151
|
Norden JJ, Constantine-Paton M. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number. J Comp Neurol 1994; 348:461-79. [PMID: 7844258 DOI: 10.1002/cne.903480310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quantitative stereological methods were used to determine if the number, density, and types of synaptic connections formed during development are regulated by presynaptic input or by postsynaptic target cells in the optic tectum of normal and 3-eyed Rana pipiens tadpoles and frogs. Our analysis indicates that the number and size of synapses is approximately the same in both tecta of 3-eyed tadpoles and frogs, even though one tectal lobe is receiving input from twice the normal complement of retinal ganglion cells. Moreover, the number and size of synapses in the tectal lobes of 3-eyed animals did not differ significantly from values determined for normal tadpoles and frogs of the same developmental stage. These data suggest strongly that developing tectal cells regulate the number of synaptic contacts they will form. Differences in several morphological features between singly and doubly innervated tecta, however, including synapse density, distribution and complexity, amount of extracellular space, and number of myelin figures, suggest that the presence of supernumerary input retards tectal maturation. We propose that the noncorrelated activity of retinal ganglion cell terminals in the doubly innervated tectum results in fewer stabilized synapses per unit volume of neuropil and in the delayed maturation of the tectal neuropil. Taken together, our data suggest a complex dynamic interaction between retina and tectum during development.
Collapse
Affiliation(s)
- J J Norden
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
152
|
Bundman MC, Pico RM, Gall CM. Ultrastructural plasticity of the dentate gyrus granule cells following recurrent limbic seizures: I. Increase in somatic spines. Hippocampus 1994; 4:601-10. [PMID: 7889130 DOI: 10.1002/hipo.450040510] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Various paradigms have been used to assess the capacity of the adult brain to undergo activity-dependent morphological plasticity. In this report we have employed recurrent limbic seizures as a means of studying the effects of this form of enhanced neuronal activity on cellular morphology and, in particular, on the incidence of somatic spines on the dentate gyrus granule cells. Seizure activity was induced by the placement of focal, unilateral electrolytic lesions in the dentate gyrus hilus of adult rats. At various intervals postlesion, rats with behaviorally verified seizures were sacrificed, and the hippocampi contralateral to the lesions were removed and prepared for electron microscopy. Quantitative analysis showed that as early as 5 hours postlesion there was a dramatic increase in the density and morphological complexity of spines on the perikarya of the granule cells in rats that received seizure-producing hilus lesions when compared to granule cells from control rats. Many of the somatic spines received asymmetric synapses. The increase in somatic spines was dependent on seizure activity and persisted for at least 1 month following a single recurrent seizure episode. CA1 pyramidal neurons, which exhibit changes in gene expression in response to hilus lesion-induced seizures but do not normally possess somatic spines, did not exhibit an activity-dependent elaboration of somatic spines. Thus, the seizure-induced elaboration of somatic spines represents an amplification of an existing feature of the granule cells and not an effect occurring throughout hippocampus. These data provide evidence for very rapid and long-lasting structural plasticity in response to brief episodes of seizure activity in the adult brain.
Collapse
Affiliation(s)
- M C Bundman
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| | | | | |
Collapse
|
153
|
Desmond NL, Scott CA, Jane JA, Levy WB. Ultrastructural identification of entorhinal cortical synapses in CA1 stratum lacunosum-moleculare of the rat. Hippocampus 1994; 4:594-600. [PMID: 7534172 DOI: 10.1002/hipo.450040509] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The goal of the present study was to identify and characterize, at the electron microscopic level, the synapses formed by entorhinal cortical (EC) axons in the hippocampal CA1 stratum lacunosum-moleculare of the adult rat. Phaseolus vulgaris leucoagglutinin was ionotophoresed at various loci throughout the mediolateral and dorsoventral extent of the EC to label EC-CA1 synapses. Virtually all labeled synapses were asymmetric and axospinous. EC axons did not preferentially synapse with any particular type of dendritic spine; rather, EC axons formed synapses with the range of dendritic spine morphologies observed in CA1 s. lacunosum-moleculare. Spines with either perforated or nonperforated postsynaptic densities were contacted by EC axons. Occasionally both a labeled and an unlabeled axon synapsed on a single dendritic spine head. The data are discussed in relation to the morphology of other afferent systems synapsing in s. lacunosum-moleculare and to the physiology of the EC-CA1 system.
Collapse
Affiliation(s)
- N L Desmond
- Department of Neurological Surgery, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | |
Collapse
|
154
|
Nitsch R, Leranth C. Substance P-containing hypothalamic afferents to the monkey hippocampus: an immunocytochemical, tracing, and coexistence study. Exp Brain Res 1994; 101:231-40. [PMID: 7531156 DOI: 10.1007/bf00228743] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to identify the synaptic connections of substance P-containing afferents within the hypothalamo-hippocampal projection of the monkey, we performed a combined light and electron microscopic, immunocytochemical study, made lesions of the fimbriafornix, and employed retrograde tracing using WGA-HRP. Furthermore, coexistence studies for substance P and GAD were performed to identify the putative transmitters of these hypothalamic projection neurons. A plexus of large substance P-immunoreactive terminals was identified in both the innermost portion of the molecular layer and in CA2. Axon terminals in both plexuses established exclusively asymmetric synapses with spines and dendritic shafts. Substance P-immunoreactive boutons were degenerating 5 days after lesioning, and had disappeared 10 days after ipsilateral fimbria-fornix transection. Thus, these terminals were of extrinsic origin. In contrast, immunoreactive fibers in the outer third of the dentate molecular layer remained unaffected by the lesion. Retrograde tracing combined with immunostaining for substance P revealed the parent cell bodies of the extrinsic substance P-containing afferents in the supramammillary nucleus. Colocalization studies employing a consecutive semi-thin sections technique indicate that these large substance P-containing projection neurons lack GABA as an inhibitory transmitter. These results suggest that hypothalamic afferents of the monkey hippocampus contain substance P. Because these afferents lack GABA as an inhibitory transmitter and establish exclusively asymmetric synapses, this projection may excite hippocampal target neurons.
Collapse
Affiliation(s)
- R Nitsch
- Institute of Anatomy, Humboldt University Clinic (Charité), Berlin, Germany
| | | |
Collapse
|
155
|
Cheng HW, Jiang T, Brown SA, Pasinetti GM, Finch CE, McNeill TH. Response of striatal astrocytes to neuronal deafferentation: an immunocytochemical and ultrastructural study. Neuroscience 1994; 62:425-39. [PMID: 7830889 DOI: 10.1016/0306-4522(94)90377-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This ultrastructural and light microscopic immunocytochemical study describes the time course of anatomical changes that occur in striatal astrocytes in response to neuronal deafferentation in young adult rats and the coordinate distribution of two astrocytic proteins involved in reactive synaptogenesis, glial fibrillary acidic protein and clusterin. We found that following a unilateral lesion of the cerebral cortex, striatal astrocytes undergo a rapid ultrastructural transformation from a protoplasmic to a reactive type of astroglia and are the primary cells involved in the removal of degenerating axon terminals, but not axons of passage, from the neuropil. In addition, at 10 and 27 days postlesion, processes of reactive astrocytes are also seen to occupy vacant postsynaptic spines after degenerating presynaptic terminals are removed, suggesting that they may also participate in the reinnervation of the deafferented neurons. By immunocytochemistry, reactive astrocytes were characterized by a significant increase in the intensity of glial fibrillary acidic protein staining beginning at three days postlesion and lasting for at least 27 days postlesion. Reactive astrocytes were characterized by cellular hypertrophy and an increase in the density of immunoreactive processes distributed throughout the deafferented striatum. However, our analysis of astrocyte cell number found no evidence of astrocyte proliferation in response to the deafferentation lesion. Although previous in situ hybridization studies have reported elevated clusterin messenger RNA in reactive astrocytes after decortication, clusterin immunoreactivity was not seen in the cell soma of reactive astrocytes but was distributed as punctate deposits, ranging from 1 to 2 microns in diameter, within the neuropil of the deafferented striatum. At 10 days postlesion, the distribution of clusterin staining appeared as large aggregates of immunoreactive deposits adjacent to neurons. However, by 27 days postlesion, the aggregates of clusterin reaction product were replaced by a fine scattering of individual punctate deposits distributed evenly over the dorsal part of the deafferented striatum. These data support the notion that reactive astrocytes serve multiple, time-dependent roles in response to brain injury and are involved in both the removal of degenerative debris from the lesion site as well as in reforming the synaptic circuitry of the damaged brain. Our data suggest that, in response to decortication, reactive astrocytes are the primary cells responsible for removing degenerating axon terminals, but not axons of passage, from the deafferented striatum and that the coordinate increase in glial fibrillary acidic protein may serve to stabilize the extension of reactive astrocytic processes during phagocytosis.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H W Cheng
- Division of Neurogerontology, Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | | | | | | | |
Collapse
|
156
|
Clusmann H, Nitsch R, Heinemann U. Long lasting functional alterations in the rat dentate gyrus following entorhinal cortex lesion: a current source density analysis. Neuroscience 1994; 61:805-15. [PMID: 7838379 DOI: 10.1016/0306-4522(94)90403-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The functional consequences of lesions of the entorhinal cortex of rats were studied by analysing laminar distributions of stimulus induced field potentials in the dentate gyrus with a subsequent current source density analysis. Stimulation of the inner molecular layer elicits large excitatory postsynaptic potentials with small if any population spikes in the stratum granulare both in normal and lesioned animals. In lesioned animals middle molecular layer stimulation causes large excitatory sinks in the stratum moleculare without generation of population spikes in stratum granulare, while the same stimulation in slices from normal animals readily induces population spikes. The current source density analysis revealed a shift of current sinks induced by stimulation of either the inner or the middle molecular layer to common site. The N-methyl-D-aspartate receptor contribution to the current sink and source was found to be more prominent after middle molecular layer stimulation in comparison to inner molecular layers stimulation in the control group, while such a distinction could not be made in the lesioned group. Activation of mossy fibers did not reveal any significant differences between normal and lesioned animals. Following entorhinal cortex lesion sprouting of remaining afferents (e.g. commissural fibers) into the termination zones of the degenerated perforant path has been reported suggesting a compensatory replacement of excitatory synaptic input. However, persistent transneuronal dendritic alterations of neurons in the dentate gyrus have been observed which might result in altered dentate gyrus function. Our findings suggest that the reorganization process after entorhinal cortex lesion does not lead to full functional compensation of the lost perforant path input, resulting in an altered balance between excitation and inhibition.
Collapse
Affiliation(s)
- H Clusmann
- Institute of Neurophysiology, University of Cologne, Köln, F.R.G
| | | | | |
Collapse
|
157
|
Ueki A, Miwa C, Miyoshi K. Impairment in the acquisition of passive and active avoidance learning tasks due to bilateral entorhinal cortex lesions. J Neurol Sci 1994; 125:14-21. [PMID: 7964883 DOI: 10.1016/0022-510x(94)90236-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The relationship between the entorhinal cortex and learning behavior was examined. The initial stage of Alzheimer's disease has been shown to be characterized by neuropathological alteration in the entorhinal cortex, with the appearance of the greatest number of neuronal tangles and severe neuronal loss in comparison with other brain regions involved. This entorhinal cortex, because of its anatomical relationship to the hippocampus, may play a crucial role in memory formation. In this study, rats with bilateral ibotenic acid-induced lesions of the entorhinal cortices were tested for acquisition of passive and active avoidance learning tasks. These animals displayed no sensorimotor disturbances as shown by evaluation of locomotor activity and shock sensitivity. However, they did show impair acquisition of passive and active avoidance responses. On the other hand, when the lesions were induced after training, there was no extinction of the acquired passive and active avoidance responses. The results demonstrate the importance of the entorhinal cortex in learning acquisition and indicate that rats with partial neuronal loss in the entorhinal cortex may be a useful model for studying the memory disturbance of Alzheimer's disease.
Collapse
Affiliation(s)
- A Ueki
- Department of Neuropsychiatry, Hyogo College of Medicine, Japan
| | | | | |
Collapse
|
158
|
Parent A, Poirier J, Baccichet A, Quirion R. Regulation of 1,4,5-IP3, 1,3,4,5-IP4 and IP6 binding sites following entorhinal cortex lesions in rat brain. Neuroscience 1994; 61:565-73. [PMID: 7969930 DOI: 10.1016/0306-4522(94)90434-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A lesion of the entorhinal cortex produces a loss of more than 80% of the synapses in the outer molecular layer of the hippocampus in the rat. However, this synaptic loss is transient. Beginning a few days after denervation, new synapses are formed, virtually replacing the lost inputs within two months. Synaptic remodelling induced by entorhinal cortex lesion is associated with specific modifications of various neurotransmitters, hormones and growth factors. Many of these substances act at membrane bound-receptors to induce the hydrolysis of phosphatidylinositols generating various inositol phosphates. Some of the key members of this family include inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and inositol hexakisphosphate which are all associated with the maintenance Ca2+ homeostasis. To investigate the potential roles and/or alterations of inositol phosphates in entorhinal cortex lesions-induced neuronal plasticity, we quantified specific receptor sites for inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and inositol hexakisphosphate using their respective tritiated ligands, at different periods post-lesion corresponding to the degenerative and subsequent reinnervation phases. [3H]inositol 1,4,5-trisphosphate binding sites are maximally increased (30%) between two and eight days post-lesion in the hippocampal formation on both sides of the lesion. In the cortex, [3H]inositol 1,4,5-trisphosphate binding increased also bilaterally following the lesion. Changes in [3H]inositol 1,3,4,5-tetrakisphosphate binding are delayed and reduced (20% increase) in magnitude compared to these seen for [3H]inositol 1,4,5-trisphosphate binding. The maximal peak in [3H]inositol 1,3,4,5-tetrakisphosphate binding is observed between eight and 14 days after the lesion in the hippocampal formation and the cortex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Parent
- Douglas Hospital Research Centre, McGill University Québec, Canada
| | | | | | | |
Collapse
|
159
|
Melloni RH, Apostolides PJ, Hamos JE, DeGennaro LJ. Dynamics of synapsin I gene expression during the establishment and restoration of functional synapses in the rat hippocampus. Neuroscience 1994; 58:683-703. [PMID: 7514766 DOI: 10.1016/0306-4522(94)90448-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synapse development and injury-induced reorganization have been extensively characterized morphologically, yet relatively little is known about the underlying molecular and biochemical events. To examine molecular mechanisms of synaptic development and rearrangement, we looked at the developmental pattern of expression of the neuron-specific gene synapsin I in granule cell neurons of the dentate gyrus and their accompanying mossy fibers during the main period of synaptogenic differentiation in the rat hippocampus. We found a significant difference between the temporal expression of synapsin I messenger RNA in dentate granule somata and the appearance of protein in their mossy fiber terminals during the postnatal development of these neurons. Next, to investigate the regulation of neuron-specific gene expression during the restoration of synaptic contacts in the central nervous system, we examined the expression of the synapsin I gene following lesions of hippocampal circuitry. These studies show marked changes in the pattern and intensity of synapsin I immunoreactivity in the dendritic fields of dentate granule cell neurons following perforant pathway transection. In contrast, changes in synapsin I messenger RNA expression in target neurons, and in those neurons responsible for the reinnervation of this region of the hippocampus, were not found to accompany new synapse formation. On a molecular level, both developmental and lesion data suggest that the expression of the synapsin I gene is tightly regulated in the central nervous system, and that considerable changes in synapsin I protein may occur in neurons without concomitant changes in the levels of its messenger RNA. Finally, our results suggest that the appearance of detectable levels of synapsin I protein in in developing and sprouting synapses coincides with the acquisition of function by those central synapses.
Collapse
Affiliation(s)
- R H Melloni
- Department of Neurology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | |
Collapse
|
160
|
Abstract
By connecting the fascia dentata with the hippocampus proper, the axons of the granule cells, the mossy fibers, represent an important element of the main excitatory, trisynaptic pathway of the hippocampal formation. In this review the various synaptic connections of the mossy fibers are discussed. It turns out that the mossy fibers do not only establish synapses with the pyramidal neurons of regio inferior as traditionally assumed, but a variety of local circuit neurons as well as projection cells are also contacted by the mossy fibers. Thus there is an underestimated divergence of the impulse flow within the "trisynaptic" pathway at the level of the mossy fibers. Similarly, the pattern of afferent input to the granule cells, especially that of GABAergic neurons, is more complex than previously assumed. In this respect the concept of a unidirectional "trisynaptic" pathway certainly is an oversimplification. In particular, the hilus of the fascia dentata, that the mossy fibers traverse on their way to regio inferior, is often neglected in this concept. The hilar region comprises a large variety of morphologically and functionally distinct neuronal types that, to a large extent, are targets of hilar mossy fiber collaterals. By focusing on the mossy fiber system, an attempt is made in this review to summarize new data on hippocampal circuitries that have been accumulated since the original description of the trisynaptic pathway. This concept, which originally comprised the synapses of the perforant path fibers on dentate granule cells, the mossy fiber synapses on CA3 pyramidal neurons, and the synapses of the Schaffer collaterals on CA1 pyramidal cells, has been of great heuristic value but needs to be modified in view of recent morphological and physiological data.
Collapse
Affiliation(s)
- M Frotscher
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
161
|
Fagan AM, Gage FH. Mechanisms of sprouting in the adult central nervous system: cellular responses in areas of terminal degeneration and reinnervation in the rat hippocampus. Neuroscience 1994; 58:705-25. [PMID: 8190252 DOI: 10.1016/0306-4522(94)90449-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurons of the adult mammalian central nervous system are limited in their ability to regenerate in response to injury. In certain circumstances, however, such neurons can exhibit morphological plasticity (e.g. sprouting). Unilateral transection of the perforant path in the adult rat induces terminal degeneration of entorhinal axons within the molecular layer of the ipsilateral hippocampal dentate gyrus. Cholinergic (and other) afferents subsequently sprout within the denervated zone. We show that despite the breach in the blood-brain barrier at the site of the aspirative lesion, the barrier remains intact in the areas of terminal degeneration (and reinnervation), and peripheral monocytic macrophages do not infiltrate this area to participate in the degenerative and/or regenerative events. Perforant path transection does not induce expression of major histocompatibility antigens on reactive cells within the denervated zone, nor are T lymphocytes recruited to this area. T lymphocyte-deficient Nude rats exhibit normal cholinergic sprouting. Perforant path transection does induce rapid and robust proliferation of microglia, and astrocytes to a lesser extent, in areas undergoing terminal degeneration. Histological evaluation after antimitotic administration shows that this glial proliferation is not required for the subsequent neuronal sprouting events. These results show that the reparative process in this model system involves interactions between cells endogenous to the brain in a non-immune context. Knowledge of these cellular responses provides a framework from which to further investigate putative molecular signals involved in initiating the neuronal sprouting events. Discovering the cellular and molecular interactions taking place under sprouting conditions is likely to be critical for understanding the mechanisms of reactive neuronal growth and, furthermore, may provide insights as to why regeneration is so limited in the central nervous system.
Collapse
Affiliation(s)
- A M Fagan
- Department of Neurosciences, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
162
|
Magnusson KR. Changes in the localization of taurine-like immunoreactivity during development and regeneration in the rat brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 359:235-43. [PMID: 7887264 DOI: 10.1007/978-1-4899-1471-2_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In summary, taurine appeared to be present in certain cell types, such as cerebellar Purkinje cells and hippocampal pyramidal cells, throughout development to adulthood and a differential function for taurine between these periods would be difficult to hypothesize simply based on localization. However, in both the cerebellum and hippocampus, there was a period including post-natal day 7 in the cerebellum and including both post-natal days 7 and 14 in the hippocampus in which taurine appeared not to be confined only to the dendrites of the aforementioned cells, but seemed ubiquitously present in the molecular layers of these two brain regions. This suggests that the taurine may be present in significantly higher concentrations in certain cell types or subcellular structures during development than in the adult rat brain. The elucidation of these taurine-containing structures with the use of electron microscopy may provide some insight into the functions of taurine during these critical periods in development. Finally, taurine appeared to reverse its developmental decline in concentration in the presence of regeneration, suggesting that it may play a role in axonal sprouting and/or synapse formation.
Collapse
Affiliation(s)
- K R Magnusson
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523
| |
Collapse
|
163
|
Diekmann S, Nitsch R, Ohm TG. The organotypic entorhinal-hippocampal complex slice culture of adolescent rats. A model to study transcellular changes in a circuit particularly vulnerable in neurodegenerative disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:61-71. [PMID: 7897400 DOI: 10.1007/978-3-7091-9350-1_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The entorhinal-hippocampal system is severely altered in many neurodegenerative disorders with mnemonic malfunction, e.g. Alzheimer's, Parkinson's and Huntington's disease. The present approach characterizes an organotypic complex slice culture comprising both the entorhinal cortex and the hippocampal formation in order to establish a tool for experimental studies of the entorhinal-hippocampal interaction and its presumed neurodegenerative alterations in vitro. Slices were obtained from rats at about postnatal day 15 and maintained in culture using the interface technique. Thus, also structures known to be developed gradually during the first weeks postnatally are in accord to structures seen in adult rats. After two-three weeks in vitro, slices in the culture dish still revealed the typical morphological features of the entorhinal-hippocampal formation as visible with the dissecting microscope. Biocytin, which is taken up by and transported within living cells, labeled typical cell bodies, dendrites and axons of stellate neurons in layer II and pyramidal cells in layer III when applied to the outer layers of the entorhinal cortex. Small injections of biocytin within the dentate gyrus displayed living granule cells and the maintenance of their projection to the pyramidal cells in CA3, i.e., a typical suprapyramidal plexus of mossy fibers. The presence of axons of entorhinal neurons traveling towards the hippocampus and growth cones traversing the deep layers of the entorhinal cortex indicate that both brain regions are still interacting. Immunocytochemistry for calbindin D-28K revealed labeled neurons in layer II of the entorhinal cortex and dentate granule cells which are known to contain this calcium-binding protein.
Collapse
Affiliation(s)
- S Diekmann
- Zentrum der Morphologie, Johann Wolfgang-Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| | | | | |
Collapse
|
164
|
Kahle JS, Cotman CW. Synaptic reorganization in the hippocampus: an electrophysiological analysis. Ann N Y Acad Sci 1993; 702:61-74. [PMID: 8109878 DOI: 10.1111/j.1749-6632.1993.tb17242.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J S Kahle
- Irvine Research Unit in Brain Aging, University of California 92717-4550
| | | |
Collapse
|
165
|
Frotscher M, Heimrich B. Formation of layer-specific fiber projections to the hippocampus in vitro. Proc Natl Acad Sci U S A 1993; 90:10400-3. [PMID: 8234306 PMCID: PMC47782 DOI: 10.1073/pnas.90.21.10400] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The factors determining the layer-specific termination of hippocampal afferents are not known. Previous studies have suggested that the laminated termination of afferent fiber systems is caused by their sequential ingrowth during development. Here we have tested this temporal hypothesis of fiber segregation by an in vitro confrontation system in which the sequential arrival of entorhinal and commissural fibers was reversed. However, despite the temporal reversal of ingrowth, both fiber systems terminated in their normal positions. We conclude that the sequence of fiber ingrowth does not determine the lamination of hippocampal afferents.
Collapse
Affiliation(s)
- M Frotscher
- Institute of Anatomy, University of Freiburg, Federal Republic of Germany
| | | |
Collapse
|
166
|
Sheppard AM, Wu JE, Staubli U, Perlmutter LS. Changes in calpain and brain spectrin immunoreactivity accompany sprouting in the deafferented hippocampus. Synapse 1993; 15:239-42. [PMID: 8278900 DOI: 10.1002/syn.890150309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A M Sheppard
- Pulmonary and Critical Care Division, Washington University Medical School, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
167
|
Anthes DL, LeBoutillier JC, Petit TL. Structure and plasticity of newly formed adult synapses: a morphometric study in the rat hippocampus. Brain Res 1993; 626:50-62. [PMID: 8281453 DOI: 10.1016/0006-8993(93)90562-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Increasing evidence suggests that synaptic structure represents a plastic feature of the neuron, although the plastic nature of newly formed and existing adult synapses has not yet been fully characterized. Following ipsilateral entorhinal cortical lesions, the rat dentate gyrus offers an excellent model for studying synaptogenesis and plasticity in the adult central nervous system. Unilateral entorhinal lesions were performed in young adult male rats. Synaptic counts and structural features were quantified at 3, 6, 10, 15, and 30 days post-lesion. The lesions resulted in an 88% synaptic loss in the denervated dentate middle molecular layer, which was followed by a period of rapid synaptogenesis. Synaptic element size decreased during the period of maximal synaptogenesis, which was associated with a peak in the presence of non-vesicular and perforated synapses. Following this period, synapses showed a gradual increase in the size of their pre- and postsynaptic elements. These data support the suggestion that newly formed adult synapses have smaller synaptic components than existing adult synapses (resembling synapses seen during development), and increase in size over time with usage. The results are discussed in terms of synaptic structural development and plasticity in the adult central nervous system.
Collapse
Affiliation(s)
- D L Anthes
- Department of Psychology, University of Toronto, Scarborough, Ont., Canada
| | | | | |
Collapse
|
168
|
Nitsch R, Frotscher M. Transneuronal changes in dendrites of GABAergic parvalbumin-containing neurons of the rat fascia dentata following entorhinal lesion. Hippocampus 1993; 3:481-90. [PMID: 8269039 DOI: 10.1002/hipo.450030409] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The perforant path fibers from the entorhinal cortex form synapses with both granule cells and GABAergic, parvalbumin-containing (PARV) nongranule cells. The authors recently reported a persistent reduction of PARV-positive dendrites in the termination zones of entorhinal fibers in the hippocampus proper and fascia dentata after lesion of the entorhinal cortex. In the present study the authors analyzed the effects of de-entorhination on the ultrastructure of postsynaptic PARV-positive dendrites in the molecular layer of the fascia dentata. PARV immunocytochemistry was performed 2, 8, 55, and 360 days after an ipsilateral entorhinal lesion and, for comparison, 10 days after an ipsilateral fimbria-fornix transection that disconnects the hippocampus from its septal and commissural afferents. Two days after entorhinal lesion, the authors observed swelling of the tissue close to the hippocampal fissure. Adjacent distal dendritic tips of PARV-positive dentate neurons appeared bloated and reduced in number. Reduction of PARV-positive dendrites in the former perforant path termination zone persisted 55 days after entorhinal lesion and could still observed after postlesional survival times for 1 year. Degenerating axon terminals were still present 55 days following lesion and PARV-positive dendrites exhibited abnormal invaginations. Fimbria transection did not result in similar dendritic changes in PARV-positive neurons. The results indicate a long-lasting process of reorganization in the molecular layer of the fascia dentata following entorhinal lesion and persisting changes in the morphology of PARV-immunoreactive dendrites. Entorhinal fibers seem to play a specific role for the maintenance of these dendrites, since similar changes did not occur following removal of septal and commissural fibers.
Collapse
Affiliation(s)
- R Nitsch
- Institute of Anatomy, University of Freiburg, Germany
| | | |
Collapse
|
169
|
Arai R, Yamada K, Fujii T, Deura S, Kobayashi K, Nagatsu T, Nagatsu I. Evidence for localization of the transgene product within axon terminals in the dentate gyrus of transgenic mice expressing human phenylethanolamine N-methyltransferase. A light and electron microscopic immunocytochemical study. Brain Res 1993; 621:141-4. [PMID: 8221066 DOI: 10.1016/0006-8993(93)90310-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of this study was to examine whether protein products of a transgene are localized within axon terminals in transgenic mice. We have previously created transgenic mice containing a chimeric gene composed of the human dopamine beta-hydroxylase gene promoter and the human phenylethanolamine N-methyltransferase (PNMT) cDNA. In the present study, we used an antiserum that detects specifically human PNMT but not mouse PNMT, and examined immunocytochemically the hippocampal formation of the transgenic mice. At a light microscopic level, immunoreactivity of human PNMT was found in fiber plexuses in the outer molecular layer of the dentate gyrus, and in cell bodies of layer 2 of the entorhinal cortex. At an electron microscopic level, in the outer molecular layer of the dentate gyrus, human PNMT immunoreactivity was observed in axon terminals that formed synapses with dendritic spines. The present study provides the evidence for localization of the transgene's protein products in axon terminals, suggesting axonal transport of the products.
Collapse
Affiliation(s)
- R Arai
- Department of Anatomy, School of Medicine, Fujita Health University, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
170
|
Affiliation(s)
- C H Horner
- Department of Anatomy, Trinity College, Dublin, Ireland
| |
Collapse
|
171
|
O'Donnell D, Baccichet A, Seckl JR, Meaney MJ, Poirier J. Entorhinal cortex lesions transiently alter glucocorticoid but not mineralocorticoid receptor gene expression in the rat hippocampus. J Neurochem 1993; 61:356-9. [PMID: 8390564 DOI: 10.1111/j.1471-4159.1993.tb03577.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Entorhinal cortex lesions destroy an important hippocampal input and lead to axonal sprouting in the dentate gyrus. Glucocorticoids are known to inhibit this reinnervation process. In the present study, we examined changes in hippocampal glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) mRNA expression using in situ hybridization following unilateral entorhinal cortex lesioning (ECL) in the rat. As early as 1 day postlesioning, a 33% bilateral decrease in GR mRNA expression was observed in the dentate gyrus. By contrast, a 36% bilateral increase in GR mRNA expression was detected in the CA1 cell field. GR mRNA levels in both regions returned to those of control animals 2 days postlesioning, indicating that these effects were transient. Adjacent sections hybridized with probes to MR mRNA revealed no changes in hippocampal MR gene expression as a result of ECL. The selective decrease in GR mRNA expression observed in the dentate gyrus following ECL is specific to the hippocampal subregion targeted for reactive synaptogenesis and thus may serve to attenuate the inhibitory actions of circulating glucocorticoids.
Collapse
Affiliation(s)
- D O'Donnell
- Douglas Hospital Research Center, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
172
|
Poirier J, Baccichet A, Dea D, Gauthier S. Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats. Neuroscience 1993; 55:81-90. [PMID: 8350994 DOI: 10.1016/0306-4522(93)90456-p] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Apolipoprotein E is synthesized and secreted by astrocytes in the hippocampus following lesions of the entorhinal cortex. It was proposed that apolipoprotein E, by analogy to its role in cholesterol transport in circulation, could be involved in the salvage and reutilization of non-esterified cholesterol released during terminal breakdown. The salvaged cholesterol could then be transported to neurons by apolipoprotein E-complexes and taken up via the apolipoprotein E/apolipoprotein B (low-density lipoprotein) receptor. To test this hypothesis, we have examined low-density lipoprotein receptor binding in brain sections of rats undergoing hippocampal reinnervation. The number of neuronal cells labelled by fluorescent Dil-low-density lipoprotein as well as the density of [125I]low-density lipoprotein binding sites in the dentate gyrus were found to increase in parallel with the extent of cholinergic reinnervation occurring in the deafferented hippocampus. In contrast, hippocampal cholesterol synthesis fell by more than 60% at eight days post-lesion, but eventually returned to control levels at 30 days post-lesion. The transient loss of cholesterol synthesis coincided with a peak in hippocampal apolipoprotein E expression. A concomitant accumulation of sudanophilic lipids (cholesterol esters and phospholipids) was detected in the outer molecular layer of the dentate gyrus and in the hilar region. The present findings suggest that non-esterified cholesterol released during terminal breakdown is esterified, transported via the apolipoprotein E transport system to neurons undergoing reinnervation, and take-up through the low-density lipoprotein receptor pathway where it is presumably used as a precursor molecule for the synthesis of new synapses and terminals.
Collapse
Affiliation(s)
- J Poirier
- Douglas Hospital Research Centre, Québec, Canada
| | | | | | | |
Collapse
|
173
|
Day JR, Laping NJ, Lampert-Etchells M, Brown SA, O'Callaghan JP, McNeill TH, Finch CE. Gonadal steroids regulate the expression of glial fibrillary acidic protein in the adult male rat hippocampus. Neuroscience 1993; 55:435-43. [PMID: 8377935 DOI: 10.1016/0306-4522(93)90512-e] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study demonstrates that gonadal steroids (estradiol, testosterone, dihydrotestosterone) can regulate the expression of glial fibrillary acidic protein in the adult male rat brain. Previously, we showed that castration of adult male rats increased glial fibrillary acidic protein messenger RNA in the hippocampus and that this increase was additive with the increase induced by deafferenting entorhinal cortex lesions [Day et al. (1990) Molec. Endocr. 4, 1995-2002 . We extended these effects of castration and entorhinal cortex lesion to glial fibrillary acidic protein, using immunoassays. Furthermore, we found regional differences in responses to castration and inhibited by sex steroids. In contrast, hypothalamic glial fibrillary acidic protein expression was inhibited by castration. Similar regional differences were also shown for astrocyte glial fibrillary acidic protein distribution by immunocytochemistry. The regional specificity of glial fibrillary acidic protein expression after castration and sex steroid replacement is pertinent to the role of astrocytes in synaptic plasticity in unlesioned adults as well as in responses to lesions where the steroid milieu has been shown to influence sprouting.
Collapse
Affiliation(s)
- J R Day
- Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | | | | | | | | | |
Collapse
|
174
|
Finsen BR, Tønder N, Xavier GF, Sørensen JC, Zimmer J. Induction of microglial immunomolecules by anterogradely degenerating mossy fibres in the rat hippocampal formation. J Chem Neuroanat 1993; 6:267-75. [PMID: 7691084 DOI: 10.1016/0891-0618(93)90048-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Degeneration of myelinated axonal connections is generally held to provide a strong stimulus for microglial expression of major histocompatibility complex (MHC) class II antigen. The present study demonstrates that strong microglial reactions also are induced by axonal and terminal degeneration of the unmyelinated hippocampal mossy fibres. After destruction of dentate granule cells by focal injections of colchicine (or transection of the mossy fibres) in adult rats, immunocytochemical analysis of the mossy fibre terminal fields in the dentate hilus and regio inferior of hippocampus proper (CA3) revealed profound changes in microglial cells with increased expression of the complement receptor type 3 and induction of MHC class I antigen, leukocyte common antigen, lymphocyte function-associated antigen-1 and MHC class II antigen. The microglial reaction, first detectable 4 days after the lesion, became maximal during the third postlesional week, and had almost vanished 6 weeks after the lesion. From recent studies we know that anterograde degeneration of myelinated Schaffer-collaterals from CA3 to regio superior of hippocampus proper and myelinated entorhinal perforant path fibres to fascia dentata is accompanied by microglial expression of MHC class I antigen, but not class II. Together with the present findings, this demonstrates that myelin debris is neither necessary nor sufficient to induce expression of microglial MHC class II antigen within the hippocampus.
Collapse
Affiliation(s)
- B R Finsen
- PharmaBiotec, Institute of Neurobiology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
175
|
Kar S, Baccichet A, Quirion R, Poirier J. Entorhinal cortex lesion induces differential responses in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in the rat hippocampal formation. Neuroscience 1993; 55:69-80. [PMID: 8350993 DOI: 10.1016/0306-4522(93)90455-o] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The hippocampus can be induced by deafferentation to selectively reorganize its neuronal input. Entorhinal cortex lesion, which causes degeneration of the perforant pathway, evokes sprouting of septal afferents as well as glutamatergic commissural/associational fibers in the deafferentated zone of the molecular layer of the dentate gyrus. Although the process of reactive synaptogenesis that follows deafferentation has been extensively studied, at present little is known about its molecular basis and the mechanism of initiation. In this study, following unilateral lesion of the entorhinal cortex, the time-course of possible alterations of insulin-like growth factors I and II, and insulin binding sites were evaluated by in vitro quantitative receptor autoradiography. [125I]Insulin-like growth factor I receptor binding sites did not exhibit any significant variation between the contralateral and ipsilateral hippocampal formation at any time periods following lesion except in the molecular layer of the dentate gyrus (P < 0.05) at day 8. However, when compared with the unlesioned animals, a differential time-dependent response of [125I]insulin-like growth factor I binding sites was noted in selective layers of the hippocampus. [125I]Insulin-like growth factor II receptor binding sites showed a significant decrease (P < 0.05) in the ipsilateral granular cell layer of the dentate gyrus only at day 14 post lesion. Interestingly, compared to controls, a dramatic bilateral increase (P < 0.05) in [125I]insulin-like growth factor II binding was evident between days 1 and 8 in most layers of the hippocampal formation. A lesion-induced bilateral increase (P < 0.05) in [125I]insulin binding sites was evident in all layers of the hippocampus between two to eight days and at 30 days post lesion. In selective layers, however, a significant increase (P < 0.05) in [125I]insulin binding sites was also observed at days 1 and 14 after lesion. These results, which are compatible with the process of degeneration and/or sprouting of the terminal fibers, suggest possible involvement of insulin-like growth factors and insulin in the sequence of molecular events that occur to facilitate neuronal repair and to promote neuronal survival following entorhinal cortex lesion.
Collapse
Affiliation(s)
- S Kar
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
176
|
Kahle JS, Ułas J, Cotman CW. Increased sensitivity to adenosine in the rat dentate gyrus molecular layer two weeks after partial entorhinal lesions. Brain Res 1993; 609:201-10. [PMID: 8508304 DOI: 10.1016/0006-8993(93)90874-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The molecular layer of the dentate gyrus exhibits extensive circuit and receptor reorganization after entorhinal lesions and in Alzheimer's disease, including decreased adenosine (A1) receptor binding in the terminal zone of damaged perforant path fibers. We examined the adenosine-sensitivity of evoked synaptic activity recorded from the rat dentate gyrus molecular layer in hippocampal slices prepared after electrolytic lesions were placed in approximately the middle third of the entorhinal cortex. Extracellular field potentials (EFPs) recorded in slices prepared from animals two days post-lesion were small, upward-going, and exhibited paired-pulse potentiation, but by two weeks post-lesion EFPs had recovered to large, downward-going responses that exhibited paired-pulsed depression. EFPs recorded from two week post-lesion slices were about 2-fold more sensitive (P < or = 0.05) to exposure to adenosine when compared to EFPs recorded from slices from unlesioned animals. Adenosine-induced reduction of paired-pulse depression was similar between unlesioned and post-lesion slices. AChE histochemistry performed after recording revealed dense staining in the dentate gyrus molecular layer of post-lesion slices as compared to slices from unlesioned animals, confirming that sprouting of cholinergic fibers occurred as expected from previous entorhinal lesion studies. Autoradiography performed on adjacent slices showed a decrease in binding to A1-adenosine receptors in the dentate gyrus molecular layer in post-lesion slices as compared to slices from unlesioned animals, indicating that there was a loss of presynaptically located A1-adenosine receptors on damaged perforant pathway terminals. These results indicate that, in addition to the recovery of the major excitatory signal to the hippocampus after entorhinal cell loss, this signal is more sensitive to modulation by adenosine, suggesting an increase in A1-adenosine receptor efficacy in the reinnervated region.
Collapse
Affiliation(s)
- J S Kahle
- Irvine Research Unit in Brain Aging, Department of Psychobiology, University of California 92717-4550
| | | | | |
Collapse
|
177
|
Parent A, Dea D, Quirion R, Poirier J. [3H]phorbol ester binding sites and neuronal plasticity in the hippocampus following entorhinal cortex lesions. Brain Res 1993; 607:23-32. [PMID: 8481798 DOI: 10.1016/0006-8993(93)91485-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Entorhinal cortex lesioning (ECL) produces a loss of more than 80% of the synapses in the outer molecular layer of the hippocampus. However, the loss of synapses is transient. Beginning a few days after denervation, new synapses are formed, virtually replacing the lost inputs within 2 months. Synaptic remodelling induced by ECL is associated with specific modifications of neurotransmitters, hormones and growth factors. Particularly, protein kinase C (PKC) plays important functional roles in receptor-mediated transmembrane signal transduction. PKC is also involved in various aspects of synaptic plasticity, such as cellular growth and differentiation. To investigate further the potential roles of PKC in synaptic plasticity observed in the ECL model, [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding, a putative marker of PKC, was examined at different times post-lesion. [3H]PDBu binding sites transiently decreased bilaterally at 2 and 8 days post-lesion (20%) in different laminae and sub-fields of the rostral hippocampus but returned to control values at 14 and 30 days post-lesion. In caudal portion of the hippocampus, [3H]PDBu binding was also decreased at 2 days post-lesion but only on the contralateral side. Interestingly, [3H]PDBu binding sites in the cortex increased by up to 30% in the contralateral side while no significant change was observed in the ipsilateral side at any time post-lesion. It is known that PKC can be regulated by different systems following alterations of neuronal and glial activity. We suggest that these could be involved in the response of PKC and [3H]PDBu binding sites following ECL. Moreover, PKC seemed to be modified in different brain areas in neuronal inputs from the entorhinal cortex and the subsequent reinnervation process.
Collapse
Affiliation(s)
- A Parent
- Douglas Hospital Research Centre, McGill University, Verdun, Qué, Canada
| | | | | | | |
Collapse
|
178
|
Poirier J, Dea D, Baccichet A, Gauthier S. Modulation of gamma-actin and alpha 1-tubulin expression by corticosterone during neuronal plasticity in the hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 15:263-8. [PMID: 1331681 DOI: 10.1016/0169-328x(92)90117-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is given for altered gene expression of gamma-actin in the hippocampus in response to entorhinal cortex lesion (ECL). Time course analysis reveals a progressive repression of gamma-actin expression between 4 and 14 days post-lesion, coinciding with the early and middle phases of the hippocampal reinnervation process. RNA prevalence returns to near control values at 30 days post-lesion. Corticosterone administration, which is known to impair the reinnervation process in ECL rats, prevents the lesion-induced reduction in gamma-actin expression and blocks the induction of alpha 1-tubulin in the deafferented hippocampus. The timing of response of gamma-actin to ECL and its modulation by glucocorticoid administration support suggestions that gamma-actin has an important role to play in neuronal cytoarchitecture remodelling during hippocampal reinnervation.
Collapse
Affiliation(s)
- J Poirier
- Douglas Hospital Research Centre, Verdun, Que, Canada
| | | | | | | |
Collapse
|
179
|
Abstract
Evidence is accumulating that synapse reorganization already starts during development, soon after first synapses appear. Although remodeling continues throughout ontogenesis, there are apparently (critical) periods which are characterized by enhanced synaptic reorganization. In certain parts of the peripheral and central nervous system, synapses may undergo remodeling which leads to changes in their transmission efficiency or complete elimination of the synaptic junctions, even in adulthood. Synaptic reorganization includes progressive and regressive changes on branches of dendritic and/or axonal processes that accompany the formation and elimination of synapses. Three modes of elimination are presently known: Physiological cell death of synaptically connected neurons is involved, especially during certain developmental periods, during hormonally induced metamorphosis and in the olfactory bulb. Synaptic disconnection ("stripping") and lysosomal degradation predominantly of presynaptic elements occur under different conditions. In order to undergo plastic changes, neurons seem to respond to exogenous or intrinsic factors such as lesions (partial deafferentation and axotomy), long-lasting changes in neuronal activity (e.g. drug application and sensory deprivation), hormonal influences (e.g. sexual hormones) or learning conditions.
Collapse
Affiliation(s)
- J R Wolff
- Department of Anatomy, University of Göttingen, Germany
| | | |
Collapse
|
180
|
Farias PA, Low SQ, Peterson GM, Ribak CE. Morphological evidence for altered synaptic organization and structure in the hippocampal formation of seizure-sensitive gerbils. Hippocampus 1992; 2:229-45. [PMID: 1308187 DOI: 10.1002/hipo.450020304] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Seizure-sensitive (SS) and seizure-resistant (SR) Mongolian gerbils were used for three experiments. In the first experiment, GABAergic neurons and terminals in the dentate gyrus were localized with GAD immunocytochemistry. GAD-positive puncta adjacent to cell bodies of GABAergic pyramidal basket cells were counted in light microscopic preparations. The pyramidal basket cells of SS gerbils displayed a significant threefold increase in the number of GAD-positive puncta associated with their cell bodies as compared to those from SR gerbils. These data indicate that the number of GABAergic synapses with pyramidal basket cell bodies in the dentate gyrus was greater in SS gerbils. An electron microscopic (EM) analysis of GAD immunocytochemical preparations showed GAD-positive axon terminals forming symmetric synapses with GAD-positive basket cell bodies. However, numerous terminals forming symmetric axosomatic synapses with basket cells were not immunopositive, and other synapses formed by terminals were not classified because reaction product in the cell bodies obscured postsynaptic densities. Therefore, routine EM preparations were analyzed for symmetric and asymmetric axosomatic synapses on pyramidal basket cells and granule cells of SS and SR gerbils. The data obtained from these preparations showed that the pyramidal basket cells of SS gerbils had a selective increase in the number of symmetric synapses per 10 microns of soma as compared to those of the SR gerbils. In contrast, the granule cells did not show any significant difference in the number of either symmetric or asymmetric axosomatic synapses between SS and SR gerbils. These results indicate that pyramidal basket cell bodies of SS gerbils have more inhibitory synapses than do those of SR gerbils. The third experiment used SS gerbils with lesions of the perforant pathway that stopped seizure activity (Ribak, C. E., and S. U. Khan (1987) The effects of knife cuts of hippocampal pathways on epileptic activity in the seizure-sensitive gerbil. Brain Res. 418:251-260). The percentage of axon terminal area occupied by synaptic vesicles and their packing density was determined in CA3 mossy fiber boutons and compared for lesioned and nonlesioned SS gerbils. The mossy fibers of nonlesioned SS gerbils showed a depletion of synaptic vesicles consistent with the previous results of Peterson et al. (Peterson, G. M., C. E. Ribak, and W. H. Oertel (1985) A regional increase in the number of hippocampal GABAergic neurons and terminals in the seizure-sensitive gerbil. Brain Res. 340:384-389).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P A Farias
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| | | | | | | |
Collapse
|
181
|
Nitsch R, Frotscher M. Reduction of posttraumatic transneuronal "early gene" activation and dendritic atrophy by the N-methyl-D-aspartate receptor antagonist MK-801. Proc Natl Acad Sci U S A 1992; 89:5197-200. [PMID: 1534412 PMCID: PMC49257 DOI: 10.1073/pnas.89.11.5197] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The removal of a major hippocampal afferent system, the glutamatergic fibers from the entorhinal cortex, results in transneuronal changes in postsynaptic inhibitory neurons using gamma-aminobutyric acid (GABA) as a neurotransmitter. This study shows that these transneuronal alterations are reduced by the selective N-methyl-D-aspartate (NMDA) receptor antagonist (+)-MK-801. Thus, systemic injection of (+)-MK-801 prior to and after entorhinal lesion abolishes the retraction of distal dendrites from the termination zones of degenerating entorhinal fibers and reduces the swelling of their distal segments. Also, entorhinal lesion results in the appearance of c-fos protein-like immunoreactivity in hippocampal neurons and glial cells, which again is blocked by (+)-MK-801 administration. These data suggest that NMDA receptor-mediated neurotoxicity due to postlesional glutamate elevation results in early gene expression and in transneuronal dendritic changes. Similar processes may play a role in Alzheimer's disease, since there is a severe degeneration of the glutamatergic entorhino-hippocampal projection in this neurodegenerative disorder.
Collapse
Affiliation(s)
- R Nitsch
- Institute of Anatomy, University of Freiburg, Federal Republic of Germany
| | | |
Collapse
|
182
|
Slomianka L. Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat. Neuroscience 1992; 48:325-52. [PMID: 1376449 DOI: 10.1016/0306-4522(92)90494-m] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent methods allow the study of neurons that contain zinc in synaptic vesicles of their boutons (Timm-stainable boutons) by the intravital precipitation (local or throughout the CNS) of the vesicular zinc with selenium compounds and its subsequent retrograde transport to the parent neurons, where the precipitate can be silver enhanced. The present study is a description of the distribution of zinc-containing neurons, their possible connections and their terminal fields within the hippocampal region of the rat. Problems inherent to the methods are addressed. Finally, based on the results and a review of literature, the possible function of zinc in the hippocampal region is considered. Neurons which contain silver-enhanced precipitates were observed in layers II, V and VI of the lateral entorhinal area and in layers V and VI of the medial entorhinal area. In the parasubiculum, labeled cells were seen in layer II/III of the parasubiculum a and in layer V. Labeled cells in the presubiculum were concentrated in layers III and V, in the hippocampal pyramidal cell layer and the dentate granule cell layer, but neurons containing precipitates were largely absent from the subiculum. Zinc-containing axonal boutons defined subpopulations within principal hippocampal neuron populations. Within layer II of the lateral entorhinal cortex and the pyramidal cell layer for regio inferior deeply situated neurons were labeled, whereas superficially placed pyramidal cells were labeled in regio superior. The neuropil staining described in the present study corresponded to that found in earlier studies. However, glial and vascular staining or unspecific background were largely absent, and the neuropil staining could unequivocally be identified light microscopically. Methodological problems are most prominently reflected in unstained mossy fibers in some animals. Based on series from animals treated with decreasing doses of sodium selenite and increased survival times, this problem can be related to small amounts of circulating reactive selenium and a competition of zinc compartments (vesicles) for the selenium. Staining will fail where the competition prevents individual compartments from reaching a threshold amount of zinc precipitate for silver amplification. A guide to evaluate histological material is provided. The distribution of zinc-containing boutons and their cells of origin indicate that zinc-containing and zinc-negative projections are not organized as parallel pathways. The mossy fibers provide an example of a pure zinc-containing pathway. Projections from regio superior to the dorsal presubiculum are likely to be zinc-negative while projections from the same area to the subiculum are zinc-containing.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L Slomianka
- Department of Neurobiology, Aarhus University, Denmark
| |
Collapse
|
183
|
Popov VI, Bocharova LS. Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 1992; 48:53-62. [PMID: 1584425 DOI: 10.1016/0306-4522(92)90337-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mossy fibre synapses on the CA3 hippocampal neurons in the brain of ground squirrels repeatedly undergo a striking structural transformation during hibernation. In the middle of hibernation bout the giant complex mossy fibre synapses have a reduced number of dendritic spine infoldings that are smaller and have a decreased number of postsynaptic densities in comparison with mossy fibre synapses of active animals. Two hours after arousal all these parameters of mossy fibre synapses increase and significantly exceed their levels not only in torpid but in active euthermic animals between bouts of torpor. The longer postsynaptic densities and the greater proportion of perforated postsynaptic densities were found soon after arousal. These rapid, reversible and repeated changes indicate a cyclic process of partial denervation/reinnervation of hippocampal neurons by mossy fibres in the course of the innate, stereotyped behaviour.
Collapse
Affiliation(s)
- V I Popov
- Institute of Cell Biophysics, Academy of Sciences, Pushchino, Moscow Region, Russia
| | | |
Collapse
|
184
|
Popov VI, Bocharova LS, Bragin AG. Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 1992; 48:45-51. [PMID: 1584424 DOI: 10.1016/0306-4522(92)90336-z] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantitative Golgi study of hippocampal pyramidal neurons of ground squirrels showed rapid and profound transformation of their apical dendrites in the course of hibernation. The dendrites were significantly shorter, less branched and had fewer dendritic spines in the middle of hibernation bout than in the active euthermic ground squirrels between bouts. After arousal from torpor, within 2 h dendrites completely restored their structure. During hibernation, season remodelling of the hippocampal dendrites occurs repeatedly during each torpor-activity cycle.
Collapse
Affiliation(s)
- V I Popov
- Institute of Cell Biophysics, Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
185
|
Abstract
GABA-containing axon terminals were observed in the distal two-thirds of the dentate molecular layer to contact spines and dendrites of the granule cells. These contacts have the morphological characteristics of inhibitory synapses: they contain pleomorphic vesicles and have symmetrical junctional specializations. Convergence of an asymmetrical, non-GABAergic and a symmetrical, GABAergic synapse on one spine was often observed.
Collapse
Affiliation(s)
- E Fifková
- Department of Psychology, University of Colorado, Boulder 80309
| | | | | |
Collapse
|
186
|
Mizumori SJ, Ward KE, Lavoie AM. Medial septal modulation of entorhinal single unit activity in anesthetized and freely moving rats. Brain Res 1992; 570:188-97. [PMID: 1617411 DOI: 10.1016/0006-8993(92)90581-s] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reversible inactivation of the medial septal area results in a spatial memory impairment and selective disruption of hilar/CA3, but not CA1, location-specific discharge. The present study examined the possibility that such septal deafferentation produces effects on hippocampal function by altering physiological properties of the primary input and output structures for hippocampus, the entorhinal cortex and the subiculum, respectively. Single unit activity of hippocampal, entorhinal, and subicular cells was recorded before, during, and after septal injection of lidocaine in anesthetized rats. When compared to hippocampal cells, relatively few subicular and entorhinal cells showed a change in mean firing rate following septal inactivation. Entorhinal unit responses to septal inactivation (via tetracaine injection) were also examined in freely moving rats performing a spatial maze task. About one-third of entorhinal cells showed enhanced or reduced firing rates of 40% or more. Also, the spatial distribution of cells found in the superficial, but not deep, entorhinal layers became less clear following septal inactivation. Together, these data are consistent with the hypothesis that manipulation of the medial septum affects hippocampal function via its septosubicular and septo-entorhinal projections in addition to the more direct septohippocampal pathway. Since entorhinal cortical function was affected by tetracaine injection into the septum, it does not appear that direct entorhinal-CA1 afferents were primarily responsible for the maintenance of CA1 location-specific neural activity in previous septal inactivation experiments. Rather, these data are consistent with the hypothesis that the persistence of CA1 place fields was accomplished by intrahippocampal neural network operations.
Collapse
Affiliation(s)
- S J Mizumori
- Department of Psychology, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
187
|
Wells J, Vietje BP, Wells DG, Paradee J. Isomorphic activation of astrocytes in the somatosensory thalamus. Glia 1992; 5:154-60. [PMID: 1533614 DOI: 10.1002/glia.440050210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural recovery in the rat somatosensory thalamus after the loss of one of its major inputs provided a model for studying the changes in astrocytes associated with reactive synaptogenesis. The temporal separation of the initiation of Wallerian degeneration and reactive synaptogenesis permitted astrocytic changes to be correlated either with the removal of degeneration, early in the recovery sequence, or with synaptogenesis, later in recovery. Over a period of post-lesion times ranging from 3 days to 13.5 months, GFAP-positive astrocytic fibers were quantified and the population density of S-100-positive astrocytic cell bodies was determined in the ventral posterolateral nucleus (VPL). The relative area of astrocytic cell bodies was measured at an early peak of the increased GFAP immunoreactivity (4-5 days post-lesion). The normal side of VPL (c-VPL) was compared to the deafferented side of VPL (d-VPL) and the ratio d-VPL/c-VPL was determined. Astrocytes in d-VPL underwent a minimal isomorphic activation with little or no hypertrophy or proliferation but with a large increase in GFAP immunoreactivity. Prior to the initiation of synaptogenesis, there was a decrease both in GFAP immunoreactivity and in the population density of VPL astrocytes. The decreases in the recovery curves suggested that a suppression of the influence of astrocytes may have been important for sprouting and/or synaptogenesis. In other systems, where synaptogenesis was initiated early in the recovery sequence, the suppression of astrocytes that was related to synaptogenesis may have been masked by astrocytic changes related to the removal of degeneration.
Collapse
Affiliation(s)
- J Wells
- Department of Anatomy and Neurobiology, University of Vermont, Burlington 05405
| | | | | | | |
Collapse
|
188
|
Geinisman Y, deToledo-Morrell L, Morrell F. Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res 1991; 566:77-88. [PMID: 1814558 DOI: 10.1016/0006-8993(91)91683-r] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-term potentiation (LTP) is characterized by a long-lasting enhancement of synaptic efficacy which may be due to an increase in synaptic numbers. The present study was designed to verify the validity of this suggestion using recently developed unbiased methods for synapse quantitation. LTP was elicited in young adult rats by high-frequency stimulation of the medial perforant path carried out on each of 4 consecutive days. Potentiated animals were sacrificed 1 h after the fourth stimulation. Stimulated but not potentiated and implanted but not stimulated rats served as controls. Synapses were examined in the middle (MML) and inner (IML) molecular layer of the hippocampal dentate gyrus. Using the stereological disector technique, unbiased estimates of the number of synapses per neuron were differentially obtained for the following morphological synaptic types: axodendritic synapses involving dendritic shafts, non-perforated axospinous synapses exhibiting a continuous postsynaptic density (PSD) and perforated axospinous synapses distinguished by a fenestrated, horseshoe-shaped or segmented PSD. A major finding of this study is that the induction of LTP is accompanied by a selective increase in the number of synapses with segmented PSDs. This change was detected only in the potentiated synaptic field (MML), but not in an immediately adjacent one (IML) which was not directly stimulated during the induction of LTP. It is strongly suggested by the latter finding that the increase in the number of axospinous synapses exhibiting segmented PSDs is associated with LTP. Such a highly selective modification of connectivity, which involves only one particular subtype of synapses in the potentiated synaptic field, is likely to represent a structural substrate of the enduring augmentation of synaptic efficacy typical of LTP.
Collapse
Affiliation(s)
- Y Geinisman
- Department of CMS Biology, Northwestern University Medical School, Chicago, IL 60611
| | | | | |
Collapse
|
189
|
Gehrmann J, Schoen SW, Kreutzberg GW. Lesion of the rat entorhinal cortex leads to a rapid microglial reaction in the dentate gyrus. A light and electron microscopical study. Acta Neuropathol 1991; 82:442-55. [PMID: 1785257 DOI: 10.1007/bf00293378] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stereotaxic lesioning of the entorhinal cortex leads to an anterograde axonal degeneration in the molecular layer of the dentate gyrus. As revealed by immunocytochemical and histochemical methods, lesion of the entorhinal cortex induced a proliferation of microglia and an increased expression of established microglial activation markers within the deafferented zone. Reactive microglial cells were detected as early as 24 h after the lesion. The microglial reaction showed a maximum around day 3 post-lesion and disappeared by day 8 post-lesion. Reactive microglia were strongly positive for the B4-isolectin from Griffonia simplicifolia (GSI-B4), expressed high levels of CR3 complement receptor and 5'-nucleotidase, but lacked CD4 and MHC class I and II antigens. In addition, microglial cells were identified using MUC 102, a new monoclonal antibody against rat microglia. At the ultrastructural level, reactive microglial cells were consistently seen to phagocytose degenerating terminals. Our data suggest that (1) axonal degeneration represents a sufficient stimulus for inducing microglial activation and proliferation in the deafferented dentate gyrus; (2) these activated microglial cells are characterized by immunophenotypes different from those observed in other types of CNS injury; (3) the early microglial reaction precedes the well-documented astrocyte reaction in the dentate gyrus; and (4) the timed interaction of microglia and astrocytes could be important for regulating regenerative sprouting processes in the mature CNS.
Collapse
Affiliation(s)
- J Gehrmann
- Max-Planck-Institut für Psychiatrie, Abteilung für Neuromorphologie, Martinsried, Federal Republic of Germany
| | | | | |
Collapse
|
190
|
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30:572-80. [PMID: 1789684 DOI: 10.1002/ana.410300410] [Citation(s) in RCA: 3053] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present here both linear regressions and multivariate analyses correlating three global neuropsychological tests with a number of structural and neurochemical measurements performed on a prospective series of 15 patients with Alzheimer's disease and 9 neuropathologically normal subjects. The statistical data show only weak correlations between psychometric indices and plaques and tangles, but the density of neocortical synapses measured by a new immunocytochemical/densitometric technique reveals very powerful correlations with all three psychological assays. Multivariate analysis by stepwise regression produced a model including midfrontal and inferior parietal synapse density, plus inferior parietal plaque counts with a correlation coefficient of 0.96 for Mattis's Dementia Rating Scale. Plaque density contributed only 26% of that strength.
Collapse
Affiliation(s)
- R D Terry
- Department of Neurosciences, University of California-San Diego, La Jolla 92093-0624
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Poirier J, Hess M, May PC, Finch CE. Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 11:97-106. [PMID: 1661818 DOI: 10.1016/0169-328x(91)90111-a] [Citation(s) in RCA: 287] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Entorhinal cortex lesions (ECL) that damage the perforant path to the hippocampus induce rapid increases of apolipoprotein E (apo E) mRNA in the hippocampus. Apo E mRNA was localized in astrocytes by in situ hybridization in combination with immunocytochemistry for glial fibrillary acidic protein (GFAP). Unilateral ECL also increased hippocampal GFAP mRNA, with increases preceding those of apo E mRNA. The apo E mRNA and GFAP mRNA responses were transiently bilateral in non-denervated zones. The timing of response in apo E mRNA to deafferentation supports suggestions that apo E has roles in membrane remodelling during responses to neuron injury.
Collapse
Affiliation(s)
- J Poirier
- McGill Center For Studies In Aging, Montreal General Hospital, Que., Canada
| | | | | | | |
Collapse
|
192
|
Steward O, Torre ER, Tomasulo R, Lothman E. Neuronal activity up-regulates astroglial gene expression. Proc Natl Acad Sci U S A 1991; 88:6819-23. [PMID: 1862105 PMCID: PMC52180 DOI: 10.1073/pnas.88.15.6819] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuronal gene expression is known to be modulated by functional activity. This modulation is thought to play a key role in determining the differentiation of developing neurons and regulating the operation of mature neurons. Here we describe a regulation of astroglial gene expression by neuronal activity. We report that intense neuronal activity (electrically induced seizures) in rat hippocampus leads to rapid and dramatic increases in mRNA for glial fibrillary acidic protein (GFAP), an astroglia-specific intermediate filament protein. GFAP mRNA levels increased at sites of stimulation as well as in areas that were synaptically activated by the resultant seizures. When seizures were induced repetitively for many days, levels of GFAP mRNA remained chronically elevated. However, GFAP mRNA returned to control levels within a few days after the cessation of stimulation. The coupling between astroglial gene expression and neuronal activity may be a mechanism through which neuronal activity modulates the function of supporting cells that are responsible for regulating the extracellular microenvironment of the brain.
Collapse
Affiliation(s)
- O Steward
- Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | |
Collapse
|
193
|
Masliah E, Fagan AM, Terry RD, DeTeresa R, Mallory M, Gage FH. Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP-43 in the dentate gyrus of the adult rat. Exp Neurol 1991; 113:131-42. [PMID: 1831150 DOI: 10.1016/0014-4886(91)90169-d] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive synaptogenesis and terminal proliferation are known to occur in the dentate gyrus of the rat hippocampus following removal of specific afferents. In the present study we have examined the relation of synaptophysin immunoreactivity to the immunohistochemical staining pattern of GAP-43, a putative marker of neuritic growth. Within the molecular layer of the normal dentate gyrus, synaptophysin immunolabeling shows a trilaminar pattern, with the inner and outer layers having the greatest density of staining. Within the first week following denervation, there was a significant decrease in the staining density in the outer two-thirds of the molecular layer, followed by a moderate recovery at 14 days and 80% recovery by 30 days. This pattern is consistent with the time course of denervation and reinnervation in this system as determined previously by electron microscopy. By comparison, the staining pattern for GAP-43 in the intact dentate gyrus showed the middle and outer thirds of the molecular layer to be less densely stained than the inner third. Within a week following deafferentation, the outer two-thirds of the molecular layer displayed decreased levels of GAP-43 immunoreactivity, followed by recovery to normal levels by 30 days. By 84 days postlesion, patterns of both synaptophysin and GAP-43 immunostaining reflected an increased width of the inner molecular layer. Laser confocal imaging of double-immunolabeled sections at 14 days postlesion showed a 370% increase in the number of GAP-43-positive terminals in the molecular layer as compared to unoperated controls. Many of these GAP 43-positive terminals were synaptophysin negative. We conclude that GAP-43 may play a role in the synaptic remodeling that occurs in the denervated rat hippocampus and that quantitative morphometry of synaptophysin immunolabeling accurately reflects the fate of presynaptic terminals in this model of degeneration and reinnervation.
Collapse
Affiliation(s)
- E Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla 92093
| | | | | | | | | | | |
Collapse
|
194
|
Nitsch R, Leranth C. Neuropeptide Y (NPY)-immunoreactive neurons in the primate fascia dentata; occasional coexistence with calcium-binding proteins: a light and electron microscopic study. J Comp Neurol 1991; 309:430-44. [PMID: 1717521 DOI: 10.1002/cne.903090403] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuropeptide Y (NPY)-containing neurons are known to be highly vulnerable following sustained electrical stimulation in rats and in humans suffering from temporal lobe epilepsy. This has been related to a strong excitatory input. In contrast, there is evidence that neurons containing calcium-binding proteins exhibit a high resistance under experimental seizure and hypoxia conditions. The aim of this study was to determine the coexistence of NPY and calcium-binding proteins in inhibitory neurons of the primate fascia dentata and their synaptic connections. Vibratome sections of hippocampi of African green monkeys (Cercopithecus aethiops) were immunostained with antibodies against NPY, PARV, and CB. A quantitative coexistence study was performed for NPY and PARV on consecutive semithin sections. In contrast to the rodent hippocampus, NPY-immunoreactive neurons were found exclusively in the hilus of fascia dentata with horizontally oriented dendrites which did not extend into the granular and molecular layer. Conversely, PARV-immunoreactive neurons were also present in the granular and inner molecular layer and extended their dendrites far out in the molecular layer and the hilus. Axon terminals immunoreactive for NPY were mostly concentrated in the middle and outer molecular layer and the hilar region and were rare in the granular layer. PARV-immunoreactive boutons were basically restricted to the granular layer where they formed typical baskets. The antibody against calbindin stained almost exclusively granule cells. Coexistence of NPY- and PARV-immunoreactivity was found only in hilar neurons and was rare (9 out of 152 cells analyzed). These results suggest that most NPY-immunoreactive neurons do not contain calcium-binding proteins. NPY-containing neurons exhibited ultrastructural characteristics as described for inhibitory neurons. Their dendrites were only sparsely contacted by mostly asymmetric synaptic terminals, including a very small number of mossy fiber axon terminals. In turn, numerous NPY-immunoreactive axon terminals formed symmetric synapses with spines and dendritic shafts of unlabeled neurons in the middle and outer molecular layer, whereas no contact with granule cell bodies was evident. Thus, we conclude that the vulnerability of NPY-containing inhibitory neurons may be due more to the lack of calcium-binding proteins than to a strong excitatory innervation. As their axons may contribute to the inhibitory control of the major excitatory input from the entorhinal cortex, their loss following overstimulation may play a role in perpetuating hippocampal seizure activity.
Collapse
Affiliation(s)
- R Nitsch
- Institute of Anatomy, University of Freiburg, Federal Republic of Germany
| | | |
Collapse
|
195
|
Nitsch R, Frotscher M. Maintenance of peripheral dendrites of GABAergic neurons requires specific input. Brain Res 1991; 554:304-7. [PMID: 1933311 DOI: 10.1016/0006-8993(91)90205-a] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study demonstrates that the removal of a major hippocampal afferent system, the fibers from the entorhinal cortex, results in transneuronal changes in postsynaptic GABAergic inhibitory neurons. Following swelling of their distal segments, the peripheral dendrites of these cells retract from the termination zones of degenerating entorhinal fibers in the outer molecular layer of the fascia dentata and in stratum lacunosum-moleculare of the hippocampus proper. These dendritic alterations are long-lasting and do not seem to be restored by sprouting of other intact afferents. Persisting transneuronal changes in GABAergic hippocampal neurons following the removal of their entorhinal afferents may play a role in Alzheimer's disease since there is a severe degeneration of the entorhino-hippocampal projection in this neurodegenerative disorder.
Collapse
Affiliation(s)
- R Nitsch
- Institute of Anatomy, University of Freiburg, F.R.G
| | | |
Collapse
|
196
|
Baudry M, Altar CA. Entorhinal cortex lesion or intrahippocampal colchicine injection increases peripheral type benzodiazepine binding sites in rat hippocampus. Brain Res 1991; 553:215-21. [PMID: 1657282 DOI: 10.1016/0006-8993(91)90828-j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The peripheral type benzodiazepine binding site (PTBBS) has been proposed to be a good marker for reactive glial cells following brain insults. In the present study, homogenate binding of 3H-Ro5-4864 and quantitative autoradiography of 3H-PK-11195 binding (two ligands for the PTBBS) were used to assess the distribution, time-course and extent of reactive gliosis in the hippocampus following deafferentation by unilateral entorhinal cortex lesion or neuronal death produced by intrahippocampal colchicine injection. Intrahippocampal colchicine injections produced a 3-fold increase in 3H-Ro5-4864 binding in the dentate gyrus within 2 days. This effect was doubled in animals pretreated with the lysosomal inhibitor chloroquine. Quantitative autoradiography of 3H-PK-11195 binding 1 or 2 weeks after colchicine injection indicated that the increase in binding was restricted to the dorsal hippocampus both rostrally and caudally and was present in the dentate gyrus and CA1. Following a unilateral electrolytic lesion of the entorhinal cortex, the binding of 3H-Ro5-4864 to homogenates of the dentate gyrus was doubled 18 h after the lesion, reached a maximum at 4 days post-lesion, and returned to control values by 2 months after the lesion. A transient increase in binding was also observed 2 and 4 days post-lesion in the dentate gyrus contralateral to the lesion side. Autoradiography of 3H-PK-11195 binding indicated that the increase in PTBBS following entorhinal cortex lesion was restricted to the molecular layer of the dentate gyrus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Baudry
- Program in Neural, Informational, and Behavioral Sciences, University of Southern California, Los Angeles 90089-2520
| | | |
Collapse
|
197
|
Laping NJ, Nichols NR, Day JR, Finch CE. Corticosterone differentially regulates the bilateral response of astrocyte mRNAs in the hippocampus to entorhinal cortex lesions in male rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 10:291-7. [PMID: 1717807 DOI: 10.1016/0169-328x(91)90087-e] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study examined the effect of adrenalectomy (ADX) and corticosterone (CORT) replacement on the levels of two astrocyte mRNAs during responses to unilateral entorhinal cortex lesions (ECL) to identify molecular mechanisms involved in glucocorticoid modulation of astrocyte activation following deafferentation. Both glial fibrillary acidic protein (GFAP) and sulfated glycoprotein-2 (SGP-2) mRNA were increased in the ipsilateral hippocampus 4 days following unilateral ECL. In unlesioned ADX rats CORT replacement decreased both messages in the hippocampus. CORT replacement suppressed the ECL-induced increase of GFAP mRNA in the contralateral, but not ipsilateral hippocampus of ADX rats. In contrast, CORT decreased SGP-2 mRNA both ipsi- and contralaterally. It is clear that several regulatory mechanisms are responsible for maintaining a physiological balance of astrocyte activity in the adult brain, and that changes in circuit integrity and the endocrine milieu can alter this balance.
Collapse
Affiliation(s)
- N J Laping
- Andrus Gerontology Center, Department of Biological Sciences, University of Southern California, Los Angeles 90089-0191
| | | | | | | |
Collapse
|
198
|
Deckert J, Jorgensen MB. Unilateral Entorhinal Cortex Lesion - An Animal Model For Cognitive Impairment in Human Disease: Effects on Adenosine Receptors and Second Messengers. ACTA ACUST UNITED AC 1991. [DOI: 10.1080/07328319108047265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
199
|
Jones DG, Itarat W, Calverley RK. Perforated synapses and plasticity. A developmental overview. Mol Neurobiol 1991; 5:217-28. [PMID: 1823139 DOI: 10.1007/bf02935547] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Against a background of existing models relating perforated synapses to synaptic plasticity, the numerical density and frequency of perforated synapses in rat neocortex have been assessed from 1 d to 22 mo of age using the disector procedure, and changes in their morphology were assessed using 3-D computer reconstructions. The data point toward perforated and nonperforated synapses being separate synaptic populations from early in development, and with perforated synapses playing a part in the maintenance of neuronal postsynaptic density surface area from mid-adulthood onwards. This suggests that they play a crucial role in synaptic plasticity, although its nature may be different from that postulated by most recent workers.
Collapse
Affiliation(s)
- D G Jones
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
200
|
Buhl EH, Dann JF. Cytoarchitecture, neuronal composition, and entorhinal afferents of the flying fox hippocampus. Hippocampus 1991; 1:131-52. [PMID: 1727000 DOI: 10.1002/hipo.450010203] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In a comparative approach, the anatomical organization of the hippocampus was investigated in two species of megachiropteran bats, the grey-headed flying fox, Pteropus poliocephalus, and the little red flying fox, Pteropus scapulatus. In general, the cytoarchitectonic appearance of the flying fox hippocampus corresponded well with that of other mammals, revealing all major subdivisions. While the dentate fascia was trilaminated with a molecular layer, a granule cell layer, and a distinct polymorphic layer, the ammonic subfields were subdivided into stratum lacunosum molecular, stratum radiatum, stratum lucidum or mossy fiber layer (restricted to the CA3 region), pyramidal cell layer, and stratum oriens. In Ammon's horn, only subfields CA1, CA3, and CA3c were clearly discernible, whereas the CA2 region remained indistinct. In some cytoarchitectonic features, such as the dispersion of the pyramidal layer in CA1, the megachiropteran hippocampus resembled the corresponding region in primates. Five characteristic neuronal cell types of the megachiropteran hippocampus were studied in fixed slice preparations after intracellular injection with Lucifer Yellow. While the morphological appearance of CA3 pyramidal cells, horizontal stratum oriens cells, aspiny stellate cells, and mossy cells strongly resembled their counterparts in rodents, primates, and carnivores, granule cells showed an interesting variation from the nonprimate pattern. Like a subset of granule cells in the primate dentate gyrus, 75% of flying fox granule cells revealed 1-2 basal dendrites that ramified in the polymorphic layer. These processes are presumed to form the morphological substrate for recurrent excitation. Entorhinal afferents to Ammon's horn and the dentate fascia were revealed by employing the method of tract tracing in fixed tissue with the carbocyanine dye DiI. Similar to the rat and cat, but unlike the monkey, the entorhino-dentate projection in the flying fox is bilaminate, with medial entorhinal afferents occupying the middle third of the molecular layer and lateral entorhinal axons ramifying closer to the hippocampal fissure. The remaining inner third of the molecular layer was free from entorhinal input. In contrast to the radial organization of the projection to dentate gyrus and subfield CA3, entorhinal afferents to region CA1 followed a proximo-distal gradient, with medial entorhinal afferents terminating closer to the CA3/CA1 border. Photoconverted preparations were used to determine the trajectory of individual axons. The majority of entorhino-dentate axons traversed the hippocampal fissure, usually close to the crest region, and gave rise to several terminal branches with numerous en passant varicosities. Individual fibers coursed for considerable distances parallel to the granule cell layer, thus presumably activating a large number of postsynaptic granule cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E H Buhl
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Australia
| | | |
Collapse
|