. [PMID: 12771929 PMCID: PMC2377108 DOI: 10.1038/sj.bjc.6600927] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is selectively overexpressed in colorectal tumours. The mechanism of COX-2 induction is not fully understood, but requires de novo messenger RNA and protein synthesis, indicating regulation at the transcriptional level. Sequence analysis of the 5'-flanking region of the COX-2 gene shows two nuclear factor-kappa B (NF-kappa B) sites. Inhibition of this protein in model cell culture systems attenuates COX-2 expression and implies that NF-kappa B plays an important role in COX-2 induction. We measured COX-2, NF-kappa B and I kappa B kinase alpha (IKK alpha) protein expression in matched colonic biopsy samples comprising both nontumour and adjacent tumour tissue from 32 colorectal cancer patients using immunohistochemistry. There was none or very little expression of COX-2, NF-kappa B and IKK alpha in non-neoplastic colon epithelial cells, while the expression of all three of these proteins was significantly increased (P<0.05, Wilcoxon's signed rank test) in adjacent cancerous cells. Moreover, all three proteins were found to be coexpressed in the neoplastic epithelium, with the expression of COX-2 and NF-kappa B highly correlated (Pearson's correlation, P<0.005). There was no apparent correlation between enhanced COX-2, NF-kappa B or IKK alpha expression and tumour Dukes' stages. Our results are compatible with the hypothesis that IKK alpha and NF-kappa B are involved in COX-2 induction in these tumours and the lack of association between COX-2 expression and severity of disease as measured by Dukes' stage is consistent with the proposal that COX-2 expression is an early postinitiation event.
Collapse
Affiliation(s)
- M P Charalambous
- Molecular Toxicology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | - C Maihöfner
- Department of Neurology, University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - U Bhambra
- Molecular Toxicology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | - T Lightfoot
- JBUEC, Department of Biology, University of York, York, Y01 5DD, UK
| | - N J Gooderham
- Molecular Toxicology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
- Molecular Toxicology, Faculty of Medicine, Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK. E-mail:
| | | |
Collapse
|