151
|
Bahadur Gurung A, Ajmal Ali M, Elshikh MS, Aref I, Amina M, Lee J. An in silico approach unveils the potential of antiviral compounds in preclinical and clinical trials as SARS-CoV-2 Omicron inhibitors. Saudi J Biol Sci 2022; 29:103297. [PMID: 35475118 PMCID: PMC9026959 DOI: 10.1016/j.sjbs.2022.103297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
The increased transmissibility and highly infectious nature of the new variant of concern (VOC) that is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron and lack of effective therapy need the rapid discovery of therapeutic antivirals against it. The present investigation aimed to identify antiviral compounds that would be effective against SARS-CoV-2 Omicron. In this study, molecular docking experiments were carried out using the recently reported experimental structure of omicron spike protein in complex with human angiotensin-converting enzyme 2 (ACE2) and various antivirals in preclinical and clinical trial studies. Out of 36 tested compounds, Abemaciclib, Dasatinib and Spiperone are the three top-ranked molecules which scored binding energies of −10.08 kcal/mol, −10.06 kcal/mol and −9.54 kcal/mol respectively. Phe338, Asp339, and Asp364 are crucial omicron receptor residues involved in hydrogen bond interactions, while other residues were mostly involved in hydrophobic interactions with the lead molecules. The identified lead compounds also scored well in terms of drug-likeness. Molecular dynamics (MD) simulation, essential dynamics (ED) and entropic analysis indicate the ability of these molecules to modulate the activity of omicron spike protein. Therefore, Abemaciclib, Dasatinib and Spiperone are likely to be viable drug-candidate molecules that can block the interaction between the omicron spike protein and the host cellular receptor ACE2. Though our findings are compelling, more research into these molecules is needed before they can be employed as drugs to treat SARS-CoV-2 omicron infections.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
- Corresponding author.
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ibrahim Aref
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
152
|
Rajah MM, Bernier A, Buchrieser J, Schwartz O. The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation. J Mol Biol 2022; 434:167280. [PMID: 34606831 PMCID: PMC8485708 DOI: 10.1016/j.jmb.2021.167280] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Syncytia are formed when individual cells fuse. SARS-CoV-2 induces syncytia when the viral spike (S) protein on the surface of an infected cell interacts with receptors on neighboring cells. Syncytia may potentially contribute to pathology by facilitating viral dissemination, cytopathicity, immune evasion, and inflammatory response. SARS-CoV-2 variants of concern possess several mutations within the S protein that enhance receptor interaction, fusogenicity and antibody binding. In this review, we discuss the molecular determinants of S mediated fusion and the antiviral innate immunity components that counteract syncytia formation. Several interferon-stimulated genes, including IFITMs and LY6E act as barriers to S protein-mediated fusion by altering the composition or biophysical properties of the target membrane. We also summarize the effect that the mutations associated with the variants of concern have on S protein fusogenicity. Altogether, this review contextualizes the current understanding of Spike fusogenicity and the role of syncytia during SARS-CoV-2 infection and pathology.
Collapse
Affiliation(s)
- Maaran Michael Rajah
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France. https://twitter.com/MaaranRajah
| | - Annie Bernier
- Institut Curie, INSERM U932, Paris, France. https://twitter.com/nini_bernier
| | - Julian Buchrieser
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France. https://twitter.com/JBuchrieser
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France; Vaccine Research Institute, Creteil, France.
| |
Collapse
|
153
|
Theoretical Investigation of the Coronavirus SARS-CoV-2 (COVID-19) Infection Mechanism and Selectivity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072080. [PMID: 35408482 PMCID: PMC9000624 DOI: 10.3390/molecules27072080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
The SARS-CoV-2 virus, commonly known as COVID-19, first occurred in December 2019 in Wuhan, Hubei Province, China. Since then, it has become a tremendous threat to human health. With a pandemic threat, it is in the significant interest of the scientific world to establish its method of infection. In this manuscript, we combine knowledge of the infection mechanism with theoretical methods to answer the question of the virus’s selectivity. We proposed a two-stage infection mechanism. In the first step, the virus interacts with the ACE2 receptor, with the “proper strength”. When the interaction is too strong, the virus will remain in an “improper position”; if the interaction is too weak, the virus will “run away” from the cell. We also indicated three residues (positions 30, 31, and 353) located on the ACE2 protein-binding interface, which seems to be crucial for successful infection. Our results indicate that these residues are necessary for the initiation of the infection process.
Collapse
|
154
|
Diaz-Salinas MA, Li Q, Ejemel M, Yurkovetskiy L, Luban J, Shen K, Wang Y, Munro JB. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. eLife 2022; 11:75433. [PMID: 35323111 PMCID: PMC8963877 DOI: 10.7554/elife.75433] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects cells through binding to angiotensin-converting enzyme 2 (ACE2). This interaction is mediated by the receptor-binding domain (RBD) of the viral spike (S) glycoprotein. Structural and dynamic data have shown that S can adopt multiple conformations, which controls the exposure of the ACE2-binding site in the RBD. Here, using single-molecule Förster resonance energy transfer (smFRET) imaging, we report the effects of ACE2 and antibody binding on the conformational dynamics of S from the Wuhan-1 strain and in the presence of the D614G mutation. We find that D614G modulates the energetics of the RBD position in a manner similar to ACE2 binding. We also find that antibodies that target diverse epitopes, including those distal to the RBD, stabilize the RBD in a position competent for ACE2 binding. Parallel solution-based binding experiments using fluorescence correlation spectroscopy (FCS) indicate antibody-mediated enhancement of ACE2 binding. These findings inform on novel strategies for therapeutic antibody cocktails.
Collapse
Affiliation(s)
- Marco A Diaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Qi Li
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Monir Ejemel
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Leonid Yurkovetskiy
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Yang Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - James B Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
155
|
Bioinformatics analysis of potential therapeutic targets for COVID-19 infection in patients with carotid atherosclerosis. J Infect Public Health 2022; 15:437-447. [PMID: 35344771 PMCID: PMC8937610 DOI: 10.1016/j.jiph.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND COVID-19 is a new coronavirus that constitutes a great challenge to human health. At this stage, there are still cases of COVID-19 infection in some countries and regions, in which ischemic stroke (IS) is a risk factor for new coronavirus pneumonia, and patients with COVID-19 infection have a dramatically elevated risk of stroke. At the same time, patients with long-term IS are vulnerable to COVID-19 infection and have more severe disease, and carotid atherosclerosis is an early lesion in IS. METHODS This study used human induced pluripotent stem cell (hiPSC)-derived monolayer brain cell dataset and human carotid atherosclerosis genome-wide dataset to analyze COVID-19 infection and carotid atherosclerosis patients to determine the synergistic effect of new coronavirus infection on carotid atherosclerosis patients, to clarify the common genes of both, and to identify common pathways and potential drugs for carotid atherosclerosis in patients with COVID-19 infection RESULTS: Using several advanced bioinformatics tools, we present the causes of COVID-19 infection leading to increased mortality in carotid atherosclerosis patients and the susceptibility of carotid atherosclerosis patients to COVID-19. Potential therapeutic agents for COVID-19 -infected patients with carotid atherosclerosis are also proposed. CONCLUSIONS With COVID-19 being a relatively new disease, associations have been proposed for its connections with several ailments and conditions, including IS and carotid atherosclerosis. More patient-based data-sets and studies are needed to fully explore and understand the relationship.
Collapse
|
156
|
Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization. Proc Natl Acad Sci U S A 2022; 119:e2122954119. [PMID: 35238654 PMCID: PMC8931377 DOI: 10.1073/pnas.2122954119] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SignificanceSARS-CoV-2 continues to evolve through emerging variants, more frequently observed with higher transmissibility. Despite the wide application of vaccines and antibodies, the selection pressure on the Spike protein may lead to further evolution of variants that include mutations that can evade immune response. To catch up with the virus's evolution, we introduced a deep learning approach to redesign the complementarity-determining regions (CDRs) to target multiple virus variants and obtained an antibody that broadly neutralizes SARS-CoV-2 variants.
Collapse
|
157
|
Chaudhry MZ, Eschke K, Hoffmann M, Grashoff M, Abassi L, Kim Y, Brunotte L, Ludwig S, Kröger A, Klawonn F, Pöhlmann SH, Cicin-Sain L. Rapid SARS-CoV-2 Adaptation to Available Cellular Proteases. J Virol 2022; 96:e0218621. [PMID: 35019723 PMCID: PMC8906416 DOI: 10.1128/jvi.02186-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 11/20/2022] Open
Abstract
Recent emergence of SARS-CoV-1 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6 cells, but HS antagonist did not inhibit virus adaptation in these cells. The entry of Vero E6-adapted virus into human cells is defective because the mutated spike variants are poorly processed by furin or TMPRSS2. Minor subpopulation that lack the furin cleavage motif in the spike protein rapidly become dominant upon passaging through Vero E6 cells, but wild type sequences are maintained at low percentage in the virus swarm and mediate a rapid reverse adaptation if the virus is passaged again on TMPRSS2+ human cells. Our data show that the spike protein of SARS-CoV-2 can rapidly adapt itself to available proteases and argue for deep sequence surveillance to identify the emergence of novel variants. IMPORTANCE Recently emerging SARS-CoV-2 variants B.1.1.7 (alpha variant), B.1.617.2 (delta variant), and B.1.1.529 (omicron variant) harbor spike mutations and have been linked to increased virus pathogenesis. The emergence of these novel variants highlights coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt to selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genomes with original genotype are maintained in the virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.
Collapse
Affiliation(s)
- M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kathrin Eschke
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Martina Grashoff
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Leila Abassi
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yeonsu Kim
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Linda Brunotte
- Institut für Virologie (IMV), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stephan Ludwig
- Institut für Virologie (IMV), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Andrea Kröger
- Research Group Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Otto von Guericke University, Magdeburg, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computer Science, Ostfalia University, Wolfenbüttel, Germany
| | - Stefan H. Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CIIM), Hannover, Germany
| |
Collapse
|
158
|
Verkhivker G. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering. Int J Mol Sci 2022; 23:ijms23062928. [PMID: 35328351 PMCID: PMC8951411 DOI: 10.3390/ijms23062928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural and computational studies have also been instrumental in quantifying the structure, dynamics, and energetics of the SARS-CoV-2 spike protein binding with nanobodies. In this review, a comprehensive analysis of the current structural, biophysical, and computational biology investigations of SARS-CoV-2 S proteins and their complexes with distinct classes of nanobodies targeting different binding sites is presented. The analysis of computational studies is supplemented by an in-depth examination of mutational scanning simulations and identification of binding energy hotspots for distinct nanobody classes. The review is focused on the analysis of mechanisms underlying synergistic binding of multivalent nanobodies that can be superior to single nanobodies and conventional nanobody cocktails in combating escape mutations by effectively leveraging binding avidity and allosteric cooperativity. We discuss how structural insights and protein engineering approaches together with computational biology tools can aid in the rational design of synergistic combinations that exhibit superior binding and neutralization characteristics owing to avidity-mediated mechanisms.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; ; Tel.: +1-714-516-4586
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
159
|
Kaku CI, Champney ER, Normark J, Garcia M, Johnson CE, Ahlm C, Christ W, Sakharkar M, Ackerman ME, Klingström J, Forsell MNE, Walker LM. Broad anti-SARS-CoV-2 antibody immunity induced by heterologous ChAdOx1/mRNA-1273 vaccination. Science 2022; 375:1041-1047. [PMID: 35143256 PMCID: PMC8939765 DOI: 10.1126/science.abn2688] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterologous prime-boost immunization strategies have the potential to augment COVID-19 vaccine efficacy. We longitudinally profiled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-specific serological and memory B cell (MBC) responses in individuals who received either homologous (ChAdOx1:ChAdOx1) or heterologous (ChAdOx1:mRNA-1273) prime-boost vaccination. Heterologous messenger RNA (mRNA) booster immunization induced higher serum neutralizing antibody and MBC responses against SARS-CoV-2 variants of concern (VOCs) compared with that of homologous ChAdOx1 boosting. Specificity mapping of circulating B cells revealed that mRNA-1273 boost immunofocused ChAdOx1-primed responses onto epitopes expressed on prefusion-stabilized S. Monoclonal antibodies isolated from mRNA-1273-boosted participants displayed overall higher binding affinities and increased breadth of reactivity against VOCs relative to those isolated from ChAdOx1-boosted individuals. Overall, the results provide molecular insight into the enhanced quality of the B cell response induced after heterologous mRNA booster vaccination.
Collapse
Affiliation(s)
- Chengzi I Kaku
- Adimab, Lebanon, NH 03766, USA.,Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Johan Normark
- Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Marina Garcia
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Clas Ahlm
- Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mattias N E Forsell
- Division of Immunology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Laura M Walker
- Adimab, Lebanon, NH 03766, USA.,Adagio Therapeutics, Waltham, MA 02451, USA
| |
Collapse
|
160
|
Sixto-López Y, Correa-Basurto J. HDAC inhibition as neuroprotection in COVID-19 infection. Curr Top Med Chem 2022; 22:1369-1378. [PMID: 35240959 DOI: 10.2174/1568026622666220303113445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
The SARS-CoV-2 virus is responsible of COVID-19 affecting millions of humans around the world. COVID-19 shows diverse clinical symptoms (fever, cough, fatigue, diarrhea, body aches, headaches, anosmia and hyposmia). Approximately 30% of the patients with COVID-19 showed neurological symptoms, these going from mild to severe manifestations including headache, dizziness, impaired consciousness, encephalopathy, anosmia, hypogeusia, hyposmia, psychology and psychiatry among others. The neurotropism of SARS-CoV-2 virus explains its neuroinvasion provoking neurological damage as acute demyelination, neuroinflammation etc. At molecular level, the COVID-19 patients had higher levels of cytokines and chemokines known as cytokines storms which disrupt the blood brain barrier allowing the entrance of monocytes and lymphocytes causing neuroinflammation, neurodegeneration and demyelination. In addition, ischemic, hemorrhagic strokes, seizures and encephalopathy have been observed due to the proinflammatory cytokines. In this sense, to avoid or decrease neurological damage due to SARS-CoV-2 infection, an early neuroprotective management should be adopted. Several approaches can be used; one of them includes the use of HDAC inhibitors (HDACi) due to their neuroprotective effects. Also, the HDACi down regulates the pro-inflammatory cytokines (IL-6 and TNF- decreasing the neurotoxicity. HDACi can also avoid and prevent the entrance of the virus into the Central nervous System (CNS) as well as decrease the virus replication by downregulating the virus receptors. Here we review the mechanisms that could explain how the SARS-CoV-2 virus could reach the CNS, induce the neurological damage and symptoms, as well as the possibility to use HDACi as neuroprotective therapy.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, Mexico City, Mexico
| |
Collapse
|
161
|
Zhao S, Feng P, Meng W, Jin W, Li X, Li X. Modulated Gut Microbiota for Potential COVID-19 Prevention and Treatment. Front Med (Lausanne) 2022; 9:811176. [PMID: 35308540 PMCID: PMC8927624 DOI: 10.3389/fmed.2022.811176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gained global attention. SARS-CoV-2 identifies and invades human cells via angiotensin-converting enzyme 2 receptors, which is highly expressed both in lung tissues and intestinal epithelial cells. The existence of the gut-lung axis in disease could be profoundly important for both disease etiology and treatment. Furthermore, several studies reported that infected patients suffer from gastrointestinal symptoms. The gut microbiota has a noteworthy effect on the intestinal barrier and affects many aspects of human health, including immunity, metabolism, and the prevention of several diseases. This review highlights the function of the gut microbiota in the host's immune response, providing a novel potential strategy through the use of probiotics, gut microbiota metabolites, and dietary products to enhance the gut microbiota as a target for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Shuai Zhao
- Intersection Laboratory of Life Medicine, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Intersection Laboratory of Life Medicine, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenbo Meng
- Medical Frontier Innovation Research Center, Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Weilin Jin
- Medical Frontier Innovation Research Center, Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xun Li
- Medical Frontier Innovation Research Center, Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Intersection Laboratory of Life Medicine, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
162
|
Mogro EG, Bottero D, Lozano MJ. Analysis of SARS-CoV-2 synonymous codon usage evolution throughout the COVID-19 pandemic. Virology 2022; 568:56-71. [PMID: 35134624 PMCID: PMC8808327 DOI: 10.1016/j.virol.2022.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2, the seventh coronavirus known to infect humans, can cause severe life-threatening respiratory pathologies. To better understand SARS-CoV-2 evolution, genome-wide analyses have been made, including the general characterization of its codons usage profile. Here we present a bioinformatic analysis of the evolution of SARS-CoV-2 codon usage over time using complete genomes collected since December 2019. Our results show that SARS-CoV-2 codon usage pattern is antagonistic to, and it is getting farther away from that of the human host. Further, a selection of deoptimized codons over time, which was accompanied by a decrease in both the codon adaptation index and the effective number of codons, was observed. All together, these findings suggest that SARS-CoV-2 could be evolving, at least from the perspective of the synonymous codon usage, to become less pathogenic.
Collapse
Affiliation(s)
- Ezequiel G Mogro
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Daniela Bottero
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina
| | - Mauricio J Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET, CCT-La Plata, Universidad Nacional de La Plata (UNLP), Argentina.
| |
Collapse
|
163
|
Srivastava A, Siddiqui S, Ahmad R, Mehrotra S, Ahmad B, Srivastava AN. Exploring nature's bounty: identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation. J Biomol Struct Dyn 2022; 40:1858-1908. [PMID: 33246398 PMCID: PMC7755033 DOI: 10.1080/07391102.2020.1835725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/02/2020] [Indexed: 10/25/2022]
Abstract
Coronaviruses are etiological agents of extreme human and animal infection resulting in abnormalities primarily in the respiratory tract. Presently, there is no defined COVID-19 intervention and clinical trials of prospective therapeutic agents are still in the nascent stage. Withania somnifera (L.) Dunal (WS), is an important medicinal plant in Ayurveda. The present study aimed to evaluate the antiviral potential of selected WS phytoconstituents against the novel SARS-CoV-2 target proteins and human ACE2 receptor using in silico methods. Most of the phytoconstituents displayed good absorption and transport kinetics and were also found to display no associated mutagenic or adverse effect(s). Molecular docking analyses revealed that most of the WS phytoconstituents exhibited potent binding to human ACE2 receptor, SAR-CoV and SARS-CoV-2 spike glycoproteins as well as the two main SARS-CoV-2 proteases. Most of the phytoconstituents were predicted to undergo Phase-I metabolism prior to excretion. All phytoconstituents had favorable bioactivity scores with respect to various receptor proteins and target enzymes. SAR analysis revealed that the number of oxygen atoms in the withanolide backbone and structural rearrangements were crucial for effective binding. Molecular simulation analyses of SARS-CoV-2 spike protein and papain-like protease with Withanolides A and B, respectively, displayed a stability profile at 300 K and constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In a nutshell, WS phytoconstituents warrant further investigations in vitro and in vivo to unravel their molecular mechanism(s) and modes of action for their future development as novel antiviral agents against COVID-19.
Collapse
Affiliation(s)
- Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - Sudhir Mehrotra
- Department of Biochemistry, University of Lucknow, Lucknow, UP, India
| | - Bilal Ahmad
- Research Cell, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| | - A. N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College and Hospital, Era University, Lucknow, UP, India
| |
Collapse
|
164
|
Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. J Control Release 2022; 343:361-378. [PMID: 35122872 PMCID: PMC8810279 DOI: 10.1016/j.jconrel.2022.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Respiratory viruses have sometimes resulted in worldwide pandemics, with the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being major participants. Long-term efforts have made it possible to control the influenza virus, but seasonal influenza continues to take many lives each year, and a pandemic influenza virus sometimes emerges. Although vaccines for coronavirus disease 2019 (COVID-19) have been developed, we are not yet able to coexist with the SARS-CoV-2. To overcome such viruses, it is necessary to obtain knowledge about international surveillance systems, virology, ecology and to determine that immune responses are effective. The information must then be transferred to drugs. Delivery systems would be expected to contribute to the rational development of drugs. In this review, virologist and drug delivery system (DDS) researchers discuss drug delivery strategies, especially the use of lipid-based nanocarriers, for fighting to respiratory virus infections.
Collapse
|
165
|
Starr TN, Zepeda SK, Walls AC, Greaney AJ, Alkhovsky S, Veesler D, Bloom JD. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. Nature 2022; 603:913-918. [PMID: 35114688 PMCID: PMC8967715 DOI: 10.1038/s41586-022-04464-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/25/2022] [Indexed: 11/08/2022]
Abstract
Two different sarbecoviruses have caused major human outbreaks in the past two decades1,2. Both of these sarbecoviruses, SARS-CoV-1 and SARS-CoV-2, engage ACE2 through the spike receptor-binding domain2-6. However, binding to ACE2 orthologues of humans, bats and other species has been observed only sporadically among the broader diversity of bat sarbecoviruses7-11. Here we use high-throughput assays12 to trace the evolutionary history of ACE2 binding across a diverse range of sarbecoviruses and ACE2 orthologues. We find that ACE2 binding is an ancestral trait of sarbecovirus receptor-binding domains that has subsequently been lost in some clades. Furthermore, we reveal that bat sarbecoviruses from outside Asia can bind to ACE2. Moreover, ACE2 binding is highly evolvable-for many sarbecovirus receptor-binding domains, there are single amino-acid mutations that enable binding to new ACE2 orthologues. However, the effects of individual mutations can differ considerably between viruses, as shown by the N501Y mutation, which enhances the human ACE2-binding affinity of several SARS-CoV-2 variants of concern12 but substantially decreases it for SARS-CoV-1. Our results point to the deep ancestral origin and evolutionary plasticity of ACE2 binding, broadening the range of sarbecoviruses that should be considered to have spillover potential.
Collapse
Affiliation(s)
- Tyler N Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Allison J Greaney
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sergey Alkhovsky
- N.F. Gamleya National Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - David Veesler
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Jesse D Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
166
|
McCallum M, Czudnochowski N, Rosen LE, Zepeda SK, Bowen JE, Walls AC, Hauser K, Joshi A, Stewart C, Dillen JR, Powell AE, Croll TI, Nix J, Virgin HW, Corti D, Snell G, Veesler D. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science 2022; 375:864-868. [PMID: 35076256 PMCID: PMC9427005 DOI: 10.1126/science.abn8652] [Citation(s) in RCA: 379] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern evades antibody-mediated immunity that comes from vaccination or infection with earlier variants due to accumulation of numerous spike mutations. To understand the Omicron antigenic shift, we determined cryo-electron microscopy and x-ray crystal structures of the spike protein and the receptor-binding domain bound to the broadly neutralizing sarbecovirus monoclonal antibody (mAb) S309 (the parent mAb of sotrovimab) and to the human ACE2 receptor. We provide a blueprint for understanding the marked reduction of binding of other therapeutic mAbs that leads to dampened neutralizing activity. Remodeling of interactions between the Omicron receptor-binding domain and human ACE2 likely explains the enhanced affinity for the host receptor relative to the ancestral virus.
Collapse
MESH Headings
- Amino Acid Substitution
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antigenic Drift and Shift
- Broadly Neutralizing Antibodies/chemistry
- Broadly Neutralizing Antibodies/immunology
- Broadly Neutralizing Antibodies/metabolism
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Humans
- Immune Evasion
- Models, Molecular
- Mutation
- Protein Binding
- Protein Conformation
- Protein Domains/genetics
- Protein Interaction Domains and Motifs/genetics
- Receptors, Coronavirus/chemistry
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | - Tristan I. Croll
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jay Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Herbert W. Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis MO 63110
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX 75390
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
167
|
Durojaye OA, Sedzro DM, Idris MO, Yekeen AA, Fadahunsi AA, Alakanse OS. Identification of a Potential mRNA-based Vaccine Candidate against the SARS-CoV-2 Spike Glycoprotein: A Reverse Vaccinology Approach. ChemistrySelect 2022; 7:e202103903. [PMID: 35601809 PMCID: PMC9111088 DOI: 10.1002/slct.202103903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) in December 2019 has generated a devastating global consequence which makes the development of a rapidly deployable, effective and safe vaccine candidate an imminent global health priority. The design of most vaccine candidates has been directed at the induction of antibody responses against the trimeric spike glycoprotein of SARS-CoV-2, a class I fusion protein that aids ACE2 (angiotensin-converting enzyme 2) receptor binding. A variety of formulations and vaccinology approaches are being pursued for targeting the spike glycoprotein, including simian and human replication-defective adenoviral vaccines, subunit protein vaccines, nucleic acid vaccines and whole-inactivated SARS-CoV-2. Here, we directed a reverse vaccinology approach towards the design of a nucleic acid (mRNA-based) vaccine candidate. The "YLQPRTFLL" peptide sequence (position 269-277) which was predicted to be a B cell epitope and likewise a strong binder of the HLA*A-0201 was selected for the design of the vaccine candidate, having satisfied series of antigenicity assessments. Through the codon optimization protocol, the nucleotide sequence for the vaccine candidate design was generated and targeted at the human toll-like receptor 7 (TLR7). Bioinformatics analyses showed that the sequence "UACCUGCAGCCGCGUACCUUCCUGCUG" exhibited a strong affinity and likewise was bound to a stable cavity in the TLR7 pocket. This study is therefore expected to contribute to the research efforts directed at securing definitive preventive measures against the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular DynamicsHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Chemical SciencesCoal City University, EmeneEnugu StateNigeria
| | - Divine Mensah Sedzro
- MOE Key Laboratory of Membraneless Organelle and Cellular DynamicsHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | | | - Abeeb Abiodun Yekeen
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Adeola Abraham Fadahunsi
- Department of Biomedical EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Oluwaseun Suleiman Alakanse
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of BiochemistryFaculty of Life SciencesUniversity of IlorinIlorinKwara StateNigeria
| |
Collapse
|
168
|
Clayton E, Ackerley J, Aelmans M, Ali N, Ashcroft Z, Ashton C, Barker R, Budryte V, Burrows C, Cai S, Callaghan A, Carberry J, Chatwin R, Davies I, Farlow C, Gamblin S, Iacobut A, Lambe A, Lynch F, Mihalache D, Mokbel A, Potamsetty S, Qadir Z, Soden J, Sun X, Vasile A, Wheeler O, Rohaim MA, Munir M. Structural Bases of Zoonotic and Zooanthroponotic Transmission of SARS-CoV-2. Viruses 2022; 14:418. [PMID: 35216011 PMCID: PMC8875863 DOI: 10.3390/v14020418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The emergence of multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the importance of possible animal-to-human (zoonotic) and human-to-animal (zooanthroponotic) transmission and potential spread within animal species. A range of animal species have been verified for SARS-CoV-2 susceptibility, either in vitro or in vivo. However, the molecular bases of such a broad host spectrum for the SARS-CoV-2 remains elusive. Here, we structurally and genetically analysed the interaction between the spike protein, with a particular focus on receptor binding domains (RBDs), of SARS-CoV-2 and its receptor angiotensin-converting enzyme 2 (ACE2) for all conceivably susceptible groups of animals to gauge the structural bases of the SARS-CoV-2 host spectrum. We describe our findings in the context of existing animal infection-based models to provide a foundation on the possible virus persistence in animals and their implications in the future eradication of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (E.C.); (J.A.); (M.A.); (N.A.); (Z.A.); (C.A.); (R.B.); (V.B.); (C.B.); (S.C.); (A.C.); (J.C.); (R.C.); (I.D.); (C.F.); (S.G.); (A.I.); (A.L.); (F.L.); (D.M.); (A.M.); (S.P.); (Z.Q.); (J.S.); (X.S.); (A.V.); (O.W.); (M.A.R.)
| |
Collapse
|
169
|
Comparative Investigation of Methods for Analysis of SARS-CoV-2-Spike-Specific Antisera. Viruses 2022; 14:v14020410. [PMID: 35216003 PMCID: PMC8879086 DOI: 10.3390/v14020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
In light of an increasing number of vaccinated and convalescent individuals, there is a major need for the development of robust methods for the quantification of neutralizing antibodies; although, a defined correlate of protection is still missing. Sera from hospitalized COVID-19 patients suffering or not suffering from acute respiratory distress syndrome (ARDS) were comparatively analyzed by plaque reduction neutralization test (PRNT) and pseudotype-based neutralization assays to quantify their neutralizing capacity. The two neutralization assays showed comparable data. In case of the non-ARDS sera, there was a distinct correlation between the data from the neutralization assays on the one hand, and enzyme-linked immune sorbent assay (ELISA), as well as biophysical analyses, on the other hand. As such, surface plasmon resonance (SPR)-based assays for quantification of binding antibodies or analysis of the stability of the antigen–antibody interaction and inhibition of syncytium formation, determined by cell fusion assays, were performed. In the case of ARDS sera, which are characterized by a significantly higher fraction of RBD-binding IgA antibodies, there is a clear correlation between the neutralization assays and the ELISA data. In contrast to this, a less clear correlation between the biophysical analyses on the one hand and ELISAs and neutralization assays on the other hand was observed, which might be explained by the heterogeneity of the antibodies. To conclude, for less complex immune sera—as in cases of non-ARDS sera—combinations of titer quantification by ELISA with inhibition of syncytium formation, SPR-based analysis of antibody binding, determination of the stability of the antigen–antibody complex, and competition of the RBD-ACE2 binding represent alternatives to the classic PRNT for analysis of the neutralizing potential of SARS-CoV-2-specific sera, without the requirement for a BSL3 facility.
Collapse
|
170
|
Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Rep Med 2022; 3:100528. [PMID: 35233549 PMCID: PMC8784613 DOI: 10.1016/j.xcrm.2022.100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the “down” conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing. S glycoprotein formaldehyde cross-linking stabilizes S in the prefusion conformation Vaccination of cynomolgus macaques with S lipid particles induces neutralization Vaccination protects macaques against a SARS-CoV-2 challenge Sterilizing protection correlates with nasopharyngeal anti-S IgG and IgA titers
Collapse
|
171
|
Cunha CEXD, Silva STDCE, Ribeiro MVMR, Barbosa FT. Impacto da pandemia da COVID-19 sobre transplantes de córnea. REVISTA BRASILEIRA DE OFTALMOLOGIA 2022. [DOI: 10.37039/1982.8551.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
172
|
Zhang S, Go EP, Ding H, Anang S, Kappes JC, Desaire H, Sodroski JG. Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein. J Virol 2022; 96:e0162621. [PMID: 34817202 PMCID: PMC8827021 DOI: 10.1128/jvi.01626-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
The SARS-CoV-2 coronavirus, the etiologic agent of COVID-19, uses its spike (S) glycoprotein anchored in the viral membrane to enter host cells. The S glycoprotein is the major target for neutralizing antibodies elicited by natural infection and by vaccines. Approximately 35% of the SARS-CoV-2 S glycoprotein consists of carbohydrate, which can influence virus infectivity and susceptibility to antibody inhibition. We found that virus-like particles produced by coexpression of SARS-CoV-2 S, M, E, and N proteins contained spike glycoproteins that were extensively modified by complex carbohydrates. We used a fucose-selective lectin to purify the Golgi-modified fraction of a wild-type SARS-CoV-2 S glycoprotein trimer and determined its glycosylation and disulfide bond profile. Compared with soluble or solubilized S glycoproteins modified to prevent proteolytic cleavage and to retain a prefusion conformation, more of the wild-type S glycoprotein N-linked glycans are processed to complex forms. Even Asn 234, a significant percentage of which is decorated by high-mannose glycans on other characterized S trimer preparations, is predominantly modified in the Golgi compartment by processed glycans. Three incompletely occupied sites of O-linked glycosylation were detected. Viruses pseudotyped with natural variants of the serine/threonine residues implicated in O-linked glycosylation were generally infectious and exhibited sensitivity to neutralization by soluble ACE2 and convalescent antisera comparable to that of the wild-type virus. Unlike other natural cysteine variants, a Cys15Phe (C15F) mutant retained partial, but unstable, infectivity. These findings enhance our understanding of the Golgi processing of the native SARS-CoV-2 S glycoprotein carbohydrates and could assist the design of interventions. IMPORTANCE The SARS-CoV-2 coronavirus, which causes COVID-19, uses its spike glycoprotein to enter host cells. The viral spike glycoprotein is the main target of host neutralizing antibodies that help to control SARS-CoV-2 infection and are important for the protection provided by vaccines. The SARS-CoV-2 spike glycoprotein consists of a trimer of two subunits covered with a coat of carbohydrates (sugars). Here, we describe the disulfide bonds that assist the SARS-CoV-2 spike glycoprotein to assume the correct shape and the composition of the sugar moieties on the glycoprotein surface. We also evaluate the consequences of natural virus variation in O-linked sugar addition and in the cysteine residues involved in disulfide bond formation. This information can expedite the improvement of vaccines and therapies for COVID-19.
Collapse
Affiliation(s)
- Shijian Zhang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Saumya Anang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Joseph G. Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
173
|
Hakami AR. Targeting the RBD of Omicron Variant (B.1.1.529) with Medicinal Phytocompounds to Abrogate the Binding of Spike Glycoprotein with the hACE2 Using Computational Molecular Search and Simulation Approach. BIOLOGY 2022; 11:258. [PMID: 35205124 PMCID: PMC8869371 DOI: 10.3390/biology11020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 01/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to inflict chaos globally. The emergence of a novel Omicron variant (B.1.1.529) in South Africa harbors 30 mutations in the spike protein. The variant is distinguished from other variants of concern (VOCs) with an increased (15) number of mutations in the receptor-binding domain (RBD) and suggests higher chances of causing reinfections. Initial reports also claimed that this variant escapes all the neutralizing antibodies, thus demanding a novel strategy against it. Thus, in this study, we performed a computational molecular screening against the RBD of the Omicron (B.1.1.529) variant and assessed the binding affinity of potent drugs against the RBD. The multi-steps screening of the South African Natural Compounds Database (SANCDB) revealed four medicinal compounds as excellent (potential) anti-viral agents against the Omicron variant, namely SANC00944, SANC01032, SANC00992, and SANC00317. The simulation analysis of these compounds in complex with the RBD demonstrated stable dynamics and structural compactness. Moreover, the residual flexibility analysis revealed that the flexibility of three loops required for interaction with hACE2 has been reduced by the binding of these drugs. The post-simulation validation of these compounds such as binding free energy, in silico bioactivity, and dissociation constant prediction validated the anti-viral potency of these compounds. The total binding free energy (TBFE) for the SANC01032-RBD complex was reported to be -46.54 kcal/mol; for the SANC01032-RBD complex, the TBFE was -41.88 kcal/mol; for the SANC00992-RBD complex the TBFE was -29.05 kcal/mol, while for the SANC00317-RBD complex the TBFE was -31.03 kcal/mol. The results showed the inhibition potential of these compounds by targeting the RBD. In conclusion, this study will help in the design and discovery of novel drug therapeutics, which may be used against the emerging Omicron variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Abdulrahim R Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| |
Collapse
|
174
|
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Sci Immunol 2022; 7:eabl5652. [PMID: 34914544 PMCID: PMC8977051 DOI: 10.1126/sciimmunol.abl5652] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T follicular helper (TFH) cells are the conventional drivers of protective, germinal center (GC)–based antiviral antibody responses. However, loss of TFH cells and GCs has been observed in patients with severe COVID-19. As T cell–B cell interactions and immunoglobulin class switching still occur in these patients, noncanonical pathways of antibody production may be operative during SARS-CoV-2 infection. We found that both TFH-dependent and -independent antibodies were induced against SARS-CoV-2 infection, SARS-CoV-2 vaccination, and influenza A virus infection. Although TFH-independent antibodies to SARS-CoV-2 had evidence of reduced somatic hypermutation, they were still high affinity, durable, and reactive against diverse spike-derived epitopes and were capable of neutralizing both homologous SARS-CoV-2 and the B.1.351 (beta) variant of concern. We found by epitope mapping and B cell receptor sequencing that TFH cells focused the B cell response, and therefore, in the absence of TFH cells, a more diverse clonal repertoire was maintained. These data support an alternative pathway for the induction of B cell responses during viral infection that enables effective, neutralizing antibody production to complement traditional GC-derived antibodies that might compensate for GCs damaged by viral inflammation.
Collapse
Affiliation(s)
- Jennifer S. Chen
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine; New Haven, CT, USA
| | | | | | | | - Renata B. Filler
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Bridget L. Menasche
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Wenzhi Song
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington; Seattle, WA, USA
| | - Jason S. Weinstein
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School; Newark, NJ, USA
| | - Uthaman Gowthaman
- Deparment of Pathology, University of Massachusetts Medical School; Worcester, MA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine; New Haven, CT, USA
- Systems Biology Institute, Yale University; West Haven, CT, USA
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | | | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine; New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine; New Haven, CT, USA
| |
Collapse
|
175
|
Zhou L, Wu L, Peng C, Yang Y, Shi Y, Gong L, Xu Z, Zhu W. Predicting spike protein NTD mutations of SARS-CoV-2 causing immune evasion by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:3410-3419. [PMID: 35073390 DOI: 10.1039/d1cp05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among all the potential targets studied for developing drugs and antibodies, the spike (S) protein is the most striking one, which is on the surface of the virus. In contrast with the intensively investigated immunodominant receptor-binding domain (RBD) of the protein, little is known about the neutralizing antibody binding mechanisms of the N-terminal domain (NTD), let alone the effects of NTD mutations on antibody binding and thereby the risk of immune evasion. Based on 400 ns molecular dynamics simulation for 11 NTD-antibody complexes together with other computational approaches in this study, we investigated critical residues for NTD-antibody binding and their detailed mechanisms. The results show that 36 residues on the NTD including R246, Y144, K147, Y248, L249 and P251 are critically involved in the direct interaction of the NTD with many monoclonal antibodies (mAbs), indicating that the viruses harboring these residue mutations may have a high risk of immune evasion. Binding free energy calculations and an interaction mechanism study reveal that R246I, which is present in the Beta (B.1.351/501Y.V2) variant, may have various impacts on current NTD antibodies through abolishing the hydrogen bonds and electrostatic interaction with the antibodies or affecting other interface residues. Therefore, special attention should be paid to the mutations of these key residues in future antibody and vaccine design and development.
Collapse
Affiliation(s)
- Liping Zhou
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Leyun Wu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Cheng Peng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yanqing Yang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yulong Shi
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Likun Gong
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China.,Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
176
|
Soares MN, Eggelbusch M, Naddaf E, Gerrits KHL, van der Schaaf M, van den Borst B, Wiersinga WJ, van Vugt M, Weijs PJM, Murray AJ, Wüst RCI. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle 2022; 13:11-22. [PMID: 34997689 PMCID: PMC8818659 DOI: 10.1002/jcsm.12896] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle-related symptoms are common in both acute coronavirus disease (Covid)-19 and post-acute sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fibre atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxaemia, and malnutrition. These factors also contribute to post-intensive care unit (ICU) syndrome and ICU-acquired weakness and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure. Direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study. Both SARS-CoV-2-specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid-19 and PASC.
Collapse
Affiliation(s)
- Madu N Soares
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Moritz Eggelbusch
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Nutrition and Dietetics, Amsterdam UMC, Location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Karin H L Gerrits
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Merem Medical Rehabilitation, Hilversum, The Netherlands
| | - Marike van der Schaaf
- Department of Rehabilitation, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Health, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Bram van den Borst
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michele van Vugt
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J M Weijs
- Department of Nutrition and Dietetics, Amsterdam UMC, Location VUmc, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
177
|
Abdi A, AlOtaiby S, Badarin FA, Khraibi A, Hamdan H, Nader M. Interaction of SARS-CoV-2 with cardiomyocytes: Insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy. Biomed Pharmacother 2022; 146:112518. [PMID: 34906770 PMCID: PMC8654598 DOI: 10.1016/j.biopha.2021.112518] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
SARS-CoV-2 causes respiratory illness with a spectrum of systemic complications. However, the mechanism for cardiac infection and cardiomyocyte injury in COVID-19 patients remains unclear. The current literature supports the notion that SARS-CoV-2 particles access the heart either by the circulating blood cells or by extracellular vesicles, originating from the inflamed lungs, and encapsulating the virus along with its receptor (ACE2). Both cardiomyocytes and pericytes (coronary arteries) express the necessary accessory proteins for access of SARS-CoV-2 particles (i.e. ACE2, NRP-1, TMPRSS2, CD147, integrin α5β1, and CTSB/L). These proteins facilitate the SARS-CoV-2 interaction and entry into the pericytes and cardiomyocytes thus leading to cardiac manifestations. Subsequently, various signaling pathways are altered in the infected cardiomyocytes (i.e. increased ROS production, reduced contraction, impaired calcium homeostasis), causing cardiac dysfunction. The currently adopted pharmacotherapy in severe COVID-19 subjects exhibited side effects on the heart, often manifested by electrical abnormalities. Nonetheless, cardiovascular adverse repercussions have been associated with the advent of some of the SARS-CoV-2 vaccines with no clear mechanisms underlining these complications. We provide herein an overview of the pathways involved with cardiomyocyte in COVID-19 subjects to help promoting pharmacotherapies that can protect against SARS-CoV-2-induced cardiac injuries.
Collapse
Affiliation(s)
- Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shahad AlOtaiby
- Research Center, King Fahad Medical City, Central Second Health Cluster, Ministry of Health, Riyadh, Saudi Arabia
| | - Firas Al Badarin
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ali Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, and Biotechnology Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
178
|
Bozdaganyan ME, Shaitan KV, Kirpichnikov MP, Sokolova OS, Orekhov PS. Computational Analysis of Mutations in the Receptor-Binding Domain of SARS-CoV-2 Spike and Their Effects on Antibody Binding. Viruses 2022; 14:v14020295. [PMID: 35215888 PMCID: PMC8874930 DOI: 10.3390/v14020295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, SARS-CoV-2 causing coronavirus disease 2019 (COVID-19) is responsible for one of the most deleterious pandemics of our time. The interaction between the ACE2 receptors at the surface of human cells and the viral Spike (S) protein triggers the infection, making the receptor-binding domain (RBD) of the SARS-CoV-2 S-protein a focal target for the neutralizing antibodies (Abs). Despite the recent progress in the development and deployment of vaccines, the emergence of novel variants of SARS-CoV-2 insensitive to Abs produced in response to the vaccine administration and/or monoclonal ones represent a potential danger. Here, we analyzed the diversity of neutralizing Ab epitopes and assessed the possible effects of single and multiple mutations in the RBD of SARS-CoV-2 S-protein on its binding affinity to various antibodies and the human ACE2 receptor using bioinformatics approaches. The RBD-Ab complexes with experimentally resolved structures were grouped into four clusters with distinct features at sequence and structure level. The performed computational analysis indicates that while single amino acid replacements in RBD may only cause partial impairment of the Abs binding, moreover, limited to specific epitopes, the variants of SARS-CoV-2 with multiple mutations, including some which were already detected in the population, may potentially result in a much broader antigenic escape. Further analysis of the existing RBD variants pointed to the trade-off between ACE2 binding and antigenic escape as a key limiting factor for the emergence of novel SAR-CoV-2 strains, as the naturally occurring mutations in RBD tend to reduce its binding affinity to Abs but not to ACE2. The results provide guidelines for further experimental studies aiming to identify high-risk RBD mutations that allow for an antigenic escape.
Collapse
Affiliation(s)
- Marine E. Bozdaganyan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (K.V.S.); (M.P.K.)
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (K.V.S.); (M.P.K.)
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (K.V.S.); (M.P.K.)
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (K.V.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Correspondence: (O.S.S.); (P.S.O.)
| | - Philipp S. Orekhov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (K.V.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
- Correspondence: (O.S.S.); (P.S.O.)
| |
Collapse
|
179
|
Chawla H, Jossi SE, Faustini SE, Samsudin F, Allen JD, Watanabe Y, Newby ML, Marcial-Juárez E, Lamerton RE, McLellan JS, Bond PJ, Richter AG, Cunningham AF, Crispin M. Glycosylation and Serological Reactivity of an Expression-enhanced SARS-CoV-2 Viral Spike Mimetic. J Mol Biol 2022; 434:167332. [PMID: 34717971 PMCID: PMC8550889 DOI: 10.1016/j.jmb.2021.167332] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.
Collapse
Affiliation(s)
- Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sian E Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Sian E Faustini
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Edith Marcial-Juárez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachel E Lamerton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Alex G Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
180
|
Park YJ, De Marco A, Starr TN, Liu Z, Pinto D, Walls AC, Zatta F, Zepeda SK, Bowen JE, Sprouse KR, Joshi A, Giurdanella M, Guarino B, Noack J, Abdelnabi R, Foo SYC, Rosen LE, Lempp FA, Benigni F, Snell G, Neyts J, Whelan SPJ, Virgin HW, Bloom JD, Corti D, Pizzuto MS, Veesler D. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science 2022; 375:449-454. [PMID: 34990214 PMCID: PMC9400459 DOI: 10.1126/science.abm8143] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023]
Abstract
Understanding broadly neutralizing sarbecovirus antibody responses is key to developing countermeasures against SARS-CoV-2 variants and future zoonotic sarbecoviruses. We describe the isolation and characterization of a human monoclonal antibody, designated S2K146, that broadly neutralizes viruses belonging to SARS-CoV- and SARS-CoV-2-related sarbecovirus clades which use ACE2 as an entry receptor. Structural and functional studies show that most of the virus residues that directly bind S2K146 are also involved in binding to ACE2. This allows the antibody to potently inhibit receptor attachment. S2K146 protects against SARS-CoV-2 Beta challenge in hamsters and viral passaging experiments reveal a high barrier for emergence of escape mutants, making it a good candidate for clinical development. The conserved ACE2-binding residues present a site of vulnerability that might be leveraged for developing vaccines eliciting broad sarbecovirus immunity.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Affinity
- Betacoronavirus/immunology
- Broadly Neutralizing Antibodies/chemistry
- Broadly Neutralizing Antibodies/immunology
- Broadly Neutralizing Antibodies/metabolism
- Broadly Neutralizing Antibodies/therapeutic use
- COVID-19/immunology
- COVID-19/therapy
- Cross Reactions
- Cryoelectron Microscopy
- Epitopes
- Humans
- Immune Evasion
- Mesocricetus
- Models, Molecular
- Molecular Mimicry
- Mutation
- Protein Conformation
- Protein Domains
- Receptors, Coronavirus/chemistry
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Tyler N. Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Martina Giurdanella
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W. Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jesse D. Bloom
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
181
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
182
|
Saravanan UB, Namachivayam M, Jeewon R, Huang JD, Durairajan SSK. Animal models for SARS-CoV-2 and SARS-CoV-1 pathogenesis, transmission and therapeutic evaluation. World J Virol 2022; 11:40-56. [PMID: 35117970 PMCID: PMC8788210 DOI: 10.5501/wjv.v11.i1.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/22/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
There is a critical need to develop animal models to alleviate vaccine and drug development difficulties against zoonotic viral infections. The coronavirus family, which includes severe acute respiratory syndrome coronavirus 1 and severe acute respiratory syndrome coronavirus 2, crossed the species barrier and infected humans, causing a global outbreak in the 21st century. Because humans do not have pre-existing immunity against these viral infections and with ethics governing clinical trials, animal models are therefore being used in clinical studies to facilitate drug discovery and testing efficacy of vaccines. The ideal animal models should reflect the viral replication, clinical signs, and pathological responses observed in humans. Different animal species should be tested to establish an appropriate animal model to study the disease pathology, transmission and evaluation of novel vaccine and drug candidates to treat coronavirus disease 2019. In this context, the present review summarizes the recent progress in developing animal models for these two pathogenic viruses and highlights the utility of these models in studying SARS-associated coronavirus diseases.
Collapse
Affiliation(s)
- Udhaya Bharathy Saravanan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Mayurikaa Namachivayam
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong Province, China
| | | |
Collapse
|
183
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein mediates viral entry and membrane fusion. Its cleavage at S1/S2 and S2′ sites during the biosynthesis in virus producer cells and viral entry are critical for viral infection and transmission. In contrast, the biological significance of the junction region between both cleavage sites for S protein synthesis and function is less understood. By analyzing the conservation and structure of S protein, we found that intrachain contacts formed by the conserved tyrosine (Y) residue 756 (Y756) with three α-helices contribute to the spike’s conformational stability. When Y756 is mutated to an amino acid residue that can provide hydrogen bonds, S protein could be expressed as a cleaved form, but not vice versa. Also, the L753 mutation linked to the Y756 hydrogen bond prevents the S protein from being cleaved. Y756 and L753 mutations alter S protein subcellular localization. Importantly, Y756 and L753 mutations are demonstrated to reduce the infectivity of the SARS-CoV-2 pseudoviruses by interfering with the incorporation of S protein into pseudovirus particles and causing the pseudoviruses to lose their sensitivity to neutralizing antibodies. Furthermore, both mutations affect the assembly and production of SARS-CoV-2 virus-like particles in cell culture. Together, our findings reveal for the first time a critical role for the conserved L753-LQ-Y756 motif between S1/S2 and S2′ cleavage sites in S protein synthesis and processing as well as virus assembly and infection. IMPORTANCE The continuous emergence of SARS-CoV-2 variants such as the delta or lambda lineage caused the continuation of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. Logically, the spike (S) protein mutation has attracted much concern. However, the key amino acids in S protein for its structure and function are still not very clear. In this study, we discovered for the first time that the conserved residues Y756 and L753 at the junction between the S1/S2 and S2′ sites are very important, like the S2′ cleavage site R815, for the synthesis and processing of S protein such as protease cleavage, and that the mutations severely interfered with the incorporation of S protein into pseudotyped virus particles and SARS-CoV-2 virus-like particles. Consequently, we delineate the novel potential target for the design of broad-spectrum antiviral drugs in the future, especially in the emergence of SARS-CoV-2 variants.
Collapse
|
184
|
Ahmad W, Shabbiri K. Two years of SARS-CoV-2 infection (2019-2021): structural biology, vaccination, and current global situation. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022; 34:5. [PMID: 35043040 PMCID: PMC8759062 DOI: 10.1186/s43162-021-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
The deadly SARS-CoV-2 virus has infected more than 259,502,031 confirmed cases with 5,183,003 deaths in 223 countries during the last 22 months (Dec 2019-Nov 2021), whereas approximately 7,702,859,718, vaccine doses have been administered (WHO: https://covid19.who.int/) as of the 24th of Nov 2021. Recent announcements of test trial completion of several new vaccines resulted in the launching of immunization for the common person around the globe highlighting a ray of hope to cope with this infection. Meanwhile, genetic variations in SARS-CoV-2 and third layer of infection spread in numerous countries emerged as a stronger prototype than the parental. New and parental SARS-CoV-2 strains appeared as a risk factor for other pre-existing diseases like cancer, diabetes, neurological disorders, kidney, liver, heart, and eye injury. This situation requires more attention and re-structuring of the currently developed vaccines and/or drugs against SARS-CoV-2 infection. Although a decline in COVID-19 infection has been reported globally, an increase in COVID-19 cases in the subcontinent and east Mediterranean area could be alarming. In this review, we have summarized the current information about the SARS-CoV-2 biology, its interaction and possible infection pathways within the host, epidemiology, risk factors, economic collapse, and possible vaccine and drug development.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
- The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
185
|
Tan S, Banwell MG, Ye WC, Lan P, White LV. The Inhibition of RNA Viruses by Amaryllidaceae Alkaloids: Opportunities for the Development of Broad-Spectrum Anti-Coronavirus Drugs. Chem Asian J 2022; 17:e202101215. [PMID: 35032358 DOI: 10.1002/asia.202101215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The global COVID-19 pandemic has claimed the lives of millions and disrupted nearly every aspect of human society. Currently, vaccines remain the only widely available medical means to address the cause of the pandemic, the SARS-CoV-2 virus. Unfortunately, current scientific consensus deems the emergence of vaccine-resistant SARS-CoV-2 variants highly likely. In this context, the design and development of broad-spectrum, small-molecule based antiviral drugs has been described as a potentially effective, alternative medical strategy to address circulating and re-emerging CoVs. Small molecules are well-suited to target the least-rapidly evolving structures within CoVs such as highly conserved RNA replication enzymes, and this renders them less vulnerable to evolved drug resistance. Examination of the vast literature describing the inhibition of RNA viruses by Amaryllidaceae alkaloids suggests that future, broad-spectrum anti-CoV drugs may be derived from this family of natural products.
Collapse
Affiliation(s)
- Shen Tan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Martin G Banwell
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping Lan
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| | - Lorenzo V White
- The Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
186
|
Harbison AM, Fogarty CA, Phung TK, Satheesan A, Schulz BL, Fadda E. Fine-tuning the spike: role of the nature and topology of the glycan shield in the structure and dynamics of the SARS-CoV-2 S. Chem Sci 2022; 13:386-395. [PMID: 35126971 PMCID: PMC8729800 DOI: 10.1039/d1sc04832e] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
The dense glycan shield is an essential feature of the SARS-CoV-2 spike (S) architecture, key to immune evasion and to the activation of the prefusion conformation. Recent studies indicate that the occupancy and structures of the SARS-CoV-2 S glycans depend not only on the nature of the host cell, but also on the structural stability of the trimer; a point that raises important questions about the relative competence of different glycoforms. Moreover, the functional role of the glycan shield in the SARS-CoV-2 pathogenesis suggests that the evolution of the sites of glycosylation is potentially intertwined with the evolution of the protein sequence to affect optimal activity. Our results from multi-microsecond molecular dynamics simulations indicate that the type of glycosylation at N234, N165 and N343 greatly affects the stability of the receptor binding domain (RBD) open conformation, and thus its exposure and accessibility. Furthermore, our results suggest that the loss of glycosylation at N370, a newly acquired modification in the SARS-CoV-2 S glycan shield's topology, may have contributed to increase the SARS-CoV-2 infectivity as we find that N-glycosylation at N370 stabilizes the closed RBD conformation by binding a specific cleft on the RBD surface. We discuss how the absence of the N370 glycan in the SARS-CoV-2 S frees the RBD glycan binding cleft, which becomes available to bind cell-surface glycans, and potentially increases host cell surface localization.
Collapse
Affiliation(s)
- Aoife M Harbison
- Department of Chemistry and Hamilton Institute, Maynooth University Maynooth Kildare Ireland
| | - Carl A Fogarty
- Department of Chemistry and Hamilton Institute, Maynooth University Maynooth Kildare Ireland
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia QLD Australia
| | - Akash Satheesan
- Department of Chemistry and Hamilton Institute, Maynooth University Maynooth Kildare Ireland
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia QLD Australia
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University Maynooth Kildare Ireland
| |
Collapse
|
187
|
Lan Q, Xia S, Lu L. Coronavirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:101-121. [DOI: 10.1007/978-981-16-8702-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
188
|
Xiong Q, Cao L, Ma C, Tortorici MA, Liu C, Si J, Liu P, Gu M, Walls AC, Wang C, Shi L, Tong F, Huang M, Li J, Zhao C, Shen C, Chen Y, Zhao H, Lan K, Corti D, Veesler D, Wang X, Yan H. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature 2022; 612:748-757. [PMID: 36477529 PMCID: PMC9734910 DOI: 10.1038/s41586-022-05513-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.
Collapse
Affiliation(s)
- Qing Xiong
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Cao
- grid.9227.e0000000119573309CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chengbao Ma
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - M. Alejandra Tortorici
- grid.34477.330000000122986657Department of Biochemistry, University of Washington, Seattle, WA USA
| | - Chen Liu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junyu Si
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Liu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mengxue Gu
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Alexandra C. Walls
- grid.34477.330000000122986657Department of Biochemistry, University of Washington, Seattle, WA USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Seattle, WA USA
| | - Chunli Wang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lulu Shi
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Tong
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meiling Huang
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chufeng Zhao
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chao Shen
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yu Chen
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- grid.49470.3e0000 0001 2331 6153Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- grid.49470.3e0000 0001 2331 6153State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- grid.498378.9Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Huan Yan
- State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
189
|
Fresco-Taboada A, García-Durán M, Aira C, López L, Sastre P, van der Hoek L, van Gils MJ, Brouwer PJ, Sanders RW, Holzer B, Zimpernikc I, López-Collazo E, Muñoz P, Rueda P, Vela C. Diagnostic performance of two serological assays for the detection of SARS-CoV-2 specific antibodies: surveillance after vaccination. Diagn Microbiol Infect Dis 2022; 102:115650. [PMID: 35218991 PMCID: PMC8789399 DOI: 10.1016/j.diagmicrobio.2022.115650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023]
Abstract
Massive vaccination programs are being carried out to limit the SARS-CoV-2 pandemic that started in December 2019. Serological tests are of major importance as an indicator of circulation of the virus and to assess how vaccine-induced immunity progresses. An Enzyme-Linked Immunosorbent Assay (ELISA) and a Lateral Flow Assay (LFA) have been developed based on the SARS-CoV-2 recombinant Receptor Binding Domain (RBD) and the combination of Spike and Nucleoprotein, respectively. The validation with 1272 serum samples by comparison with INgezim COVID 19 DR showed good diagnostic performance (sensitivity: 93.2%-97.2%; specificity: 98.3%-99.3%) for detection of previous contact with SARS-CoV-2. Moreover, according to our results, these assays can help in the serosurveillance during and after vaccination, by detecting the humoral immune response as soon as 15 days postvaccination and identifying low-respondents. Hence, these tests could play a key role in the progression to a COVID-19 free world, helping to adjust future vaccination protocols.
Collapse
|
190
|
Tsvetkova AV, Koneva ES, Kostenko AA, Bisheva DR, Sidyakina IV, Konev SM, Zhumanova EN, Illarionov VE, Shestakov AV. [The role of systemic ozone therapy in the rehabilitation of patients after COVID-19]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:22-29. [PMID: 36083814 DOI: 10.17116/kurort20229904222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the effectiveness and safety of ozone therapy in rehabilitation of patients with previous COVID-19. MATERIAL AND METHODS A randomized controlled clinical trial included 51 patients aged 29 - 78 years with SARS-CoV-2 pneumonia (J12.8). Patients were divided into 3 comparable groups depending on the complex of rehabilitation. In the first (control) group (n=17), a 10-day course included daily breathing exercises and physiotherapy for the lungs (drug electrophoresis and low-frequency magnetotherapy). In the second (main) group (n=18), rehabilitation was combined with daily intravenous infusions of ozonized saline with ozone concentration of 2.0 mg/l within 5 days with subsequent standard rehabilitation. In the third group (n=16), patients received 5 ozone therapy procedures every other day. To determine the effectiveness and safety of systemic ozone therapy in rehabilitation of patients with previous COVID-19, we analyzed oxygen saturation, laboratory data (D-dimer and C-reactive protein), need for oxygen support before and after rehabilitation course. Complaints and quality of life throughout the rehabilitation program were assessed using the EQ-5D questionnaire. RESULTS All patients had positive changes of all parameters. There were no adverse reactions throughout the rehabilitation program and 2 months later. We observed higher effectiveness of rehabilitation with systemic ozone therapy. Moreover, daily ozone therapy had a better effect on laboratory parameters compared to ozone therapy every other day. CONCLUSION Ozone therapy is safe and effective in complex rehabilitation of patients with previous COVID-19. Further studies of large samples are needed to determine indications and appropriate criteria for this rehabilitation program.
Collapse
Affiliation(s)
- A V Tsvetkova
- Sechenov First Moscow State Medical University, Moscow, Russia
- Group of companies «MEDSI», Otradnoe, Russia
| | - E S Koneva
- Sechenov First Moscow State Medical University, Moscow, Russia
- Group of companies «MEDSI», Otradnoe, Russia
| | - A A Kostenko
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - D R Bisheva
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - S M Konev
- Sechenov First Moscow State Medical University, Moscow, Russia
- Group of companies «MEDSI», Otradnoe, Russia
| | | | - V E Illarionov
- Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - A V Shestakov
- Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
191
|
Abstract
The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
192
|
Zhang J, Xiao T, Cai Y, Lavine CL, Peng H, Zhu H, Anand K, Tong P, Gautam A, Mayer ML, Walsh RM, Rits-Volloch S, Wesemann DR, Yang W, Seaman MS, Lu J, Chen B. Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science 2021; 374:1353-1360. [PMID: 34698504 PMCID: PMC10763652 DOI: 10.1126/science.abl9463] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Christy L. Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Haisun Zhu
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Krishna Anand
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Pei Tong
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02115, USA
| | - Avneesh Gautam
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02115, USA
| | - Megan L. Mayer
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Richard M. Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| | - Duane R. Wesemann
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02115, USA
| | - Wei Yang
- Institute for Protein Innovation, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Jianming Lu
- Codex BioSolutions, Inc., 401 Professional Drive, Gaithersburg, MD 20879, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, 3900 Reservoir Road, N.W., Washington, D.C. 20057, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, MA 02115, USA
| |
Collapse
|
193
|
Francino-Urdaniz IM, Whitehead TA. An overview of methods for the structural and functional mapping of epitopes recognized by anti-SARS-CoV-2 antibodies. RSC Chem Biol 2021; 2:1580-1589. [PMID: 34977572 PMCID: PMC8637828 DOI: 10.1039/d1cb00169h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/25/2021] [Indexed: 12/20/2022] Open
Abstract
This mini-review presents a critical survey of techniques used for epitope mapping on the SARS-CoV-2 Spike protein. The sequence and structures for common neutralizing and non-neutralizing epitopes on the Spike protein are described as determined by X-ray crystallography, electron microscopy and linear peptide epitope mapping, among other methods. An additional focus of this mini-review is an analytical appraisal of different deep mutational scanning workflows for conformational epitope mapping and identification of mutants on the Spike protein which escape antibody neutralization. Such a focus is necessary as a critical review of deep mutational scanning for conformational epitope mapping has not been published. A perspective is presented on the use of different epitope determination methods for development of broadly potent antibody therapies and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Irene M Francino-Urdaniz
- Department of Chemical and Biological Engineering, University of Colorado JSC Biotechnology Building, 3415 Colorado Avenue Boulder CO 80305 USA +1 303-735-2145
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado JSC Biotechnology Building, 3415 Colorado Avenue Boulder CO 80305 USA +1 303-735-2145
| |
Collapse
|
194
|
Ebihara T, Masuda A, Takahashi D, Hino M, Mon H, Kakino K, Fujii T, Fujita R, Ueda T, Lee JM, Kusakabe T. Production of scFv, Fab, and IgG of CR3022 Antibodies Against SARS-CoV-2 Using Silkworm-Baculovirus Expression System. Mol Biotechnol 2021; 63:1223-1234. [PMID: 34304364 PMCID: PMC8310559 DOI: 10.1007/s12033-021-00373-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/16/2021] [Indexed: 01/15/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is currently spreading around the world and causing many casualties. Antibodies against such emerging infectious diseases are one of the important tools for basic viral research and the development of diagnostic and therapeutic agents. CR3022 is a monoclonal antibody against the receptor binding domain (RBD) of the spike protein (S protein) of SARS-CoV found in SARS patients, but it was also shown to have strong affinity for that of SARS-CoV-2. In this study, we produced large amounts of three formats of CR3022 antibodies (scFv, Fab and IgG) with high purity using a silkworm-baculovirus expression vector system. Furthermore, SPR measurements showed that the affinity of those silkworm-produced IgG antibodies to S protein was almost the same as that produced in mammalian expression system. These results indicate that the silkworm-baculovirus expression system is an excellent expression system for emerging infectious diseases that require urgent demand for diagnostic agents and therapeutic agents.
Collapse
Affiliation(s)
- Takeru Ebihara
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Daisuke Takahashi
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
195
|
Marciniec K, Beberok A, Boryczka S, Wrześniok D. The application of in silico experimental model in the assessment of ciprofloxacin and levofloxacin interaction with main SARS-CoV-2 targets: S-, E- and TMPRSS2 proteins, RNA-dependent RNA polymerase and papain-like protease (PLpro)-preliminary molecular docking analysis. Pharmacol Rep 2021; 73:1765-1780. [PMID: 34052981 PMCID: PMC8164684 DOI: 10.1007/s43440-021-00282-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 10/27/2022]
Abstract
BACKGROUND The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified at the end of 2019. Despite growing understanding of SARS-CoV-2 in virology as well as many molecular studies, except remdesivir, no specific anti-SARS-CoV-2 drug has been officially approved. METHODS In the present study molecular docking technique was applied to test binding affinity of ciprofloxacin and levofloxacin-two commercially available fluoroquinolones, to SARS-CoV-2 S-, E- and TMPRSS2 proteins, RNA-dependent RNA polymerase and papain-like protease (PLPRO). Chloroquine and dexamethasone were used as reference positive controls. RESULTS When analyzing the molecular docking data it was noticed that ciprofloxacin and levofloxacin possess lower binding energy with S protein as compared to the references. In the case of TMPRSS2 protein and PLPRO protease the best docked ligand was levofloxacin and in the case of E proteins and RNA-dependent RNA polymerase the best docked ligands were levofloxacin and dexamethasone. Moreover, a molecular dynamics study also reveals that ciprofloxacin and levofloxacin form a stable complex with E- and TMPRSS2 proteins, RNA polymerase and papain-like protease (PLPRO). CONCLUSIONS The revealed data indicate that ciprofloxacin and levofloxacin could interact and potentially inhibit crucial SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| |
Collapse
|
196
|
Akter F, Araf Y, Naser IB, Promon SK. Prospect of 3D bioprinting over cardiac cell therapy and conventional tissue engineering in the treatment of COVID-19 patients with myocardial injury. Regen Ther 2021; 18:447-456. [PMID: 34608441 PMCID: PMC8481096 DOI: 10.1016/j.reth.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Due to multiple mutations of SARS-CoV-2, the mystery of defeating the virus is still unknown. Cardiovascular complications are one of the most concerning effects of COVID-19 recently, originating from direct and indirect mechanisms. These complications are associated with long-term Cardio-vascular diseases and can induce sudden cardiac death in both infected and recovered COVID-19 patients. The purpose of this research is to do a competitive analysis between conventional techniques with the upgraded alternative 3D bioprinting to replace the damaged portion of the myocardium. Additionally, this study focuses on the potential of 3D bioprinting to be a novel alternative. Finally, current challenges and future perspective of 3D bioprinting technique is briefly discussed.
Collapse
Affiliation(s)
- Fariya Akter
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iftekhar Bin Naser
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Salman Khan Promon
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Bashundhara, Dhaka, Bangladesh
| |
Collapse
|
197
|
Kaffash Farkhad N, Reihani H, sedaghat A, Moghadam AA, Moghadam AB, Tavakol-Afshari J. Are mesenchymal stem cells able to manage cytokine storm in COVID-19 patients? A review of recent studies. Regen Ther 2021; 18:152-160. [PMID: 34124322 PMCID: PMC8185247 DOI: 10.1016/j.reth.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
The Covid-19 disease has recently become one of the biggest challenges globally, and there is still no specific medication. Findings showed the immune system in severe Covid-19 patients loses regulatory control of pro-inflammatory cytokines, especially IL-6 production, called the "Cytokine storm" process. This process can cause injury to vital organs, including lungs, kidneys, liver, and ultimately death if not inhibited. While many treatments have been proposed to reduce cytokine storm, but the safety and effectiveness of each of them are still in doubt. Mesenchymal stem cells (MSCs) are multipotent cells with self-renewal potential capable of suppressing overactive immune responses and leading to tissue restoration and repair. These immuno-modulatory properties of MSCs and their derivatives (like exosomes) can improve the condition of Covid-19 patients with serious infectious symptoms caused by adaptive immune system dysfunction. Many clinical trials have been conducted in this field using various MSCs around the world. Some of these have been published and summarized in the present article, while many have not yet been completed. Based on these available data, MSCs can reduce inflammatory cytokines, increase oxygen saturation, regenerate lung tissue and improve clinical symptoms in Covid-19 patients. The review article aims to collect available clinical data in more detail and investigate the role of MSCs in reducing cytokine storms as well as improving clinical parameters of Covid-19 patients for use in future clinical studies.
Collapse
Affiliation(s)
- Najmeh Kaffash Farkhad
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hamidreza Reihani
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Alireza sedaghat
- Fellowship of Critical Care Medicine (FCCM), Lung Disease Research Center, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Adhami Moghadam
- Specialty of Internal Medicine and Critical Care, Head of Army Hospital ICU and Intensivist, Iran
| | - Ahmad Bagheri Moghadam
- Internal Medicine and Critical Care, Department of Anesthesiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
198
|
Tuccori M, Convertino I, Ferraro S, Valdiserra G, Cappello E, Fini E, Focosi D. An overview of the preclinical discovery and development of bamlanivimab for the treatment of novel coronavirus infection (COVID-19): reasons for limited clinical use and lessons for the future. Expert Opin Drug Discov 2021; 16:1403-1414. [PMID: 34304682 PMCID: PMC8353660 DOI: 10.1080/17460441.2021.1960819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Introduction: In the COVID-19 pandemic emergency, research has been oriented toward the development of therapies that could cure critically ill patients and treatments that can reduce the number of hospitalized patients, in order to ease the pressure on health-care systems. Bamlanivimab, developed from human convalescent plasma, was the first monoclonal antibody to become available for emergency use in several countries. Expectations related to its use in COVID-19 patients as a single agent have been largely disregarded, especially against E484K-carrying SARS-CoV-2 variants.Areas covered: In this drug discovery case history, the development of the drug is described starting from the identification and selection of the antibody, from the pre-clinical and clinical trials up to the post-authorization phase.Expert opinion: Bamlanivimab has shown some efficacy in patients with mild to moderate COVID-19. Initially approved as a monotherapy, due to poor efficacy it is currently only usable in combination with etesevimab. Pharmacokinetic limitations and mainly the onset of SARS-CoV-2 variants are the main reasons for this limited clinical use. The use in preventing hospitalization also has ethical limits related to the sustainability of care, especially if, considering similar effectiveness, bamlanivimab is compared with convalescent plasma.
Collapse
Affiliation(s)
- Marco Tuccori
- Unit of Adverse Drug Reactions Monitoring, University Hospital of Pisa, Unit of Adverse Drug Reactions Monitoring, Pisa, Italy
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Irma Convertino
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Sara Ferraro
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Giulia Valdiserra
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Emiliano Cappello
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Elisabetta Fini
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Daniele Focosi
- North Western Tuscany Blood Bank, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
199
|
Chen Y, Sun L, Ullah I, Beaudoin-Bussières G, Anand SP, Hederman AP, Tolbert WD, Sherburn R, Nguyen DN, Marchitto L, Ding S, Wu D, Luo Y, Gottumukkala S, Moran S, Kumar P, Piszczek G, Mothes W, Ackerman ME, Finzi A, Uchil PD, Gonzalez FJ, Pazgier M. Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.24.469776. [PMID: 34845451 PMCID: PMC8629194 DOI: 10.1101/2021.11.24.469776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Soluble Angiotensin-Converting Enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses utilizing ACE2 as their receptor. Here, using structure-guided approaches, we developed divalent ACE2 molecules by grafting the extracellular ACE2-domain onto a human IgG1 or IgG3 (ACE2-Fc). These ACE2-Fcs harbor structurally validated mutations that enhance spike (S) binding and remove angiotensin enzymatic activity. The lead variant bound tightly to S, mediated in vitro neutralization of SARS-CoV-2 variants of concern (VOCs) with sub-nanomolar IC 50 and was capable of robust Fc-effector functions, including antibody-dependent-cellular cytotoxicity, phagocytosis and complement deposition. When tested in a stringent K18-hACE2 mouse model, it delayed death or effectively resolved lethal SARS-CoV-2 infection in a prophylactic or therapeutic setting utilizing the combined effect of neutralization and Fc-effector functions. These data confirm the utility of ACE2-Fcs as valuable agents in preventing and eliminating SARS-CoV-2 infection and demonstrate that ACE2-Fc therapeutic activity require Fc-effector functions.
Collapse
Affiliation(s)
- Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
- equal contribution
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- equal contribution
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
- equal contribution
| | - Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill, QC, Canada
| | | | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Lorie Marchitto
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Sean Moran
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Andrés Finzi
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill, QC, Canada
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| |
Collapse
|
200
|
Béreux S, Delmas B, Cazals F. Boosting the analysis of protein interfaces with multiple interface string alignments: Illustration on the spikes of coronaviruses. Proteins 2021; 90:848-857. [PMID: 34779026 DOI: 10.1002/prot.26279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
We introduce multiple interface string alignment (MISA), a visualization tool to display coherently various sequence and structure based statistics at protein-protein interfaces (SSE elements, buried surface area, Δ ASA , B factor values, etc). The amino acids supporting these annotations are obtained from Voronoi interface models. The benefit of MISA is to collate annotated sequences of (homologous) chains found in different biological contexts, that is, bound with different partners or unbound. The aggregated views MISA/SSE, MISA/BSA, MISA/ΔASA, and so forth, make it trivial to identify commonalities and differences between chains, to infer key interface residues, and to understand where conformational changes occur upon binding. As such, they should prove of key relevance for knowledge-based annotations of protein databases such as the Protein Data Bank. Illustrations are provided on the receptor binding domain of coronaviruses, in complex with their cognate partner or (neutralizing) antibodies. MISA computed with a minimal number of structures complement and enrich findings previously reported. The corresponding package is available from the Structural Bioinformatics Library (http://sbl.inria.frand https://sbl.inria.fr/doc/Multiple_interface_string_alignment-user-manual.html).
Collapse
|